Calculus1-08

Comparison test

Theorem. Assume that 0<c, <a, < b, for n >N where N is some fixed integer. Then

(1) If Zb,, is convergent, then Za,, is convergent.

n=1 n=1

) If ch is divergent, then Zan is divergent.

n=1 n=1

Proof. Denote by s, sp, s; the nth partial sums of the numerical series ) a,, > b,and > ¢,
n=1 n=1 n=1

respectively.

(1) 1st proof. We use the Cauchy criterion. Let € > 0 be fixed, then by the convergence of

> by there exists N(e) €N such that if m > n> N(e), then | sp, -sh | <&, s0

n=1
m m oo
if m>n>max{N, N(¢)} then | s% -s% | = Z ay < Z by = | sb —sb | <§,S0 Zan
k=n+1 k=n+1 n=1
is convergent.

2nd proof. Changing finitely many terms does not affect the convergence or divergence
of a series, so it may be assumed that 0 < a, < b,, holds for all n € N. (If the series does not
start at n = 1 then it can be reindexed.)

a;<b;

Ozsbz

From the condition = $9=0;+0y+..+0,Sby+by+...+b,=sb.

a,<b,

Assume that > b, is convergent = (s2)is bounded = (s9) is bounded

n=1

= (s7) is convergent since it is monotonically increasing = Za,, is convergent.

n=1

(2) (%) is monotonically increasing if n > N and not bounded, so s{ - s§, > s{, - sj,— o0 and thus

a
Sp—> 0.

© 1
Remark. The convergence of the p-series Z—p can be investigated easily with the comparison test

n=1
forpslandp=2.

=)

1 1 - 1. .
elfpslthen0<-<— and ) - isdivergentso Z—p is divergent.

P
n n n=1 n=1
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ifp=2then — forallneN*and 5 S i
elfp=2then — < orallneN*an =2 is convergent,
n> nn+1) cn(n+1)
S0 Z—2 is convergent.
n=1

1 1 e 1

elfp>2then0<— <— and Z— is convergent so Z— is convergent.
n n2 nln nln

. > 1 g
Remark. Leonhard Euler proved in 1734 that Z—2 =—
6

n=11

Examples

1
1) Investigate the convergence of the series Z => a,.
12n+1

Solution. Here infinitely many terms are omitted from the harmonic series. By the comparison test

we show that this series is still divergent
1 1 1 i
ap = > =— and Z— == Z diverges = > a, diverges.
2n+1 2n+n 3.,3n py

S n+2 &
2) Investigate the convergence of the series Z
mi3nt+5

n+2 n+2n
<

Solution. g, =
3n*+5 3n*+0

1
=— and Z— converges (p=3>1) = Za,, converges.
n nln n=1

2n*-32 =
3) Investigate the convergence of the series Z— = > .
n=1 n +8 n=1

Solution. If n 2 4 then the terms of the series are positive. By the comparison test we show that
the series diverges. If n = 6 then n? > 32, so

2n*-32 2n*-n? d
ap = > =— and Z— == Z diverges = > a, diverges.
nl

n+8  nde8nd ey

oo zn + 3n+1 o
4) Investigate the convergence of the series Z— =D @
2 2n+3 +5 o

) 2"+3-3" 374337 1/3y\"
Solution. g, = < =- (—) and
8:4"+5 8:4"+0 2\4
> - (—) is a convergent geometric serles( . lag] < 1) = > a, converges.
2\4

n=1 n=1
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Error estimation for series with nonnegative terms

Remark. Usually we don’t know the limit s = Zan =lim Zak =lims, butifnislarge thens, gives

N—oco nN—->oo
n=1 k=1

an estimation of s. The error for the approximations=s,is | E| = | s-s,|.
If 0 < ay < by for k2 nthen the error can be estimated with the comparison test:

|E|—|S Sh| =S-— sn-Zak—Zak-Zak ibk.
k=1

k=n+1 k=n+1

Here s, <s, since (s,) is monotonically increasing.

> 1
Example. Show that the series Z— is convergent and estimate the error if the sum of the series

|
n= N

is approximated by the sum of the first 6 terms (s = sg).

