
Calculus 1 - 08

Comparison test

Theorem. Assume that 0 ≤ cn ≤ an ≤ bn for n > N where N is some fixed integer. Then

  (1) If 
n=1

∞

bn is convergent, then 
n=1

∞

an is convergent.

  (2) If 
n=1

∞

cn is divergent, then 
n=1

∞

an is divergent.

Proof. Denote by sn
a, sn

b, sn
c  the nth partial sums of the numerical series 

n=1

∞

an, 
n=1

∞

bn and 
n=1

∞

cn 

    respectively. 
    

       (1) 1st proof. We use the Cauchy criterion. Let ε > 0 be fixed, then by the convergence of  

              
n=1

∞

bn there exists N(ε) ∈ such that if m > n > N(ε), then sm
b - sn

b < ε, so 

             if m > n > max {N, N(ε)} then sm
a - sn

a = 

k=n+1

m

ak ≤ 

k=n+1

m

bk = sm
b - sn

b < ε, so 
n=1

∞

an 

             is convergent.
    
   2nd proof. Changing finitely many terms does not affect the convergence or divergence 
   of a series, so it may be assumed that 0 ≤ an ≤ bn holds for all n ∈. (If the series does not 
   start at n = 1 then it can be reindexed.)
   

   From the condition  

a1 ≤ b1

a2 ≤ b2

...
an ≤ bn

      ⟹    sn
a = a1 + a2 + ... + an ≤ b1 + b2 + ... + bn = sn

b.

   Assume that 
n=1

∞

bn is convergent  ⟹  sn
b is bounded  ⟹   (sn

a) is bounded  

   ⟹  (sn
a) is convergent since it is monotonically increasing  ⟹  

n=1

∞

an is convergent.

   
      (2) (sn

c ) is monotonically increasing if n > N and not bounded, so sn
a - sN

a > sn
c - sN

c ⟶∞ and thus 
            sn

a⟶∞.
            

Remark.   The convergence of the p-series 
n=1

∞ 1

np
 can be investigated easily with the comparison test 

         for  p ≤ 1 and p ≥ 2.

 If p ≤ 1 then 0 <
1

n
≤

1

np
 and 

n=1

∞ 1

n
 is divergent so 

n=1

∞ 1

np
 is divergent.



 If p = 2 then  
1

n2
≤

2

n(n + 1)
 for all n ∈+ and 

n=1

∞ 2

n(n + 1)
= 2 

n=1

∞ 1

n(n + 1)
 is convergent, 

   so 
n=1

∞ 1

n2
 is convergent.

 If p > 2 then 0 <
1

np
≤

1

n2
 and 

n=1

∞ 1

n2
 is convergent so 

n=1

∞ 1

np
 is convergent.

Remark. Leonhard Euler proved in 1734 that 
n=1

∞ 1

n2
=
π2

6
.

Examples

1) Investigate the convergence of the series 
n=1

∞ 1

2 n + 1
=

n=1

∞

an.

Solution. Here infinitely many terms are omitted from the harmonic series. By the comparison test 
we show that this series is still divergent.

an =
1

2 n + 1
>

1

2 n + n
=

1

3 n
     and   

n=1

∞ 1

3 n
=

1

3


n=1

∞ 1

n
   diverges  ⟹  

n=1

∞

an diverges.

2) Investigate the convergence of the series 
n=1

∞ n + 2

3 n4 + 5
=

n=1

∞

an.

Solution.  an =
n+2

3 n4 +5
<
n+2 n

3 n4 +0
=

1

n3
     and   

n=1

∞ 1

n3
   converges  (p = 3 > 1)  ⟹  

n=1

∞

an converges.

3) Investigate the convergence of the series 
n=1

∞ 2 n2 - 32

n3 + 8
=

n=1

∞

an.

Solution. If n ≥ 4 then the terms of the series are positive. By the comparison test we show that 
the series diverges. If n ≥ 6 then n2 > 32, so

an =
2 n2 -32

n3 +8
>

2 n2 -n2

n3 +8 n3
=

1

9 n
     and   

n=1

∞ 1

9 n
=

1

9


n=1

∞ 1

n
   diverges  ⟹  

n=1

∞

an diverges.

4) Investigate the convergence of the series 
n=1

∞ 2n + 3n+1

22 n+3 + 5
=

n=1

∞

an.

