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Chapter 1

Introduction

1.1 Background

Chaotic, “stochastic” behavior of deterministic systems is much interesting from both theoretical and

applied points of view. An archetype of such systems is the Sinai billiard - or equivalently, its periodic

extension, the periodic Lorentz process. The motivation for studying these models is multiple. In the

physics literature, Hendrik Lorentz [L05] introduced Lorentz gas as a model of motion of electrons in a

metal. By considering the dynamics of just one classical electron in a crystal, one obtains the (periodic)

Lorentz process. Nowadays, a central problem in statistical physics is to derive macroscopic laws from

microscopic dynamics. In the optimal case, the microscopic dynamics are Newtonian which makes the

model more realistic. The two model families, where such rigorous results are available, are mathematical

billiards and oscillators.

On the other hand, Sinai was also interested in physically relevant examples, where the mathematically

precise notions of chaotic dynamical systems can be verified. Most importantly, this means the precise

formulation and proof of Boltzmann’s Ergodic Hypothesis which is roughly speaking the following: in any

large enough physical system, the time average (as time tends to infinity) of a physical quantity coincides

with its spatial average (with respect to the equilibrium). Sinai [S63] conjectured that this is true, more

precisely ergodicity holds, for hard ball systems - hard balls moving on a flat torus and colliding with

each other solely - once the trivially conserved quantities (total momentum, center of mass, total kinetic

energy) are fixed. This statement is now called Boltzmann-Sinai Ergodic Hypothesis. The motion of

any number of hard balls in any dimension can be encoded into the motion of a point particle on a

possibly higher dimensional torus with some restricted regions (scatterers). In particular, this led to the

definition of Sinai billiard (or dispersing billiard following Sinai’s terminology) in the celebrated paper

[S70]. Here Sinai also proved the Boltzmann-Sinai Ergodic Hypothesis in the simplest case (two balls in

two dimensions) and other properties of the planar Sinai billiard (hyperbolicity, K-mixing) which reflect

strongly chaotic nature.

The definition of semi-dispersing billiard is the following. Fix some convex subsets B1, . . . Bk of the
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d dimensional torus, whose boundaries fulfill some regularity conditions. These sets are thought of as

scatterers. The continuous dynamics, called the billiard flow is the free flight of a point particle among

the scatterers and its specular reflection on their boundaries. The speed of the particle is constant (equals

to one, say), thus the phase space of the billiard flow consists of a spatial component (d dimensional torus

minus the scatterers) and a velocity vector, which is an element of the d − 1 dimensional unit sphere.

Lebesgue measure is a natural invariant measure in both coordinates. The same motion is described by

the billiard ball map, which is the Poincaré section of the flow on the boundaries of the scatterers. Hence

its phase space has spatial dimension is d− 1 and full dimension 2d− 2. The simplest case is of course

the planar one (d = 2), where the phase space of the billiard ball map is two dimensional.

If the scatterers B1, . . . Bk are strictly convex, then the billiard is called dispersing, or Sinai billiard. If

one encodes the motion of hard balls into semi-dispersing billiards, then the scatterers are going to be

strictly convex if and only if the number of hard balls is two. Since in the case of more hard balls, some

cylindrical scatterers are also needed, proving the Boltzmann-Sinai Ergodic Hypothesis is even much

harder in this case (see [S09] and references therein).

Some spectacular results for the Sinai billiards were the convergence to equilibrium in [KSz83a], the linear

Boltzmann equation in the case of small scatterer size limits, [BBS83], [MS10] and the (super)diffusion

in the planar case. In the sequel, we focus on the latter.

The development of the theory of planar Sinai billiard in the last decades is miraculous (consult [CM06]

for lot of details). Besides ergodicity and hyperbolicity, the most interesting statistical properties are

the decay of correlation and the central limit theorem (CLT), or diffusion. For an abstract dynamical

system (M,F , µ), the former means that
∫
f(g ◦Fn)dµ is exponentially small in n if

∫
fdµ =

∫
gdµ = 0

and f and g are chosen from a nice set of functions (definitely containing the free flight function for the

billiard ball map). With this terminology, CLT means that 1√
n

∑n
k=1 f ◦ Fk, as a random variable with

respect to µ, weakly converges to a Gaussian distribution.

The classical method of proving CLT in hyperbolic dynamical systems consists of the construction of

Markov partition, switching to the symbolic space and applying functional analytic methods to the

Perron-Frobenius operator. Although in the case of Sinai billiards this was basically done in [BS81]

and [BSCh91] thus providing the first proof of the CLT, this method is cumbersome (for instance, the

Markov partition is not finite), and does not provide exponential decay of correlation. It is also a crucial

fact, that a geometric assumption in needed for the above results, namely, that the free flight function

should be bounded.

Definition 1. We say that a Sinai billiard (or periodic Lorentz process) has finite horizon, if the free

flight function is bounded. Equivalently, it has infinite horizon, if there is an infinite line which is disjoint

from the interior of all scatterers.

The following breakthrough in this theory was the paper of Young [Y98]. She introduced the tower

technique which was strong enough to prove exponential decay of correlation for the billiard ball map and

also provided a new, transparent proof of the CLT. Her method was successfully applied by Szász and

Varjú in the case of infinite horizon [SzV07]. According to their most interesting result (also conjectured

by Bleher [B92] much before), the presence of infinite horizon yields a slightly super-diffusive behavior.
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The displacement of the particle in n steps, rescaled by
√
n log n, converges to some Gaussian distribution.

In fact, they proved a local version of this limit theorem and also that of the CLT in case of finite horizon

[SzV04].

Chernov and Dolgopyat managed to further simplify the proof of the CLT with their method of “standard

pairs”. This method allowed them to treat a model of two moving particles, which is in some sense a

parametric family of billiards [ChD09b] (note that this model is much more complicated then the case

of just one moving particle). The standard pair technique, which is in fact the state-of-the-art method,

is also applicable to many other problems. Besides the proof of the limit theorem in both finite and

infinite horizons ([Ch06b, ChD09a]), it also yielded more delicate statistical properties (e.g. convergence

to Brownian motion, law of iterated logarithm) and also limit theorems for related models (e.g. for

billiards under external fields). Further, several arguments from probability theory has been successfully

reapplied to Sinai billiards, thanks to this technique. Dolgopyat, Szász and Varjú [DSzV08] proved

delicate recurrence properties of the periodic Lorentz process with finite horizon. These properties are

all the same, as if the billiard particle was substituted by a random walker (of course, the proof is much

more involved). They also managed to prove CLT for a non-periodic Lorentz process with finite horizon

[DSzV09], where periodicity is spoiled in a compact domain. A related conjecture is the following.

Conjecture 1.1. Modify the scatterer configuration of a periodic Lorentz process with infinite horizon

on a compact subset (the modification still satisfies the assumptions of the Sinai billiard). Then, the

super-diffusive limit theorem remains valid.

Going back to the motivation by the work of Lorentz [L05], one sees that these kind of problems

are also physically motivated (crystals often have impurities). In the last few years, some other non-

homogeneous modifications of the periodic Lorentz process were also considered, see for instance [SYZ12]

for a very recent one. As both the delicate statistical properties of the periodic Lorentz process and the

basic statistical properties of some non-homogeneous versions are current active research fields, there

are plenty of interesting, challenging questions, a few of which we are going to address in this thesis.

1.2 Structure of the thesis

This thesis consists of six more or less self-contained chapters. Chapters 2 3 4 and 5 contain (almost

verbatim) the articles [N11a, N11b, NSz12, NSzV12a], respectively. Chapter 6 is the preprint [NSzV12b],

while Chapter 7 is an unpublished work, also joint with Domokos Szász and Tamás Varjú. I would also

like to remark that Chapter 2 heavily overlaps with my MSc thesis. At several points - mainly in the

introductions -, the Chapters may overlap (by not much, though).

The high level logic of the thesis is the following: Chapters 2 and 3 are about some stochastic models

(random walks) that are motivated by the periodic Lorentz processes. Chapter 4 is about a specific

type of inhomogeneity (both in space and time) in Lorentz process. On the technical level, Chapters

2-4 require ideas almost exclusively from Probability theory. Chapter 5 suggests an approach to study

general time inhomogeneity in dynamical systems (at its present state, not strong enough to treat two di-

mensional dynamics, though). Chapter 6 deals with Lorentz processes with infinite horizon in dimension
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d ≥ 3, while Chapter 7 is roughly speaking a new proof for the convergence to the Brownian motion in

the plane, again, in the infinite horizon case. On the technical level, Chapters 5-7 require ideas primarily

from the theory of Dynamical systems and elementary geometry, although Probability theory is still

an important ingredient. We also mention that the motivation of Chapters 3 and 7 is mainly (but not

exclusively) is the hope that they might be useful at attacking Conjecture 1.1. Each Chapter starts with

an introductory Section and some of them has some remarks in the end pointing out some possible ex-

tensions and open questions. In the rest of this Section, we introduce each Chapter in some more details.

Chapter 2 is about the number of distinct sites visited by a random walker that has a finite memory

(internal state). In fact, we extend the results of Dvoretzky and Erdős [DE51] for Simple Symmetric

Random Walk. These are the asymptotics for the expected value and the variance of the number of

visited distinct sites, and both weak and strong laws of large numbers. In this problem, the “intermittent

dimension” is 2, thus the computation in the plane is much more delicate that that of d = 1 and d ≥ 3.

As a tool for these results, the error term of the local limit theorem of [KSz83b] is also estimated. Sinai’s

motivation behind this model of Random Walk with Internal States (see[S81]) is the better understanding

of the periodic Lorentz process with finite horizon. We also point out the fact that in the case of planar

Lorentz process (with finite horizon), the same questions has been answered by Pène [P09a].

Chapter 3 is about some delicate recurrence properties of a random walk, the step distribution of which

has the same tail asymptotics as the planar Lorentz process with infinite horizon. We address exactly the

same questions Dolgopyat, Szász and Varjú were dealing with in [DSzV08] (which were also important

by the proof of the convergence to the Brownian motion in locally perturbed periodic Lorentz process

with finite horizon [DSzV09]). These questions include the tail asymptotics of the distribution of the

first return time to the starting position (origin), limit theorem for the local time at the origin and for

the hitting time of the origin as started from far away. The consequence is that in case of the infinite

horizon, the recurrence properties are weaker, as expected - for instance, the local time up to n is scaled

by log log n in compare to log n in finite horizon. Some of these results can be proven to the Lorentz

process too, but some of them are open. As in Chapter 2, a refinement of the local limit theorem is also

needed here.

In Chapter 4, we consider a periodic planar Lorentz process with finite horizon, restricted to a horizontal

strip. In this setting, the diffusively rescaled trajectory converges to the Brownian motion, which is an

easy consequence of the same statement in the plane. Now, if one puts a vertical wall to the zeroth cell,

then the trajectory converges to the reflected Brownian motion, but if there is a hole on the wall - thus

the particle eventually get through it -, then the limit is again the Brownian motion (see [DSzV09]). In

Chapter 4, we prove that if one puts a hole of decreasing size to the wall, then the limit is the so-called

quasi reflected Brownian motion, a joint generalization of Brownian motion and reflected Brownian

motion. It is worth mentioning that this is a stochastic process which is Markovian but not strong

Markovian. The most important ingredient of the proof is the local limit theorem for planar periodic

Lorentz process with finite horizon, see [SzV04].

In Chapter 5, we prove functional central limit theorem for deterministic time-dependent dynamical
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systems. The result itself is applicable only in restricted settings - mainly for one dimensional expanding

maps - but the time inhomogeneity is general. The latter means that instead of proving the central

limit theorem for a typical sequence of some mappings, we can prove it for fixed sequences under some

conditions. These are connected to the zero-cohomology condition in the autonomous case.

Chapter 6 is about periodic Lorentz process in dimension d ≥ 3 and with infinite horizon. Note that

the high dimensional case is much more difficult than the planar one. Even for finite horizon, much

less is known than in d = 2, see [BT08] for the present state of the theory. The infinite horizon also

makes the picture more difficult. Recall that in the planar case, the scaling of the trajectory is slightly

super-diffusive. In d ≥ 3, the first step is to ascertain the tail asymptotics of the free flight function.

If it is the same as the one in the planar case, then it is reasonable to expect the same super-diffusive

behavior. In [D12], Dettmann formulated conjectures, which provide the tail asymptotics in quite a

generality. The essence of the conjectures is that super-diffusion is expected if and only if there is a

horizon of maximal possible dimension. In Chapter 6, we prove the first two conjectures of Dettmann.

It is worth mentioning that our proof uses results from the theory of the small scatterer size limit of

Lorentz processes, see [MS10].

Chapter 7 has the closest connection to Conjecture 1.1. In the proof of the CLT for locally modified

periodic Lorentz process with finite horizon, [DSzV09] uses the “martingale method” of Stroock and

Varadhan. Hence it is reasonable to expect that this method could be useful by attacking Conjecture

1.1, too. In Chapter 7, we prove that the only possible limit point of the super-diffusively rescaled

trajectory is the Brownian motion with the appropriate covariance matrix by a combination of the

standard pair and the martingale methods. Chernov and Dolgopyat proved the same in [ChD09a] by

combining the standard pair technique with Bernstein’s big block-small block method.
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Chapter 2

Number of Distinct Sites Visited by

a Random Walk with Internal States

2.1 Introduction

The model of a random walk with internal states (or, alternatively, random walk with internal degrees

of freedom; briefly RWwIS) was introduced by Sinai in 1981 in his Kyoto talk [S81]. His aim was to

get an efficient tool for examining the Lorentz process (in this context, internal states would represent

the elements of the Markov partition or of a Markov sieve). For this kind of argument see, for instance,

[PSz12]. Beside the Lorentz process, however, several other motivations and applications have appeared,

among others, in some models of queueing systems, cf. [H95] as for an extensive treatment of other

motivations. Nevertheless, the investigation of this model is important for its own sake, as it is a

manifest generalization of a gem of probability theory: the simple symmetric random walk. Let us begin

with the definition of RWwIS with the notation in [KSz83b] and [KSz84] (or of [KSSz86], where RWwIS

served as a model of Fourier law of heat conduction).

Definition 2. Let E be a finite set. On the set H = Zd×E (d = 1, 2, ...), the Markov chain ξn = (ηn, εn)

is a random walk with internal states (RWwIS), if for ∀xn, xn+1 ∈ Zd, jn, jn+1 ∈ E

P (ξn+1 = (xn+1, jn+1)|ξn = (xn, jn)) = pxn+1−xn,jn,jn+1
.

In fact, E could be countable, as well, but we will consider only the finite case. We will denote

s = #E.

There are some basic assumptions which will throughout be supposed. These are the following:

(i) (ε0, ε1, ...) - obviously a Markov chain - is irreducible and aperiodic (its stationary distribution will

be denoted by µ)

(ii) the arithmetics are trivial, with the notation in [KSz83b], L = Zd
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(iii) the expectation of one step is zero provided that ε0 is distributed according to its unique stationary

measure

(iv) the covariance matrix, which is exactly defined in Section 2.2, exists and is nonsingular.

In general, we will assume that η0 = 0. Let Ld (n) denote the number of distinct sites visited by

(ηk)k up to n steps. The expectation of Ld (n) is Ed (n), and the variance is Vd (n). {ej}j=1,...,s is the

standard basis in Rs, and 1 = (1, 1, ..., 1)
T

. Our aim is to find asymptotics of Ed (n), further, by using

bounds on Vd (n), we want to prove weak and strong laws of large numbers. Similar results in terms

of simple symmetric random walks (which will later on be referred to as SSRW) are found in [DE51].

Recently, in the case of two dimensional Lorenz process, Pène discussed the same question in [P09a].

There are numerous fairly new papers on Ld (n) for random walks with independent steps (see [BR05]

and references therein).

This Chapter is organized as follows: in Section 2.2 the main theorem of [KSz83b] is generalized.

Namely, a remainder term of the local limit theorem is computed, as it will be necessary for estimating

E2 (n). A further refinement of the local limit theorem will also be given as it will be useful when

proving the strong law of large numbers in the plane. Although these results are used in the forthcoming

Sections, they can be interesting in their own rights. In Section 2.3, the number of visited points in the

high dimensional case, i.e. when d ≥ 3, is dealt with. We prove asymptotics for Ed (n), and estimate

Vd (n), from which we can prove both the weak and strong laws of large numbers. In this Section, we

will not use the result of Section 2.2, Theorem 5.2. in [KSz83b] will be enough for our purposes. In

Section 2.4 the d = 2 case is discussed. For E2 (n), same asymptotics (const n
logn ) is found as in [DE51],

but with some different constant. V2 (n) is also estimated, and the weak law of large numbers is also

proved. The proof of the strong law in the plane is a little bit cumbersome calculation, so it is postponed

to Section 2.5. In Section 2.6, the one dimensional settings are considered. This case requires a little

bit different approach from the previous ones (and is not treated in [DE51]), so the application of a

Tauberian theorem will be very useful. Section 2.7 gives some remarks.

2.2 Preliminaries

2.2.1 Local limit theorem with remainder term

In this subsection, we calculate a remainder term for Theorem 5.2. in [KSz83b]. Furthermore, another

refinement of this theorem will be proved, as it will be used when proving the strong law of large

numbers in the plane. First, we reformulate the mentioned theorem. We have to start with some

9



definitions. Denote

Ay = (py,j,k)j,k=1,...,s : Cs → Cs,

Q =
∑
y∈Zd

Ay,

Ml =
∑
y∈Zd

ylAy,

Σl,m =
∑
y∈Zd

ylymAy.

So, the transition matrix of the Markov chain (ε0, ε1, ...) is Q and its unique stationary measure is µ.

Theorem 2.1. (Krámli-Szász [KSz83b]) Consider a RWwIS in Zd and assume that the matrix σ =

(σl,m)1≤l,m≤d whose elements are

σl,m = 〈µ,Σl,m1〉 −
〈
µ,Ml (Q− 1)

−1
Mm1

〉
−
〈
µ,Mm (Q− 1)

−1
Ml1

〉
(which can be called a covariance matrix) is positive definite, then∑

(x,k)∈H

∣∣∣∣P (ξn = (x, k)|ξ0 = (0, j))− n−d/2µkgσ
(
x√
n

)∣∣∣∣→ 0

as n → ∞, where gσ (x) denotes the density of a Gaussian distribution with mean 0 and covariance

matrix σ.

Of course, the condition concerning the positive definiteness of the matrix in one dimension means

σ > 0. We omit the proof, it can be found in [DE51]. In fact, there is a typo in [DE51] as they write

n−1/2 instead of n−d/2 but it is easy to correct it even in the proof.

Our calculation will be similar to the one of [KSz83b]. The main point is that while in [KSz83b] it is

sufficient to consider the Taylor expansion of the largest eigenvalue up to the quadratic term, now, we

have to calculate the third term, as well.

Define the Fourier transform

α(t) =
∑
y∈Zd

exp (i 〈t, y〉)Ay, t ∈ [−π, π]
d
.

Now, we have to consider the Taylor expansion of the largest eigenvalue of α(t), which is denoted by

λ(t), up to the third term.

Let us first assume that d = 1. From our basic assumptions it follows that M =
∑
y∈Z

yAy and

Σ =
∑
y∈Z

y2Ay are convergent series. But now, we also suppose the absolute convergence of

Ξ =
∑
y∈Z

y3Ay. (2.1)

The existence of M,Σ and Ξ implies

α(t) = Q+ itM − t2

2
Σ− it3

6
Ξ + o(t3) (t→ 0). (2.2)

10



Now, by perturbation theoretic means (i.e. the straightforward extension of Theorem 5.11. of Chapter

II. in [K80]) it can be easily proved that

λ(t) = 1 + r1t+
r2

2
t2 +

r3

6
t3 + o(t3) (t→ 0). (2.3)

From [KSz83b] we know that r1 = 0 and r2 = −〈Σ1, µ〉+ 2
〈
M(Q− 1)−1M,µ

〉
.

Using the notation σ2 = −r2 we can now formulate our theorem:

Theorem 2.2. For a one dimensional RWwIS the existence of (2.1) imply

P (ξn = (x, k)|ξ0 = (0, j))−

− µk
1√

2πnσ
exp

(
− x2

2nσ2

)[
1− ir3

6
x
(
3σ2n− x2

) 1

σ6

1

n2

]
= o

(
1

n

)
,

where the small order is uniform in x.

Proof. The proof is similar to the one of Theorem 2.1. in [KSz83b]. In the neighborhood of the origin,

we have αn(t) = λn(t)p(t) + bn(t), where p is the projector to the eigenspace associated to λ(t), and

bn(t) is the contribution of the other eigenvalues. The term bn(t) is in O(αn) for some α ∈ (0, 1).

Because of (2.3) we have

αn (t) =
(
1µT + tp′(0) +O(t2)

)(
1− σ2t2

2
+
r3

6
t3 + o

(
t3
))n

+ bn(t). (2.4)

Elementary calculations show that(
1− σ2s2

2n
+
r3

6

s3

n
3
2

+ o

(
s3

n
3
2

))n
= exp

(
−σ

2s2

2

)(
1 +

r3

6
s3 1√

n
+ o

(
s3

√
n

))
(2.5)

holds uniformly for |s| < nε with 0 < ε < 1/6. In order to prove the statement, we use the Fourier

transforms and the usual estimations∥∥∥∥√n
π∫
−π

exp (−ixt) eTj αn (t) dt

−µT
√

2π

σ
exp

(
− x2

2nσ2

)[
1− ir3

6
x
(
3σ2n− x2

) 1

σ6

1

n2

] ∥∥∥∥
≤

∫
|s|<nε

∥∥∥∥eTj p(0)λn
(

s√
n

)
− µT exp(−σ

2s2

2
)

(
1 +

r3

6

s3

√
n

)∥∥∥∥ ds+ o

(
1√
n

)

+c ‖µ‖
∫
|s|>nε

(1 + s3) exp(−σ
2s2

2
)ds+

∫
nε<|s|<γ

√
n

∥∥∥∥eTj αn( s√
n

)∥∥∥∥ ds
+

∫
γ
√
n<|s|<π

√
n

∥∥∥∥eTj αn( s√
n

)∥∥∥∥ ds
= I1 + o

(
1√
n

)
+ I2 + I3 + I4,

11



where 0 < ε < 1
6 is arbitrary. The term o

(
1√
n

)
is the contribution of the terms s√

n
p′(0) + O( s

2

n ) in

(2.4), as we can see that∫
|s|<nε

λn
(

s√
n

)
s√
n
p′(0)ds

=

∫
|s|<nε

exp

(
−σ

2s2

2

)
s√
n
p′(0)ds+O

 ∫
|s|<nε

exp

(
−σ

2s2

2

)
s3

√
n

s√
n
p′(0)ds

 ,

which is 0 + o
(

1√
n

)
, and ∫

|s|<nε

∣∣∣∣λn( s√
n

)∣∣∣∣ s2

n
ds = o

(
1√
n

)
.

It is clear that proving Ij = o
(

1√
n

)
, j = 1, 2, 3, 4 is enough for our purposes. (2.5) yields that

the integrand in I1 is equal to δ(n)
n1/2 s

3 exp
(
−σ

2s2

2

)
, where δ(n) → 0 uniformly in s. Thus we have

I1 = o
(

1√
n

)
. It is clear that I2 = o

(
1√
n

)
, and I4 converges exponentially fast to zero. Finally, if γ > 0

is small enough, then

I3 =

∫
nε<|s|<γ

√
n

∥∥∥∥eTj αn( s√
n

)∥∥∥∥ ds ≤ ∫
nε<|s|<γ

√
n

exp

(
−σ

2s2

4

)
ds.

So we have I3 = o
(

1√
n

)
, too.

Remark 2.3. In Theorem 2.2 for the expression subtracted from the appropriate probability we have:

µk
1√

2πnσ
exp

(
− x2

2nσ2

)[
1− ir3

6
x
(
3σ2n− x2

) 1

σ6

1

n2

]
= µk

1√
2πnσ

exp

(
−y

2

2

)
+ µk

1√
n

1

σ

q1 (y)√
n
,

where y = x√
nσ

, and the q1 (y) is the function defined in [P75], Chapter VI. (1.14). In this sense, the

local limit theorem concerning RWwIS is analogous to the one of Simple Symmetric Random Walk (see

[P75] Chapter VII. Theorem 13).

The extension of Theorem 2.2 to the multidimensional case is straightforward. Analogously to (2.3),

we have:

λ(t) = 1− 1

2
tTσt+ f (t) + o(|t|3) (|t| → 0) ,

where f(t) =
d∑
i=1

d∑
j=1

d∑
k=1

r3,i,j,ktitjtk is the third term of the Taylor expansion. Denote

Ω = nd/2P (ξn = (x, .)|ξ0 = (0, j)) =
nd/2

(2π)
d

π∫
−π

...

π∫
−π

exp (−i 〈x, t〉) eTj αn (t) dt.

12



So the analogue of the expression subtracted from the appropriate probability in Theorem 2.2 (multiplied

by nd/2

(2π)d
) is

I(n) :=

∞∫
−∞

...

∞∫
−∞

exp

(
−sσs

2
− i
〈
x,

s√
n

〉)
f (s)√
n
ds.

