3. Mixed Distributions

Basic Theory

As usual, we start with a random experiment with probability measure \mathbb{P} on an underlying sample space. In this section, we will discuss two “mixed” cases for the distribution of a random variable: the case where the distribution is partly discrete and partly continuous, and the case where the variable has both discrete coordinates and continuous coordinates.

Distributions of Mixed Type

Suppose that X is a random variable for the experiment, taking values in $S \subseteq \mathbb{R}^n$. Then X has a distribution of mixed type if S can be partitioned into subsets D and C with the following properties:

1. D is countable and $0 < \mathbb{P}(X \in D) < 1$.
2. $\mathbb{P}(X = x) = 0$ for all $x \in C$.

Thus, part of the distribution of X is concentrated at points in a discrete set D; the rest of the distribution is continuously spread over C. In the picture below, the light blue shading is intended to represent a continuous distribution of probability while the darker blue dots are intended to represent points of positive probability.

Let $p = \mathbb{P}(X \in D)$, so that $0 < p < 1$. We can define a function on D that is a partial probability density function for the discrete part of the distribution.

1. Let $g(x) = \mathbb{P}(X = x)$ for $x \in D$. Show that

 a. $g(x) \geq 0$ for $x \in D$
 b. $\sum_{x \in D} g(x) = p$
 c. $\mathbb{P}(X \in A) = \sum_{x \in A} g(x)$ for $A \subseteq D$

Usually, the continuous part of the distribution is also described by a partial probability density function. Thus, suppose there is a nonnegative function h on C such that

$$\mathbb{P}(X \in A) = \int_A h(x) \, dx \text{ for } A \subseteq C$$
2. Show that \(\int_C h(x) \, dx = 1 - p \).

The distribution of \(X \) is completely determined by the partial probability density functions \(g \) and \(h \). First, we extend the functions \(g \) and \(h \) to \(S \) in the usual way: \(g(x) = 0 \) for \(x \in C \), and \(h(x) = 0 \) for \(x \in D \).

3. Show that

\[
\mathbb{P}(X \in A) = \sum_{x \in A} g(x) + \int_A h(x) \, dx, \quad A \subseteq S
\]

The conditional distributions on \(D \) and on \(C \) are purely discrete and continuous, respectively.

4. Show that the conditional distribution of \(X \) given \(X \in D \) is discrete, with probability density function

\[
f(x | X \in D) = \frac{g(x)}{p}, \quad x \in D
\]

5. Show that the conditional distribution of \(X \) given \(X \in C \) is continuous, with probability density function

\[
f(x | X \in C) = \frac{h(x)}{1 - p}, \quad x \in C
\]

Thus, the distribution of \(X \) is a mixture of a discrete distribution and a continuous distribution. Mixtures are studied in more generality in the section on conditional distributions.

Truncated Variables

Distributions of mixed type occur naturally when a random variable with a continuous distribution is truncated in a certain way. For example, suppose that \(T \in [0, \infty) \) is the random lifetime of a device, and has a continuous distribution with probability density function \(f \). In a test of the device, we can’t wait forever, so we might select a positive constant \(a \) and record the random variable \(U \), defined by truncating \(T \) at \(a \) as follows:

\[
U = \begin{cases}
T, & T < a \\
 a, & T \geq a
\end{cases}
\]

6. Show that \(U \) has a mixed distribution. In particular, show that, in the notation above,

a. \(D = \{a\} \) and \(g(a) = \int_a^\infty f(t) \, dt \)

b. \(C = [0, a) \) and \(h(t) = f(t) \) for \(t \in [0, a) \)

Suppose that random variable \(X \) has a continuous distribution on \(\mathbb{R} \), with probability density function \(f \). The variable is
Random Variable with Mixed Coordinates

Suppose X and Y are random variables for our experiment, and that X has a discrete distribution, taking values in a countable set S while Y has a continuous distribution on $T \subseteq \mathbb{R}^n$.

Examples and Applications

1. Suppose that X has probability $\frac{1}{2}$ uniformly distributed on the set \{1, 2, ..., 8\} and has probability $\frac{1}{2}$ uniformly distributed on the interval $[0, 10]$ Find $\mathbb{P}(X > 6)$.

2. Suppose that (X, Y) has probability $\frac{1}{3}$ uniformly distributed on $\{0, 1, 2\}^2$ and has probability $\frac{2}{3}$ uniformly distributed on $[0, 2]^2$ Find $\mathbb{P}(Y > X)$.

3. Suppose that the lifetime T of a device (in 1000 hour units) has the exponential distribution with probability...
density function \(f(t) = e^{-t}, \; t \geq 0 \). A test of the device is terminated after 2000 hours; the truncated lifetime \(U \) is recorded. Find each of the following:

a. \(\mathbb{P}(U < 1) \)

b. \(\mathbb{P}(U = 2) \)

13. Let

\[
 f(x, y) = \begin{cases}
 1 & x = 1, \; 0 \leq y \leq 1 \\
 \frac{1}{3} & x = 2, \; 0 \leq y \leq 2 \\
 \frac{1}{6} & x = 3, \; 0 \leq y \leq 3
\end{cases}
\]

a. Show that \(f \) is a mixed density in the sense defined above, with \(S = \{1, 2, 3\} \) and \(T = [0, 3] \)

b. Find \(\mathbb{P}(X > 1, Y < 1) \).

14. Let \(f(p, k) = 6 \binom{3}{k} p^{k+1} (1 - p)^{4-k} \) for \(k \in \{0, 1, 2, 3\} \) and \(p \in [0, 1] \).

a. Show that \(f \) is a mixed probability density function in the sense defined above.

b. Find \(\mathbb{P}(V < \frac{1}{2}, X = 2) \) where \((V, X)\) is a random vector with probability density function \(f \).

As we will see in the section on conditional distributions, the distribution in the last exercise models the following experiment: a random probability \(V \) is selected, and then a coin with this probability of heads is tossed 3 times; \(X \) is the number of heads.

15. For the M&M data, let \(N \) denote the total number of candies and \(W \) the net weight (in grams). Construct an empirical density function for \((N, W)\)