Solution. an =
2n + 3 ·3n

8 ·4n +5
<

3n + 3 ·3n

8 ·4n +0
=

1

2

3

4

n

  and



n=1

∞ 1

2

3

4

n

 is a convergent geometric series q =
3

4
, q < 1   ⟹  

n=1

∞

an converges.
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Error estimation for series with nonnegative terms

Remark. Usually we don’t know the limit  s =

n=1

∞

an = lim
n∞



k=1

n

ak = lim
n∞

sn  but if n is large then sn gives 

         an estimation of s. The error for the approximation s ≈ sn is E = s - sn .
         If 0 ≤ ak ≤ bk for k ≥ n then the error can be estimated with the comparison test:

       E = s - sn = s - sn =

k=1

∞

ak -

k=1

n

ak = 

k=n+1

∞

ak ≤ 

k=n+1

∞

bk.

       
       Here sn ≤ s, since (sn) is monotonically increasing.

Example.  Show that the series 
n=1

∞ 1

n !
 is convergent and estimate the error if the sum of the series 

  is approximated by the sum of the first 6 terms (s ≈ s6).

Solution. Estimate the terms from above by the terms of a convergent series:
1

n !
=

1

n · (n - 1) · (n - 2) · ... ·2 ·1
≤

1

n(n - 1) ·1 · ... ·1 ·1
=

1

n2 - n
≤

1

n2 -
n2

2

=
2

n2
.

Since 
n=0

∞ 2

n2
 converges then by the comparison test 

n=0

∞ 1

n !
 also converges.

Error estimation for the approximation s ≈ sn:

         E = s - sn = 

k=n+1

∞

ak =
1

(n + 1) !
1 +

1

n + 2
+

1

(n + 2) (n + 3)
+

1

(n + 2) (n + 3) (n + 4)
+ ... ≤

                              ≤
1

(n + 1) !
1 +

1

n + 2
+

1

(n + 2)2
+

1

(n + 2)3
+ ... =

1

(n + 1) !


k=0

∞ 1

n + 2

k

=

                              =
1

(n + 1) !
·

1

1 -
1
n+2

=
1

(n + 1) !
·
n + 2

n + 1

                              

                     If n = 6 then  s - sn ≤
1

7 !
·

8

7
≈ 0.000226757 and            

s6 = 1 + 1 +
1

2 !
+

1

3 !
+

1

4 !
+

1

5 !
+

1

6 !
≈ 2.718 ... ≈ e (here 3 digits are accurate).

Absolute convergence

Definition. We say that the numerical series 
n=1

∞

an is absolutely convergent if the series 
n=1

∞

an  

   is convergent.

Example. 
n=1

∞

a1 qn-1 is absolutely convergent if q < 1.
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Theorem. If 
n=1

∞

an is absolutely convergent then it is convergent.

Proof. Let ε > 0 be fixed. If 
n=1

∞

an  is convergent then by the Cauchy criterion there exists N ∈ 

    such that if m > n > N then an+1 + an+2 ... + am < ε. Then for all m > n > N

   sm - sn = an+1 + an+2 ... + am ≤ an+1 + an+2 ... + am < ε 

    also holds, so by the Cauchy criterion 
n=1

∞

an is convergent.

Consequence. If an ≤ bn for n > N and 
n=1

∞

bn is convergent then 
n=1

∞

an is absolutely convergent 

           and therefore also convergent.

Definition. If 
n=1

∞

an is convergent but not absolutely convergent then it is conditionally 

   convergent.

Example. 
n=1

∞ (-1)n+1

n
= 1-

1

2
+

1

3
-

1

4
+

1

5
-

1

6
+ ... =

n=1

∞ 1

2 n - 1
-

1

2 n
=

n=1

∞ 1

2 n(2 n - 1)
 is convergent, since 

0 <
1

2 n(2 n - 1)
≤

1

2 n ·n
≤

1

n2
 and 

n=1

∞ 1

n2
 is convergent.

On the other hand 
n=1

∞ (-1)n+1

n
=

n=1

∞ 1

n
 which is divergent, so the series 

n=1

∞ (-1)n+1

n
 is 

conditionally convergent.