Solution. Estimate the terms from above by the terms of a convergent series:
1 1 1 1 1 2

< = < =

o onn-1)-(n-2)-...2:1 n(n-1)-1-..-1-1 p2-n n

=2 : < 1
Since Z—z converges then by the comparison test Z— also converges.

|
n=0 n n=0 n:

Error estimation for the approximation s = s,:

i 1 1 1 1
[El=s=snl= > ax= (1+ :
P (n+1)! n+2 (n+2)(n+3) (n+2)(n+3)(n+4)
o k
< ! (1+ ! + ! + ! ) Z( )
(n+1)! n+2 (n+2)? (n+2)> (n+ 1) 5\n
1 1 1 n+2

T+l 1L (n+1)! n+l
n+2

If n =6 then | s—s, ~0.000226757 and

1
<.
71

~N | o

101 1 1 1 o
S¢=1+1+—+—+— +— +— =2.718...= e (here 3 digits are accurate).

21 31 41 5! 6!

Absolute convergence

Definition. We say that the numerical series Zan is absolutely convergent if the series Z | an |
n=1 n=1

is convergent.

Example. Zal g"!is absolutely convergentif | g | <1.

n=1
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Theorem. If Zan is absolutely convergent then it is convergent.

n=1

Proof. Let £ > 0 be fixed. If Z | an | is convergent then by the Cauchy criterion there exists NeN

n=1
suchthatifm>n>Nthen | |apa| +]| dn2| -+ | adm| | <€ Thenforallm>n>N
| Sm=Sn| =101+ 0n2..vam | = | |Gpa|+]|Gnal| ot am]| | <€

also holds, so by the Cauchy criterion Zan is convergent.

n=1

Consequence. If | a, | <b,forn>Nand Zb,, is convergent then Zan is absolutely convergent

n=1 n=1

and therefore also convergent.

Definition. If Zan is convergent but not absolutely convergent then it is conditionally
n=1

convergent.

o (-1)M1 1 1 1 1 1 © ] 1
Example.Z =l-——+-—-—+-—=-—+..= ( )
n 2 3 4 5 6 ey

1 11 © 1
0< < <—and ) — isconvergent.
2n(2n-1) 2n-n p? 2

= Z— is convergent, since
2n(2n-1)

n=1

n=1
D™oEr &y
| = > — whichiis divergent, so the series >

n n=1 n

is

On the other hand i |
n=1

n n=1

conditionally convergent.

Rearrangements

Definition. If 71: N— N is a permutation of the natural numbers (that is, every natural number

appears exactly once in this sequence) then we say that Zan(n) is a rearrangement of Zan.

n=1 n=1

Theorem (Riemann rearrangement theorem). Suppose that Zan is conditionally convergent
n=1

and -oo < @< B< 0. Then there exists a rearrangement Za,,' with partial sumss,' such that
n=1

liminfs,'=a, limsups,'=8.

Theorem. If Za,, is absolutely convergent then every rearrangement of Zan converges and

n=1 n=1

they all converge to the same sum.



calculus1-08.nb | 5

Proof: See W. Rudin: Principles of Mathematical Analysis, page 75:
https://web.math.ucsb.edu/~agboola/teaching/2021/winter/122A/rudin.pdf

Alternating series

Definition. Zan is an alternating series if a, a,,; <0 forallneN.

n=1

Theorem (Leibniz). Let (a,) be a monotonically decreasing sequence of positive numbers

such that anE;O. Then the alternating series Z(—l)”+l 0p=01—-0y+03—04+05—0g + ...
n=1

is convergent.

Remark. A series with this property is called a Leibniz series.
The theorem is called the alternating series test or Leibniz’s test or Leibniz criterion.

Proof. Sincea, 2a,,; >0 forall neN then

SanSS2n+ (0201 = 02142) =S2042 = S2n+1 = 021042 S S2ns1 = S2n-1 = (G20 = 0241) € S25-1,
thatis, 0<s,<85;<5<Sg<..<S7<S5<S3<S;=0;.

So (s, ) is monotonically increasing and bounded above = it is convergent,
and (s, ,1) is monotonically decreasing and bounded below = itis convergent.