Using Lebesgue’s Theorem, it is easy to see that I(n) = O
(
n−1/2

)
. One can estimate I1, I2, I3, I4 the

same way, as it was done in the proof of Theorem 2.2 (see [KSz83b] Section 5. for more details). So we

have arrived at

Proposition 2.4. Supposing that (2.1) exists, for a d dimensional RWwIS

P (ξn = (x, k)|ξ0 = (0, j)) =
1

nd/2
µkgσ

(
x√
n

)
+O

(
n−(d+1)/2

)
holds, where gσ (x) denotes the density of a Gaussian distribution with mean 0 and covariance matrix σ

and the great order is uniform is x.

A further refinement of the local limit theorem will be useful in the sequel. Now, we would like to go

further in the asymptotic expansion, and apply our techniques in the two dimensional case. Nevertheless,

we are interested only in an estimation, not in the exact result which will simplify the calculation. Just

like previously, let us begin with the one dimensional case. Assume the convergence of the series

Υ =
∑
y∈Z

y4Ay. (2.6)

Now, just like previously, we may write

α(t) = Q+ itM − t2

2
Σ− it3

6
Ξ +

t4

24
Υ + o(t4) (t→ 0)

for the Fourier transform, and

λ(t) = 1 + r1t−
σ2

2
t2 +

r3

6
t3 +O(t4) (t→ 0) (2.7)

for the largest eigenvalue of α(t). As previously, we have(
1− σ2s2

2n
+
r3

6

s3

n
3
2

+O

(
s4

n2

))n
= exp

(
−σ

2s2

2

)(
1 +

r3

6
s3 1√

n
+O

(
s4 + s6

n

))
uniformly for |s| < nε. A very similar argument to the previous one (with Ij = o

(
1
n

)
, j = 1, 2, 3, 4)

leads to

P (ξn = (x, k)|ξ0 = (0, j)) (2.8)

= µk
1√

2πnσ
exp

(
− x2

2nσ2

)[
1− ir3

6
x
(
3σ2n− x2

) 1

σ6

1

n2

]
+O

(
1

n3/2

)
,

where the great order on the right hand side is uniform in x.
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Now our aim is to formulate an assertion similar to (2.8) in two dimensions. Applying the one

dimensional proof to the two dimensional case it is easily seen that

P (ξn = (x, k)|ξ0 = (0, j))− µk
1

n
gσ

(
x√
n

)
+ F (x, n) = O

(
1

n2

)
,

where the great order is again uniform in x, and F (x, n) is equal to

1

2πn3/2

2∑
i1=1

2∑
i2=1

2∑
i3=1

∞∫
−∞

∞∫
−∞

exp

(
−s

Tσs

2
− i
〈
x,

s√
n

〉)
r3,i1,i2,i3si1si2si3ds.

We estimate F (x, n) just like it was done in [P09b]. Observe that with the notation

Ψ(x) =

∞∫
−∞

∞∫
−∞

exp

(
−s

Tσs

2
− i 〈x, s〉

)
ds =

2π√
|σ|

exp

(
−x

Tσ−1x

2

)
,

we have with an appropriate C1 constant

|F (x, n)| < C1
1

n3/2
max
i1,i2,i3

∣∣∣∣ ∂3Ψ

∂xi1∂xi2∂xi3

(
x√
n

)∣∣∣∣ .
Further, observe that ∣∣∣∣ ∂3Ψ

∂xi1∂xi2∂xi3
(x)

∣∣∣∣ < C2

(
‖x‖+ ‖x‖3

)
exp

(
−x

Tσ−1x

2

)
.

So we have arrived at

Proposition 2.5. Assume that for a two dimensional RWwIS (2.6) exists. Then there is a C constant,

such that for every x ∈ R2 and for every 1 ≤ j, k ≤ s the following estimation holds∣∣∣∣P (ξn = (x, k)|ξ0 = (0, j))− µk
1

n
gσ

(
x√
n

)∣∣∣∣
≤ C

(
1

n3/2

(
‖x‖
n1/2

+
‖x‖3

n3/2

)
exp

(
−x

Tσ−1x

2n

)
+

1

n2

)
.

By an elementary argument (see, for instance in [IL65] Theorem 4.2.2), using Proposition 2.5 one

can easily deduce

Corollary 2.6. Under the conditions of Proposition 2.5∑
x∈Z2

∣∣∣∣P (ηn = x|η0 = 0)− 1

n
gσ

(
x√
n

)∣∣∣∣ = O
(
n−1/4

)
.

2.2.2 Reversed walks

The so-called reversed walk will be important in the sequel. If a RWwIS is given with the appropriate

(py,i,j) probabilities, then we define the (qy,i,j) reversed random walk for which

qy,i,j =
µjp−y,j,i

µi
. (2.9)

Obviously, the stationary measure of the reversed walk is also µ. As we would like to apply the local

limit theorem for the reversed walk, we need

14



Proposition 2.7. If the primary RWwIS fulfills our basic assumptions, then the reversed walk fulfills

them as well. Furthermore, the so-called covariance matrix of the reversed walk is the same as the one

of the primary walk.

Proof. Basic assumptions (i)-(iii) are fulfilled obviously. So it suffices to prove the second statement.

Let us introduce some notations

Ãy = (qy,j,k)j,k=1,...,s ,

Q̃ =
∑
y∈Zd

Ãy,

M̃l =
∑
y∈Zd

ylÃy,

Σ̃l,m =
∑
y∈Zd

ylymÃy,

and a new inner product

(, ) : Rs × Rs → R,

(u, v) =

s∑
i=1

µiuivi.

Let us denote by A∗ the adjoint of the linear operator A, i.e. (u,Av) = (A∗u, v) for all u, v ∈ Rs.
Elementary calculations show that Q̃ = Q∗, Ãy = (A−y)

∗
, M̃l = − (Ml)

∗
, Σ̃l,m = (Σl,m)

∗
for all

y ∈ Zd, 1 ≤ l,m ≤ s. Now, for an arbitrary element σ̃l,m of the ”covariance matrix” defined for the

reversed walk

σ̃l,m =
(

1, Σ̃l,m1
)
−
(

1, M̃l

(
Q̃− 1

)−1

M̃m1

)
−
(

1, M̃m

(
Q̃− 1

)−1

M̃l1

)
= (Σl,m1, 1)−

(
Mm (Q− 1)

−1
Ml1, 1

)
−
(
Ml (Q− 1)

−1
Mm1, 1

)
= σl,m.

Hence the statement.

2.3 Visited points in high dimensions

In the high dimensional case, we find that Ed (n) grows fast, i.e. linearly in n, as we could have

conjectured it from the transiency of the RWwIS. In Theorem 2.8 we prove this fact and compute

remainder terms, too. Our approach is based on the one of [DE51], but there are some main differences.

First, we have to consider the reversed random walk which is trivial in the case of [DE51]. After it,

the renewal equation is written with matrices and vectors, which is more technical than in the case of

[DE51]. Moreover, there will be a technical difficulty, namely we will have to consider the case, when

the distribution of ε0 is arbitrary. This will be treated separately in Proposition 2.9. After it, we will be

able to estimate Vd (n). In fact, o
(
n2
)

is enough for proving weak law of large numbers, and O
(
n2−δ)
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for strong law of large numbers, but our estimations will be sharper. Nevertheless, these estimations are

weaker than the ones of [DE51] because a symmetry argument, used in [DE51], fails here. That is why

the computation is longer and it uses Proposition 2.9, too. Let us see the details.

Theorem 2.8. Let d ≥ 3. Assuming that ε0 is distributed according to its unique stationary measure,

we have

E3 (n) = nγ3 +O(
√
n)

E4 (n) = nγ4 +O(log n)

Ed (n) = nγd + βd +O(n2−d/2) for d ≥ 5

with some constants γd, βd, depending on the RWwIS.

Proof. Fix some dimension d ≥ 3. For the sake of simplicity, we skip the index d and denote Ed(n) =
n∑
k=1

γ(k). Consider an {ξk = (ηk, εk) , 0 ≤ k} RWwIS fulfilling our assumptions. Let
{
ξ̃k = (η̃k, ε̃k) , 0 ≤ k

}
be the reversed walk, i.e. for which the transition probabilities are defined by (2.9). Put η0 = 0, γ(0) = 1

and define

γ(n) = P (ηn /∈ {η0, ..., ηn−1})

which is just the probability that the walk visits a new point at step n. Obviously

γ(n) = P (ηi 6= ηn i = 0, ..n− 1)

= P (ηn − ηi 6= 0 i = 0, ..n− 1)

= P (η̃n−i 6= 0 i = 0, ..n− 1)

= P (η̃j 6= 0 j = 1, ..n).

It is clear that we have to examine the reversed walk.

Define Uk ∈ Rs×s with

(Uk)i,j = P
(
ξ̃k = (0, j)|ξ̃0 = (0, i)

)
and Rk ∈ Rs with

(Rk)j = P (0 /∈ {η̃1, ..., η̃k} |ξ̃0 = (0, j)).

Obviously, we have:
n∑
k=0

Uk ·Rn−k = 1.

We are interested in 〈Rn, µ〉 = γ(n). From the definition of Rk, for n1 > n2 we have Rn2
− Rn1

≥ 0,

which means that all the components of the vector are non-negative.

We know from Proposition 2.7 and [KSz83b] Theorem 5.2. that (Uk)i,j = cjk
− d2 + oi,j(k

− d2 ). Here

we have cj = cµj , but this fact will not be used. So we have(
n∑
k=0

Uk

)
i,j

= c̃i,j +O
(
n1− d2

)
.

16



Using the monotonicity of Rk we infer

1 ≥

(
n∑
k=0

Uk

)
·Rn.

Defining ĉj the following way((
1

s
1

)T
·

(
n∑
k=0

Uk

))
j

=
1

s

s∑
i=1

(
c̃i,j +O

(
n1− d2

))
= ĉj +O

(
n1− d2

)
,

we have

1 ≥
〈(
ĉ1 +O

(
n1− d2

)
, ..., ĉs +O

(
n1− d2

))
, Rn

〉
. (2.10)

For all j, (Rn)j has a limit in n, being a decreasing non-negative sequence. So write (Rn)j = Rj + ajn,

where ajn ↘ 0. It will be enough to estimate the order of ajn, because γ(n) =
s∑
j=1

µj
(
Rj + ajn

)
.

For the estimation of the other direction let k < n. We have:(
1

s
1

)T
·

(
k∑
i=0

Ui

)
·Rn−k +

(
1

s
1

)T
·

(
n∑

i=k+1

Ui

)
· 1 ≥ 1.

Since (Uk)i,j ≥ 0 for all k, i, j, we have
(

1
s1
)T · ( k∑

i=0

Ui

)
≤ (ĉ1, ..., ĉs). On the other hand,

(
1
s1
)T ·(

n∑
i=k+1

Ui

)
· 1 = o(1), as k →∞, thus

〈(ĉ1, ..., ĉs) , Rn−k〉 ≥ 1 + o(1). (2.11)

So if we let n→∞, k →∞, n− k →∞, (2.11) together with (2.10) yields

ĉ1R
1 + ...+ ĉsR

s = 1.

Substituting to (2.10) we have:

s∑
j=1

[
ĉja

j
n +O

(
n1− d2

)
Rj +O

(
n1− d2

)
ajn

]
≤ 0,

whence
s∑
j=1

ĉja
j
n ≤ O

(
n1− d2

)
.

Since ĉj > 0 and ajn ≥ 0, we conclude that ajn = O
(
n1− d2

)
for 1 ≤ j ≤ s. This yields γ(n) =

s∑
j=1

µj
(
Rj + ajn

)
= γ +O

(
n1− d2

)
. Hence the statement (just like in [DE51]).

Proposition 2.9. The assertion of Theorem 2.8 remains true when the distribution of ε0 is arbitrary.
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Proof. With the notation γ(n) = γ + h(n) we already know that h(n) = O
(
n1− d2

)
. Define γej (n) =

P (ηn /∈ {η0, ..., ηn−1} |ε0 = j) and γej (n) = γ + hj(n) for j = 1, ..., s. As in the previous proof, it would

be sufficient to prove hj(n) = O
(
n1− d2

)
for all j.

For the present, let K be a fixed, great natural number, and

µk + bjk(K) = P (εK = k|ε0 = j) j, k = 1, ...s.

We know from the ergodic theorem of Markov chains that bjk(K) tends to zero exponentially fast in

K.

Denote by p(K,n) the probability of visiting such a site at time n that was visited during the first

K steps, but was not visited in the following (n −K − 1) steps, provided that ε0 = j. We know from

[KSz83b] Theorem 5.2. that p(K,n) = O
(
K · (n−K)

− d2
)

, whence

γej (n) =

s∑
k=1

[(
µk + bjk(K)

)
γek(n−K)

]
+O

(
K · (n−K)

− d2
)
. (2.12)

Recall γej (n) = γ + hj(n) to infer that hj(n) is equal to

s∑
k=1

µkh
k(n−K) +

s∑
k=1

bjk(K)hk(n−K) +O
(
K · (n−K)

− d2
)

=: I + II + III. (2.13)

Now, put K = K(n) = bnαc with arbitrary 0 < α < 1. It is clear that I is equal to h(n − K),

so the proof of Theorem 2.8 yields I = O
(

(n− nα)
1− d2

)
≤ O

(
n1− d2

)
. Since bjk(K) tends to zero

exponentially fast in K we have II ≤ O
(
n1− d2

)
. Finally, III = O

(
nα (n− nα)

− d2
)
≤ O

(
n1− d2

)
.

Hence the statement.

Now, let us see the estimation of Vd (n).

Theorem 2.10. For d ≥ 3 assuming that ε0 ∼ µ we have

Vd(n) = O
(
n1+ 2

d

)
.

Proof. Let γ (n,m) denote the probability that the RWwIS visits new points in both the nth and the

mth step under the condition that ε0 ∼ µ, and let A = {ηi 6= ηm, i = 0, ...,m − 1}. Obviously,

γd (n,m) = γd (m,n), so, when estimating γ (n,m) one can assume n > m.

γ (m,n) = P (A & ηj 6= ηn, j = 0, ..., n− 1)

≤ P (A & ηj 6= ηn, j = m, ..., n− 1)

= γ(n)P (ηj 6= ηn, j = m, ..., n− 1 | A) .

Here, P (ηj 6= ηn, i = m, ..., n− 1 | A) is the probability that the RWwIS visits a new point in

the (n−m)th step, assuming that the distribution of ε0 is some µ (n). So the condition A is involved in

µ (n), and because of the Markov property, it has no other contribution. The probability of this event is
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denoted by γ
µ(n)
d (n−m). Because of Proposition 2.9 we know that γ

µ(n)
d (n−m)→ γd, as (n−m)→∞,

and it is easy to see that this convergence is uniform in µ (n). So we know that for ∀δ > 0 ∃ N = N (δ),

such that for ∀n−m > N the following estimation holds.

γ
µ(n)
d (n−m) =

s∑
j=1

µ(n)jγ
ej
d (n−m) < (1 + δ)γd(n−m).

In addition, using Proposition 2.9, one can estimate N (δ), which will be done a little bit later. Now,

let us see the estimation of Vd (n)

Vd (n) =

n∑
i,j=0

γd (i, j)−
n∑
i=0

γd (i)

n∑
j=0

γd (j)

≤ 2
∑

0≤i≤j≤n

(γd (i, j)− γd (i) γd (j))

≤ 2
∑

0≤i<i+K≤j≤n

(γd (i, j)− γd (i) γd (j)) + 2
∑

0≤i≤n
i≤j<i+K

γd (i, j)

= : S1 + S2.

Let K be big enough, such that for n −m > K one would have γνd (n −m) < (1 + δ)γd(n −m) for

arbitrary ν. Estimating S1 and S2 separately, we get

S1

2
=

n−K∑
i=0

n∑
j=i+K

γd (i, j)−
n−K∑
i=0

n∑
j=i

γd (i) γd (j) +

n−K∑
i=0

i+K∑
j=i

γd (i) γd (j)

≤
n−K∑
i=0

γd (i) max
0≤i≤n−K

 n∑
j=i

(1 + δ) γd (j − i)−
n∑
j=i

γd (j)


+

n−K∑
i=0

γd (i)

i+K∑
j=i

γd (j) ,

which can be bounded by

≤
n−K∑
i=0

γd (i)
[
δEd(n) + Ed(n−

⌊n
2

⌋
)− Ed(n) + Ed(

⌊n
2

⌋
)
]

+

n−K∑
i=0

γd (i)K.

On the other hand,

S2 ≤ 2
∑

0≤i≤n
i≤j<i+K

γ (i) ≤ 2KEd(n).

From the proof of Proposition 2.9, one can easily deduce that for k large enough

γνd (k) <
(

1 +O(k1− d2 )
)
γd(k),
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uniformly in ν. So replacing K to K (n) in the above argument, one can change δ to O
(
K(n)1− d2

)
,

thus

V3 (n) ≤ O(n)
[
O
(
K(n)1− d2

)
O (n) +O

(√
n
)]

+K (n)O (n)

V4 (n) ≤ O(n)
[
O
(
K(n)1− d2

)
O (n) +O (log n)

]
+K (n)O (n)

Vd (n) ≤ O(n)
[
O
(
K(n)1− d2

)
O (n) +O (1)

]
+K (n)O (n) d ≥ 5.

Now, the choice K(n) =
⌊
n

2
d

⌋
completes the proof.

Proposition 2.11. The assertion of Theorem 2.10 remains true when the distribution of ε0 is some

arbitrary ν. Moreover, the great order is uniform in ν.

Proof. Let us introduce the notation Eν [.] for the expectation when ε0 ∼ ν. For convenience, we also

write Eνd (n) and V νd (n) for the expectation and variance of Ld (n) when ε0 ∼ ν. Obviously,

V νd (n) = Eν
[
(Ld (n))

2
]
− (Eνd (n))

2
. (2.14)

On the other hand,

s∑
j=1

νjV
ej
d (n) =

s∑
j=1

νjE
ej
[
(Ld (n))

2
]
−

s∑
j=1

νj
(
E
ej
d (n)

)2
. (2.15)

Since Eν
[
(Ld (n))

2
]

=
s∑
j=1

νjE
ej
[
(Ld (n))

2
]
, subtracting (2.15) from (2.14), we conclude

V ν3 (n)−
s∑
j=1

νjV
ej
3 (n) = O

(
n3/2

)
, (2.16)

V νd (n)−
s∑
j=1

νjV
ej
d (n) = O (n log n) d ≥ 4. (2.17)

It is clear that the great order on the right hand side is uniform in ν. In the sense of (2.16) and (2.17)

it is enough to prove the statement for ν = ej , (j = 1, ..., s). To do so, substitute µ = ν to (2.16) and

(2.17) and use Theorem 2.10 to infer

s∑
j=1

µjV
ej
3 (n) = O

(
n1+ d

2

)
, d ≥ 3.

Since for all d, j and n µj and V
ej
d (n) are non negative, we have proved the statement for all ej .

Corollary 2.12. For RWwIS in d ≥ 3 the weak law of large numbers holds, namely

P (|Ld (n)− Ed (n)| > εEd (n))→ 0

for ∀ε > 0.

Proof. Since Vd(n) = o
(
n2
)
, Chebyshev’s inequality applies (just like in [DE51]).
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From Theorem 2.10 one can deduce even strong law of large numbers:

Theorem 2.13. For RWwIS in d ≥ 3 strong law of large numbers holds, namely

P

(
lim
n→∞

Ld(n)

Ed(n)
= 1

)
= 1.

Theorem 2.13 can be proved almost the same way as it was done in [DE51]. The difference is that if

we have Vd (n) = O (nτ ) with some τ < 2, then we have to choose parameters α and β to fulfill

1 + τ

3
< α < 1

1

2α− τ
< β <

1

1− α
.

After it, the argument of [DE51] works. So the main point is that we should have some τ < 2 such that

Vd (n) = O (nτ ) as it was mentioned at the beginning of the Section.

Identifying the constant γ is an interesting question, though we cannot give a closed formula in the

general case.

We only know that for the constant γ we have

γ = P (ηk 6= 0 : k ≥ 1|ε0 ∼ µ). (2.18)

To see this, first, observe that the constant γ is the same for the primary and the reversed walk. We

have seen that

γ(n) = P (η̃j 6= 0 j = 1, ..n).

Taking n→∞, (2.18) follows.

2.4 Visited points in two dimensions

In this section we calculate E2 (n) and estimate V2 (n). The arguments (assuming that ε0 ∼ µ) are

similar to the ones of Theorem 2.8 and 2.10, or [DE51] Theorem 1 and Theorem 2. The computations

are longer than in [DE51]. We have to write the renewal equation in terms of vectors and matrices, which

is a new idea, and we use the above proved Proposition 2.4 because it is essential that the remainder

term of the probability of returning to the origin should be summable, which was trivial in the case of

[DE51]. We have to consider the case of arbitrary initial distribution, separately, just like in Section 2.3.

In this case, we formulate the fact that after some steps the distribution of ε will be very close to µ.

Theorem 2.14. Let d = 2. Assuming that ε0 ∼ µ and that (2.1) exists, we have

E2 (n) =
2π
√
|σ|n

log n
+O

(
n log log n

log2 n

)
.
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Proof. As in the proof of Theorem 2.8, we examine the reversed RWwIS and write the renewal equation

n∑
k=0

Uk ·Rn−k = 1. (2.19)

Proposition 2.4 yields

(Uk)i,j =
1

2π
√
|σ|
µj

1

k
+O

(
k−3/2

)
,

thus (
n∑
k=0

Uk

)
i,j

=
1

2π
√
|σ|
µj log (ci,jn) +O

(
n−1/2

)
. (2.20)

Our purpose is to estimate 〈Rn, µ〉 = γ(n). Exactly as in the high dimensional case, Rn is decreasing,

so (2.19) yields (
1

s
1

)T
·

(
k∑
l=0

Ul

)
·Rn−k +

(
1

s
1

)T
·

(
n∑

l=k+1

Ul

)
· 1 ≥ 1. (2.21)

Let k →∞, n→∞. The relation between k and n will be fixed later. From (2.20) it follows that[(
1

s
1

)T
·

(
k∑
l=0

Ul

)]
j

=
1

2π
√
|σ|
µj log (ĉjk) +O

(
k−1/2

)
(2.22)

for some ĉj . So we have for k < n[(
1

s
1

)T
·

(
n∑

l=k+1

Ul

)]
j

=
1

2π
√
|σ|
µj log

n

k
+O

(
k−1/2

)
. (2.23)

Substituting (2.22) and (2.23) to the left hand side of (2.21) we get

s∑
j=1

[
1

2π
√
|σ|
µj log (ĉjk) +O

(
k−1/2

)]
(Rn−k)j (2.24)

+

s∑
j=1

1

2π
√
|σ|
µj log

n

k
+O

(
k−1/2

)
.

Put k =
⌊
n− n

logn

⌋
. This yields log k ∼ log (n− k). Using the fact γ(n − k) =

s∑
j=1

µj (Rn−k)j , (2.24)

can be written as

γ (n− k)

[
1

2π
√
|σ|

log k

]
+ (2.25)

s∑
j=1

[
1

2π
√
|σ|
µj log ĉj +O

(
k−1/2

)]
(Rn−k)j + C log

n

k
+O

(
k−1/2

)
.

Since log n
k → 0, and (Rn−k)j → 0, as n − k → ∞ (the latter is the recurrence property of the two

dimensional RWwIS, which is proved in [T83]), it follows that

γ (n− k) ≥
2π
√
|σ|

log k
+ o

(
1

log k

)
. (2.26)
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Hence, by the choice of k,

γ (n− k) ≥
2π
√
|σ|

log (n− k)
+ o

(
1

log (n− k)

)
. (2.27)

Now let us give an upper estimation to γ(n). From (2.19) it follows that(
n∑
k=0

Uk

)
·Rn ≤ 1.

Multiplying by the vector 1
s1, we get

s∑
j=1

[
1

2π
√
|σ|
µj log (ĉjn) +O

(
n−1/2

)]
(Rn)j ≤ 1,

thus

S1 + S2 + S3 :=
1

2π
√
|σ|

s∑
j=1

µj (Rn)j log n

+
1

2π
√
|σ|

s∑
j=1

µj (Rn)j log ĉj +

s∑
j=1

O
(
n−1/2

)
(Rn)j ≤ 1.

Since (Rn)j → 0, it follows that S2 + S3 = o(1). So we have the upper estimation

γ (n) ≤
2π
√
|σ|

log n
+ o

(
1

log n

)
. (2.28)

From (2.27) and (2.28) we get

γ (n) =
2π
√
|σ|

log n
+ o

(
1

log n

)
. (2.29)

Unfortunately, the estimation (2.29) is not good enough for our purposes (but observe that we have not

really used (2.4) yet). Now, (2.28) yields (Rn)j = O
(

1
logn

)
for all 1 ≤ j ≤ s. Hence, with the previous

notation, S2 = O
(

1
logn

)
. Obviously S3 = O

(
1

logn

)
. Thus we arrived at

γ(n) ≤
2π
√
|σ|

log n
+O

(
1

log2 n

)
. (2.30)

This estimation will be sharp enough.

Now, we have to improve our lower estimation. From (2.29) and (2.25) it follows that

γ (n− k)

[
1

2π
√
|σ|

log k +O (1)

]
+ C log

n

k
+O

(
k−

1
2

)
≥ 1,

thus

γ (n− k) log (n− k) ≥
(

2π
√
|σ| − C2π

√
|σ| log

n

k
+O

(
k−

1
2

)) log (n− k)

log k +O(1)
.