Rearrangements

Definition. If π : ⟶ is a permutation of the natural numbers (that is, every natural number 

appears exactly once in this sequence) then we say that 
n=1

∞

aπ(n) is a rearrangement of 
n=1

∞

an.

Theorem (Riemann rearrangement theorem). Suppose that 
n=1

∞

an is conditionally convergent 

and   -∞≤α ≤ β ≤∞. Then there exists a rearrangement 
n=1

∞

an ' with partial sums sn '    such that   

lim inf sn ' = α, lim sup sn ' = β .

Theorem. If 
n=1

∞

an is absolutely convergent then every rearrangement of 
n=1

∞

an converges and 

they all converge to the same sum.
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Proof: See W. Rudin: Principles of Mathematical Analysis, page 75:
https://web.math.ucsb.edu/~agboola/teaching/2021/winter/122A/rudin.pdf

Alternating series

Definition. 
n=1

∞

an is an alternating series if an an+1 < 0 for all n ∈.

Theorem (Leibniz). Let (an) be a monotonically decreasing sequence of positive numbers 

such that an
n∞

0. Then the alternating series 
n=1

∞

(-1)n+1 an = a1 - a2 + a3 - a4 + a5 - a6 + ... 

is convergent.

Remark.   A series with this property is called a Leibniz series. 
 The theorem is called the alternating series test or Leibniz’s test or Leibniz criterion.

Proof. Since an ≥ an+1 > 0 for all n ∈ then
   

     s2 n ≤ s2 n + (a2 n+1 - a2 n+2) = s2 n+2 = s2 n+1 - a2 n+2 ≤ s2 n+1 = s2 n-1 - (a2 n - a2 n+1) ≤ s2 n-1,

    that is,    0 ≤ s2 ≤ s4 ≤ s6 ≤ s8 ≤ ... ≤ s7 ≤ s5 ≤ s3 ≤ s1 = a1.

    So (s2 n) is monotonically increasing and bounded above  ⟹  it is convergent,
    and (s2 n+1) is monotonically decreasing and bounded below  ⟹  it is convergent.

    Since s2 n+1 - s2 n = a2 n+1
n∞

0 then lim
n∞

s2 n = lim
n∞

s2 n+1 = lim
n∞

sn  ⟹  the series is convergent.

    (Or, by the Cantor axiom 
n=1

∞

[s2 n, s2 n-1] is not empty and since s2 n-1 - s2 n = a2 n
n∞

0 then is has 

    only one element which is the limit of (sn).)

Error estimation:
   Let s = lim

n∞
sn. If n is odd then sn+1 ≤ s ≤ sn and if n is even then sn ≤ s ≤ sn+1.

   In both cases the error for the approximation s ≈ sn is 

 E = s - sn ≤ sn+1 - sn = an+1. 

Examples

1. The alternating series 
n=1

∞ (-1)n+1

n
 is convergent, since an =

1

n
 is monotonically decreasing 

     and an⟶0.

2. Is the series 
n=1

∞

(-1)n+1 1

2 n + 1
3

=

n=1

∞

(-1)n+1 cn convergent?
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Solution. Since cn =
1

2 n + 1
3

 is monotonically decreasing and cn⟶0 then this is a Leibniz

series so it is convergent.

3. Is the series 
n=1

∞

(-1)n+1 1

2 n + 1
n

=

n=1

∞

(-1)n+1 cn convergent?

Solution. Since 
1

3
n

· n
n

=
1

2 n + n
n

≤
1

2 n + 1
n

= cn ≤
1

0 + 1
n

= 1

and 
1

3
n

· n
n

⟶
1

1 ·1
= 1 then by the sandwich theorem lim

n∞
cn = 1.

So lim
n∞

(-1)n+1 cn doesn’t exist, and thus by the nth term test the series diverges.

4. Is the series 
n=1

∞

(-1)n+1 n + 1

n2 + 2
=

n=1

∞

(-1)n+1 cn convergent?

Solution. 1) 0 < cn =
n + 1

n2 + 2
=

1

n
+

1

n2

1 +
2

n2

⟶
0 + 0

1 + 0
= 0.