. N-oo .
Since Sy .1 —Son =03, —>0then lims,, =

N—>oco

lims;y .1 = lims, = the series is convergent.
N—co N—co

(Or, by the Cantor axiom ﬂ[sz,,, Syn-1] is not empty and since s, .1 = Sy = 02,72;0 thenis has
n=1

only one element which is the limit of (s,,).)

Error estimation:
Lets=Ilims,.Ifnisodd thens,,; <s<s,andif niseventhens,<s<s,,;.

N—->co

In both cases the error for the approximation s = s, is

|[E|l=1]s=Sa| = |Sns1=Sn|=0na.
Examples
: & E . 1. : :
1. The alternating series Z is convergent, since a, = — is monotonically decreasing
n=1 n n
and a,—0.
R = 1 1 = 1
2. Is the series > (-1)™' ——— = (-1)"" ¢, convergent?

n=1 3\]2 n+1l n=1
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1
Solution. Sincec, = is monotonically decreasing and c,— 0 then this is a Leibniz
3
V2n+l

series so it is convergent.
l oo

3. Is the series S (-1 —— =
% V2n+1 nzl

(-1)™! ¢, convergent?

1 1 1 1
Solution. Since = < =c, < -1
V3-4n N2n+en R2n+1 Yo+1
1 1
a — — =1 then by the sandwich theorem lim¢, = 1.
N->co

nd ——
QE . % 1-1
So lim (-1)™! ¢, doesn’t exist, and thus by the nth term test the series diverges.

N—o0

i n+1 i
4. s the series > (-1)"" = > (-1)" ¢, convergent?
2
n=1 n°+2 n=1
1 1
s
) n+l pn 2 0+0
Solution.1)0<c¢, = = — =0.
n?+2 2 1+0
L=
n2

2) It is not obvious that (c,) is monotonically decreasing, since both the numerator and

the denominator increases.
(n+1)+1 n+1
<

Chi1SCh &= <
(n+1)?2+2 n*+2

& (n+2)(n*+2)<(n+1)(n*+2n+3)

S 20 +2n+4<n*+n*+2n*+2n+3n+3

& 0=<n?+3n-1 andthisistrueforallneN.
Since the steps are equivalent then ¢,,; < ¢, also holds for all n e N, so (c,) is
monotonically decreasing. Then by the Leibniz criterion the series converges.

Remark. If the sum of the series is approximated by s;¢o then the error is
101+1

| E|=1]5-S100]| SCi1= .
101%2+2

Root test (Cauchy)

Theorem (Root test): Assume that a, >0 and lim sup y/a, =R. Then

(1) ifR<1,then > a, is convergent;

n=1

(2)ifR>1, then Zan is divergent.

n=1

Proof. (1) e Suppose that R < 1, then there exists e >0 such that R+ < 1.
o By the definition of the limsup, for this € there exists N e N such that if n > N then

Q/a_n <R +¢g,sinceif Q/a_n 2 R + £ would hold for infinitely many n then this subsequence

would have a limit point greater than R.



calculus1-08.nb | 7

e Thusa, < (R+¢)"ifn>N, and since Z(R + €)" is a convergent geometric series

n=1
then by the comparison test, Za,, is also convergent.
n=1

(2) @ Suppose that R > 1, then there exists £ > 0 and a subsequence of 4/a, such that

“a, 2R-€>1.
e Then for the terms of this subsequence a,, =2 (R-¢)" > 1
= lima,, #0 = lima, *0 = the series is divergent by the nth term test.

Ny—oo N-co

Consequence. Assume limsup 4/ | a, | =R. Then

(1)ifR<1, then Za,, is convergent, since it is absolutely convergent;

n=1

(2) ifR>1, then Zan is divergent, sinceif lim | a, | #0, then lima, #0.
N—-co N—>co

n=1

Remark. If R=1then we don’t know anything about the convergence of the series, for example

1. 1
1) E — isdivergentand 7[- —1
N n

n

© 1 1
2) ) — isconvergentand nf— —1

o n? n?

n=1

Ratio test (D’Alambert)

Theorem (Ratio test): Assume that a, > 0. Then

., S
(1) if limsup —= <1, then D a,is convergent;

n n=1

Qp+1 -
(2)if liminf — > 1, then » a, is divergent.

an n=1

a + . . . . .
Proof. (1) e Suppose that R=lim sup e 1, then similarly as in the previous proof, there exists € > 0
an

Uny
andNeNsuchthatifnthhenLl<R+s<l.
an

e Thusay,; <(R+¢€)ay

Ansa < (R+€) ane < (R+ €)% ay

ay
(R+¢)
so we can apply the comparison test similarly as in the proof of the root test.