Now, similarly to the case of [DE51], it follows that

γ (n) =
2π
√
|σ|

log n
+O

(
log log n

log2 n

)
. (2.31)

Now, an elementary calculation completes the proof.
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As in the high dimensional case, the initial distribution does not influence the asymptotic behavior.

More precisely

Proposition 2.15. The assertion of Theorem 2.14 remains true when the distribution of ε0 is arbitrary.

Proof. The proof is very similar to the one of Proposition 2.9. We know that

γ (n) =
2π
√
|σ|

log n
+O

(
log log n

log2 n

)
.

With the notation γej (n) =
2π
√
|σ|

logn + hj (n) our aim is to prove hj (n) = O
(

log logn
log2 n

)
. The analogue of

(2.12) is

2π
√
|σ|

log n
+ hj (n)

=

s∑
k=1

[(
µk + bjk(K)

)( 2π
√
|σ|

log (n−K)
+ hk (n−K)

)]
+O

(
K · (n−K)

−1
)
,

and the analogue of (2.13) is

hj(n) =

s∑
k=1

µkh
k(n−K) +

s∑
k=1

bjk(K)hk(n−K) +O
(
K · (n−K)

−1
)

+

(
2π
√
|σ|

log (n−K)
−

2π
√
|σ|

log n

)
= : I + II + III + IV.

With the choice K (n) = b
√
nc elementary calculations show that I + II + III + IV ≤ O

(
log logn
log2 n

)
.

Now let us see the estimation of the variance.

Theorem 2.16. If (2.1) exists, then we have with arbitrary ν distribution of ε0

V2(n) = O

(
n2 log logn

log3 n

)
.

Moreover, the great order is uniform in ν.

Proof. First, suppose ε0 ∼ µ. The beginning of the proof of this case is the same as in Theorem 2.10.

The difference is that when we change K to K (n), we can write O
(

log logK(n)
logK(n)

)
instead of δ in the sense

of Proposition 2.15. From now, just like in the proof of Theorem 2.10, it is not difficult to deduce that

O

(
n

log n

)[
log logK (n)

logK (n)
O

(
n

log n

)
+O

(
n log log n

log2 n

)]
+K (n)O

(
n

log n

)
is an upper bound for V2 (n). Taking K (n) =

⌊
n

log2 n

⌋
proves the statement. For the case of arbitrary

initial distribution, one can repeat the proof of Proposition 2.11.

Corollary 2.17. For a RWwIS in d = 2 dimension weak law of large numbers holds.

Proof. Since O
(
n2 log logn

log3 n

)
< O

(
n2

log2 n

)
, Chebyshev’s inequality applies.

The proof of the strong law of large numbers is quite complicated, so we treat it in a different Section.
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2.5 Law of large numbers in the plane

This Section is dedicated to the strong law in d = 2.

Theorem 2.18. For any RWwIS in d = 2, for which (2.6) exists, strong law of large numbers holds,

namely

P

(
lim
n→∞

L2(n)

E2(n)
= 1

)
= 1.

Almost the whole proof in [DE51] can be easily generalized to our case with the observation that

since our estimations for E2(n) and V2(n) are uniform in the initial distribution, the computations,

used in [DE51], can be repeated. That is why we write here the only non-trivial part (i.e. formulae

corresponding to (5.13) and (5.15) in [DE51]) of the generalization. In fact, there is apparently a gap in

the argument in [DE51], as it was already remarked in [JP70]. What we represent here is a simplified

version of a proof in [P09a]. For the other parts of the proof the reader is referred to [DE51].

Proof. Denote

K = blog log nc ,

and let Mij (1 ≤ i, j ≤ K) be the number of lattice points which are common in path parts Mi and Mj ,

where Mi denotes the set of points which are visited between b(i− 1)n/Kc+1 and bin/Kc (1 ≤ i ≤ K).

First, we would like to prove the formula corresponding to [DE51] (5.13):

sup
i<j

E (Mij) = O

(
n log log n

K log2 n

)
. (2.32)

If it is done, then for every ϑ with 0 < ϑ < 1 we will have

sup
i<j

P

(
Mij >

n log log n

K log1+ϑ n

)
= O

(
1

log1−ϑ n

)
. (2.33)

Let Cij denote the event whose probability is estimated in (2.33). As (2.32) yields

sup
j
E (M1j) = O

(
n log log n

K log2 n

)
for arbitrary ν initial distribution of internal states, and under the condition Cij the probability of Ci′j′

with 1 ≤ i < j < i′ < j′ ≤ K is only affected via the distribution of εi′ , we conclude

sup
1≤i<j<i′<j′≤K

P (Ci,j ∩ Ci′,j′) = O

(
1

log2−2ϑ n

)
. (2.34)

If we were able to prove

sup
i,j,i′,j′

E (MijMi′j′) = O

(
n2 log2 log n

K2 log4 n

)
, (2.35)

where the supremum is taken over indices for which # {i, j, i′, j′} = 4 and either 1 ≤ i < i′ < j′ < j ≤ K
or 1 ≤ i < i′ < j < j′ ≤ K holds, then using

P

(
Mij >

n log log n

K log1+ϑ n
,Mi′j′ >

n log log n

K log1+ϑ n

)
< P

(
MijMi′j′ >

n2 log2 log n

K2 log2+2ϑ n

)
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and (2.34) we could infer that the probability that two events Cij and Ci′j′ with # {i, j, i′, j′} = 4 occur

is

O

(
K4

log2−2ϑ n

)
, (2.36)

which is the formula corresponding to [DE51] (5.15).

So our aim is to prove (2.32) and (2.35). The idea of [P09a] is that in order to prove (2.32) and (2.35)

it is useful to cut down the points of Mi which are visited in the extreme
⌈
n/ log2 n

⌉
steps. The number

of these points can be roughly estimated, while the others are visited in steps quite far from each other

and this will be enough for us. However, the precise arguments need some awkward computations.

Proof of (2.32) We introduce the notations

αa,b = {∀t = a, ..., b− 1 : ηt 6= ηb} and βa,b = {∀t = a+ 1, ..., b : ηa 6= ηt}

which will be useful in the sequel. Following [P09a], we define

n(i,−) = b(i− 1)n/Kc+
⌈
n/ log2 n

⌉
and n(i,+) = bin/Kc −

⌈
n/ log2 n

⌉
.

A point, which is common in the paths ηn(i,−)
, ..., ηn(i,+)

and ηn(j,−)
, ..., ηn(j,+)

and not visited in the ex-

treme
⌈
n/ log2 n

⌉
steps of Mi and Mj , has a pair of indices (k, l), k ∈ n(i,−), ..., n(i,+), l ∈ n(j,−), ..., n(j,+),

such that it is visited at steps k and l, and it is not visited during steps b(i− 1)n/Kc+ 1, ..., k − 1, and

steps l + 1, ..., bjn/Kc. So we have

E (Mij) ≤ 3n

log2 n
+

n(i,+)∑
k=n(i,−)

n(j,+)∑
l=n(j,−)

P
(
αb(i−1)n/Kc+1,k ∩ {ηk = ηl} ∩ βl,bjn/Kc

)
≤ 3n

log2 n

+C1

n(i,+)∑
k=n(i,−)

n(j,+)∑
l=n(j,−)

1

log (k − b(i− 1)n/Kc)
1

l − k
1

log (bjn/Kc − l)

≤ 3n

log2 n
+ C2

n

K

log n− log
(
n/ log2 n

)
log2 n

= O

(
n log log n

K log2 n

)
.

Note that we have used our estimations for the probability of avoiding the origin in some steps, visiting

a new point, and returning to the origin, and these estimations are uniform in the initial distribution

(with an appropriate C1). Because the events whose intersection’s probability is estimated above are

dependent only via the internal states, it is obvious that the great order is uniform in i and j. So we

arrived at (2.32).

Proof of (2.35) Let us prove

sup
1≤i<i′<j′<j≤K

E (MijMi′j′) = O

(
n2 (log log n)

2

K2 log4 n

)
.

Let us introduce the notation L for the set of (k, k′, l′, l) such that

n(i,−) ≤ k ≤ n(i,+), n(i′,−) ≤ k′ ≤ n(i′,+),

n(j′,−) ≤ l′ ≤ n(j′,+), n(j,−) ≤ l ≤ n(j,+).
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As it was mentioned before, we estimate the number of pair of points one of which is visited in either

extreme
⌈
n/ log2 n

⌉
steps of Mi, Mj , Mi′ or Mj′ in a very obvious manner. The other pairs of lattice

points (x and y, say) have a (k, k′, l′, l) element of L, such that x is visited at step k but not visited

during b(i− 1)n/Kc+1, ..., k−1, and it is visited again at step l but not visited during l+1, ..., bjn/Kc;
while y is visited at step k′ but not visited during k′ + 1, ..., bi′n/Kc, and it is visited again at step l′

but not visited during b(j′ − 1)n/Kc+ 1, ..., l′ − 1. So we have

E (MijMi′j′) = O

(
n2 log log n

K log4 n

)
+
∑
M∈Z2

∑
(k,k′,l′,l)∈L

P (A) , (2.37)

where

A = αb(i−1)n/Kc+1,k ∩ {ηk′ − ηk = M} ∩ βk′,bi′n/Kc ∩ {ηl′ − ηk′ = (0, 0)}

∩αb(j′−1)n/Kc+1,l′ ∩ {ηl − ηl′ = −M} ∩ βl,bjn/Kc,

Denote the seven events, whose intersection is A, by A1, ...,A7. Observe that for every 2 ≤ m ≤ 7 the

probability of Am under the condition A1 ∩ ...∩Am−1 is just the probability of Am with an appropriate

initial distribution of ε. As we have uniform estimations in the initial distribution, we will be able to

use them.

In the first step, let us estimate the part of the sum in (2.37) corresponding to M ∈ [−n, n]2.

Proposition 2.5 yields the existence of a > 0 (which depends only on the RWwIS), such that

P (ηk − η0 = M) < C3 exp
(
− a

2k
MTM

)[1

k
+

1

k3/2

]
+
C3

k2

< C4

(
1

k
exp

(
− a

2k
MTM

)
+

1

k2

)
.

So the formula

C5
1

log n

(
1

k′ − k
exp

(
− a

2(k′ − k)
MTM

)
+

1

(k′ − k)2

)
, (2.38)

is an upper bound for P (A1 ∩ A2), and the formula

C5
1

log n

(
1

l − l′
exp

(
− a

2(l − l′)
MTM

)
+

1

(l − l′)2

)
. (2.39)

is an upper bound for P (A6 ∩ A7|A1 ∩ ... ∩ A5).

Consider the following factorization

P (A) = P (A1 ∩ A2)P (A3 ∩ A4 ∩ A5|A1 ∩ A2)P (A6 ∩ A7|A1 ∩ ... ∩ A5), (2.40)

and observe that ∑
k′,l′

P (A3 ∩ A4 ∩ A5|A1 ∩ A2) < C6E(Mi′j′) = O

(
n log log n

K log2 n

)
. (2.41)

So we have to take the product of the expressions in (2.38), (2.39) and P (A3 ∩ A4 ∩ A5|A1 ∩ A2) and

sum them up in all of the four indices to estimate (2.37). First, let us consider the product of the first

terms in (2.38) and (2.39). We have to estimate∑∑
exp

(
−a

2

(
1

k′ − k
+

1

l − l′

)
MTM

)
P (A3 ∩ A4 ∩ A5|A1 ∩ A2)

(k′ − k)(l − l′) log2 n
,
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where the to sums are taken over M ∈ [−n, n]2 and (k, k′, l′, l) ∈ L, respectively. Using the fact

sup
d>a

1

d

∑
M∈Z2

exp
(
− a

2d
MTM

)
< +∞ (2.42)

it suffices to estimate ∑
(k,k′,l′,l)∈L

(k′ − k)(l − l′)
(l − l′) + (k′ − k)

P (A3 ∩ A4 ∩ A5|A1 ∩ A2)

(k′ − k)(l − l′) log2 n

≤ 1

log2 n

∑
(k,k′,l′,l)∈L

P (A3 ∩ A4 ∩ A5|A1 ∩ A2)

(l − n(j′,+)) + (n(i′,−) − k)
.

Using (2.41), it remains to estimate

1

log2 n
E (Mij)

∑
k,l

1

(l − n(j,−)) + (n(i,+) − k) + 2n/ log2 n− 1

and it is just

O

(
n2 (log log n)

2

K2 log4 n

)
uniformly in i and j, by an elementary computation.

Now, let us consider the product of the first term in (2.38) and the second term in (2.39) (the product

of the second term in (2.38) and the first term in (2.39) can be estimated equivalently). In this case the

easier estimation

P (A3 ∩ A4 ∩ A5|A1 ∩ A2) < C8
1

l′ − k′
(2.43)

will be enough. Thus our aim is to estimate

1

log2 n

∑
(k,k′,l′,l)∈L

∑
M∈[−n,n]2

exp

(
− a

2 (k′ − k)
MTM

)
1

(k′ − k)(l − l′)2(l′ − k′)
.

As above, we use (2.42) to handle the exponential terms. So the following estimation is enough for our

purposes

1

log2 n

∑
(k,k′,l′,l)∈L

1

(l − l′)2(l′ − k′)
≤ 1

log2 n

n4

K4

log4 n

n2

log2 n

n

= O

(
n2 (log log n)

2

K2 log4 n

)
.

Our last task is to estimate the product of the second term in (2.38) and (2.39). The previous

estimation (2.43) and

1

log2 n

∑
(k,k′,l′,l)∈L

∑
M∈[−n,n]2

1

(k′ − k)2(l − l′)2(l′ − k′)

≤ n6 1

log2 n

log4 n

n2

log4 n

n2

log2 n

n
= O

(
n2 (log log n)

2

K2 log4 n

)
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yield the required estimation.

In the second step, we estimate the part of the sum in (2.37) corresponding to M ∈ Z2 \ [−n, n]2.

Corollary 2.6 implies that

sup
(k,k′,l,l′)∈L

∑
M∈Z2\[−n,n]2

P (A6|A1 ∩ ... ∩ A5) <
1

n1/4−ε

for small ε > 0. Thus

sup
k′,l′

∑
k,l

sup
M∈Z2\[−n,n]2

P (A1 ∩ A2)
∑

M∈Z2\[−n,n]2

P (A6 ∩ A7|A1 ∩ ... ∩ A5)

< C7n
2 1

log n

log2 n

n

1

log n

1

n1/4−ε .

The above estimation together with (2.41) yield the required error term.

A modified version of the proof presented above can be repeated for indices 1 ≤ i < i′ < j < j′ ≤ K.

So we have finished the proof of formula (2.35).

2.6 Visited points in one dimension

Investigating the one dimensional case is not as important as the higher dimensions, as Lorentz processes

used to be examined mainly in higher dimensions. However, one dimension is also interesting, as we will

see some new features. We need some different means from the previous ones to prove asymptotics for

E1 (n), namely Tauberian arguments. Let us see the details.

Proposition 2.19. For a one dimensional RWwIS with ε0 ∼ µ we have

γ1(n) ∼
√

2 |σ|
π

n−1/2

Proof. Just like in the higher dimensional cases we consider the renewal equation for the reversed walk

n∑
k=0

Uk ·Rn−k = 1.

Now, from row i we obtain
s∑
j=1

n∑
k=0

(Uk)i,j x
k (Rn−k)j x

n−k = xn. (2.44)

Let us introduce the notations

∞∑
k=0

(Uk)i,j x
k = αij (x)

∞∑
k=0

(Rk)j x
k = βj (x)

∞∑
k=0

xk = ω (x) .
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Obviously, these power series are convergent for 0 ≤ x < 1. In these terms, (2.44) means

s∑
j=1

αijβj = ω. (2.45)

In order to obtain the order of the coefficients of γ1 (n) =
s∑
j=1

µj (Rn)j we use a Tauberian theorem which

may be found in [F71] (Theorem 5 of XIII.5). According to this we have

ω (x) ∼ 1

1− x
, x→ 1− . (2.46)

For the coefficients of αij
n∑
k=0

(Uk)i,j ∼ 2
1√

2π |σ|
µjn

1/2.

So, using the Tauberian theorem, we infer

αij (x) ∼ 2
1√

2π |σ|
µjΓ

(
3

2

)
1

(1− x)
1/2

, x→ 1− . (2.47)

From (2.45) we obtain
s∑
j=1

αij
αii

βj =
ω

αii
. (2.48)

Now, (2.47) yields
αij (x)

αii (x)
→ µj

µi
, x→ 1− . (2.49)

Whence
s∑
j=1

µjβj (x) ∼
√

2π |σ|
2Γ
(

3
2

) 1

(1− x)
1/2

, x→ 1− .

Since
s∑
j=1

µj (Rk)j is monotonic in k, using the mentioned Tauberian theorem we conclude

γ1 (n) =

s∑
j=1

µj (Rk)j ∼
√

2π |σ|
2Γ
(

3
2

)
Γ
(

1
2

)n−1/2 =

√
2 |σ|
π

n−1/2

Proposition 2.20. With arbitrary distribution of ε0 the following holds

E1 (n) ∼
√

8 |σ|
π

n1/2.

Proof. From Proposition 2.19 the assertion immediately follows in the case of ε0 ∼ µ. However, the case

of arbitrary initial distribution requires a little care. Analogously to (2.12), we have

γej (n) =

s∑
k=1

µkγ
ek(n−K) +

s∑
k=1

bjk(K)γek(n−K) + p(K,n). (2.50)
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But now, the rough estimation of p(K,n) used in higher dimensions is not enough, as the local limit

theorem provides a term of order n−1/2 and our aim is to prove o
(
n−1/2

)
. Nevertheless, because of the

definition of p(K,n), we have to estimate the probability of the first return to some place after m steps.

In particular, if we proved that this probability is O(m−3/2), then taking K = b
√
nc and multiplying

(2.50) by
√
n we would find that the right hand side converges to

√
2|σ|
π as n→∞. So, in order to finish

our proof, we need the following lemma.

Lemma 2.21. For a one dimensional RWwIS fulfilling our basic assumptions with arbitrary ν distribu-

tion of ε0

fν(n) = O
(
n−3/2

)
, (2.51)

where fν(n) denotes the probability of the event that the random walker starting from the origin with

ε0 ∼ ν returns to the origin at time n for the first time.

Proof. First of all, observe that proving the statement for ν = µ would be enough as since our basic

assumption (i) all component of µ are positive. In the proof, we generalize an argument in [BLPW04].

Define

Qn(x, i, y, j) = P (ξn = (y, j), ηk 6= 0,∀1 ≤ k < n|ξ0 = (x, i)) .

Let n = 3m and 1 ≤ i ≤ m. The cases n = 3m± 1 can be treated the same way.

fei(n) =

s∑
l=1

Qn(0, i, 0, l) =
∑
y,z 6=0

s∑
j,k,l=1

Qm(0, i, y, j)Qmd (y, j, z, k)Qm(z, k, 0, l)

≤ sup
y,z,j,k

Qm(y, j, z, k)P (ηk 6= 0,∀1 ≤ k < m|ξ0 = (0, i))
∑
z 6=0

s∑
k,l=1

Qm(z, k, 0, l)

From the local limit theorem it follows that

sup
y,z,j,k

Qm(y, j, z, k) = O(m−1/2).

Proposition 2.19 yields P (ηk 6= 0,∀1 ≤ k < m|ξ0 = (0, i)) = O(m−1/2). So, it suffices to prove

∑
z 6=0

s∑
k,l=1

Qm(z, k, 0, l) = O(m−1/2). (2.52)

In order to prove (2.52) we use the reversed walk, again. (2.9) yields that for all ((0, i1), (y1, i2), (y1 +

y2, i3), ..., (y1 + y2 + ...+ ym−1, im)) trajectories

µi1py1,i1,i2µi2py2,i2,i3 ...µim−1
pym−1,im−1,im

= µi2q−y1,i2,i1µi3q−y2,i3,i2 ...µimq−ym−1,im,im−1
,

where the factors µi2 , ..., µim−1 drop out. Thus

∑
z 6=0

s∑
k,l=1

Qm(z, k, 0, l) ≤ max
1≤i,j≤s

µi
µj

∑
z 6=0

s∑
k,l=1

Q̃m(0, l, z, k), (2.53)
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where Q̃ is the same object as Q defined for the reversed walk. The right hand side of (2.53) can be

bounded by some constant times the probability of the event that the stationary reversed walk does not

return to the origin in the first m steps, which is O(m−1/2). Thus we arrived at (2.52).

So, we have ascertained the asymptotic behavior of Ed (n) in each dimension. While strong law of

large numbers holds in d ≥ 2, even the weak law of large numbers for one dimensional SSRW fails to

hold, which is a consequence of, for instance, Theorem 1 in [Ch06a].

2.7 Final remarks

1. Our asymptotic investigations show that RWwIS behaves like the simple symmetric random walk

in an asymptotic sense. The main features are very similar, only the involved constants differ. The

results showing that the asymptotic behavior is independent from the initial distribution on the

internal states (e.g. Proposition 2.9 and 2.15) are intuitively trivial as after some steps ε will be

very close to µ. Nevertheless, these assertions need formal proofs as well, especially as they are

used in the sequel. Of course, this similarity to the simple symmetric random walk could change

if the generalization were carried further, for instance, if a countable set of internal states was

allowed. This model is not yet discussed, it must need some more involved techniques.

2. Our basic assumption (ii) is not essential. The above theorems could be generalized to the case of

dropping basic assumption (ii), as the limit theorem in [KSz83b] is proved for this case, as well.

Only the computations would become longer. The other three assumptions are essential.
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Chapter 3

Recurrence properties of a special

type of Heavy-Tailed Random Walk

3.1 Introduction

The appearance of the Brownian motion as a limit object in either stochastic or deterministic models is

an extremely important and interesting phenomenon. The first result in this field is due to M. Donsker

(see [D51]) who proved that the diffusively scaled Simple Symmetric Random Walk (SSRW) converges

to the Brownian Motion in each dimension. Later, D. Szász and A. Telcs in [SzT81] proved that the

local perturbation in the integer lattice of dimension at least two does not spoil the Brownian limit.

In the case of Lorentz process, the first such result was the appearance of the Brownian motion in the

diffusive limit in finite horizon (see [BS81] and [BSCh91]). Analogous result with slightly super-diffusive

scaling in infinite horizon is proven in [SzV07] and [ChD09a]. Again, the question of the effect of local

perturbations naturally arises. This topic has a physical motivation as well, since Lorentz process can

be thought of as the movement of a ”classical” electron in a crystal, when local perturbation can be

some impurities or some locally acting external force. The Brownian limit for diffusively scaled periodic

Lorentz process with finite horizon and local perturbation was proven in [DSzV08] and [DSzV09]. Note

that here a more involved investigation was needed than in the case of SSRW, namely, the wide treatment

of recurrence properties in [DSzV08] was essential.

Recently, D. Paulin and D. Szász proved ([PSz10]) that the random walk, which is very similar to the

Lorentz process with infinite horizon, with local impurities, enjoys the Brownian limit. However, they

only treated some simplified local perturbation (see later), and did not consider the recurrence properties

similar to the ones in [DSzV08], which are expected to be important in the case of infinite horizon (that

is, Conjecture 1.1), too. Here, we are going to focus on these recurrence properties.

This Chapter is organized as follows. In Section 3.2, basic definitions, statements are given and another

motivation for our calculations (i.e. the proof of the polynomial decay of the velocity auto correlation

function for some perturbed random walk) is provided. The quite well known local limit theorem for our
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specific type random walk will not be enough for our purposes, i.e. we need to estimate the remainder

term of it. Section 3.3 is devoted to this computation. In Section 3.4, the desired recurrence properties

are obtained, while in Section 3.5 we give final remarks indicating possible directions of further research.

3.2 Preliminaries

Let us consider a Random Walk, the behavior of which is close to the one of the Lorentz process with

infinite horizon. Namely, define independent random variables Xi, such that

P (Xi = n) = c1|n|−3,

if n 6= 0, and Ei to be uniformly distributed on the 4 unit vectors in Z2. Now put ξi = XiEi. (Here,

of course, c1 = 1
2ζ(3) , but this will not be important for us.) Define the Heavy-Tailed Random Walk

(HTRW) by Sn :=
∑n
i=1 ξi.

This distribution is the same, as the one of the free flight vector of the Lorentz process with infinite

horizon (see [SzV07]). However, one could think that our choice is rather special, as the walker can only

step along the x and y axis. But this is not the case, as a particle performing Lorentz process can have

arbitrary long steps only in finitely many directions, too. Here, we choose that two particular directions,

but this is not essential.

Further, define the one dimensional HTRW as

Qn :=

n∑
i=1

Xi.

The quite well-known local limit theorem in one dimension states that

P(Qn = x) ∼ 1

2
√
πc1n log n

exp

(
− x2

4c1n log n

)
(3.1)

and in two dimensions that

P(Sn = x) ∼ 1

4πc1n log n
exp

(
− |x|2

4c1n log n

)
. (3.2)

These can be found in [R62]. Later, we will need estimations on the error terms in (3.1) and (3.2),

and by computing them, a proof of (3.1) and (3.2) will be provided.

Further, we will use the notations

u2(n) = P(Sn = (0, 0)),

u1(n) = P(Qn = 0).