           2) It is not obvious that (cn) is monotonically decreasing, since both the numerator and 
                the denominator increases.

                cn+1 ≤ cn  ⟺  
(n + 1) + 1

(n + 1)2 + 2
≤
n + 1

n2 + 2
                    ⟺  (n + 2) n2 + 2 ≤ (n + 1) n2 + 2 n + 3

                    ⟺  n3 + 2 n2 + 2 n + 4 ≤ n3 + n2 + 2 n2 + 2 n + 3 n + 3
                    ⟺  0 ≤ n2 + 3 n - 1   and this is true for all n ∈.
                Since the steps are equivalent then cn+1 ≤ cn also holds for all n ∈, so (cn) is 
                monotonically decreasing. Then by the Leibniz criterion the series converges.
            

Remark. If the sum of the series is approximated by s100 then the error is

         E = s - s100 ≤ c101 =
101 + 1

1012 + 2
.

Root test (Cauchy)

Theorem (Root test): Assume that an > 0 and lim sup an
n

= R. Then

  (1) if R < 1, then 
n=1

∞

an is convergent;

  (2) if R > 1, then 
n=1

∞

an is divergent.

Proof. (1) Suppose that R < 1, then there exists ε > 0 such that R + ε < 1.
 By the definition of the limsup, for this ε there exists N ∈ such that if n > N then 

    an
n

< R + ε, since if  an
n

≥ R + ε would hold for infinitely many n then this subsequence 

     would have a limit point greater than R.
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 greater

 Thus an ≤ (R + ε)n if n > N, and since 
n=1

∞

(R + ε)n is a convergent geometric series 

    then by the comparison test, 
n=1

∞

an is also convergent.

              (2)  Suppose that R > 1, then there exists ε > 0 and a subsequence of an
n  such that 

                 ank
nk ≥ R - ε > 1.

               Then for the terms of this subsequence ank ≥ (R - ε)nk > 1  
                  ⟹  lim

nk∞
ank ≠ 0  ⟹  lim

n∞
an ≠ 0  ⟹  the series is divergent by the nth term test.

                  

Consequence. Assume lim sup an
n

= R. Then

  (1) if R < 1, then 
n=1

∞

an is convergent, since it is absolutely convergent;

  (2) if R > 1, then 
n=1

∞

an is divergent, since if lim
n∞

an ≠ 0, then lim
n∞

an ≠ 0.

Remark.  If R = 1 then we don’t know anything about the convergence of the series, for example 

1) 
n=1

∞ 1

n
 is divergent and 

1

n
n ⟶1

2) 
n=1

∞ 1

n2
 is convergent and 

1

n2
n ⟶1

Ratio test (D’Alambert)

Theorem (Ratio test): Assume that an > 0. Then

  (1) if  lim sup
an+1

an
< 1, then 

n=1

∞

an is convergent;

  (2) if  lim inf
an+1

an
> 1, then 

n=1

∞

an is divergent.

Proof. (1) Suppose that R = lim sup
an+1

an
< 1, then similarly as in the previous proof, there exists ε > 0

   and N ∈ such that if n ≥ N then 
an+1

an
< R + ε < 1.

 Thus aN+1 < (R + ε) aN
aN+2 < (R + ε) aN+1 < (R + ε)2 aN
...

an+1 < (R + ε) an = (R + ε)n+1-N aN =
aN

(R + ε)N
· (R + ε)n+1

    so we can apply the comparison test similarly as in the proof of the root test.

    (2)  Suppose that lim inf
an+1

an
> 1, then there exists ε > 0 and N ∈ such that if n ≥ N then

         
an+1

an
> R - ε > 1. 
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     Since an > 0 then an+1 > an, so (an) is monotonic increasing  ⟹  lim
n∞

an ≠ 0

        ⟹  the series is divergent by the nth term test.
        

Consequence. Assume an ≠ 0 for all n ∈. Then

   (1) if lim sup
an+1

an
< 1, then 

n=1

∞

an is convergent, since it is absolutely convergent;

  (2) if lim inf
an+1

an
> 1, then 

n=1

∞

an is divergent, since if lim
n∞

an ≠ 0, then lim
n∞

an ≠ 0.

