Calculus 1-09

Power series

Definitions. The series $\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}=a_{0}+a_{1}\left(x-x_{0}\right)+a_{2}\left(x-x_{0}\right)^{2}+\ldots$ is called a power series with center x_{0}, where a_{n} is the coefficient of the nth term.
The domain of convergence of the power series is $H=\left\{x \in \mathbb{R}: \sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}\right.$ converges $\}$. The radius of convergence of the power series is $R=\frac{1}{\limsup \sqrt[n]{\left|a_{n}\right|}}$.

Remarks. H is not empty, since the series converges for $x=x_{0}$.
Since $\sqrt[n]{\left|a_{n}\right|} \geq 0$, then $0 \leq \lim \sup \sqrt[n]{\left|a_{n}\right|} \leq \infty$.
If $\lim \sup \sqrt[n]{\left|a_{n}\right|}=\infty$ then $R=0$ and if limsup $\sqrt[n]{\left|a_{n}\right|}=0$ then $R=\infty$.
If $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|$ exists then $R=\lim _{n \rightarrow \infty}\left|\frac{a_{n}}{a_{n+1}}\right|$.

Theorem (Cauchy-Hadamard): Denote by R the radius of convergence of the power series
$\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}$. Then
(1) if $\left|x-x_{0}\right|<R$, then the series is absolutely convergent, and
(2) if $\left|x-x_{0}\right|>R$, then the series is divergent.

Proof. We define $\frac{1}{+0}=+\infty$ and $\frac{1}{+\infty}=0$. By the root test
$\limsup \sqrt[n]{\left|a_{n}\right| \cdot\left|x-x_{0}\right|^{n}}=\left|x-x_{0}\right| \cdot \limsup \sqrt[n]{\left|a_{n}\right|}=\frac{\left|x-x_{0}\right|}{R}$
Then $\frac{\left|x-x_{0}\right|}{R}<1 \Longleftrightarrow\left|x-x_{0}\right|<R \Longrightarrow$ the series is absolutely convergent
and $\frac{\left|x-x_{0}\right|}{R}>1 \Longleftrightarrow\left|x-x_{0}\right|>R \Longrightarrow$ the series is divergent.

Consequence. (1) If $R=0$ then for all $x \neq x_{0},\left|x-x_{0}\right|>0=R$, so the series diverges and if $x=x_{0}$ then it converges. Then $H=\left\{x_{0}\right\}$.
(2) If $R=\infty$ then for all $x \in \mathbb{R},\left|x-x_{0}\right|<R$, so the series is absolutely convergent. Then $H=\mathbb{R}$.
(3) If $0<R<\infty$, then $\left(x_{0}-R, x_{0}+R\right) \subset H \subset\left[x_{0}-R, x_{0}+R\right]$ and the endpoints of the interval must be investigated separately.

Power series, interval of convergence

Exercise 1: Find the interval of convergence of the following power series:

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n 2^{n}}(x-1)^{n}
$$

Solution:

The coefficients are $a_{n}=\frac{(-1)^{n}}{n 2^{n}}$ and the base point is $x_{0}=1$. Applying the root test:
$\lim _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}=\lim _{n \rightarrow \infty} \sqrt[n]{\frac{\left|(-1)^{n}\right|}{n 2^{n}}}=\lim _{n \rightarrow \infty} \frac{1}{\sqrt[n]{n} 2}=\frac{1}{2}=\frac{1}{R} \quad \Longrightarrow \quad R=2$
We investigate the convergence at the endpoints:
If $x=3: \quad \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n \cdot 2^{n}} \cdot 2^{n}=\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n} \quad$ convergent by the Alternating Series Theorem (but not absolutely convergent)

If $x=-1: \quad \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n \cdot 2^{n}} \cdot(-2)^{n}=\sum_{n=1}^{\infty} \frac{1}{n}(-1)^{2 n}=\sum_{n=1}^{\infty} \frac{1}{n} \quad$ divergent (the harmonic series)
The interval of convergence is: $(-1,3]$.

Exercise 2: Find the radius of convergence of the following power series:

$$
\sum_{n=1}^{\infty}(-1)^{n} \frac{2 n+1}{(2 n)!}(x+7)^{n}, \quad R=?
$$

Solution:

The coefficients are $a_{n}=(-1)^{n} \frac{2 n+1}{(2 n)!}$ and the base point is $x_{0}=-7$. Applying the ratio test:
$\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty} \frac{(2 n+3)(2 n)!}{(2 n+2)!(2 n+1)}=\lim _{n \rightarrow \infty} \frac{2 n+3}{2 n+1} \frac{1}{(2 n+2)(2 n+1)}=0=\frac{1}{R} \Longrightarrow \quad R=\infty$

Exercise 3: Find the radius of convergence of the following power series:

$$
\sum_{n=1}^{\infty} \frac{(n+2)^{n^{2}}}{(n+6)^{n^{2}+1}} x^{n}, \quad R=?
$$

Solution:

The coefficients are $a_{n}=\frac{(n+2)^{n^{2}}}{(n+6)^{n^{2}+1}}$ and the base point is $x_{0}=0$. Applying the root test:
$\lim _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}=\lim _{n \rightarrow \infty}\left(\frac{n+2}{n+6}\right)^{n} \frac{1}{\sqrt[n]{n+6}}=\lim _{n \rightarrow \infty} \frac{\left(1+\frac{2}{n}\right)^{n}}{\left(1+\frac{6}{n}\right)^{n}} \frac{1}{\sqrt[n]{n+6}}=\frac{\mathrm{e}^{2}}{\mathrm{e}^{6}} \cdot 1=\frac{1}{\mathrm{e}^{4}}=\frac{1}{R}$
$\Longrightarrow \quad R=\mathrm{e}^{4}$
Here we used that $1<\sqrt[n]{n+6}<\sqrt[n]{7} \sqrt[n]{n}$ and thus $\sqrt[n]{n+6} \rightarrow 1$ by the Sandwich Theorem.

Exercise 4: Find the radius of convergence of the following power series:

$$
\sum_{n=1}^{\infty} \frac{(n+1)^{n}}{n!} x^{n}, \quad R=?
$$

Solution:

The coefficients are $a_{n}=\frac{(n+1)^{n}}{n!}$ and the base point is $x_{0}=0$. Applying the ratio test:
$\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty} \frac{(n+2)^{n+1} n!}{(n+1)!(n+1)^{n}}=\lim _{n \rightarrow \infty}\left(\frac{n+2}{n+1}\right)^{n+1}=\lim _{n \rightarrow \infty}\left(1+\frac{1}{n+1}\right)^{n+1}=\mathrm{e}=\frac{1}{R}$
$\Longrightarrow \quad R=\frac{1}{\mathrm{e}}$

Exercise 5: Find the interval of convergence of the following power series:

$$
\sum_{n=1}^{\infty} \frac{(-2)^{n}(n+3)}{n^{2}+3} x^{n}
$$

Solution:

The coefficients are $a_{n}=\frac{(-2)^{n}(n+3)}{n^{2}+3}$ and the base point is $x_{0}=0$. Applying the ratio test:
$\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{(-2)^{n+1}(n+4)}{(n+1)^{2}+3}\right| \cdot\left|\frac{n^{2}+3}{(-2)^{n}(n+3)}\right|=\lim _{n \rightarrow \infty} 2 \cdot \frac{n+4}{n+3} \cdot \frac{n^{2}+3}{n^{2}+2 n+4}=$
$=2 \cdot 1 \cdot 1=2=\frac{1}{R} \Longrightarrow R=\frac{1}{2}$
The endpoints:
If $x=-\frac{1}{2}: \quad \sum_{n=1}^{\infty} \frac{n+3}{n^{2}+3} . \quad$ Since $\frac{n+3}{n^{2}+3} \geq \frac{n+0}{n^{2}+3 n^{2}}=\frac{1}{4 n}$ and $\sum_{n=1}^{\infty} \frac{1}{4 n}$ is divergent then $\sum_{n=1}^{\infty} \frac{n+3}{n^{2}+3}$ is also divergent by the Comparison Test.

If $x=\frac{1}{2}: \quad \sum_{n=1}^{\infty}(-1)^{n} \frac{n+3}{n^{2}+3} \quad$ is convergent by the Alternating Series Theorem.
The interval of convergence is: $\left(-\frac{1}{2}, \frac{1}{2}\right]$.

Exercise 6: Find the interval of convergence of the following power series:

$$
\sum_{n=1}^{\infty} \frac{(2 x+4)^{n}}{n^{2} 3^{n}}
$$

Solution:

The series can be written as $\sum_{n=1}^{\infty} \frac{2^{n}}{n^{2} 3^{n}}(x+2)^{n}$, so the coefficients are $a_{n}=\frac{2^{n}}{n^{2} 3^{n}}$ and the base point is $x_{0}=-2$. Applying the root test:
$\lim _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}=\lim _{n \rightarrow \infty} \sqrt[n]{\frac{2^{n}}{n^{2} 3^{n}}}=\lim _{n \rightarrow \infty} \frac{2}{3(\sqrt[n]{n})^{2}}=\frac{2}{3}=\frac{1}{R} \quad \Longrightarrow \quad R=\frac{3}{2}$
The endpoints:
If $x=-\frac{7}{2}: \quad \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{2}} \quad$ is convergent (by the Alternating Series Theorem, or: it is absolutely convergent)

If $x=-\frac{1}{2}: \quad \sum_{n=1}^{\infty} \frac{1}{n^{2}} \quad$ is convergent
The interval of convergence is: $\left[-\frac{7}{2},-\frac{1}{2}\right]$.