In the case of billiards, a quite frequent strategy is to prove exponential decay of correlations (an

interesting result for its own sake) and then to use this to prove convergence to the Brownian motion

(see [Ch06b], for instance). As a motivation for our further calculations, we are going to illustrate that

in the case of local perturbation, this does not seem to be a good strategy.
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For this consider the simplest case: a perturbed SSRW (Tn) in Zd, where perturbation means that in

the origin there is no scatterer, i.e. outside of the origin Tn behaves like an ordinary SSRW, while it flies

through the origin. More precisely,

P (Tn+1 = ei|Tn−1 = −ei, Tn = 0) = 1, (3.3)

where ei is some neighboring point of the origin in Zd. The following Proposition is well known in the

physics literature (see, for example [S80]) but surprisingly, I was unable to find a mathematical proof

for it.

Proposition 3.1. The velocity autocorrelation function of Tn is O
(
n−(d/2+1)

)
.

Proof. First, suppose that d = 1 and T0 = 1. We can identify our process with an unperturbed SSRW -

Un, say - by simply dropping the origin and the extra step from it. Formally, define τ(n) = #{1 ≤ k <
n : Tk = 0}. Now, if Tn > 0, then let U(n − τ(n)) = Tn. If Tn < 0, then U(n − τ(n)) = Tn + 1. Now,

we have to show that

P(U(2n) = 0, U(2n+ 1) = 1)− P(U(2n+ 1) = 1, U(2n+ 2) = 0)

=
1

2
[P(U(2n) = 0)− P(U(2n+ 1) = 1)] = O

(
n−3/2

)
,

which is an elementary consequence of the well known Edgeworth expansion.

Now, suppose that d > 1 and T0 = (1, 0, ..., 0). It suffices to prove∫
Ω

I{Tn=T0} − I{Tn=−T0}dP = O
(
n−(d/2+1)

)
. (3.4)

Let V be the orthogonal complement space of T0 and define

H = {ω : (V \ 0) ∩ {T0, ..., Tn} 6= ∅} ⊂ Ω.

Because of the reflection principle, the part of the integral in (3.4) over H is zero. The integral over

Ω \H can be treated similarly, as it was done in the one dimensional case.

3.3 Local limit theorem with remainder term

The aim of this section is to estimate remainder term in the limit theorem (3.2). To do this, first we

have to deal with the one dimensional case. Similar calculations were done previously, see, for example

[dHP97] and [JP98]. However, in these articles only one dimensional, non-lattice distributions were

considered. Fortunately, we do not need precise calculation of the remainder term, i.e. summability is

enough for our purposes. As usual, we start with the computation of the characteristic function.

Lemma 3.2. For the characteristic function φ of X1

φ(t) = 1− 2c1t
2| log |t||+O

(
t2
)
,

as t→ 0.
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Proof. Since the distribution is symmetric, it suffices to prove for t > 0. Fix ε > 0 such that 1−x2−x3 <

cosx < 1− x2 + x3 if |x| < ε. Now, let us consider the decomposition

φ(t) = E(exp(itX)) =

εbt−1c∑
n=1

2c1
n3

cos(tn) +

∞∑
n=εbt−1c+1

2c1
n3

cos(tn) =: S1 + S2.

It is easy to see that

S2 = 2c1

∫ ∞
ε

cosx

x3
dxt2 + o

(
t2
)

= O
(
t2
)
.

On the other hand, since

S1 = 2c1

ε∑
m=t,m∈tZ

t3m−3 cosm,

we have ∣∣∣∣∣∣ S1

2c1
−

ε∑
m=t,m∈tZ

t3m−3 +

ε∑
m=t,m∈tZ

t3m−1

∣∣∣∣∣∣ <
ε∑

m=t,m∈tZ
t3. (3.5)

Now the estimations

ε∑
m=t,m∈tZ

t3m−3 =
1

2c1
+O

(
t2

ε2

)
ε∑

m=t,m∈tZ
t3m−1 = t2log

(ε
t

)
+O

(
t2
)

and
ε∑

m=t,m∈tZ
t3 = O(t2)

finish the proof.

Now, we turn to the estimation of the remainder term in the one dimensional local limit theorem.

Theorem 3.3. For the one dimensional HTRW the following estimation holds uniformly in x

P(Qn = x)− 1√
2π
√

2c1
√
n log n

exp

(
− x2

4c1n log n

)
= O

(
log log n√
n log3 n

)
Proof. Let g denote the probability density function of the standard Gaussian law. Then we have

g(z) =
1

2π

∫ ∞
−∞

exp

(
−izs− s2

2

)
ds.

On the other hand, according to the Fourier inversion formula,

P(Qn = x) =
1

2π

∫ π

−π
exp (−itx)φn(t)dt.

By an elementary argument (see, for example, [IL71]) our result follows from the statement∣∣∣∣√2c1n log n
1

2π

∫ π

−π
exp(−itx)φn(t)dt− g

(
x√

2c1n log n

)∣∣∣∣ = O

(
log log n

log n

)
, (3.6)
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where the great order on the right hand side is uniform in x. As it is quite usual in the theory of limit

theorems (see again [IL71]), we estimate the left hand side of (3.6) by the sum of several integrals∫
|s|<log1/3 n

∣∣∣∣φn( s√
2c1n log n

)
− exp

(
−s

2

2

)∣∣∣∣ ds
+

∫
log1/3 n<|s|<γ

√
2c1n logn

∣∣∣∣φn( s√
2c1n log n

)∣∣∣∣ ds
+

∫
γ
√

2c1n logn<|s|<π
√

2c1n logn

∣∣∣∣φn( s√
2c1n log n

)∣∣∣∣ ds
+

∫
log1/3 n<|s|

∣∣∣∣exp

(
−s

2

2

)∣∣∣∣ ds =: I1 + I2 + I3 + I4.

So it suffices to prove that Ij = O
(

log logn
logn

)
, for j ∈ {1, 2, 3, 4}.

For the estimation of I1, observe that for |s| < log1/3 n Lemma 3.2 yields

φn
(

s√
2c1n log n

)
= exp

(
−s

2

2

)[
1 +O

(
(s2 + 1) log log n

log n

)]
,

where the great order on the right hand side is uniform in s. Hence

I1 <

∫
|s|<log1/3 n

(s2 + 1) exp

(
−s

2

2

)
dsO

(
log log n

log n

)
= O

(
log log n

log n

)
.

It can be proven (see Theorem 4.2.1. in [IL71]) that there exists γ > 0 such that

φn
(

s√
2c1n log n

)
< exp (−C|s|) ,

with an appropriate C if |t| < γ. This estimation implies I2 < O
(

log logn
logn

)
. Observe that |φ(t)| ≤ 1 and

|φ(t)| = 1 holds if and only if t ∈ 2πZ. As |φ(t)| is continuous in t, there exists some C ′ < 1 such that

|φ(t)| < C ′ for t ∈ [γ, π]. It follows that I3 < O
(

log logn
logn

)
. Finally, I4 < O

(
log logn

logn

)
by elementary

computation. Hence the statement.

Now, we turn to the two dimensional case. Define the two dimensional characteristic function φ2 :

R2 → C, φ2(t) = E(exp(it′ξ1)), where ′ stands for transpose, and write t = (t1, t2)′, s = (s1, s2)′. Lemma

3.2 implies that

φ2(t) = 1− c1t21| log |t1|| − c1t22| log |t2||+O
(
|t|2
)
,

as |t| → 0. Similarly to the one dimensional case, the local limit theorem with remainder term reads as

follows.

Theorem 3.4. For the two dimensional HTRW the following estimation holds uniformly for x ∈ R2

P(Sn = x)− 1

2π2c1n log n
exp

(
− |x|2

4c1n log n

)
= O

(
log log n

n log2 n

)
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Proof. The proof is similar to the proof of Theorem 3.3. Let g denote the probability density function

of the two dimensional standard Gaussian law. Then we have

g(z) =
1

(2π)2

∫ ∞
−∞

∫ ∞
−∞

exp

(
−it′z − t′t

2

)
dt.

On the other hand, according to the Fourier inversion formula

P(Sn = x) =
1

(2π)2

∫ π

−π

∫ π

−π
exp (−it′x)φn2 (t)dt.

Just like previously, it is enough to prove that∣∣∣∣2c1n log n
1

(2π)2

∫ π

−π

∫ π

−π
exp(−it′x)φn2 (t)dt− g

(
x√

2c1n log n

)∣∣∣∣ (3.7)

is in O
(

log logn
logn

)
. The analogue of the previous decomposition in the present case is∫

|s|<log1/3 n

∣∣∣∣φn2 ( s√
2c1n log n

)
− exp

(
−s
′s

2

)∣∣∣∣ ds
+

∫
log1/3 n<|s|<γ

√
2c1n logn

∣∣∣∣φn2 ( s√
2c1n log n

)∣∣∣∣ ds
+

∫
γ
√

2c1n logn<|s|<π
√

2c1n logn

∣∣∣∣φn2 ( s√
2c1n log n

)∣∣∣∣ ds
+

∫
log1/3 n<|s|

∣∣∣∣exp

(
−s
′s

2

)∣∣∣∣ ds =: I1 + I2 + I3 + I4.

So it suffices to prove that Ij = O
(

log logn
logn

)
, for j ∈ {1, 2, 3, 4}.

All the above integrals can be estimated as it was done in the proof of Theorem 3.3 except for I2. For

the latter, we adapt the argument of Rvaceva (see [R62]). It is easy to see that

< log φ2(at)

< log φ2(t)
→ a2

as |t| → 0 (here < denotes real part). Hence, for γ small enough,

< log φ2(t) > e< log φ2(t/e)

holds for |t| < γ. Now, pick k ∈ N such that exp(k) ≤ γ
√

2c1n log n < exp(k + 1) and write

I2 ≤
k∑

m= 1
3 log logn

∫
exp(m)<|s|<exp(m+1)

∣∣∣∣φn2 ( s√
2c1n log n

)∣∣∣∣ ds
<

k∑
m= 1

3 log logn

exp(2m)

∫
1<|s|<e

exp

(
n exp(m)< log φ2

(
s√

2c1n log n

))
ds.

The argument used in the estimation of I1 implies that

n< log φ2

(
s√

2c1n log n

)
= −|s|

2

2
+ o(1)
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holds uniformly for s ∈ [1, e], whence for some C ′ < 1

I4 <

k∑
m= 1

3 log logn

exp(2m)(e− 1)C ′ exp(m).

So we proved I2 = O( 1
logn ), hence the statement.

3.4 Recurrence properties

In this section we discuss the recurrence properties of Sn and Qn that are supposed to be important in

the case of billiards, too (note that these are analogous to the ones considered in [DSzV08]). For SSRW,

these kind of results were proven in [ET60] and [DK57]. We begin with the two dimensional case.

Definition 3. Let τ2 be the first return to the origin in two dimensions, i.e.

τ2 = min{n > 0 : Sn = (0, 0)}

Theorem 3.5. P(τ2 > n) ∼ 4πc1
log logn

Theorem 3.6. Let Nn
2 = #{k ≤ n : Sk = (0, 0)}. Then

Nn
2

log log n

converges to an exponential random variable with expected value 1
4πc1

.

Theorem 3.5 and Theorem 3.6 can be easily proven combining the original proofs (see [DE51] and

[ET60]) with (3.2).

Definition 4. Let tv be the hitting time of the origin, starting from the site v ∈ Z2, i.e.

tv = min{k ≥ 0 : Sk = (0, 0)|S0 = v}.

The following recurrence property is less known but is of crucial importance in the argument of

[DSzV09].

Theorem 3.7.
log log tv
log log |v|

⇒ 1

U

as |v| → ∞, where U is uniformly distributed on [0, 1] and ⇒ stands for weak convergence.

Proof. We adapt the proof of [ET60]. Let

ζ(x, n) = #{1 ≤ k ≤ n : Sk = x}
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be the local time of the walk at site x up to time n and

γ(n) = P (τ2 > n) .

Further, we will need the estimation on the remainder term of the local limit theorem. More precisely,

we will use the following estimation

P (Sn = y) =
1

4πc1n log n
− |y|2O

(
1

n2 log2 n

)
+O

(
log log n

n log2 n

)
, (3.8)

where the great orders are uniform in {y : |y| <
√
n log n}. Note that (3.8) is a consequence of Theorem

3.4. We are going to prove the following assertion.

If we choose xn ∈ Z2 such that

|xn| ∼ exp

(
1

2
logδ n

)
for some fix 0 < δ < 1, then

P (ζ (xn, n) = 0)→ δ, (3.9)

as n→∞. It is easy to see that (3.9) implies the statement of the theorem.

As in [ET60], we consider the identities

n∑
i=0

u2(i)γ(n− i) = 1 (3.10)

and

P (ζ (xn, n) = 0) +

n∑
i=1

P (Si = xn) γ(n− i) = 1. (3.11)

Combining (3.10) and (3.11) we obtain

P (ζ (xn, n) = 0)− γ(n) =

n∑
i=1

(u2(i)− P (Si = xn)) γ(n− i). (3.12)

Using the fact that γ is monotonic, Theorem 3.5 and the estimation (3.8) we conclude that the right

hand side of (3.12) is smaller than

4πc1 + o(1)

log logn

exp(logδ n)∑
k=1

1

4πc1k log k

+
4πc1 + o(1)

δ log log n

√
n∑

k=exp(logδ n)

|xn|2O
(

1

k2 log2 k

)
+

n∑
k=
√
n

|xn|2O
(

1

k2 log2 k

)

+

∞∑
k=exp(logδ n)

O

(
log log k

k log2 k

)
= δ + o(1).

So we arrived at the upper bound. For the lower bound define

k1 =
exp

(
logδ n

)
log n

.
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Theorem 3.5 and Theorem 3.4 imply that the right hand side of (3.12) is bigger than

γ(n)

k1∑
k=1

[u2(k)− P(Sk = xn)] ≥

4πc1 + o(1)

log log n

k1∑
k=1

[ 1

4πc1k log k
+O

(
log log k

k log2 k

)]
+

4πc1 + o(1)

log log n

k1∑
k=1

[
− 1

4πc1k log k
exp

(
− |xn|2

4c1k log k

)]
> δ + o(1) +

O(1)

log log n
−O

(
1

log log n

)
exp

(
− |xn|2

k1 log k1

) k1∑
k=1

1

k log k

> δ + o(1).

Thus we have proved (3.9). The statement follows.

Remark 3.8. Note that for the adaptation of the Erdős-Taylor type argument for our setting, the

summability of the remainder term in the local limit theorem - i.e. Theorem 3.4 - was essential. The

situation was basically the same in Chapter 2, however, in a different context.

It would be interesting to find an intuitive reason for the appearance of the exponential and the

uniform distributions as limit laws. However, neither Erdős and Taylor gave explanation in [ET60], nor

the present author can give any. Now, we turn to the one dimensional case.

Definition 5. Let τ1 be the first return to the origin in one dimension, i.e.

τ1 = min{n > 0 : Qn = 0}

Theorem 3.9. P(τ1 > n) ∼ 2
√
c1√
π

√
logn
n

Proof. Theorem 3.9 can be easily proven by the usual way. One has to consider the renewal equation

n∑
k=0

u1(k)P(τ1 > n− k) = 1,

and the identity

U(x)V (x) =
1

1− x
,

where

U(x) =

∞∑
k=0

u1(k)xk

V (x) =

∞∑
k=0

P(τ1 > k)xk.

Now, the well known Tauberian theorem (Theorem XIII.5. in [F71]) implies that

U(x) ∼ 1√
1− x

1
√
πc1

Γ

(
3

2

)
1√

log 1
1−x
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as x→ 1, thus

V (x) ∼ 1√
1− x

√
πc1

Γ
(

3
2

)√log
1

1− x

as x→ 1. Since P(τ1 > n) is monotonic in n, the previous Tauberian theorem infers the statement.

Theorem 3.10. Let Nn
1 = #{k ≤ n : Qk = 0}. Then

Nn
1

√
log n√
n

converges to a Mittag-Leffler distribution with parameters 1/2 and (2
√
c1)−1, i.e. to the distribution, the

kth moment of which is
1

(2
√
c1)k

k!

Γ
(
k
2 + 1

) .
Proof. As in the case of [DSzV08], it suffices to prove that for k fix:

∑
ni≥3,n1+n2+...+nk≤n

∏
j

1√
nj log nj

∼ nk/2

logk/2 n

Γ(1/2)k

Γ(k/2 + 1)
. (3.13)

Note that Γ(1/2) =
√
π. Elementary calculations show that (3.13) holds for k = 1. For k > 1 define

H1 = {ni ≥
n

log n
, n1 + n2 + ...+ nk ≤ n}

H2 = {ni ≥
√
n

log n
,∃j : nj <

n

log n
, n1 + n2 + ...+ nk ≤ n}

H3 = {ni ≥ 3,∃j : nj <

√
n

log n
, n1 + n2 + ...+ nk ≤ n}

Now, split the sum in (3.13) into three parts, sums over Hi’s, 1 ≤ i ≤ 3.

Define sj = nj/n and observe that

1√
nj log nj

=
1
√
sj

1√
n

1√
log sj + log n

.

Since log sj + log n = (1 + o(1)) log n uniformly in H1, it is not difficult to deduce that∑
(n1,n2,...,nk)∈H1

∏
j

1√
nj log nj

∼ nk/2

logk/2 n

∫
...

∫
0<t1<t2<...<tk<1

1√
t1

1√
t2 − t1

...
1√

tk − tk−1
dt1...dtk

=
nk/2

logk/2 n

Γ(1/2)k

Γ(k/2 + 1)
.

For the sum over H2, consider the case when
√
n

logn < n1 <
n

logn and ni >
n

logn for 2 ≤ i (other cases

can be treated similarly). Now, log s1 + log n > (1/2 + o(1)) log n and log si + log n = (1 + o(1)) log n for

2 ≤ i, uniformly. Thus,
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∑
√
n

logn<n1<
n

logn ,ni>
n

logn :2≤i

∏
j

1√
nj log nj

< (
√

2 + o(1))
∑

√
n

logn<n1<
n

logn ,ni>
n

logn :2≤i

∏
j

1√
sjn log n

< 2
nk/2

logk/2 n
o(1).

For the third sum, the proof goes by induction on k. Assuming that (3.13) holds for k − 1, one has

∑
(n1,n2,...,nk)∈H3

k∏
j=1

1√
nj log nj

< k

√
n

log n

∑
n1+n2+...+nk−1≤n

k−1∏
j=1

1√
nj log nj

,

which is o
(

nk/2

logk/2 n

)
. (3.13) follows.

3.5 Final remarks

1. It would be beneficial to extend the results of this Chapter to a more general class of random

walks. Namely, choose p(|n|) = P(Xi = n) with

p(n)
n3

c1
− 1 = δ(n), and |δ(n)| < Cn−ξ

with some ξ > 0 (e.g. for planar Lorentz process with infinite horizon, ξ = 2).

In this case, we need to adjust the estimations of Section 3.3, since a nontrivial modification is

needed in the proof of Lemma 3.2. Namely, the second sum in the formula (3.5) is now∑
n=1,2,...bε/tc

p(n)

c1
n2t2 =

∑
n=1,2,...K

p(n)

c1
n2t2 +

∑
n=(K+1)...bε/tc

t2

n
+

∑
n=(K+1)...bε/tc

t2

n
δ (n)

Now, the first sum on the right hand side is bounded by K2t2. The second sum is t2(log(ε/t) −
logK + O(1)), while the modulus of the last one is bounded by t2K−ξ(log(ε/t) − logK + O(1)).

Now choose K = | log |t||
1

2+ξ to conclude that

φ(t) = 1− 2c1t
2| log |t||+O

(
t2| log |t||

2
2+ξ

)
.

The error term in the local limit theorem should also be modified accordingly, namely the right

hand side of the formula in Theorem 3.3 is now

O

(
log

2
2+ξ n√

n log3 n

)
and in Theorem 3.4 is

O

(
log

2
2+ξ n

n log2 n

)
.

Since the last expression is summable in n, the recurrence properties in Section 3.4 follow exactly

the same way, as before.
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2. Extending the results presented in this Chapter to periodic Lorentz process with infinite horizon

is an important, challenging question. We claim that the extension of Theorems 3.6 and 3.10 is

straightforward. Indeed, the local limit theorem for periodic Lorentz process with infinite horizon

states that the recurrence to the origin (more precisely, zeroth cell) has the same asymptotic

probability (more precisely, Liouville measure), as our above models: see [SzV07] (and its adapted

version to the Lorentz process is a strip in the spirit of Proposition 3.6 of [DSzV08]). Thus the

same argument, presented here, is applicable. However, the extension of Theorems 3.5, 3.7 and

3.9 is not that obvious. The most challenging is probably Theorem 3.7, since in our argument,

the error term of the local limit theorem was used, which is expected to be difficult for Lorentz

processes.

3. As it was mentioned in Section 3.1, in the case of Lorentz process with infinite horizon, another

type of ’recurrence’ can happen. Namely, if a scatterer is moved into a corridor (here corridor

means infinite trajectories without collision), then there are arbitrary long flights where in the

periodic Lorentz process there would not be collision, while in the perturbed one there are some.

In the random walk context, it can happen that the unperturbed walk would fly over the origin,

while the perturbed one has to stop. Note that this phenomenon is evitable if one considers finite

horizon, or in the case of infinite horizon just shrinks one of the scatterers as a perturbation.

However, the same behavior (i.e. the Brownian limit with the same scaling) is conjectured in this

general perturbation, as well. The aim of the following computation is to give some reason for this

conjecture. As the constants do not play important role in the sequel, they will not be computed

and every appearance of C may denote different constant.

Define

an = P((0, 0) ∈ Sn, Sn+1, (0, 0) 6= Sn)

to be the probability of the event that step n+ 1 flies over the origin. Observe that

an =
1

2
P ((Sn)1 = 0, |Xn+1| ≥ |(Sn)2|) ,

where (Sn)i denotes the ith coordinate of Sn. The local limit theorem implies an < C 1√
n logn

bn,

where

bn = P (|Xn+1| ≥ |(Sn)2|) .

For the estimation of bn observe that if |(Sn)2| > dn, then bn is bounded by C
∑∞
k=dn

k−3 = O(d−2
n ).

On the other hand, the probability of |(Sn)2| being smaller than dn is roughly estimated by

O(dn
1√

n logn
). Thus

bn = O(d−2
n ) +O(dn

1√
n log n

) = O
(

(n log n)−1/3
)
,

whence

an = O
(

(n log n)−5/6
)
.
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If ρn denotes the number of jumps over the origin up to time n and θn = E(ρn), then we have just

proved

θn = o(n1/6).

Note that in the case of [SzT81] and [PSz10] the key observation was that the time spent at the

perturbed area up to n is much smaller than
√
n. That is why it is reasonable to expect the same

Brownian limit in the case of such perturbation, where we introduce some nice further step at the

time of flying over the origin, too. Here nice means that presumably the step distribution should

have some finite moment of order ε. This could be subject of future research.
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Chapter 4

Lorentz Process with shrinking holes

in a wall

4.1 Introduction

In the last decade after a broad and thorough study of Sinai billiards - or equivalently of periodic Lorentz

processes - the non-homogeneous case got also widely examined. Here, non-homogeneity may appear

either in time (cf. [ChD09b] as to a mechanical model of Brownian motion or [GR-KST11], [DK09],

[LChK10] as to models of Fermi acceleration) or in space (cf. [DSzV09] as to local perturbations of

periodic Lorentz processes). In the present work we investigate a question where non-homogeneity is

present both in time and space. Consider a periodic Lorentz process with a finite horizon given in a

horizontal strip, where the scatterer configuration is assumed to be symmetric with respect to a vertical

axis - through the origin, say. Now, put a vertical wall at the symmetry axis and a tiny hole onto the

wall. The hole is getting smaller and smaller with time, thus giving the particle less and less chance to

cross the wall. It is an intriguing question at which speed the hole should shrink to result a non trivial

scaling limit of the trajectory of the particle (if such a speed exists at all). Here, non trivial means that

it is neither Brownian motion (BM), nor reflected Brownian motion (RBM) since, if the hole was of full

size or absent, then these two processes would appear in the limit (see [DSzV09]).

Indeed, if one takes the hole arbitrarily small, but fixed of size ε > 0, then the limiting process is a

BM whereas if the hole is empty, then it is a RBM. The essence of this observation is that the limiting

process does not change continuously as ε → 0 and our goal is precisely to understand the situation

when the limit is taken in a more delicate, time-dependent way.

To be more precise, let the configuration space in the absence of the wall be D := (R× [0, 1])\∪∞i=1Oi.

Here, {Oi}i is a Z-periodic extension of a finite scatterer configuration in the unit square, which consists

of strictly convex, pairwise disjoint scatterers, with C3 smooth boundaries, whose curvatures are bounded
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from below by a positive constant. Further, we assume that ∪∞i=1Oi is symmetric with respect to the

y-axis. The wall without the hole is W∞ = {(x, y) ∈ D|x = 0} = ∪Kk=1[Jk,l,Jk,r] where the subintervals

of the y-axis, denoted by [Jk,l,Jk,r], are the connected components of W∞. For later reference, put

c1 =

K∑
k=1

(Jk,r − Jk,l).

The holes will be subintervals In ⊂ W∞, thus we will be considering a sequence {Wn = W∞ \ In}n of

walls. Now, the n-th configuration space of the billiard flow is Dn := (R × [0, 1]) \ (Wn ∪ ∪∞i=1Oi). A

massless point particle moves inside Dn (at time t = 0 the first hole is present, i.e. n = 1) with unit

speed until it hits the boundary ∂Dn. Then it is reflected by the classical laws of mechanics (the angle of

incidence equals to the angle of reflection) and continues free movement (or free flight) in Dn+1. Thus, at

the time instant of each reflection, the hole is replaced by an other one (meaning that the shrinking rate

of the hole corresponds to real time). We also mention that the reflections on the horizontal boundaries

of the strip does not play any role in our study. Thus one could define the horizontal direction to be

periodic (formally replace [0, 1] by S1 in the definitions of D and Dn) yielding the same results (with

some different limiting variance).