Remark.  If lim sup
an+1

an
= 1 or lim inf

an+1

an
= 1 then we don’t know anything about the convergence 

of the series, for example

1) 
n=1

∞ 1

n
 is divergent and 

an+1

an
=

1

n + 1
1

n

=
n

n + 1
⟶1

2) 
n=1

∞ 1

n2
 is convergent and 

an+1

an
=

1

(n + 1)2

1

n2

=
n2

(n + 1)2
⟶1

Remark. The ratio test is a consequence of the root test and the following theorem.
         The proof of this theorem contains a very interesting step.
         1) Recall that 
          if   x < B (or x ≤ B)  for all  B > 0  then  x ≤ 0.

2) Similarly, we can prove x ≤ y in the following way:        
           if   x ≤ B  for all  B > y  then x ≤ y.                                    

Theorem. Assume that an > 0. Then   lim inf
an+1

an
≤ lim inf an

n
≤ lim sup an

n
≤ lim sup

an+1

an
.

Proof. 1) We prove that lim sup an
n

≤ lim sup
an+1

an
.                                          

Let lim sup
an+1

an
= C  and let B > C be an arbitrary real number. 

Then by the definition of the lim sup, there exists N ∈ such that if k ≥ N then 
ak+1

ak
< B.

⟹  aN+1 < BaN, aN+2 < BaN+1 < B2 aN, ...

So if n > N then   an < Bn-N aN  ⟹  an
n

< Bn-N
n

aN
n

= B ·
aN

BN
n

⟹  lim sup an
n

≤ lim
n∞

B ·
aN

BN
n = B.

We obtained that the following implication holds for all B > C:  

lim sup
an+1

an
< B ⟹ lim sup an

n
≤ B.                                                    

From this it follows that   lim sup an
n

≤ lim sup
an+1

an
.                      
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               2) lim inf an
n

≤ lim sup an
n  is obvious.

               3) The proof of lim inf
an+1

an
≤ lim inf an

n  is similar to case 1).

Consequence. If an > 0 for all n and  ∃ lim
n∞

an+1

an
= α ∈  then ∃ lim

n∞
an

n
= α.

Remark.  It is a consequence of the previous inequalities that the root test is “stronger” than 
         the ratio test. Consider the series

         
n=1

∞

an =
1

2
+

1

3
+

1

22
+

1

32
+

1

23
+

1

33
+ ..., where a2 k-1 =

1

2k
 and a2 k =

1

3k
, k ≥ 1.

With the root test:  If n is odd, then an
n

= a2 k-1
2 k-1

=
1

2k
2 k-1 ⟶

1

2
 and 

 if n is even, then an
n

= a2 k
2 k

=
1

3k
2 k =

1

3
.  

        ⟹  lim sup an
n

=
1

2
< 1  ⟹  the series is convergent.

With the ratio test:  If n is even, then 
an+1

an
=
a2 k+1

a2 k
=

1

2k+1

1

3k

=
3k

2k+1 ⟶∞ and 

 if n is odd, then 
an+1

an
=
a2 k

a2 k-1
=

1

3k
1

2k

=
2k

3k
⟶0.

              ⟹  lim sup
an+1

an
=∞ > 1 and lim inf

an+1

an
= 0 < 1  

              ⟹  the ratio test cannot be used here.
              

Cauchy product

Definition: The Cauchy product of the series 
n=0

∞

an and 
n=0

∞

bn is the series 
n=0

∞

cn 

where

cn = a0 bn + a1 bn-1 + ... + an b0 =

k=0

n

ak bn-k

a0 a1 a2 a3 ...

b0 a0 b0 a1 b0 a2 b0 a3 b0

b1 a0 b1 a1 b1 a2 b1

b2 a0 b2 a1 b2

b3 a0 b3

...
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Mertens’ theorem

Theorem (Mertens). If 
n=0

∞

an is absolutely convergent and 
n=0

∞

bn is convergent, then their Cauchy 

 product is convergent and its sum is  
n=0

∞

cn =

n=0

∞



k=0

n

ak bn-k = 

n=0

∞

an 

n=0

∞

bn .

Proof. Let A =

n=0

∞

an,     B =

n=0

∞

bn,

An =

k=0

n

ak,     Bn =

k=0

n

bk,     Cn =

k=0

n

ck =

k=0

n



i=0

k

ai bk-i,     βn = Bn - B.