On<(R+€)a,=(R+€&)™Nay= “(R+¢)™!

(e . .
(2) @ Suppose that lim inf LN 1, then there exists € >0 and N e N such that if n 2 N then
ap

On+1

>R-¢e>1.
an
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e Since a, > 0then a,,; > a,, so (a,) is monotonic increasing = lima, 0

N—oco

= the series is divergent by the nth term test.

Consequence. Assume a, #0 forallneN. Then

(1) if limsup i

<1, then Zan is convergent, since it is absolutely convergent;
a,

n=1

(2 )|fl|m|nf| — |>l then Za,, is divergent, since |fl|m | a, | #0,thenlima,*0.
N—oo

n=1

Un+ . .
Remark. If limsup % _1orliminf—= = 1 then we don’t know anything about the convergence
a, an,

of the series, for example

1
=1 a n
1) Z— is divergent and l_n+l —1
=11 an 1 n+1
n
1
2 n2
Z— is convergent and 2™ _ (n+11) = —1
o’ an = (n+1)?
nZ

Remark. The ratio test is a consequence of the root test and the following theorem.
The proof of this theorem contains a very interesting step.
1) Recall that
o if x<B(orx<B) forall B>0 then x<0.
2) Similarly, we can prove x <y in the following way:
oif x<B forall B>y thenx<y.

an+
Theorem. Assume that a, > 0. Then lim inf —== < lim inf Q/a— <limsup \/a_ lim sup—.
ap an

On+
Proof. 1) We prove that lim sup Q/a_ <limsup iy

n

Let lim sup— C and let B> C be an arbitrary real number.
an

Qs
Then by the definition of the lim sup, there exists N e N such that if k= N then - B,
Ak

2
= dn.1<Bay, ano<Bani<BTay,

. _ - ay
Soifn>Nthen a,<B"May = ya, < YB™" Yay =B H/EV
a
= limsup Ya, <lim B- n/B—z = B.

We obtained that the following implication holds for all B > C:
. Qn+1 . n
limsup— <B = llmsup«/a—sB.

n

Ons
From this it follows that limsup%slimsup—l.

n
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2) liminf /a, <limsup 4 a, is obvious.
On+ n . . .

3) The proof of lim inf —= <liminf a, is similar to case 1).
an

an+
Consequence. If a, >0forallnand 3 lim 1 _ geRthen 3 lim & a, =a.

N—oo an N—oc0

Remark. Itis a consequence of the previous inequalities that the root test is “stronger” than
the ratio test. Consider the series

1
y k21,
K

1
Zan:—+—+—+—+—+—3+...,whereazk_l=—k and a3 = —
2 3

_ 1 1
With the root test: e If nis odd, then \"/an =2k \llazk_l =2k-1 - == and
2 2

1 1
e if niseven, then {a, =y ay) =24 — = —.
3 \3
1
= limsup \"/a = — <1 = the series is convergent.

2
1

Ons1 O2k+1 ksl 3k e and
= = — fo'e)

With the ratio test: e If nis even, then

a, O i 2k+l
3k
1
. Ona1 G2k 2k k
e if nis odd, then — = =3T=£k—>0.
ap Oy - 3
zk

. Un+1 . . An+1
= limsup— =ow>1landliminf— =0<1
an an

= the ratio test cannot be used here.