Since we change the configuration space in the moment of the reflection, it is more convenient to use

the discretized version of the billiard flow (the usual Poincaré section, which is often called billiard ball

map). Thus define the phase spaces

Mn = {x = (q, v), q ∈ ∂Dn, v ∈ S1, 〈v, u〉 ≥ 0 if q ∈ ∂D },

where u denotes the inward unit normal vector to ∂D at the point q ∈ ∂D. Here, q denotes the position

of the particle at a collision and v is the post-collisional velocity vector. If q ∈ ∂D, v can be naturally

parameterized by the angle between u and v which is in the interval [−π/2, π/2]. If q ∈ ∂Wn = Wn, one

can parameterize v by its angle to the horizontal axis. Thus, if this angle is in the interval [−π/2, π/2],

then the particle is on the right-hand side of the wall, while it is on the left-hand side if this angle is

either in the interval [π/2, π] or in (−π,−π/2].

Thus, the discretized version of the previously described billiard flow can be defined by the billiard ball

maps Fn : Mn → Mn+1. Further, denote by κn : Mn → R the projection to the horizontal direction

of the free flight vector from Mn to Mn+1 (that is, if x = (q, v) ∈ Mn and Fn(x) = (q̃, ṽ), then κn(x)

is the projection to the horizontal axis of the vector q̃ − q). We also assume that the billiard has finite

horizon, meaning that, in the Z2-periodic extension of the scatterer configuration, there is no infinite

line on the plane that would be disjoint to all the scatterers. Further, write In = {Ik}1≤k≤n for the

collection of the first n holes, and

Sn(x, In) = Sn(x) =

n∑
k=1

κkFk−1 . . .F1(x),

where x ∈M1.

What remains is the definition of the holes In. For this, fix some sequence α = (αn)n≥1 with αn → 0

and, independently of each other, choose uniformly distributed points ξn, n ≥ 1 on ∪Ki=1[Ji,l,Ji,r]. We

will use the following three special choices:

47



1. Assume that ξn ∈ [Ji,l,Ji,r], and denote ln = Ji,r − ξn. If ln > αn, then put In = (ξn, ξn + αn),

otherwise put In = (ξn,Ji,r) ∪ (Ji,l,Ji,l + αn − ln), which is a subset of W∞ for n large enough.

With this particular choice, write

S↘n (x, α) = S↘n (x) = Sn(x, In)

and

F↘n = Fn.

2. For each 1 ≤ k ≤ n, let the random variables ξ
(k)
n be independent and distributed like ξn. Assume

that ξ
(k)
n ∈ [Ji,l,Ji,r], and denote l

(k)
n = Ji,r − ξ(k)

n . If l
(k)
n > αn, then put I

(k)
n = (ξ

(k)
n , ξ

(k)
n + αn),

otherwise put I
(k)
n = (ξ

(k)
n ,Ji,r) ∪ (Ji,l,Ji,l + αn − l(k)

n ), and finally In = (I
(k)
n )1≤k≤n. With this

particular choice, write

S≡n (x, α) = S≡n (x) = Sn(x, In).

3. Let In = W∞. With this particular choice, write

S(per)
n (x) = Sn(x, In),

and for a fixed x, define S
(per)
t (x) for t ≥ 0 as the piecewise linear, continuous extension of S

(per)
n (x).

Finally, write

F (per) = F1,

M(per) = M1.

Here the first choice - the only really time dependent - is the most interesting one. In the second

case, one has to redefine the whole trajectory segment S≡1 , . . . S
≡
n for each n, thus we have a sequence of

billiards (in other words, the increments of S≡n form a double array), while the third one is just a usual

periodic Lorentz process.

There is a natural measure - the projection of the Liouville measure of the periodic billiard flow - on

M(per) which is invariant under F (per). Denote the restriction of this measure to the two neighboring

tori to the origin by P. Note that P is finite, so normalize it to be a probability measure.

Finally, define J ⊂M(per) as such points on the discrete phase space without any wall, from which be-

fore the forthcoming collision, the particle crosses ∪Ki=1(Ji,l,Ji,r). Note that the finite horizon condition

implies that J is bounded.

Now we proceed to the definition of the limiting processes. (The intuition behind their appearance in

our result and in its proof as well will be explained after the formulation of the theorem.) Since we are

going to have two very similar processes, we call both quasi-reflected Brownian motions and distinguish

between them only in the abbreviation.

Consider a BM B = (Bt)t∈[0,1] with parameter σ on [0, 1]. Its local time at the origin is denoted by

L = (Lt)t∈[0,1]. That is,

Lt = lim
ε↘0

1

2ε

∫ t

0

1{|BS |<ε}ds.
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Now, given B, consider a Poisson Point Process Π with intensity measure cdL with some positive constant

c. The intuition behind this process is roughly speaking the following: since the local time describes

the relative time process a Brownian motion spends in an infinitesimal neighborhood of a point, in our

case of the origin, it can also be interpreted as telling us the density process of number of visits of the

origin by the Lorentz process. Out of them only those visits are successful, i. e. resulting in getting

to the other side of the wall, when the particle hits the hole, and these instants of time are precisely

given by a Poisson process – according to the Poisson limit law. With probability one, the support of

the measure c(dL) is Z, where Z = {s : 0 ≤ s ≤ 1 : Bs = 0} is the zero set of B. Denote the points

of Π by P1, P2, ... in decreasing order. In fact, Π has finitely many points. If it has m points, then

put Pm+1 = Pm+2 = ... = 0. Further, write P0 = 1 and introduce a Bernoulli distributed random

variable η with parameter 1/2 (where the parameter means the probability of being equal to 1) which

is independent of B and Π.

Now, the process Q = (Qt)t∈[0,1] with Q0 = 0 and

Qt =

{
(−1)η|Bt| if ∃n ∈ Z+ ∪ {0} : t ∈ (P2n+1, P2n]

(−1)1−η|Bt| otherwise

is called the quasi-reflected Brownian motion with parameters c and σ, and denoted by qRBM(c,σ).

The definition of QRBM is similar to that of qRBM. The difference is that c(dL) now should be replaced

by c 1√
t
(dLt). As a result, the Poisson process will have infinitely many points, which accumulate only

at the origin. Now, denote by P1, P2, . . . these points in decreasing order (N. B.: there is no smallest

one among them), put P0 = 1 and define η and QRBM(c,σ) as before.

Remark 4.1. One can easily check the following statements. The qRBM(c,σ) is almost surely continuous

on [0, 1], homogeneous Markovian but not strong Markovian (think of the stopping time T = min{t >
1/2 : Qt = 0} ∧ 1) and Qt has Gaussian distribution with mean zero and variance tσ2.

The QRBM, similarly to the qRBM, is continuous, Markovian (however not time homogeneous), not

strong Markovian, and has the same one dimensional distributions as qRBM. Contrary to the qRBM,

the QRBM is self similar in the following sense: if Qt is a QRBM, then

(Qt)t∈[0,1/p]
d
=

(
1
√
p
Qpt

)
t∈[0,1/p]

,

where 1 < p.

Further, one can easily extend the definition of both processes to R+.

As usual, C[0, 1] will denote the space of continuous functions and D[0, 1] the Skorokhod space over

[0, 1] (for the definition of the latter, we refer to [B68]). We will also use evident modifications, for

instance, DR2 [t0, 1] will denote the Skorokhod space of R2-valued functions over an interval [t0, 1].

Let the function W↘
n be the following: W↘

n (k/n) = S↘k /
√
n for 0 ≤ k ≤ n and define W↘

n (t) for

t ∈ [0, 1] as its piecewise linear, continuous extension. Let µ↘n denote the measure on C[0, 1] induced

by W↘
n , where the initial distribution, i.e. the distribution of x, is given by P. Analogously, define µ≡n

with W≡
n , where W≡

n (k/n) = S≡k /
√
n.

Now, we can formulate our main result.
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Theorem 4.2. There are positive constants σ and c2 depending only on the periodic scatterer configu-

ration, such that

1. if ∃c > 0 : αn
√
n→ c, then µ↘n converges weakly to the measure induced by QRBM(c2c, σ).

2. if ∃c > 0 : αn
√
n→ c, then µ≡n converges weakly to the measure induced by qRBM(c2c, σ).

3. if αn
√
n → 0, then both µ↘n and µ≡n converge weakly to the convex combination of the measures

induced by RBM and -RBM with weights 1/2.

4. if αn
√
n→∞, then both µ↘n and µ≡n converge weakly to the Wiener measure.

Returning to the intuitive picture provided at the introduction of the process qRBM(c2c, σ), it,

indeed, explains statement 2 of the theorem. Since, in the setup of the definition µ↘n , the holes are not

uniformly small, but are only decreasing as of order 1√
n

, the chances to get over the wall are larger but

also decreasing as in the definition of QRBM(c2c, σ).

Instead of introducing the holes on the wall one could think about the wall as a trapdoor, i.e. some-

times it is open and then the particle crosses it without collisions, other times it is closed. If one opens

the door randomly with probability αn/c1, then obtains the same result.

The analogue of Theorem 4.2 for random walks is, of course, easy to formulate in the following way.

Define the stochastic process Sn by: Prob(S0 = 1) = Prob(S0 = −1) = 1/2 and for k > 0:

Prob(Sk+1 = Sk + 1|Sk 6= 0) = Prob(Sk+1 = Sk − 1|Sk 6= 0) = 1/2,

and

Prob(Sk+1 = Sk−1|Sk = 0) = 1− ε, (4.1)

Prob(Sk+1 = −Sk−1|Sk = 0) = ε. (4.2)

Here - and also in the sequel - Prob stands for some abstract probability measure.

In the definition of Sk put first ε = αk and denote by ν↘n the measure on C[0, 1] induced by Wn,

where Wn(k/n) = Sk/
√
n for 0 ≤ k ≤ n and is linearly interpolated in between. Analogously, de-

fine ν≡n for each n with the choice ε = αn. Then, if we replace each µ with ν in Theorem 4.2, then

the statement remains true (with σ = c2 = 1), and can be proven the same way as we prove Theorem 4.2.

In the next section, we discuss some results concerning the periodic Lorentz process, that are necessary

for proving Theorem 4.2. Finally, Section 3 contains the actual proof of Theorem 4.2.

4.2 Limit theorems for the periodic Lorentz Process

In this section, we present some facts about the periodic Lorentz process in a strip. Whereas Proposi-

tion 1 is simply a strengthening of Theorem 4.2 of [SzV04], Proposition 3 is a completely new statement

interesting in itself. For later reference, we need to introduce some abstract stochastic processes.

As before, B = (Bt)t∈[0,1] denotes a BM with parameter σ (to be specified later) and L = (Lt)t∈[0,1]
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is its local time at the origin. We also use the notation Ba,t0 = (Ba,t0
t )t∈[t0,1] for a BM with pa-

rameter σ starting from a at time t0; and La,t0 = (La,t0t )t∈[t0,1] denotes its local time at the origin.

Finally, Ba,t0 b,t1 = (Ba,t0 b,t1
t )t∈[t0,t1] stands for a Brownian bridge with parameter σ starting from

a at time t0 and arriving at b at time t1 (that is heuristically a BM with pinned down endpoints), and

La,t0 b,t1 = (La,t0 b,t1t )t∈[t0,t1] is the local time of Ba,t0 b,t1 at the origin. For a thorough description

of all these processes, see [RY91].

Similarly to the previous notations, denote by Lnt, t ∈ [0, 1] the number of visits to J in the time

interval [1, bntc], and LH is the number of visits to J in the time interval H.

The first statement is a local limit theorem, formulated in a fashion tailored to our purposes. For

this, let φ denote the density of the standard normal law. Now, the assertion reads as follows.

Proposition 4.3. Fix some positive integer k and a subset Z of the set {1, 2, . . . k}. For all i ∈
{1, 2, . . . k} \ Z, let ti ∈ [0, 1], b(i) ∈ R be real numbers such that if i < j, then ti < tj. Write

b
(i)
n := bb(i)

√
nc and ni = bntic for any positive integer n. Define n0 = b

(0)
n = 0. For i′ ∈ Z, write

b
(i′)
n = 0 and choose some sequences ni′ such that for any i, j ∈ {1, 2, . . . k} with i < j, ni ≤ nj holds.

Then

P
(
∀i ∈ {1, 2, . . . k} \ Z : bS(per)

ni (x)c = b(i)n ;∀i′ ∈ Z :
(
F (per)

)ni′
(x) ∈ J

)
= c

|Z|
0

k∏
i=1

φ(
b(i)n −b

(i−1)
n

σ
√
ni−ni−1

) + oi(1)

σ
√
ni − ni−1

,

with some constants σ and c0 depending only on the periodic scatterer configuration. Further, there exist

a sequence ς(n)→ 0, such that |oi(1)| < ς(ni − ni−1) for all i ∈ {1, 2, . . . k}.

Proposition 4.3 is an extension of Theorem 4.2 in [SzV04] in two aspects. On the one hand, it is

formulated for k-tuples, while in [SzV04] it is only stated for k = 1, 2. On the other hand, the error term

is claimed to be uniform in the choice of ni (it is, in fact, uniform in more general choices of b
(i)
n , but we

only use it for b
(i)
n of the form presented in Proposition 4.3). Both generalizations follow from the proof

presented in [SzV04], thus we do not provide a formal proof here. We also note that Proposition 4.3 is

an extension of Proposition 3.6 in [DSzV08], too. From now on, all stochastic processes derived from

the BM will have parameter σ of Proposition 4.3.

The next important fact is the weak invariance principle for the position, which was first proven in

[BS81] and [BSCh91].

Proposition 4.4. (
S

(per)
nt√
n

)
t∈[0,1]

⇒ (Bt)t∈[0,1],

where ⇒ stands for weak convergence in the space C[0, 1].

The novelty of this section is in fact the following statement. The position of the particle and its

local time at J jointly converge to a BM and its local time at the origin (the latter being multiplied by

a constant). Formally,
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Proposition 4.5. (
S

(per)
nt√
n
,
Lnt√
n

)
t∈[0,1]

⇒ (Bt, c0Lt)t∈[0,1],

as n → ∞ where the left hand side is understood as a random variable with respect to the probability

measure P, and ⇒ stands for weak convergence in the Skorokhod space DR2 [0, 1].

Proof of Proposition 4.5. As usual, one has to check the convergence of finite dimensional distributions

and the tightness (see [B68] for conditions implying weak convergence on some function spaces).

First, we prove the convergence of the finite dimensional distributions. Note that the convergence of

the first coordinate follows from Proposition 4.4 (and even from Proposition 4.3), while the convergence

of the second coordinate follows from an extended version of the proof of Theorem 9 in [DSzV08]. But

the joint convergence is a stronger statement then the convergence of the individual coordinates, and it

requires a formal proof.

To obtain the joint convergence, first observe that the convergence of the first coordinate (the rescaled

position) is well known, even in the local sense (eg. Proposition 4.3). Thus we are going to prove that

under the condition that the rescaled position is close to some specific number, the second coordinate

converges to the desired limit. In order to do this computation, we need to define some new measures

on M(per).

First, choose 0 < t0 < 1, a ∈ R and write an = b
√
nac. Restrict the measure P to such points x where

bS(per)
bnt0c(x)c = an and rescale it to obtain a probability measure. The resulting measure is denoted by

Pn. Thus, with the notation

A1 = A1(n) = {x : bS(per)
bnt0c(x)c = an} ⊂ M(per),

for M ⊂ M(per) measurable sets, Pn(M) = P(M ∩ A1)/P(A1). Then, choose t0 < t1 < 1, b ∈ R and

write bn = b
√
nbc. Define Qn as the conditional measure of Pn on such points x, where bS(per)

bnt1c(x)c = bn.

That is, with the notation

A2 = A2(n) = {x : bS(per)
bnt1c(x)c = bn} ⊂ M(per),

for M ⊂M(per) measurable sets, Qn(M) = Pn(M ∩ A2)/Pn(A2).

Now, we prove the following lemma.

Lemma 4.6.

L[nt0,nt1]/(c0
√
n)⇒ La,t0 b,t1t1 ,

where L[nt0,nt1]/(c0
√
n) is understood as a random variable with respect to Qn. Similarly,

Lnt0/(c0
√
n)⇒ L0,0 a,t0

t0 ,

where Lt0/(c0
√
n) is understood as a random variable with respect to Pn.

Proof of Lemma 4.6. We prove only the first statement, since the second one can be proven analogously.

Similarly to the proof of Theorem 9 in [DSzV08], we are going to use the method of moments (see [B68],
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Chapter 1.7, Problem 4., for instance). That is, we are going to estimate

Ikn :=

∫
(L[nt0,nt1])

kdQn.

For some fixed positive integer k and for bnt0c = n0 < n1 < n2 < ... < nk < nk+1 = bnt1c, define the

set

A3 = A3(n1, . . . , nk) = {x : {
(
F (per)

)ni
x, 1 ≤ i ≤ k} ⊂ J } ⊂M(per).

Representing L[nt0,nt1] as a sum of bnt1c − bnt0c+ 1 indicator variables, one concludes

Ikn ∼ k!
∑

bnt0c=n0<n1<n2<...<nk<nk+1=bnt1c

Qn(A3(n1, . . . nk)). (4.3)

In fact, there should be k − 1 similar sums, for n1 < · · · < nl, 1 ≤ l ≤ k − 1, respectively, but the

contribution of them is of smaller order of magnitude, as we will see in the forthcoming computation.

Thus, we need to estimate Qn(A3(n1, . . . nk)). By definition,

Qn(A3) =
P(A1 ∩ A2 ∩ A3)

P(A1 ∩ A2)
. (4.4)

Using Proposition 4.3, one obtains the asymptotic equalities

P(A1 ∩ A2 ∩ A3)

P(A1)

∼ ck0

σk+1 (2π)
k−1
2

φ

(
an

σ
√
n1 − n0

)
φ

(
bn

σ
√
nk+1 − nk

) k+1∏
i=1

1√
ni − ni−1

, (4.5)

and

P(A1 ∩ A2)

P(A1)
∼
φ

(
bn−an

σ
√
n(t1−t0)

)
σ
√
n(t1 − t0)

. (4.6)

Next, we substitute (4.4) by the product of the right hand sides of (4.5) and (4.6) in the sum of (4.3).

The resulting sum is a Riemann sum which is asymptotically equal to the following Riemann integral

n
k
2 ck0k!σ−k(2π)−

k−1
2
√
t1 − t0

[
φ

(
b− a

σ
√
t1 − t0

)]−1

(4.7)∫
. . .

∫
0<s1<s2<...<sk<t1−t0

ds

φ

(
a

σ
√
s1

)
1
√
s1

1√
s2 − s1

. . .
1√

sk − sk−1

1√
t1 − t0 − sk

φ

(
b

σ
√
t1 − t0 − sk

)
,

where s = (s1, . . . , sk). Note that when we substituted (4.4) by the product of the right hand sides of

(4.5) and (4.6), we made an error. Due to Proposition 4.3, this error is bounded by

C
√
nς(min

i
{ni − ni−1})

k+1∏
j=1

1
√
nj − nj−1

,
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with some constant C. Thus, in order to see that (4.7) is asymptotically equal to Ikn, it remains to prove

that ∑
bnt0c=n0<n1<n2<...<nk<nk+1=bnt1c

√
nς(min

i
{ni − ni−1})

k+1∏
j=1

1
√
nj − nj−1

(4.8)

is in o
(
n
k
2

)
. To prove this, pick ε > 0 small and K such that ς(K) < ε. The sum over indices n1, . . . nk,

where all ni − ni−1 is larger then K, is asymptotically bounded by

εn
k
2

∫
. . .

∫
0<s1<s2<...<sk<t1−t0

ds

1
√
s1

1√
s2 − s1

. . .
1√

sk − sk−1

1√
t1 − t0 − sk

.

Now, choose a subset H of the set {1, 2 . . . k+1}, with |H| = l ≥ 1. Then the sum over indices n1, . . . nk,

where ni − ni−1 ≤ K for i ∈ H, and ni − ni−1 > K otherwise, is asymptotically bounded by Kln
k−l
2

multiplied by an integral similar to the previous one. Thus, we have verified that (4.8) is in o
(
n
k
2

)
,

which implies that Ikn is asymptotically equal to (4.7). One can compute explicitly the integrals not

involving the function φ. Namely, use the identity∫ t1−t0

C

(t1 − t0 − x)l√
x− C

dx = (t1 − t0 − C)l+1/2 Γ(l + 1)Γ(1/2)

Γ(l + 3/2)

k − 2 times, to deduce the following formula from (4.7):

Ikn ∼ n
k
2 ck0k!σ−k(2π)−

k−1
2
√
t1 − t0

[
φ

(
b− a

σ
√
t1 − t0

)]−1 [
Γ

(
1

2

)]k−1
1

Γ
(
k−1

2

)
∫∫

0<s1<s2<t1−t0

ds1ds2

φ
(

a
σ
√
s1

)
√
s1

φ
(

b
σ
√
s2−s1

)
√
s2 − s1

(t1 − t0 − s2)
k
2−

3
2 (4.9)

for k ≥ 2 (for k = 1 a simpler formula holds). Finally, one can slightly simplify the formula (4.9), since

Γ(1/2) =
√
π. In order to complete the method of moments, on the one hand, one needs to prove that

lim
n→∞

Iknc
−k
0 n−k/2 = Jk, (4.10)

where Jk is the k-th moment of La,t0 b,t1t1 . It is easy to derive from the formulas computed in [B89] and

[P99] that

Prob
(
La,t0 b,t1t1 > y

)
= exp

[
− 1

2σ2(t1 − t0)

((
|a|+ |b|+ σ2y

)2 − (b− a)2
)]
,

whence Jk can be expressed with an integral. On the other hand, one needs to prove that

lim sup
k→∞

(
limn→∞ Iknc

−k
0 n−k/2

k!

)1/k

<∞ (4.11)

so as to verify that the limit distribution is uniquely determined. Observe that (4.9) immediately implies

(4.11), but proving (4.10) turns out to be a nontrivial computation.
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That is why we need to argue in a slightly different way. Namely, we are going to prove the first

statement of the Lemma for random walks and then - since the moments for the random walk have the

same asymptotic behavior, and these moments do converge - we arrive at the original statement.

To be more precise, pick a one dimensional simple symmetric random walk that starts from an and

denote its position after bn(t1 − t0)c steps by Yn. Similarly, its total number of visits to the origin

until bn(t1 − t0)c is denoted by Zn. Write f1 for the probability density function of Ba,t0
t1 with σ

being replaced by 1 (that is, f1(y) = 1√
t1−t0

φ( y−a√
t1−t0

)). Similarly, F2|1(z|y) stands for the conditional

cumulative distribution function of La,t0t1 under the condition Ba,t0
t1 = y, again with σ replaced by 1.

Note that F2|1(z|y) is the cumulative distribution function of La,t0 y,t1t1 . Let y be a real number and

yn = by
√
nc.

The following two statements are well known for random walks (see for example [B89] and [R90]):

Prob

(
Yn < yn,

Zn√
n
< z

)
→ Prob

(
Ba,t0
t1 < y,La,t0t1 < z

)
, (4.12)

and √
n

2
Prob (Yn ∈ {yn, yn + 1})→ f1(y). (4.13)

We want to prove that
√
n

2
Prob

(
Yn ∈ {yn, yn + 1}, Zn√

n
< z

)
=: pn(y, z)→ f1(y)F2|1(z|y). (4.14)

Note that in (4.13) and (4.14) the division by 2 is needed because of the periodicity of the random

walk (i.e. it can return to the origin only in even number of steps). Also notice that using (4.13), one

easily sees that (4.14) is equivalent to the first statement of the Lemma for simple symmetric random

walks. Further, we mention that (4.14) is proved in [T99] for the case y = a. The well known local

limit theorem for random walks, and our previous computation yield that the k-th moment of Zn/
√
n,

under the condition Yn ∈ {yn, yn + 1}, have the same asymptotics as Iknc
−k
0 n−k/2, with b replaced

by y, and σ = 1. Thus (4.11), the method of moments and (4.13) imply that the distribution of

Zn/
√
n - under the condition Yn ∈ {yn, yn + 1} - weakly converges to a uniquely determined limit

distribution. Whence, p(y, z) := limn→∞ pn(y, z) exists. Now suppose that there exist some y0, z0 such

that p(y0, z0) 6= f1(y0)F2|1(z0|y0). For this fixed z0, f1(y)F2|1(z0|y) is clearly continuous in y. Further,

since the integral representation in (4.9) is continuous in b, the method of moments imply that the limit

distribution, as n → ∞, of Zn/
√
n - under the condition Yn ∈ {yn, yn + 1} -, continuously depends on

y (with respect to the weak topology). Hence, p(y, z0) is also continuous in y. Thus one can find an

interval I containing y0 such that
∫
I
p(y, z0)dy 6=

∫
I
f1(y)F2|1(z0|y)dy, which is a contradiction to (4.12).

So we have verified (4.14). But (4.14) together with (4.11) implies (4.10) and the first assertion of the

Lemma.