    Then 
               Cn = a0 b0 + (a0 b1 + a1 b0) + (a0 b2 + a1 b1 + a2 b0) + ... + (a0 bn + a1 bn-1 + ... + an b0) =

          = a0 Bn + a1 Bn-1 + an Bn-2 + ... + an B0 =

= a0(B + βn) + a1(B + βn-1) + a2(B + βn-2) + ... + an(B + β0) =

= An B + (a0 βn + a1 βn-1 + a2 βn-2 + ... + an β0).

     Let γn = a0 βn + a1 βn-1 + a2 βn-2 + ... + an β0. 
     We have to show that Cn⟶AB. Since An B⟶AB, it is enough to show that lim

n∞
γn = 0.

     Let α =

n=0

∞

an . (Here we use that 
n=0

∞

an is absolutely convergent.) Let ε > 0 be given.

     Since B =

n=0

∞

bn then βn⟶0, so there exists N ∈ such that βn ≤ ε if n ≥ N. In this case

    γn ≤ β0 an + ...βN an-N + βN+1 an-N-1 + ... + βn a0 ≤

                        ≤ β0 an + ...βN an-N + βN+1 · an-N-1 + ... + βn · a0 ≤

                 ≤ β0 an + ...βN an-N +ε · 

n=0

n-N-1

an ≤

                 ≤ β0 an + ...βN an-N +ε α.
             

     If N is fixed and n⟶∞ then β0 an + ...βN an-N ⟶0 since ak⟶∞ as k⟶∞. 
     So we get that   lim sup γn ≤ ε α. Since ε is arbitrary, it follows that lim

n∞
γn = 0.

Remark. If both 
n=0

∞

an and 
n=0

∞

bn are absolutely convergent then their Cauchy product is also 

         absolutely convergent.

Theorem (Abel). Assume that 
n=0

∞

an and 
n=0

∞

bn are two convergent series and their Cauchy product 

      is also convergent. Then its sum is  
n=0

∞

cn =

n=0

∞



k=0

n

ak bn-k = 

n=0

∞

an 

n=0

∞

bn .
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Remark. In general it is not true that the Cauchy-product of two convergent series is convergent.

For example let  
n=0

∞

an =

n=0

∞

bn =

n=0

∞ (-1)n

n + 1
. These are Leibniz series, so they are convergent.

Then cn =

k=0

n

ak bn-k =

k=0

n (-1)n

k + 1

(-1)n-k

n - k + 1
= (-1)n

k=0

n 1

k + 1 · n - k + 1
.

Using the AM-GM inequality 
a + b

2
≥ a b , we get that

cn =

k=0

n 1

k + 1 · n - k + 1
≥

k=0

n 2

(k + 1) + (n - k + 1)
=

k=0

n 2

n + 2
=

2

n + 2
(n + 1), since 

the terms are independent of k.

Therefore cn ≥ 2 ·
n + 1

n + 2
⟶2, so lim

n∞
cn ≠ 0  ⟹  the Cauchy-product is divergent.

Examples

Example 1. If x < 1 then 
k=0

∞

xk = 1+x +x2 + x3 + ... =
1

1 - x
  and 



k=0

∞

(-x)k = 1-x +x2 - x3 + ... =
1

1 + x
.

1 x x2 x3 ...

1 1 x x2 x3

-x -x -x2 -x3

x2 x2 x3

-x3 -x3

...

The Cauchy-product is 

n=0

∞



k=0

n

xk(-x)n-k = 1 + (x - x) + x2 - x2 + x2 + x3 - x3 + x3 - x3 + ... =

= 1 + 0 + x2 + 0 + x4 + 0 + x6 + ... =

k=0

∞

x2 k =

k=0

∞

x2
k =

1

1 - x2
=

1

1 - x
·

1

1 + x
= 

k=0

∞

xk 

k=0

∞

(-x)k

Example 2.     Since 
k=0

∞

xk =
1

1 - x
 if x < 1 then

        
1

(1 - x)2
= 

k=0

∞

xk
2

=

n=0

∞



k=0

n

xk xn-k =

n=0

∞



k=0

n

xn =

n=0

∞

(n + 1) xn

Example 3.     
k=0

∞ 1

n !

2

=

n=0

∞



k=0

n 1

k ! (n - k) !
=

n=0

∞ 1

n !


k=0

n n !

k ! (n - k) !
=

n=0

∞ 1

n !


k=0

n n
k

=

n=0

∞ 2n

n !
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