Cauchy product

Definition: The Cauchy product of the series > a,and ) b, is the series > ¢,

n=0 n=0 n=0

where

n
Cn=0o by + a1 bpy + .+ Uy by =) aybpy
k=0

dg a1 a as

be |29 be aibs a,be azbg
b; |agby aiby a,b;
b, |[agb, aib;

b3 dg b3
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Mertens’ theorem

Theorem (Mertens). If Za,, is absolutely convergent and an is convergent, then their Cauchy

n=0 n=0
o (=) n (=) o
product is convergent and its sumis > ¢,=> > axbpi= (Zan) (Zb,,).
n=0 n=0k=0 n=0 n=0
Proof. LetA= ) a,, B=) by,
n=0 n=0
n n n n k
Ap= Zalo B,= Zbk: Ch= ch = Zzai bk—[’ ﬁn =B,-B.
k=0 k=0 k=0 k=0 i=0

Then
Ch=0a0bg+(agby+aybg)+(agby +ay by +a,bg) + ...+ (ag by + a1 bp_y + ... + Gy bg) =
=aoB,+01B,1+0,Bpp+...+0,Bp=
=0o(B + Bn) + a1(B + Bp-1) + 02(B + Bp2) + ... + an(B + Bo) =
=AnB+(aoBn+a1Bn-1+0a;Bp-2+... + a5 o).

Let yp =00 By + a1 Bn-1+ a2 Bp2 + ... + ap Po.
We have to show that C,— A B. Since A, B—A B, it is enough to show that limy, = 0.

nN—-oco

Leta= Z | an | . (Here we use that Za,, is absolutely convergent.) Let £ > 0 be given.
n=0 n=0

SinceB:Zb,, then B,—0, so there exists Ne N such that | B, | <€ifn=N.In this case

n=0
| Vol < | Boan+...BnCnn | + | Busr On-n-r + oo+ Bp Qo | <
S| Boan+..Bvann |+ | Buar| | Gnnvca |+ [ B | - a0 =
n-N-1
< |Boan+...,8Na,,_N | +£- Z |Gn <
n=0
S| Boan+...0nann | +EQ.

If Nis fixed and n— o then | Bya, +... By an_y | — 0 since ay—> o0 as k—> co.
Sowegetthat limsup | y, | £€a.Since gis arbitrary, it follows that lim y, = 0.

N—>co0

Remark. If both Zan and Zb,, are absolutely convergent then their Cauchy productis also
n=0 n=0
absolutely convergent.

Theorem (Abel). Assume that Za,, and Zb,, are two convergent series and their Cauchy product
n=0 n=0

is also convergent. Then its sum is icn = iiak by = (ian) (ib”)'

n=0 n=0 k=0 n=0 n=0
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Remark. In generalitis not true that the Cauchy-product of two convergent series is convergent.

- = > (-1 S .
For example let Zan = Zb,, = Z . These are Leibniz series, so they are convergent.
n=0 n=0 n=0 Vn+1

S i 1

Thenc,= ) axbyi= =(-1)" .
! l;k " %Vk+ Vn-k+1 Z\j +1-4n-k+1

ab,we get that

n n

C =
| e 201’k+ ,ln k+1 kzk+l)+(n k+1) %n+2

the terms are independent of k.

(n + 1), since

n+1
Therefore | ¢, | 22 — 2,50 limc, #0 = the Cauchy-product is divergent.
n+2 oo
Examples
< k 2 3 1
Example 1. If | x| <1then ) x=1+x+x*+x*+..=—— and
P 1-Xx
Z(—X) =1-x+x?=-x3+..= .
l+x

k=0

1 X X X
1 (1 x x* i
x| =x =x* =3
x| xr X
I

The Cauchy-product is ZZXk(—X)n_k =1+(x=x)+ (x> =x*+x2)+ (P -+ =) + ... =
n=0k=0

=140+X2+0+x +0+x5+.. =i i(xz)% 12— i [i ](ki-x]

=0 =0 1-x- 1-x 1+x
Example 2. Since ZX — |f | x| <1then
k=0
[} oo n oo N [}
. (Zxk] _S S k=S w0 =S (et
(1- k=0 n=0k=0 n=0k=0 =0
o l 2 o l n n! oo l n n ) 2”
Example 3. ( —] _) — — ( ): —
k:ZOn! %%k L(n - k)! ;nlkzzokl(n k! ;n!kzo k] “n
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