Now, we prove of the convergence of one dimensional distributions by a standard argument. That is,

we need that for any open intervals A, B,

P

(
S

(per)
nt0√
n
∈ A, Lnt0√

n
∈ B

)
→ Prob (Bt0 ∈ A, c0Lt0 ∈ B) . (4.15)
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The second statement of Lemma 4.6 implies the local version of (4.15) in the first coordinate, namely

√
nP

(
S

(per)
bnt0c = bx

√
nc, Lnt0√

n
∈ B

)
(4.16)

=
1

σ
√
t0
φ

(
x

σ
√
t0

)
Prob

(
c0L

0,0 x,t0
t0 ∈ B

)
+ o(1).

Now, define the real function ϕn, by setting ϕn(x) to be equal to (4.16). Note that for fix n, ϕn is

constant on the intervals [k/
√
n, (k + 1)/

√
n) for any integer k. We have for any x,

ϕn(x)→ 1

σ
√
t0
φ

(
x

σ
√
t0

)
Prob

(
c0L

0,0 x,t0
t0 ∈ B

)
=: ϕ(x).

Thus, by Fatou’s lemma,

lim inf
n

∫
A

ϕn(x)dx ≥
∫
A

ϕ(x)dx = Prob (Bt0 ∈ A, c0Lt0 ∈ B) . (4.17)

Analogously,

lim inf
n

∫
Ac
ϕn(x)dx ≥

∫
Ac
ϕ(x)dx = Prob (Bt0 ∈ Ac, c0Lt0 ∈ B) . (4.18)

As it was already mentioned in the beginning of the proof of Lemma 4.6, the rescaled local times converge

to the appropriate limit. Thus,∫
A

ϕn(x)dx+

∫
Ac
ϕn(x)dx = P

(
Lnt0√
n
∈ B

)
→

Prob (c0Lt0 ∈ B) =

∫
A

ϕ(x)dx+

∫
Ac
ϕ(x)dx. (4.19)

Now, using (4.17), (4.18) and (4.19), we conclude that the inequalities in (4.17) and (4.18) are, in fact,

equalities and the lim inf can be replaced by lim. This, together with the observation that the difference

of
∫
A
ϕn(x)dx and the left hand side of (4.15) is bounded by a constant times n−1/2, implies (4.15).

The convergence of any finite dimensional marginals can be proven analogously, as we proved the one

dimensional ones. The only main difference is that one needs a multiple version of the statements of

Lemma 4.6, but its proof is also analogous.

Now we turn to the proof of tightness. Proposition 4.4 implies that the first coordinate converges

weakly to the desired limit (in C[t0, 1] thus in D[t0, 1] as well), hence is tight, too. We are going to

establish the tightness of the local times. Then it will follow that(
S

(per)
nt√
n
,
Lnt√
n

)
t∈[0,1]

is tight, by definition.

Since the process Lnt is nondecreasing in t, tightness, in fact, can be deduced from the convergence of

finite dimensional distributions. Namely, Theorem 15.2 in [B68] yields that we only have to verify the

following two statements:
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1. For each η > 0 there is a d ∈ R such that

P

(
Ln√
n
> d

)
< η, n ≥ 1. (4.20)

2. For each positive η and ε there is a δ, 0 < δ < 1 and an integer n0 such that

P

(
wLnt√

n

(δ) ≥ ε
)
≤ η, n ≥ n0. (4.21)

Here,

wψ(δ) = inf
{ti}

max
0<i≤r

( lim
τ↗ti

ψ(τ)− ψ(ti−1)),

where the infimum is taken over finite sets {ti}, for which 0 < t1 < ... < tr = 1, ti − ti−1 > δ for

all i.

Since we have just verified that Ln/
√
n converges weakly, (4.20) follows.

Again, the convergence of finite dimensional distributions implies that for fix η > 0 and ε > 0 one can

find δ > 0 and n0 such that for all n > n0, 0 ≤ k1 ≤ b1/δc

P

(
#{k : nk1δ < k < n(k1 + 1)δ, S

(per)
k ∈ J }√

nδ
>

ε√
δ

)
< ηδ,

Now the equidistant partition {ti} is enough to verify (4.21). Thus we have finished the proof of

Proposition 4.5.

4.3 Proof of Theorem 4.2

Note that, though in its spirit our statement is very close to the results of [DSzV09], their proof cannot be

applied here since the limiting process is not strong Markovian (see Remark 4.1) thus leaving no chance

to apply the martingale method. Thus we need to argue in a more direct way, using Proposition 4.5. In

Subsection 4.3.1 we prove the first statement of the theorem. That proof with trivial modifications is

easily applicable to cases 2 and 3. The only non trivial modification is needed in case 4, which is treated

in Subsection 4.3.2. Everywhere in this Section, we also use the notations introduced in Section 2.

4.3.1 Proof of case 1

In order to prove the statement, we need some technical lemmas.

Lemma 4.7. Let E and F be any Polish spaces, X,Xn any random variables taking values in the space

E such that Xn ⇒ X. Then for any continuous function f : E → F one has (Xn, f(Xn))⇒ (X, f(X))

in the product topology.
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Proof. Pick any U ⊂ E×F open set and define V = {x ∈ E : (x, f(x)) ∈ U}. If x ∈ V , then one can find

an open product set Ux = Ex × Fx ⊂ U containing (x, f(x)). Since f−1(Fx) is open, x ∈ Ex ∩ f−1(Fx)

is also open. Now x ∈ Ex ∩ f−1(Fx) ⊂ V implies that V is open, too. Thus

Prob((Xn, f(Xn)) ∈ U) = Prob(Xn ∈ V )

and the Portmanteau Theorem (see [B68], for instance) yield the statement.

Next, we prove the following Lemma which is an extension of Proposition 4.5.

Lemma 4.8.(
S

(per)
nt√
n
,
Lnt√
n
,

∫ t

τ=t0

1√
τ
d
Lnτ√
n

)
t∈[t0,1]

⇒
(
Bt, c0Lt, c0

∫ t

τ=t0

1√
τ
dLτ

)
t∈[t0,1]

,

where the left hand side is understood as a random variable with respect to the probability measure P

and ⇒ stands for weak convergence in the Skorokhod space DR3 [t0, 1].

Proof. Use Proposition 4.5 and Lemma 4.7 with the choice

E = {ψ = (ψ1, ψ2) ∈ DR2 [t0, 1] : ψ2 is non decreasing},

F = D[t0, 1]

f((ψ1, ψ2)) =

(∫ t

τ=t0

1√
τ
dψ2

)
t∈[t0,1]

to infer Lemma 4.8.

Note that we needed to restrict the processes of Proposition 4.5 to DR2 [t0, 1] in order to the above

stochastic integrals be finite. (This technical difficulty can be avoided in the proof of case 2.) Finally,

we will need Le Cam’s famous inequality which was proven in [LC60].

Lemma 4.9. Assume Σm is the sum of m independent, non-identically distributed Bernoulli random

variables εj ; 1 ≤ j ≤ m such that Prob(εj = 1) = pj. Then

∞∑
k=0

∣∣∣Prob(Σm = k)− e−λλk/k!
∣∣∣ ≤ 2

m∑
j=1

p2
j ,

where λ = p1 + · · ·+ pm.

Now, we can proceed to the proof of case 1 of Theorem 4.2. First, we are going to prove a simplified

version of the assertion, namely, the convergence of the measures µ↘n restricted to C[t0, 1]. Then the

statement of the first part of the Theorem will follow easily.

Note that one can think about our model as having two sources of randomness. The first one is the

choice of x and the second is the choice of ξ’s. In Section 2, we were only dealing with the first source,

but now we are going to treat the second one, as well.

It would be more convenient to consider S↘n as if the time instants of the reflections on the wall Wk
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(1 ≤ k ≤ n) were not computed. Since Proposition 4.5 and the scatterer configuration being symmetric

to the y-axis imply that |{i ≤ n : F↘i . . .F↘1 ∈ J }| is asymptotically of order
√
n, the diffusively scaled

limits of S↘n and of this ”modified S↘n ” (i.e. when we do not count the reflections on the wall) have

the same limit. Thus it is sufficient to prove our statement for the ”modified S↘n ” - which will also be

denoted by S↘n in the sequel.

Note that the assumption of the periodic scatterer configuration being symmetric implies

|S↘n | = |S(per)
n |. (4.22)

Now for fix x, define p(nt) as the probability, generated by the choice of ξn’s, of the event that

S↘bntc(x)S↘bntc+1(x) < 0, i.e. after step number bntc, the particle crosses the hole. Lemma 4.8 implies

that - by Skorokhod’s representation theorem, cf. [B68] - there exists a probability space (Ω,Q) together

with random variables (X̃n, Ỹn, Z̃n) having the same joint distribution as(S(per)
nt√
n

)
t∈[t0,1]

,

(
c

c1

∫ t

τ=t0

1√
τ
d
Lnτ√
n

)
t∈[t0,1]

,

(∫ t

τ=t0

p(nτ)dLnτ

)
t∈[t0,1]


with respect to P, and also with random variables (X̃, Ỹ ) having the same joint distribution as(

(Bt)t∈[t0,1] ,

(
cc0
c1

∫ t

τ=t0

1√
τ
dLτ

)
t∈[t0,1]

)
,

such that (X̃n, Ỹn) → (X̃, Ỹ ) Q-almost surely. Here, c = limn αn
√
n Now, for Q-almost all ω ∈ Ω we

define the measures ν(ω), νn(ω), λn(ω) on C[t0, 1] in the following way. Consider the modulus of X̃(ω),

i.e. |X̃(ω)| ∈ C[t0, 1] (if X̃(t0)(ω) > 0; otherwise consider −|X̃(ω)|), pick a Poisson point process -

on some abstract probability space (Ωω,Qω) - with intensity measure dỸ (ω), and denote its point by

P1 < P2 < ... N.b. there are finitely many points. If it has m points, put Pm+1 = 1. Now reflect the

subgraph of |X̃(ω)|[P2i+1, P2i+2] to the origin for each i (if X̃(t0)(ω) > 0; otherwise reflect −|X̃(ω)|).
The distribution of the resulting random function - with respect to Qω - generates a measure on C[t0, 1]

which we denote by ν(ω). The construction of νn(ω) is similar, with two differences. The first is that

one should replace X̃ and Ỹ by X̃n and Ỹn and the second is that instead of the Poisson point process,

one introduces independent Bernoulli random variables for each discontinuity of the function Ỹn(ω) with

parameters being equal to the size of jump of Ỹn(ω) at the corresponding discontinuity. Then denote

by P1 < P2 < . . . the positions, where the Bernoulli random variables are equal to 1. Finally, λn(ω) is

defined the same way as νn(ω) with Ỹn being replaced by Z̃n.

Using Lemma 4.9, one can infer that for Q-almost all ω, νn(ω)⇒ ν(ω) on C[t0, 1]. Further, αn
√
n→ c

implies that for any fixed x and ε > 0, if Lbnτc−1 < Lbnτc, i.e. in bnτc steps the particle arrives to

J , then |p(bnτc)− c/(c1
√
bnτc)| < ε/

√
n assuming that n is large enough. Whence, one can naturally

couple the Bernoulli distributed random variables used by the definition of νn and λn in such a way that

the resulting random functions in C[t0, 1] coincide on a subset of Ωω, whose Qω measure tends to 1 as

n→∞. Consequently, λn(ω)⇒ ν(ω) on C[t0, 1] for Q-almost all ω, too.
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Define the measures % and %n on C[t0, 1] by

%(A) =

∫
Ω

ν(ω)(A)dQ(ω),

%n(A) =

∫
Ω

λn(ω)(A)dQ(ω).

Using that λn(ω) ⇒ ν(ω) for Q-almost all ω, Fatou’s lemma and the Portmanteau theorem, we obtain

for any A ⊂ C[t0, 1] open set:

lim inf
n

%n(A) = lim inf
n

∫
Ω

λn(ω)(A)dQ(ω)

≥
∫

Ω

lim inf
n

λn(ω)(A)dQ(ω) ≥
∫

Ω

ν(ω)(A)dQ(ω) = %(A).

Whence - by the Portmanteau theorem, again - %n ⇒ % on C[t0, 1].

Observe that by construction, % is the measure on C[t0, 1] generated by a QRBM(cc0/c1, σ). Similarly,

%n is the restriction of W↘
n to C[t0, 1].

Now, one can easily prove the first part of the Theorem. Since the choice of t0 was arbitrary, a limit

theorem of any finite dimensional distributions is implied by the above computation. The tightness is

also easy since the moduli of the random functions are tight. Thus we have finished the proof of the

first part of the Theorem (in fact, with the constant c2 = c0/c1).

4.3.2 Proof of case 4

As in the previous subsection, the tightness is trivial since the moduli of the random functions are tight.

The convergence of one dimensional distributions follows from symmetry and Proposition 4.3. Here, we

are only going to prove the convergence of two dimensional marginals since the convergence of any finite

dimensional ones can be proven similarly.

The idea of the proof is that we know the convergence of (|S↘bnt0c|/
√
n, |S↘bnt1c|/

√
n) to the desired limit,

thus we only need to care about the sign. For the latter, assume that S↘bnt0c/
√
n is in a fixed positive

interval, while |S↘bnt1c|/
√
n is in another fixed positive interval. Using Proposition 4.5, and the results of

the previous subsection, we can estimate the asymptotic probability of the local time being zero under

the above condition. If the local time is zero, then the trajectory avoids the origin, hence S↘bnt1c > 0. If

not, then the particle arrives at the origin eventually in [nt0, nt1], and we need to verify that at time nt1,

it will end up in the positive half line with probability 1/2. The heuristic reason for this is that once it

is near the origin, since αn
√
n is large, it will cross the holes many times, and thus forget that it came

from the positive half-line. This argument will imply that the weak limit must be the two dimensional

marginal of the BM.

Let us make the above argument precise. To do so, we will use the notations of the previous subsection.

Especially, introduce the modification of S↘n as in the previous subsection. Thus (4.22) still holds. Fix
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0 < t0 < t1 ≤ 1 and J0, J1 compact subintervals of R+ ∪ {0}. Our aim is to prove that

P

(
S↘bnt0c√

n
∈ J0,

S↘bnt1c√
n
∈ J1

)
→ Prob (Bt0 ∈ J0,Bt1 ∈ J1) , (4.23)

and

P

(
S↘bnt0c√

n
∈ J0,

S↘bnt1b√
n
∈ −J1

)
→ Prob (Bt0 ∈ J0,Bt1 ∈ −J1) , (4.24)

as n → ∞. Once we verify (4.23) and (4.24), by symmetry, they will also hold true for J0 being a

compact interval in R− ∪ {0}, and hence the convergence of two dimensional marginals will follow.

Define the probabilities

pJ0,J1 = Prob (∀s : t0 < s < t1 : Bs > 0|Bt0 ∈ J0, |Bt1 | ∈ J1) .

Now let A be the set of functions ψ in C[0, 1] for which ψ(t0) ∈ J0, ∀s : t0 < s < t1 : ψ(s) > 0, and

ψ(t1) ∈ J1. Then the Wiener measure of ∂A is zero, thus Proposition 4.4 implies that

P

∀t0 < s < t1 : S(per)
ns > 0|

S
(per)
bnt0c√
n
∈ J0,

|S(per)
bnt1c|√
n
∈ J1

→ pJ0,J1 , (4.25)

as n→∞. On the other hand, the strong Markov property of the BM obviously implies

Prob (Bt1 ∈ J1|Bt0 ∈ J0,∃s : t0 < s < t1 : Bs = 0, |Bt1 | ∈ J1) =
1

2
. (4.26)

Now, with the notation

A4(n) = {x :
S↘bnt0c(x)
√
n

∈ J0,∃t0 < s < t1 : S(per)
ns (x) = 0,

|S↘bnt1c(x)|
√
n

∈ J1},

we want to prove that

P

(
S↘bnt1c√

n
∈ J1|A4(n)

)
→ 1

2
. (4.27)

Note that combining Proposition 4.4, (4.22), (4.25), (4.26) and (4.27), one can deduce (4.23) and (4.24).

Thus it remains to prove (4.27).

To do so, first observe that by Proposition 4.5, for every ε > 0 there exists δ > 0 and N such that for

all n > N ,

P
(
L[nt0,nt1] > δ

√
n|A4(n)

)
> 1− ε. (4.28)

Now consider the Markov transition matrices

Ap =

(
1− p p

p 1− p

)

on the space {+,−} and a time dependent Markov chain Mk such that M0 = + and the transition

between k and k + 1 is described by Apk with some numbers pk. Now, for a fixed x ∈ M(per) and n,

define Dk(x) as the k-th leftmost discontinuity of the function s → Lbnsc(x) on s ∈ [t0, t1). With the
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choice pk(x) = αnDk(x)/c1, 1 ≤ k ≤ L[bnt0c,bnt1c−1](x) for each x, one easily sees that for n large enough,

the probability in (4.27) is equal to

1

P(A4(n))

∫
A4(n)

Prob(ML[bnt0c,bnt1c−1](x) = +)dP(x). (4.29)

If fact, this is only true for the case of µ↘n , while in the case of µ≡n , one needs to set pk(x) = αn/c1.

On the other hand, elementary computations show that if one selects sequences B(n)→∞,m(n)→∞
and non-negative numbers pk,n, 1 ≤ n, 1 ≤ k ≤ m(n), then with the transition matrices corresponding

to p1,n, ..., pm(n),n,

Prob(Mm(n) = +)

=
(

1 0
)
Ap1,n . . . Apm(n),n

(
1

0

)

=
(

1/
√

2 1/
√

2
)( 1 0

0
∏m(n)
k=1 (1− 2pk,n)

)(
1/
√

2

1/
√

2

)
= 1/2 + o(1),

as n→∞. Further, o(1) converges to zero uniformly inm and pk ifm(n) > δ
√
n and min1≤k≤m(n){pk,n

√
n} >

B(n). Now, choose B(n) = minN≥bnt0c{αN
√
N/c1}. This estimation together with (4.28) and (4.29)

yields (4.27).
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Chapter 5

A central limit theorem for

time-dependent dynamical systems

5.1 Introduction

Time-dependent dynamical systems appear in various applications. Recently, [OSY09] could establish

exponential loss of memory for expanding maps and, moreover, for one-dimensional piecewise expanding

maps with slowly varying parameters. It also provided interesting motivations and examples for the

problem. We also mention that the memory loss result of [OSY09] has been extended very recently to

two dimensional Anosov diffeomorphisms in [S11]. For us - beside their work - an additional incentive

was the following question: bound the correlation decay for a planar finite-horizon Lorentz process which

is periodic apart form the 0-th cell; in it, the Lorentz particle encounters a particular scatterer of the

0-th cell moderately displaced at its each subsequent return to the 0-th cell. (Slightly similar is the

situation in the Chernov-Dolgopyat model of Brownian Brownian motion, where - between subsequent

collisions of the light particle with the heavy one - the heavy particle slightly moves away, cf. [ChD09b].)

The results of [OSY09] say that - for sequences of uniformly uniformly expanding maps - distances

of images of a pair of different initial measures converge to 0 exponentially fast. In the same setup it is

also natural to expect that probability laws of the Birkhoff-type partial sums of some given function -

scaled, of course, by the square roots of their variances - are approximately Gaussian. The main theorem

of this Chapter provides a positive answer though our conditions are surprisingly more restrictive than

those of [OSY09]. Let us explain the difficulty and some related results.

In functional central limit theorems for functions of autonomous chaotic deterministic systems the

zero-cohomology condition is - in quite a generality - known to be necessary and sufficient for the

vanishing of the limiting variance (see [L96] for instance). For time-dependent systems, however, such a

condition is only known for almost all versions of random dynamical systems (see [ALS09] and [CBR12])

and for other models the situation can be and definitely is completely different. In fact, for time-

dependent systems, first [B95] had proved a Gaussian approximation theorem in quite a generality; its
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author, however, assumed that the variances of the Birkhoff-type partial sums tend to ∞ sufficiently

fast; the paper, however, did not provide any example when this condition would hold. The more recent

work [CR07] proves under some reasonable conditions a dichotomy: either the variances are bounded or

the Gaussian approximation holds; the article also provides an example for the latter in the case when

the time dependent maps are smaller and smaller perturbations of a given map. But still there is no

general method for ascertaining whether the variance is bounded or not. Finally we note that [KK05]

has interesting results for higher order cohomologies but its setup is different.

The present work is, in fact, the first one where non-random examples are also found, that are not

small perturbations of a given map. The proof of our main theorem uses martingale approximation

technique in the form introduced in [SV05] for treating additive functions of inhomogeneous Markov

chains. The organization of this Chapter is simple: Section 5.2 contains our main theorem and provides

examples when it is applicable. Section 5.2 is devoted to the proof of the theorem.

5.2 Results

Let A be a set of numbers and (X,F , µ) a probability space. For each a ∈ A define Ta : X → X.

Suppose that µ is invariant for all Ta’s. Now consider a sequence of numbers from A, i.e. a : N → A.

Our aim is to prove some kind of central limit theorem for the sequence

f ◦ Ta1 , f ◦ Ta2 ◦ Ta1 , ...

with some nice function f : X → R.

As usual,

T̂ag(x) = g(Tax)

and T̂ ∗ is the L2(µ)-adjoint of T̂ (the so called Perron-Frobenius operator). Further, introduce the

notation

T̂[i..j] =

{
T̂ai . . . T̂aj if i ≤ j

Id otherwise

and for simplicity write T̂[j] = T̂[1..j].

Similarly, define

T̂ ∗[i..j] =

{
T̂ ∗aj . . . T̂

∗
ai if i ≤ j
Id otherwise

and T̂ ∗[j] = T̂ ∗[1..j].

Further, define σ-algebras F0 = F , Fi = (Ta1)−1 . . . (Tai)
−1F0. We will need this sequence of σ-algebras

to form a decreasing systems (cf. Assumption 2 of Theorem 5.1), restricting our approach to non-

invertible maps. Let us assume that there is a Banach space B of F-measurable functions on X such

that ‖g‖ := ‖g‖B ≥ ‖g‖∞ for all g ∈ B.

Finally, for the fixed function f , introduce the notation

uk =

k∑
i=1

T̂ ∗[i+1..k]f.
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With the above notation, our aim is to prove a limit theorem for Sn(x) =
∑n
k=1 T̂[k]f(x).

Theorem 5.1. Assume that f , a and Tb, b ∈ A satisfy the following assumptions.

1.
∫
fdµ = 0.

2. Tb is onto but not invertible for all b ∈ A.

3. f ∈ B and there exist K <∞ and τ < 1 such that for all sequences b and for all k, ‖T̂ ∗b1 ...T̂
∗
bk
f‖ <

Kτk‖f‖.

4. (accumulated transversality) Define χk as the L2-angle between uk and the subspace of (Tak+1
)−1F0-

measurable functions. Then
N∑
k=1

min
j∈{k,k+1}

(1− cos2(χj))

converges to ∞ as N →∞.

Then

V ar(Sn)→∞

and
Sn(x)√
V ar(Sn)

converges weakly to the standard normal distribution, where x is distributed according to µ.

Assumption 3 roughly tells that there is an eventual spectral gap of the operators T̂ ∗aj which is quite

a natural assumption. Assumption 4 guarantees that there is no much cancellation in Sn, for instance

f cannot be in the cohomology class of the zero function when |A| = 1.

Before proving the statement let us examine a special case.

Example 5.2. Define (X,F , µ) = (S1, Borel, Leb), A = {2, 3, . . . }, Ta(x) = ax( mod 1), B = C1 =

C1(S1),

‖g‖ := sup
x∈S1

|g(x)|+ sup
x∈S1

|g′(x)|.

Fix a non constant function f ∈ C1 satisfying
∫
fdx = 0. Then there exists some integer L = L(f) such

that with all sequences a for which

#{k : min{ak, ak+1, ak+2} > L} =∞

the assumptions of Theorem 5.1 are fulfilled.

Proof of Example 5.2. It is easy to see that for all g ∈ C1 with zero mean, and for all b : N→ A,

‖T̂ ∗b1g‖ ≤ 2b−1
1 ‖g‖

and similarly,

‖T̂ ∗b1 . . . T̂
∗
bk
g‖ ≤ 2 · 2−k‖g‖. (5.1)
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Hence Assumption 3 is fulfilled.

In order to check Assumption 4, select x, y ∈ S1, ε > 0, δ > 0 such that

min
z∈[x,x+ε]

f(z) > δ + max
z∈[y,y+ε]

f(z).

This can be done since f is not constant. Now choose

L > max{16‖f‖
δ

,
2

ε
}.

Whence

‖T̂ ∗Lf‖ ≤ δ/8.

Thus if ak > L, then

‖
k−1∑
i=1

T̂ ∗[i+1..k]f‖ < 3δ/8

is true independently of the choice of a1, . . . ak−1. This yields

min
z∈[x,x+ε]

uk(z) > δ/4 + max
z∈[y,y+ε]

uk(z).

Since L > 2
ε , for all g which is (Tak+1

)−1F0 measurable (with ak+1 > L), one can find h : [0, ε/2) → R
and ε1 ≤ ε/2 such that g(y + ε1 + z) = g(x+ z) = h(z) for all z ∈ [0, ε/2). Hence,

‖uk − g‖22

≥
∫ x+ε/2

x

(uk(z)− g(z))
2
dz +

∫ x+ε1+ε/2

y+ε1

(uk(z)− g(z))
2
dz

=

∫ ε/2

0

(uk(x+ z)− h(z))
2
dz +

∫ ε/2

0

(uk(y + ε1 + z)− h(z))
2
dz

≥ 1

2

∫ ε/2

0

(uk(x+ z)− uk(y + ε1 + z))
2
dz ≥ δ2ε

64
(5.2)

Since

‖uk‖2 < ‖uk‖

is bounded, (5.2) implies that (1− cos2(χk)) is uniformly bounded away from zero if min{ak, ak+1} > L.