Exercise 7: Find the radius of convergence of the following power series:

$$
\sum_{n=1}^{\infty} \frac{n}{2^{n}} x^{3 n}=\frac{1}{2} x^{3}+\frac{2}{2^{2}} x^{6}+\frac{3}{2^{3}} x^{9}+\frac{4}{2^{4}} x^{12}+\cdots, \quad R=?
$$

1st solution:

The coefficients are $\quad a_{n}= \begin{cases}0, & \text { if } \mathrm{n} \text { is not divisible by } 3 \\ \frac{n / 3}{2^{n / 3}}, & \text { if } \mathrm{n} \text { is divisible by } 3\end{cases}$
Then $\quad \sqrt[n]{\left|a_{n}\right|}= \begin{cases}0, & \text { if } \mathrm{n} \text { is not divisible by } 3 \\ \sqrt[n]{\frac{n / 3}{2^{n / 3}}=\frac{\sqrt[n]{n}}{\sqrt[n]{3} \sqrt[3]{2}},} \begin{array}{l}\text { if } \mathrm{n} \text { is divisible by } 3\end{array}\end{cases}$
\Longrightarrow The accumulation points are: $t_{1}=0, t_{2}=\frac{1}{\sqrt[3]{2}}$
$\Longrightarrow \quad \varlimsup \sqrt[n]{\left|a_{n}\right|}=\frac{1}{\sqrt[3]{2}}=\frac{1}{R} \quad \Longrightarrow \quad R=\sqrt[3]{2}$

2nd solution:

By the substitution $y=x^{3}$ the series can be written in the form

$$
\sum_{n=1}^{\infty} b_{n} y^{n}:=\sum_{n=1}^{\infty} \frac{n}{2^{n}} y^{n}
$$

The coefficients are $b_{n}=\frac{n}{2^{n}}$ and the base point is $y_{0}=0$. Applying the root test:
$\lim _{n \rightarrow \infty} \sqrt[n]{\left|b_{n}\right|}=\lim _{n \rightarrow \infty} \sqrt[n]{\frac{n}{2^{n}}}=\frac{1}{2}=\frac{1}{R_{y}} \quad \Longrightarrow \quad R_{y}=2$
The radius of convergence of the original series can be determined in the following way:
$|y|<2 \quad \Longrightarrow \quad\left|x^{3}\right|=|x|^{3}<2 \quad \Longrightarrow \quad|x|<\sqrt[3]{2} \quad \Longrightarrow \quad R=\sqrt[3]{2}$

Exercise 8: Find the interval of convergence of the following power series:

$$
\sum_{n=1}^{\infty} \frac{n+1}{9^{n}}(x-2)^{2 n}
$$

Solution:

By the substitution $y:=(x-2)^{2}$ the series can be written in the form: $\sum_{n=1}^{\infty} \frac{n+1}{9^{n}} y^{n}$
The coefficients are $a_{n}=\frac{n+1}{9^{n}}$ and the base point is $y_{0}=0$. Applying the ratio test:
$\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty} \frac{(n+2) 9^{n}}{9^{n+1}(n+1)}=\lim _{n \rightarrow \infty} \frac{1}{9} \cdot \frac{n+2}{n+1}=\frac{1}{9} \quad \Longrightarrow \quad R_{1}=9$
The radius of convergence of the original series can be determined in the following way:
$|y|<9 \Longrightarrow\left|(x-2)^{2}\right|<9 \Longrightarrow \underbrace{|x-2|<3}_{-1<x<5} \Longrightarrow \quad R=3$

The endpoints:
If $x=-1$ or $x=5$ then $\sum_{n=1}^{\infty} \frac{n+1}{9^{n}}(-1-2)^{2 n}=\sum_{n=1}^{\infty} \frac{n+1}{9^{n}}(5-2)^{2 n}=\sum_{n=1}^{\infty}(n+1)$.
This series is divergent by the nth term test, so the interval od convergence is $(-1,5)$.
Remark: The endpoints can be investigated in both the original and the new series.

Practice exercises

Exercise 9: Find the interval of convergence of the following power series:

$$
\sum_{n=1}^{\infty} \frac{(-4)^{n-1}}{n^{3}}(x+1)^{n}
$$

Exercise 10: Find the interval of convergence of the following power series:

$$
\sum_{n=1}^{\infty} \frac{n \sqrt{n}}{2^{2 n}}(4-2 x)^{n}
$$

Exercise 11: Find the interval of convergence of the following power series:

$$
\text { a) } \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{2} 3^{2 n}} x^{n} \quad \text { b) } \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{2} 3^{2 n}}(x+2)^{2 n}
$$

Exercise 12: Find the interval of convergence of the following power series:
a) $\sum_{n=1}^{\infty} \frac{(-3)^{n}}{\sqrt[3]{n}} x^{n}$
b) $\sum_{n=1}^{\infty} \frac{(-3)^{n}}{\sqrt[3]{n}} x^{2 n}$

Exercise 13: Find the interval of convergence of the following power series:

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n}(2 x)^{n}}{\sqrt{n} 5^{n}}
$$

Results

Exercise 9: $\left[-\frac{5}{4},-\frac{3}{4}\right]$. Exercise 10: $(0,4)$. Exercise 11: a) $[-9,9] \quad$ b) $[-5,1]$
Exercise 12: a) $\left(-\frac{1}{3}, \frac{1}{3}\right]$ b) $\left[-\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right]$ Exercise 13: $\left(-\frac{5}{2}, \frac{5}{2}\right]$