Hence, Assumption 4 is fulfilled if there exist infinitely many indices k such that

min{ak, ak+1, ak+2} > L.

In Example 5.2, expanding maps with large derivative were needed in order to obtain the Gaussian

approximation. Naturally arises the question that what happens in the case when one uses only finitely

many dynamics, for instance, only T2 and T3 of Example 5.2. That is why we discuss the following

example.
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Example 5.3. Define X,F , µ,A, Tb,B as in Example 5.2. If a is a sequence for which there is a b ∈ A
such that for all integer K, one can find a k for which

ak = ak+1 = ... = ak+K−1 = b,

and f ∈ B,
∫
f = 0 is any function for which the equation f = T̂bu − u has no solution u, then the

assumptions of Theorem 5.1 are fulfilled.

Proof of Example 5.3. It is enough to verify Assumption 4. To do so, for K ∈ Z+ pick k such that

ak−K = ak−K+1 = ... = ak+2 = b. (5.3)

Then (5.1) implies that

‖uj −
∞∑
i=0

(
T̂ ∗b

)i
f‖ < C2−K (5.4)

holds for j = k, k + 1 with some C uniformly in K. Now, if g :=
∑∞
i=0

(
T̂ ∗b

)i
f is not (Tb)

−1F0-

measurable, then necessarily its L2-angle with those functions is positive. Since (5.3) and (5.4) hold for

infinitely many k’s, min{χk, χk+1} exceeds a uniform positive number infinitely many times, inferring

Assumption 4. On the other hand, if g is (Tb)
−1F0-measurable, then g = T̂bT̂

∗
b g and g− T̂ ∗b g = f imply

that for u = T̂ ∗b g, T̂bu− u = f .

Note, that in Example 5.3, V ar(Sn) can be arbitrarily small. Indeed, pick a C1 function f , for which

f = T̂3u − u has no solution u, but there is some v such that f = T̂2v − v. Now, pick a sequence of

integers dl, l ∈ N, dl →∞ fast enough, and define

ak =

{
3 if ∃l : dl ≤ k < dl + l

2 otherwise.

It is easy to see that (5.1) implies E(|T̂[i]f · T̂[j]f |) ≤ 2|i−j|+1‖f‖2 (formally it follows from (5.16)),

which in turn yields that V ar(Sk) is bounded by some constant times k. Now, with the notation

ln := max{l : dl ≤ n}, write

V ar(Sn) ≤ 4V ar(Sdln−1+ln) + 4V ar(Sdln − Sdln−1+ln)

+4V ar(Sdln+ln − Sdln ) + 4V ar(Sn − Sdln+ln).

On the other hand, f = T̂2v − v implies that T̂2f + ... + T̂m2 f is uniformly bounded in m. Thus the

second and the last term in the above sum are bounded. Whence V ar(Sn) is smaller than some constant

times dln−1. Especially, if dl = 222l

, then

V ar(Sn)

nα
→ 0

as n→ 0 for any α positive. Note that in this case the conditions of [B95] for the Gaussian approxima-

tion are not met.
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We mention that the choice of Ta’s in the above examples are very special (especially, they are commut-

ing). In fact, we used the explicit form of them - the fact that a Ta-measurable function is 1/a-periodic

- only in Example 5.2. Indeed, Example 5.3, and the discussion after it, can be formulated with other

dynamics that satisfy Assumptions 1-3. For instance, one could use T2 and replace T3 by the map

T̃3(x) =

{
T3(x) if x ∈ [0, 2/3]

T3(x) + a ( mod 1) otherwise

with some constant a 6= 0 ( mod 1). The resulting maps are not commuting any more, but the Lebesgue

measure is still invariant for both of them and they still satisfy Assumption 3 with B being the Banach

space of functions of bounded variation. The latter statement is a consequence of [CR07]. For more

examples of sets of maps that satisfy Assumption 3, we refer to [CR07].

5.3 Proof of Theorem 5.1

This section is devoted to the proof of Theorem 5.1.

As in [CR07], [L96] and [SV05], the proof is based on martingale approximation. That is, we are going

to define a reverse martingale - just like in [CR07] and [L96] -, verify the conditions of some abstract

martingale CLT, and prove that the difference between Sn/
√
V ar(Sn) and the reverse martingale is

negligible.

First, observe that

T̂ ∗[n]T̂[n] = Id (5.5)

and

T̂[n]T̂
∗
[n] (5.6)

is the orthogonal projection onto the Fn measurable functions (for the proof of the latter, see [L96]).

Now we proceed to the definition of our approximating reverse martingale, which is analogous to the

one of [SV05]. To do so, first define Z0 = 0 and

Zk =

k∑
i=1

E
[
T̂[i]f |Fk

]
=

k∑
i=1

T̂[k]T̂
∗
[k]T̂[i]f =

k∑
i=1

T̂[k]T̂
∗
[i+1..k]f = T̂[k]uk, (5.7)

where we also used (5.5) and (5.6). Since

T̂[i]f = Zi − E [Zi−1|Fi] (5.8)

= (Zi − E [Zi|Fi+1]) + (E [Zi|Fi+1]− E [Zi−1|Fi]) , (5.9)

one obtains

Sn =

n−1∑
k=1

(Zk − E [Zk|Fk+1]) + Zn.

Now, for fix n and 1 ≤ k ≤ n− 1, define

ξ
(n)
k =

1√
V ar(Sn)

(Zk − E [Zk|Fk+1]) .
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Since E
[
ξ

(n)
k |Fk+1

]
= 0, by definition, {ξ(n)

k }1≤k≤n−1 is a reverse martingale difference sequence for the

σ-algebras F1, . . .Fn (which are indeed coarser and coarser due to Assumption 2). Thus, in particular

V ar(Sn) = V ar(Zn) +

n−1∑
k=1

V ar (Zk − E [Zk|Fk+1]) . (5.10)

Using our martingale approximation and the well known martingale CLT (see [SV05] for the specific

form used here, or [HH80] for the proof and general discussion), it is enough to prove that the difference

between the martingale approximant and Sn/
√
V ar(Sn) is negligible, and further, the following two

conditions:

max
1≤i≤n

‖ξ(n)
i ‖∞ → 0 (5.11)

and

‖
n∑
i=1

E
[(
ξ

(n)
i

)2

|Fi+1

]
− 1‖2 → 0. (5.12)

Heuristically, (5.11) means asymptotic negligibility of all components, while (5.12) is a law of large

numbers for the conditional variances. To prove (5.11) and (5.12), we adopt the ideas of [SV05]. In

order to verify (5.11), observe that by Assumption 3,

‖Zk‖∞ ≤
k∑
j=1

‖T̂[k]T̂
∗
[j+1..k]f‖∞ ≤

k∑
j=1

‖T̂ ∗[j+1..k]f‖∞

≤
k∑
j=1

‖T̂ ∗[j+1..k]f‖ ≤
k∑
j=1

Kτk−j‖f‖ ≤ Cf . (5.13)

Thus

‖E [Zk|Fk+1] ‖∞ ≤ Cf (5.14)

also holds. Now, we prove that the variance of Sn converges to infinity:

V ar(Sn) = µ(S2
n)→∞ (5.15)

as n→∞. Since (5.13) implies that V ar(Zn) is bounded, (5.10) can be written as

V ar(Sn) = O(1) +

n−1∑
k=1

E(Z2
k) + E

(
E[Zk|Fk+1]2

)
− 2E (ZkE[Zk|Fk+1])

= O(1) +

n−1∑
k=1

E(Z2
k)− E

(
E[Zk|Fk+1]2

)
= O(1) +

n−1∑
k=1

‖uk‖22 − ‖uk‖22 cos2 χk.

Here, we used (5.7), and the fact that T̂[k] is L2(µ)-isometry. Now, since

V ar(f) = V ar(T̂[i]f) ≤ 2V ar(Zi) + 2V ar(E[Zi−1|Fi]) ≤ 2‖ui‖22 + 2‖ui−1‖22,
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one obtains

V ar(Sn) ≥ O(1) +
1

4
V ar(f)

n−1∑
k=1

min
j∈{k,k+1}

(
1− cos2 χj

)
,

which converges to infinity as n→∞ by Assumption 4. Thus we have verified (5.15).

Now, (5.13), (5.14) and (5.15) together imply (5.11) and that the difference between the martingale and

Sn/
√
V ar(Sn) is negligible, i.e.

‖Zn‖∞√
V ar(Sn)

→ 0,

as n→∞.

To verify (5.12), first observe that for i > j

‖E
[
T̂[j]f |Fi

]
‖∞ = ‖T̂[i]T̂

∗
[i]T̂[j]f‖∞ = ‖T̂[i]T̂

∗
[j+1..i]f‖∞ = ‖T̂ ∗[j+1..i]f‖∞

≤ Kτ i−j‖f‖. (5.16)

Then one can prove the assertion obtained from Lemma 4.4 in [SV05] by replacing v
(n)
l with

E
[(
ξ

(n)
n−l

)2

|Fn−l+1

]
the same way as it was done in [SV05], which yields (5.12).
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Chapter 6

Tail asymptotics of free path lengths

for the periodic Lorentz process.

On Dettmann’s geometric

conjectures.

6.1 Introduction

In planar periodic Lorentz processes, the limiting distribution of the rescaled displacement is Gaussian

and that of the rescaled orbit is a Wiener process. The scaling, however, is either the diffusive
√
n or

the slightly super-diffusive
√
n log n depending on whether the billiard has finite or infinite horizon. In

the first case the limiting covariance is given by the Green-Kubo formula (cf. [BS81], [BSCh91]), which

- though explicit - nevertheless does not permit precise calculations (the formula contains an infinite

sum of time correlations of the free flight vector). In the infinite horizon case, however, - as it was

conjectured by [B92] and established by [SzV07], [ChD09a] - the stronger
√
n log n scaling suppresses

time correlations and the limiting covariance has a simple form expressed by geometric parameters

of the billiard in question. For multidimensional Sinai billiards - under the complexity hypothesis! -

exponential decay of correlations is known in the finite horizon case, only (cf. [BT08]). Then the central

limit theorem with the diffusive scaling is a consequence and the limiting covariance is again given by

the Green-Kubo formula. Physicists are always emphatically interested in expressions that are easy

to calculate and check. Dettmann, [D12], motivated by a problem of [Sz08], was assuming that the

aforementioned 2D infinite horizon case picture is also valid for multidimensional dispersing billiards

and made a guess as to how the limiting covariance looks like. The difficulty is that, in this case, the

structure of the horizons, i. e. orbits which never meet any scatterer, is much more complicated than in

the planar case.
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In fact, Dettmann formulates three conjectures for Zd-periodic Lorentz processes. The first two

make claims for the tail asymptotic of the free path length. Roughly speaking the first one is related to

the generic cases whereas the second one to certain degenerate cases. (In both cases a Wiener limit is

expected with diffusive or super-diffusive scaling.) These conjectures are of purely geometric nature and

the main goals of our work is to establish them. We do this in a wider generality: 1) for semi-dispersing

billiards, 2) possibly with corner points, 3) and permitting arbitrary lattices L of finite covolume rather

than only Zd. By accepting the dynamical hypothesis that the multidimensional picture is analogous to

the 2D one (i. e. I. there is an exponential decay of cross correlations, and II. whether there is super-

diffusive or diffusive behavior only depends on the tail asymptotic of the free path length), the first

conjecture, among others, implies that - similarly to the planar case - the super-diffusivity covariance

has a simple form that can be calculated from the geometry of the billiard. The second conjecture

supports the hypothesis that, indeed, degenerate billiards, without open configuration sets of collision-

free orbits, always have diffusive behavior. These questions are related to Pólya’s visibility problem

(1918) (cf. [P18],[K08]), to theories of Bourgain-Golse-Wennberg (1998-) (cf. [BGW98]) and of Marklof-

Strömbergsson (2010-) (cf. [MS10]). The results also provide the asymptotic covariance of the periodic

Lorentz process assuming it has a limit in the super-diffusive scaling, a fact if d = 2 and the horizon is

infinite. Dettmann’s third conjecture supports the previously mentioned dynamical hypothesis since it

is about exponential decay of correlations being the subject of future progress of the theory.

The Chapter is structured as follows. In Section 6.2, we provide the definitions and formulate

Dettmann’s conjectures together with our results. In Section 6.3, we prove some finiteness lemmas

and introduce an important tool which is the fattening of the configuration space (or shrinking of the

scatterers, in other words). The key lemma of our proofs is the so-called Proportionality lemma, which

we discuss in Section 6.4. Section 6.5 and Section 6.6 are devoted to the proofs of Dettmann’s first and

second conjectures, respectively. In Section 6.7, we present interesting examples where the super-diffusive

limiting covariance matrix can be calculated: one of them is the first multidimensional semi-dispersing

billiard whose ergodicity got ever proved: a three-dimensional toric billiard with two cylindrical scatterers

(cf. [KSSz89]). The second one is the model of two hard balls on Td : d ≥ 3. Finally, we make some

concluding remarks in Section 6.8.

6.2 Setup and main results

6.2.1 L-periodicity and the dynamics

Definition 6. For a finite dimensional real, Euclidean vector space V we call a lattice a discrete additive

subgroup L ⊂ V , from which a basis of the vector space can be chosen.

The discreteness in the above definition is equivalent to saying that every compact set of the vector

space contains only finitely many elements of the lattice.

Definition 7. A linear subspace is called a lattice subspace if it can be generated by lattice vectors.
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Periodicity We consider an infinite configuration space Q̃ ⊂ Rd and a lattice L defining the periodicity

of the Lorentz gas. Namely, the configuration space is invariant under translations in L. We will also

consider the compact configuration space Q = Q̃/L.

Scatterers The complement of the compact configuration space consists of finitely many open, convex

sets Rd/L\Q =
⋃n
i=1Oi (called scatterers, or obstacles). Equivalently Rd \ Q̃ =

⋃n
i=1

⋃
l∈L(Oi + l). We

assume that the boundary of each Oi is a C3-smooth hypersurface.

Notice that we do not require the scatterers to be disjoint, nota bene different scatterer configurations

can lead to identical configuration spaces, if the differences are covered by other scatterers. Points in

the boundary intersections q ∈ ∂Oi ∩ ∂Oj are called corner points.

Curvature upper bound We also require that, at any point of the boundary ∂Q, the curvature

operator K is uniformly bounded from above: there exists a universal constant κmax, such that for every

tangent vector v of the hypersurface ∂Q, the inequality 0 ≤ K(v, v) ≤ κmax‖v‖2 holds.

Dynamics and phase space The continuous time dynamics Φt acts on the phase space M̃ = Q̃ ×
Rd/ ∼ where ∼ is the identification of pre-collisional and post-collisional velocities on ∂Q̃, which are

mirror images with respect to the tangent hyperplane of the boundary at that point. We also write

Φ[t1,t2]x for the set {Φsx|t1 ≤ s ≤ t2}. For later definitions and statements if we write x = (q, v) with

q ∈ ∂Q̃, then v is chosen as the post collisional one. At corner points there are more than one such

hyperplanes, and mirroring generally does not commute, so the dynamics is either not defined, or has

multiple values. (Since the speed |v| is invariant under the dynamics, in the literature one usually takes

the phase space M̃ = Q̃× Sd−1/ ∼ but for our purpose it is more suitable to consider M̃ as introduced

above.)

The action is free flight Φt(q, v) = (q + tv, v) as long as q + vt 6∈ ∂Q̃. On the boundary the velocity

is reset to the post collisional one, and free flight follows with that vector. Moreover, even if it hits

a scatterer and if the collision is tangent (sometimes called grazing), the dynamics is still free flight,

since the velocity is in the mirroring plane, so it does not change. The dynamics is invariant under

L-translations, so the compact phase space of the flow is M = Q × Sd−1/ ∼. For simplicity, we will

use the same notation Φt for the flow on the compact phase space as well. The Lorentz dynamics has

natural invariant measures, the Liouville-ones: dµ = const.dqdv on M̃ . The const. = 1 measure is called

Lebesgue. Similarly the invariant probability measure for the billiard dynamics on M is dµ = cµdqdv

with cµ = (volQ volSd−1)−1. We will also use the notation λd′ for the Lebesgue measure in dimension

d′ ≤ d.

Billiard and Lorentz process

Definition 8. Under the aforementioned conditions, the dynamics Φt(t ∈ R) on the phase space M is

called a semi-dispersing billiard and that on the phase space M̃ a (semi-dispersing) Lorentz process. If

the scatterers are strictly convex, then the billiard is called a dispersing one or a Sinai-billiard.
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In this Chapter we will consider a fixed semi-dispersing billiard (or the corresponding Lorentz process)

satisfying the aforementioned conditions.

The free flight function For x = (q, v)

τ(x) = inf{t > 0 | q + tv ∈ ∪iOi}

as usual, the infimum of the empty set is∞. This definition is slightly different from the usual definition.

In fact, at points where the first collision is tangential, the new definition gives a larger value. The

advantage of this change is seen by the semi-continuity Claim 6.10. It is obviously invariant under

L translations, so we will not distinguish whether the function is defined on the compact or on the

non-compact phase space.

Our main focus will be on the tail distribution of the free path length: F (t) = µ(τ > t), i. e. of the

probability of surviving without collision for time t.

6.2.2 Horizons

Definition 9. For a configuration point q ∈ Q̃ a free subspace V is a maximal (for containment) linear

subspace of Rd, such that q + V ⊂ Q̃. This latter is equivalent to requiring τ(q + v, w) = ∞ for all

v, w ∈ V .

Claim 6.1. Any free subspace V is a lattice subspace.

Proof. If we have a vector v ∈ V , then by invariance q+ tv+ l ∈ Q̃ for all t ∈ R and l ∈ L. If this vector

v is not parallel to a lattice vector, then the set tv + l is dense in some lattice subspace V ′, concluding

q + V ′ ⊂ Q̃, so V ′ ⊂ V by maximality.

Now, we proceed to the definition of the horizons. Pick a phase point (q, v) such that τ(q, v) = ∞
and choose a free subspace V at q which contains v (note that there might be more such free subspaces).

Project orthogonally all the scatterers of the periodic Lorentz process to q + V ⊥ (here, V ⊥ is the linear

subspace perpendicular to V ), and denote by Q̃q,V ⊥ the complement of the projection of all the scatterers.

Obviously, q ∈ Q̃q,V ⊥ , and V is a free subspace for q. For all q′ ∈ Q̃q,V ⊥ , either V is a free subsapce

for q′, or there exists some infinite line e ⊂ Q̃q,V ⊥ containing q′. Indeed, by the definition of Q̃q,V ⊥ ,

τ(q′, v) = ∞ for any v ∈ V , so the only reason for V not being a free subspace for q′ is the possible

lack of maximality (see Figure 6.1). Now, the maximal connected subset B̃H of Q̃q,V ⊥ containing q

and such points q′ for which V is a free subspace, is called the basis of the horizon. The horizon itself

is H̃ = B̃H × V ⊂ Q̃. Thus a horizon is a subset of the infinite configuration space. Note that by

construction, for every q ∈ H̃, V is a free subspace for q. Further, a horizon determines its basis B̃H

uniquely (up to translations in V ) and its free subspace, which will be sometimes referred to as VH .

Accordingly, the dimension of a horizon is dH = dimVH .

We also define the horizons as subspaces of the compact configuration space Q. Given a horizon H̃ ∈ Q̃,

the corresponding horizon H ∈ Q consists of the image of all points q ∈ Q̃ under the natural projection
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projection of a scatterer

B̃H

. . .

. . .

. . .

. . .

Figure 6.1: Basis of a horizon with VH = (λ, λ, 0) in Z3, and spherical scatterers of radius 1/2− ε.
Figure in V ⊥.

Rd → Rd/L. Observe that for two disjoint horizons H̃1 H̃2 in the infinite configuration space, both

intersecting with a parallelepiped defining L, the corresponding horizons H1 and H2 in the compact

configuration space can coincide. Finally, we write H̃ = H̃ ×V ⊂ M̃ and H = H ×V ⊂M for the phase

space analogues. If we talk about the base BH of a horizon H, then we think of B̃H for an arbitrary

q ∈ H as represented in Q.

The conjectures and the results will use the probability of remaining within a horizon H that is

FH(t) = µ ({(q, v) ∈M | q + sv ∈ H, ∀s ∈ [0, t]})

a quantity easier to calculate exactly. (cf. Equ. (26) of [D12] or (6.1)).

Definition 10. ([D12])

• A maximal horizon is one of the highest dimension for the given billiard (or Lorentz process).

• A principal horizon is one of the highest dimension possible, which is d− 1 if there are scatterers.

• A horizon H is incipient if its basis BH has (d− dH dimensional) measure zero.

Denote the set of maximal non-incipient horizons by H. It can be empty if all maximal horizons are

incipient, or there are no horizons at all.

We conclude this point with a simple lemma.

Lemma 6.2. The boundary of the basis of a horizon consists of C3, concave pieces except for principal

horizons when it consists of two endpoints of an interval.

6.2.3 Dettmann’s conjectures, [D12]

Conjecture 6.3. Consider an L-periodic Lorentz process with at least one non-incipient maximal hori-

zon. Then, as t→∞ we have

F (t) ∼
∑
H∈H

FH(t).
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Conjecture 6.4. Consider an L-periodic Lorentz process with incipient (but no actual) principal hori-

zon. Then, as t→∞, we have

F (t) �


t−2, d < 6

t−2 log t, d = 6

t−αd (1 < αd < 2), d > 6

These two conjectures are of purely geometric nature, whereas the following one concerns the dy-

namics, too.

Conjecture 6.5. Consider an L-periodic Lorentz process and let f, g : M → R denote zero-mean (wrt

the invariant measure µ) Hölder functions. Then, as t→∞, we have∫
{x∈M |τ(x)<t}

(f)(g ◦ Φt)dµ = o(F (t)).

6.2.4 Main results

Now we can formulate the main results of this Chapter.

Theorem 6.6. Consider an L-periodic semi-dispersing Lorentz process (possibly with corner points).

Assume it has at least one non-incipient maximal horizon. Then, as t→∞ we have

F (t) ∼
∑
H∈H

FH(t).

Theorem 6.7. Consider an L-periodic semi-dispersing Lorentz process (possibly with corner points).

Assume it has at least one incipient (but no actual) principal horizon. Then, as t→∞, we have

F (t) =


O(t−2), 3 ≤ d ≤ 5

O(t−2 log t), d = 6

O
(
t
2+d
2−d

)
, d > 6.

Further, if we also assume that the curvature is bounded away from 0 (from below) uniformly at every

point of ∂Q (dispersing case), then

F (t) �


t−2, 3 ≤ d ≤ 5

t−2 log t, d = 6

t
2+d
2−d , d > 6.

Remark. According to the dynamical theory of semi-dispersing billiards super-diffusive behavior can

only arise if the asymptotics of F (t) is non-integrable. Therefore Theorems 6.7,6.6 and (6.1) suggest that,

in the absence of principal, non-incipient horizon, no super-diffusive behavior is possible (cf. Section

6.7). Moreover, in the case of super-diffusivity the scaling is
√
t log t - again by (6.1).
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6.3 The method of fattening, finiteness and stability lemmas

6.3.1 Lattice geometry

Lemma 6.8. For any K > 0 the number of lattice subspaces V , such that vol (V/V ∩ L) < K is finite.

Proof. Consider the Grassmannian algebra Λ(Rd), and construct a lattice Λ(L) as follows. Choose a

base ai of the lattice L, by definition this is a base in the linear sense for Rd. All wedge products of ai

forms a base for the Grassmannian. Consider it as a base for a lattice. Observe, that this construction

does not depend on the choice of the basis, only on the lattice L. Since Λ(L) is a lattice there are only

finitely many points with length not greater than K.

If we have a lattice subspace V , then choose a base in it bj . The length of ∧jbj ∈ Λ(L) is exactly the

covolume of V ∩L inside V . Therefore all the less than K covolume sublattices are in the above defined

finite set, and these are distinct elements, consequently there are only finitely many of those.

By this lemma the minimal covolume of k dimensional sublattices exists, and we will denote it by `k.

For example `1 is the minimal length of nonzero lattice vectors, `d = vol
(
Rd/L

)
, and `0 = 1 as usual

for empty products.

Claim 6.9. If we have a lattice subspace V , and we take its orthogonal complement V ⊥, and we project

L orthogonally onto V ⊥ to get L⊥V , then we have

vol
(
Rd/L

)
= vol (V/V ∩ L) vol

(
V ⊥/L⊥V

)
.

Proof. Take a basis {ai}dim(V )
i=1 for L ∩ V , and extend this to a basis {ai}di=1 of L. Then |det(ai)| =

vol
(
Rd/L

)
. The determinant does not change if we project the last d − dim(V ) vectors orthogonally

to the orthocomplement of the first dim(V ) vectors. The projections give rise to a basis of L⊥V , and by

orthogonality |det(ai)| = | ∧dim(V )
i=1 ai|| ∧di=dim(V )+1 a

⊥
i |, which is the claim.

Now we can provide the asymptotic form of FH(t). Indeed, in our notations, Equ. (26) of [D12] reads

as

FH(t) ∼
volSdH−1

∫
BH

∫
BH

∆vis
BH

(q, q′)dqdq′

(1− P) volSd−1 vol
(
V ⊥/L⊥V

) 1

td−dH
=: CH

1

td−dH
(6.1)

where P = 1 − volQ
vol(Rd/L)

is the volume fraction covered by scatterers and ∆vis
BH

(q, q′) is the visibility

function providing the number of possible connecting intervals q, q′, lying in BH , of the points q, q′ (toric

geometry!). Note that the value of the integral is invariant under V -shifts of BH and is finite since

∆vis
BH

(q, q′) is bounded. So as to verify the latter, assume by contradiction that for each n > 0 one finds

qn, q
′
n such that ∆vis

BH
(qn, q

′
n) > n. Since the sets ∆n = {(q, q′)|∆vis

BH
(q, q′) > n} are closed subsets of

each other, they have a nonempty intersection containing some (q∞, q
′
∞) with ∆vis

BH
(q∞, q

′
∞) =∞. Thus

an infinite line is part of BH , which contradicts to its definition.

Remark. In the much interesting case of a principal horizon H, BH is an interval and the previous

formula becomes simpler:

FH(t) ∼ 2 volSdH−1|BH |2

(1− P) volSd−1 vol
(
V ⊥/L⊥V

) 1

td−dH
(6.2)
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6.3.2 Fattening, and its properties

The curvature upper bound implies in particular that, at any point of the boundary, a tangent sphere

of radius κ−1
max is contained completely in the scatterer. This allows us to define the shrinking of the

scatterers, or equivalently the fattening of the configuration space by 0 ≤ δ < κ−1
max as a parallel domain

(which is typically not homothetic to the original one). Indeed, define Oδi as the centers of all balls of

radius δ, which are contained in Oi:

Oδi = {q ∈ Oi | dist(q, ∂Oi) > δ}.

This leads to new configuration spaces Q̃δ = Rd \∪i ∪l∈L (Oδi + l), and Qδ = Q̃δ/L, which satisfy all the

above assumptions, with (κ−1
max − δ)−1 as a curvature upper bound.

The definition can be extended to negative values of δ. Also note our previous comment that dif-

ferent scatterer configurations can lead to the same configuration space. Since fattening is defined from

scatterers, the same configuration space can have different fattenings for the same δ. The semigroup

property of this operation holds Q0 = Q, and
(
Qδ
)δ′

= Qδ+δ
′

as long as δ, δ′ and δ + δ′ are all smaller

than κ−1
max. (By the latter restrictions this is not exactly a semigroup.)

It is then natural to denote the corresponding dynamics by Φδt . We denote by τ δ the free flight

function on the fattened space.

Claim 6.10. τ δ as a function on (−∞, κ−1
max)× M̃ is upper semi-continuous (to be abbreviated as USC)

in all of its variables (δ, x).

Proof. This only requires a proof at points x = (q, v), where τ δ(x) < ∞. By the definition of τ , for a

small ε > 0 we have q+(τ δ(x)+ε)v ∈ Oδi for some i. Since both the free flight dynamics and the fattening

are continuous, we have for nearby points x′, and nearby parameters δ′, that q′ + (τ δ(x) + ε)v′ ∈ Oδ′i .

The dynamics of a nearby point x′ may differ from the free flight dynamics only if it had a jab (non

tangent) collision ’before’, but then τ δ
′
(x′) is even smaller than τ δ(x) + ε. ( ‘before’ permits equality as

well thus the argument is also valid for simultaneous collisions at corner points.)

Monotonicity Of course, the fattening of the configuration space makes free flights longer. We will

use it not only for the above defined parallel domain, but for a larger set of inclusion relations, too.

Denote by Vε(q) (or by V(q)) the set of free subspaces at q ∈ Q̃ε (or at q ∈ Q̃, respectively).

Claim 6.11. For q ∈ Q, Vε(q) is an increasing function of ε ∈ [0, κ−1
max) in the sense that ∀0 < ε < ε′

and ∀V ∈ Vε(q) ∃V ∗ ∈ Vε′(q) such that V ⊂ V ∗.
Moreover, in the case of the previously defined fattening, the equality τ(x) = τε(x) holds with ε > 0

if and only if τ(x) =∞.

Also, if for (q, v) ∈M τε(q, v) =∞ for every ε > 0, then τ(q, v) =∞, too.

Proof. If Q ⊂ Q′, then for any x ∈ M we have x ∈ M ′, too. Then we can consider both free flights τ

and τ ′ and we have τ(x) ≤ τ ′(x).
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6.3.3 Local stability and finiteness of free subspaces

For q ∈ Q̃ and δ > 0 denote by B(q, δ) the δ−neighborhood of q. Unless specified otherwise, it will be

considered as a neighborhood in Q̃. (We use the same notation analogously for q ∈ Q.)

Lemma 6.12 (Local stability). For any q ∈ Q̃ there exists ξ > 0 such that, for every q′ ∈ B(q, ξ)∩ Q̃
and any free subspace V ξ(q′) for Φξ at q′, there is a free subspace V (q) for Φ at q such that V ξ(q′) ⊂ V (q).

In other words, the set of free subspaces as a function of the base point q ∈ Q and of ε > 0 is

upper semi-continuous at q ∈ Q, ε = 0 in the sense that for any qn → q and εn ↘ 0 and for any

V ∈ limn→∞ ∪k≥nVεk(qk) there is a V ∗ ∈ V(q) such that V ⊂ V ∗.

Proof. We prove the claim in its second form. Assume the contrary. Then there exists a velocity v∞ and

sequences qn → q, vn → v∞ and εn → ε such that τε(q, v∞) <∞ and τεn(qn, vn) =∞. This contradicts

Lemma 6.10.

Lemma 6.13. For any configuration point q ∈ Q̃ the set of free subspaces is finite.

Proof. The proof is inductive by codimension d− dim(V ). If dimV = d, then there are no scatterers at

all and Rd is the only free subspace. Assume we have proven the statement for dimensions larger than

d′(< d).

The induction step is indirect. We are going to show that, if the number of d′ dimensional free

subspaces is infinite, then for every positive ε there exists a free subspace of higher dimension in Q̃ε. We

will apply the inductive condition to Q̃ε (ε > 0 sufficiently small) to derive a contradiction.

For any given δ > 0 there are only finitely many d′ dimensional lattice subspaces, for which the

lattice translates are δ-separated. By the indirect condition we have a free subspace, for which the

lattice translates are δ-dense in a higher dimensional subspace. This higher dimensional subspace is

therefore free in Q̃ε (as long as ε < (1/7)δ2κmax), but is not free in Q̃ (free subspaces can not contain

each other by maximality).

By the inductive condition the number of higher (i. e. > d′) dimensional free subspaces is finite. For

each ε we create a vector ~nε such that the first coordinate is the number of d dimensional free subspaces

for q in Q̃ε, the second is the number of d− 1 dimensional free subspaces for q in Q̃ε, and so on, the last

coordinate is the number of d′+1 dimensional free subspaces for q in Q̃ε. We consider the lexicographical

ordering on these vectors, so the biggest is (1, 0, . . . , 0), and (0, 2, 3, 0, 1) > (0, 2, 2, 23, 11). The set of

possible vectors is not finite, but well ordered.

We claim that ~nε does not increase as ε decreases, and that ~nε is right continuous in ε. For the

first claim, observe that new free subspaces can only appear, if they were covered by higher dimensional

free subspaces for higher ε values. So the first changing coordinate is decreasing. For the second claim,

observe that Q̃ = ∩ε>0Q̃
ε, so if a free subspace is present for all small enough ε > 0, then it is also

present for ε = 0. Therefore

lim
ε↘0

~nε = min
ε>0

~nε = ~n0

the first equality follows from monotonicity and well-orderedness, the second from right continuity.

This is a contradiction with the previously proven statement: ~nε > ~n0 for all ε > 0.
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Lemma 6.14. There are finitely many maximal horizons.

Proof. (see also Lemma 1 in [D12] and Lemma A.2.2. of [Sz94]) For every q ∈ Q pick a stability

neighborhood using Lemma 6.12. Since Q is compact, one can choose a finite cover of Q by such

neighborhoods. This yields that there are only finitely many maximal dimensional free subspaces. It

remains to prove that for such a free subspace V , there are only finitely many corresponding horizons. For

this, project the scatterer configuration to V ⊥. Note that there is no higher dimensional free subspace

than V , thus the complement of the images of the scatterers is the union of the bases of horizons with free

subspace V . Since the complement of finitely many convex sets has finitely many connected components,

the statement follows.

6.4 The Proportionality lemma

The next lemma states that any long enough free flight has a fixed proportion of its time spent in a

horizon without leaving it. The technical formulation is a little bit different, and formally we will use

the statement below, where instead of a horizon we use the vicinity of a free subspace.

Lemma 6.15. For every ε > 0 there exist T > 0 and c ∈ (0, 1), such that for any x ∈M if∞ > τ(x) > T

then there exist τ(x) > s > t > 0 with s − t > cτ(x) and a free subspace p + V ⊂ Q̃ such that the

configuration component of Φu(x) is ε close to p+ V in Q̃ for every s > u > t.

Proof. The proof is indirect. We are going to suppose that there exists an ε > 0 such that for all T > 0

and c ∈ (0, 1) there exists x ∈ M with ∞ > τ(x) > T such that for any free subspace p + V ⊂ Q̃ and

for any time segment τ(x) > s > t > 0 if the configuration component of Φu(x) is ε close to p + V for

s > u > t, then τ(x) > (s− t)/c.

Choice of constants Choose Tn → ∞, and cn → 0, and choose (qn, vn) = xn ∈ M according to

the indirect assumption. By compactness of M we have an accumulation point x∞ = (q∞, v∞). Apply

lemma 6.12 to get ξ as the stability fattening factor for q∞. We have an ε from the indirect statement.

Choose η, such that 3
2η < ε, and 2dη < ξ. For 1 ≤ k ≤ d let us define

rk =
`k−1

`d

(η
2

)d−k
Dd−k, (6.3)

where Dj is the j-dimensional volume of the j-dimensional unit ball, and D0 = 1. Choose n such that

|qn − q∞| < η/2 and

Tn >
1

r1
, (6.4)

cn < 2−dη min
1≤k≤d

rk. (6.5)
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Inductive assumptions We are going to prove the following statements in an inductive fashion for

1 ≤ k ≤ d.

• We have linearly independent lattice vectors {li}ki=1, all from a free subspace for q∞ in Q̃.

• We have 0 < tk < τ(xn), such that the parallelepiped qn +
∑k
i=1 λili, λi ∈ [0, 1] is contained

in the (2k − 1)η radius tubular neighborhood of the trajectory segment Φ[0,tk]xn (the ρ tubular

neighborhood of a line segment [a, b] is the set of such points in Rd which are ρ-close to the line

line segment [a, b], and whose orthogonal projection to the line defined by a and b lies between a

and b).

• Denote by v⊥kn the component of vn which is orthogonal to span{li}k−1
i=1 (this gives vn for k = 1).

We require that:

tk <

k∑
i=1

2k−i
1

|v⊥in | ri
(6.6)

The last statement is purely technical.

Start of induction By condition (6.4) the tubular η/2 neighborhood of the free flight trajectory of

xn has a bigger volume than vol
(
Rd/L

)
, therefore it has a self intersection in Q = Q̃/L. This means

that, in this tubular neighborhood, there are two points q′, and q′ + l1 which are lattice translates with

0 6= l1 ∈ L. Moreover |q′− qn| < η/2 and |q′+ l1− (qn + t1vn)| < η/2 and 0 < t1 < τ(xn). Consequently

in the fattened space Q̃η/2 the line segment q′, q′+l1 is collision free and periodic, hence τη/2(q′, l1) =∞.

Applying the stability lemma we conclude that l1 is part of a free subspace for q∞ in Q̃. We also note

that the line segment qn, qn + l1 is in the tubular η neighborhood of the trajectory segment Φ[0,t1]xn.

Note that we only used τ(xn) > 1/r1 about the length of the free flight, so actually t1 < 1/r1, which

gives equation (6.6) for k = 1.

Inductive step Suppose we have all the inductive statements for k − 1. For simplicity we denote the

lattice subspace V = span{li}k−1
i=1 , and its orthocomplement V ⊥. Consider the orthogonal projection of

the free flight Φ⊥[0;τ(xn)](xn). Since |qn − q∞| < η/2 and ε > 3η/2 the projection of the free flight lies in

at least η length (and equivalently for at least η/|v⊥kn | time) in the ε neighborhood of q⊥∞, meaning that

the non projected free flight spends the same η/|v⊥kn | time in the ε neighborhood of the free subspace

containing V . By the indirect condition, the complete length of the projection |v⊥kn |τ(xn) is at least

η/cn > 1/rk, therefore

τ(xn) >
η

|v⊥kn |cn
(6.7)

By the definition of rk we have that the ((d− k + 1)-dimensional) volume of the tubular η/2 neigh-

borhood of the projected free flight trajectory, is bigger than `d/`k−1, so in particular bigger than

vol
(
Rd/L

)
/ vol (V/L ∩ V ), which is by Claim 6.9 the covolume of the projected lattice L⊥V . Therefore

this neighborhood contains a pair of points q′⊥, and q′⊥ + l⊥k , with 0 6= l⊥k ∈ L⊥V . The latter means that

there is lk ∈ L \ V , such that l⊥k is its projection. We can choose q′ such that |q′ − qn| < η/2 and

|q′ + lk − (qn + tvn)− v| < η/2, (6.8)

81



qn

qn + (t+ t′)vn

V ⊥
V

q⊥n

q′⊥ + l⊥k

tubular
nbh

q′⊥q′

q′ + lk − vq′ + lk

q∞

qn + tvn

projection

Figure 6.2: Constellation of vectors in the inductive step in the proof of lemma 6.15

for some τ(xn) > t > 0, and some v ∈ V . We can suppose, that v is in the parallelepiped
∑k−1
i=1 λili,

since the lattice component can be added to lk, it does not change the property that lk ∈ L \ V . The

inductive condition gives that v is in the tubular (2k−1 − 1)η neighborhood of the trajectory segment

Φ[0,tk−1]xn, we have from equation 6.8 that

|q′ + lk − (qn + (t+ t′)vn)| <
(

2k−1 − 1

2

)
η, (6.9)

where 0 < t′ < tk−1. The positivity of t′ comes from the sign of v in equation 6.8 and the fact that all

li has positive scalar product with vn by construction. It follows, that the line segment qn, qn + lk is in

the tubular 2k−1η neighborhood of Φ[0,t+t′]xn, and therefore the parallelepiped qn +
∑k
i=1 λili is in the(

2k − 1
)
η neighborhood of Φ[0,t+t′+tk−1]xn.

We declare tk = t + t′ + tk−1, and note that in the construction of t we have only used τ(xn) >

1/rk
∣∣v⊥kn ∣∣ about the length of the free flight, so actually t < 1/rk

∣∣v⊥kn ∣∣. Using t′ < tk−1, and equation

6.6 from the inductive condition for k − 1 we get

tk <
1

rk |v⊥kn |
+ 2

k−1∑
i=1

2k−1−i 1

|v⊥in | ri
=

k∑
i=1

2k−i
1

|v⊥in | ri
,

which is equation 6.6 for k. To show tk < τ(xn), observe that
∣∣v⊥in ∣∣ is decreasing with i, hence

tk <

k∑
i=1

2k−i
1

|v⊥in | ri
<

k∑
i=1

2k−i
1

|v⊥kn |min ri
< 2k

1

|v⊥kn |min ri
≤ η

|v⊥kn | cn
.

The last inequality follows from equation 6.5. The last expression in the row, and hence tk is smaller

than τ(xn) by equation 6.7.

In the fattened space Q̃(2k−1)η we have a k dimensional lattice parallelepiped, and (by L periodicity)

the generated lattice subspace free of scatterers. By the choice of η we can apply the stability lemma to

conclude that {li}ki=1 are from a free subspace for q∞ in Q̃.
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Contradiction The last (k = d) claim in the above induction states the existence of a d dimensional

free subspace, which means that there are no scatterers. Even in that case the indirect condition states

that the trajectory leaves this free subspace, which is the whole configuration space.

6.5 Proof of Theorem 6.6

Here, we prove the generalization of Dettmann’s first conjecture (i.e. Theorem 6.6).

6.5.1 Lower estimate

First, we prove the lower estimate, namely

lim supt→∞
∑
H∈H

FH(t)/F (t) ≤ 1. (6.10)

Since ∪H {(q, v) ∈M | q + sv ∈ H, ∀s ∈ [0, t]} ⊂ {(q, v) ∈ M | τ(q, v) > t}, (6.1) implies that (6.10)

follows, whenever

µ ({(q, v) ∈M | ∃H1 6= H2 ∈ H, ∀s ∈ [0, t], q + sv ∈ H1 ∩H2}) = o
(
tdH−d

)
is established. Since there are finitely many maximal horizons, it suffices to prove that for every pair

(H1, H2) ∈ H2,

FH1,H2
(t) = µ ({(q, v) ∈M | q + sv ∈ H1 ∩H2, ∀s ∈ [0, t]}) = o

(
tdH−d

)
.

Now assume that for fix (H1, H2) and for every n > 1, one can find xn ∈ M such that the trajectory

segment Φ[0,n]xn lies entirely in H1 ∩H2 (if not, then obviously FH1,H2
(t) = 0 for t large enough). Since

maximal horizons are closed, there is an accumulation point x∞ = (q∞, v∞) with Φ[0,∞]x∞ ∈ H1 ∩H2.

Thus the set VH1,H2 = VH1 ∩ VH2 is a non-empty subspace of VH1 . Obviously it is strictly smaller than

VH1
, otherwise H1 and H2 would coincide. Now project the scatterer configuration to V ⊥H1,H2

. In this

projection, the intersection of the images of H̃1 and H̃2 does not contain any subspace (indeed, if it

contained a line, that could be added to VH1,H2
). Then the same argument used to prove (6.1) provides

FH1,H2(t) = O
(
tdH−1−d).

6.5.2 Upper estimate

The estimate will work as an induction by dimension. If d = 1 the claim is trivial, the d = 2 case was

proved in [SzV07].

The idea of the present proof is briefly the following. The measure of points for which the trajectory up

to time t is spent in a horizon of dimension d′ is of order td
′−d. In order to prove the upper bound, one

needs to overcome two difficulties. First, there are trajectories which travel from one horizon to another

- this problem is solved by the Proportional lemma. The second problem is that although there are

finitely many maximal horizons, but there are infinitely many lower dimensional “attached” horizons,
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thus the above naive estimation cannot be summed up. To solve this problem, we slightly extend the

maximal horizons in the estimation - this way, they swallow all, but finitely many attached horizons,

while their leading constant (CH) do not change a lot.

Formally, in the general d dimensional case, we prove the following statement. For every δ > 0 there

exists a T <∞ such that for every t > T ,

F (t) ≤ (1 + δ)
∑
H∈H

CHt
dmax−d, (6.11)

where dmax is the dimension of the maximal horizons. To prove this, let us introduce the fattened version

of the maximal horizons. Since ∩ε>0Q̃
ε = Q̃, for ε small enough, the maximal horizons of the fattened

configuration space Q̃ε are in one to one correspondence with those of Q̃, and are slightly thicker then

those. Thus one can choose ε > 0 such that∑
H∈H

CH3ε < (1 + δ/4)
∑
H∈H

CH ,

where H3ε is the fattened version of the horizon H - which can also be written B3ε
H × VH - and CH3ε

is the corresponding constant defined in (6.1). Note that the 3ε neighborhood of H (BH , resp.) is a

proper subset of H3ε (B3ε
H , resp.). Fix this ε for the rest of the proof.

Estimator environments Now, for any fixed ε > 0, we construct a finite net of environments, called

estimator environments, which will be used by the estimate. In fact, this finiteness will have an essential

role in our arguments so despite of its simplicity we formulate the statement in a lemma.

Lemma 6.16. Given ε > 0, one can find a finite set of points q1, . . . , qi with V(qi) = {Vj(qi) : 1 ≤
j ≤ j(qi)} such that for arbitrary q ∈ Q and any free subspace V ∈ V(q), there are some qi and

j : 1 ≤ j ≤ j(qi) such that q is in the ε neighborhood of qi and V ⊂ Vj(qi).
Consequently, the 2ε neighborhood of qi + Vi,j contains the ε neighborhood of q + V .

Proof. Using Lemma 6.12, for every point q ∈ Q pick a stability neighborhood U(q) of radius ξ(q) < ε.

By the compactness of Q, fix a finite subcover ∪ii=1U(qi) of Q from these environments and remember

that by Lemma 6.13 each V(qi) = {Vj(qi) : 1 ≤ j ≤ j(qi)} is finite. Then by the definition of stability

neighborhoods, we have that for arbitrary q ∈ Q and any free subspace V ∈ V(q), there are some qi and

j : 1 ≤ j ≤ j(qi) such that q is in the ε neighborhood of qi and V ⊂ Vj(qi).

Remark Those qi +Vi,j ’s with dimVi,j = dmax are necessarily subsets of some maximal horizons. Since

H2ε contains the 2ε neighborhood of H, the 2ε neighborhoods of these qi + Vi,j ’s are covered by the

H2ε’s. Thus we call the sets H2ε for H ∈ H, and the 2ε neighborhoods of the remaining qi + Vi,j ’s

(i ∈ I, j ∈ Ji) estimator environments. Remind that dimVi,j < dmax for all i ∈ I, j ∈ Ji, and that

the ε neighborhood of any affine free subspace is covered by some estimator environment - thus the

Proportionality lemma asserts that the c portion of a long enough free flight is spent in an estimator

environment.
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Proof of (6.11) In this paragraph, we finish the proof of Theorem 6.6. First, with the already fixed

ε, use the Proportionality lemma to obtain some c and T . From now on, we always assume t > T . For

the estimation of µ(τ > t), we distinguish three cases.

Case 1 Such points x = (q, v) ∈ M with τ(x) > t, for which the time interval [s1, s2] with

0 < s1 < s1 + cτ(x) < s2 < τ(x) guaranteed by the Proportionality lemma is spent in the 2ε

neighborhood of qi + Vi,j for some i ∈ I, j ∈ Ji.
Since there is a line segment of length at least ct/2 spent in the neighborhood of qi +Vi,j , the angle of v

and Vi,j is necessarily smaller than 2/(ct). As it was also used by the proof of (6.1), the d−1 dimensional

Lebesgue measure on Sd−1 of such velocity vectors v is asymptotically(
2

ct

)dimVi,j−d

.

Since dimVi,j < dmax and there are finitely many estimator environments, for t large enough the µ-

measure of points of Case 1 are smaller than

δ/4
∑
H∈H

CHt
dmax−d.

Case 2 (Main term) Such points x ∈M with τ(x) > t, where the configuration component

of Φ[0,t]x is a subset of H3ε for some H ∈ H.

The same argument used to prove (6.1) implies that the µ-measure of such points is asymptotically not

larger than ∑
H∈H

CH3εtdmax−d,

thus for t large enough, is smaller than

(1 + δ/2)
∑
H∈H

CHt
dmax−d.

Case 3 Such points x ∈M with τ(x) > t not treated in Case 2, for which the time interval

[s1, s2] with 0 < s1 < s1 + cτ(x) < s2 < τ(x) guaranteed by the Proportionality lemma is spent

in H2ε for some H ∈ H. It is worth noting that one difficulty of this case comes from the fact that it

covers an infinite number of lower dimensional ”attached” horizons.

Note that ΠQΦ[0,τ(x)]x for such an x has a part of length at least cτ(x)/2 in the region H3ε \H2ε and

also crosses this region in the sense that intersects with both H2ε and the complement of H3ε. Thus

there are some s3, s5 with 0 < s3 < s3 + cτ(x)/2 < s5 < τ(x) such that ΠQΦs3x is in ∂BH2ε × VH and

ΠQΦs5x is in ∂BH3ε × VH (or ΠQΦs3x is in ∂BH3ε × VH and ΠQΦs5x is in ∂BH2ε × VH , which case can

be treated analogously). As a starting idea, one can think about this trajectory segment as a long free

flight in a dmax dimensional billiard, which guarantees that the Lebesgue measure of points of Case 3

are not large. More precisely, write

Φs3x = (q⊥ + q‖, v⊥ + v‖),
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where q⊥ and v⊥ are in V ⊥H , while q‖ and v‖ are in VH . Note that q ∈ Q by definition, but the

components q⊥, q‖ are in Rd. The projection of the trajectory segment ΠQ̃Φ[s3,s5]x to V ⊥H , prescribed

by q⊥ and v⊥, is going to be used to construct the billiard table of dimension dmax, while q‖ and v‖ are

going to define the trajectory in this lower dimensional billiard table. There is a point z ∈ ∂BH such

that in the intersection point of z + VH and ∂Q the d dimensional sphere of radius κ−1
max touching the

appropriate scatterer from inside has a center, the projection of which to V ⊥H is collinear with z and

q⊥. (See Figure 6.3.) Let us denote this sphere by S. Now, consider the affine subspace q⊥ + VH . By

definition, there exists a point q⊥ + p in this affine subspace such that the d dimensional ball of radius

2ε and center q⊥ + p is contained completely in S and hence in a scatterer.

Now let us define a dmax dimensional billiard configuration space: the periodicity is L∩VH , there is one

spherical scatterer of radius ε and the center of this spherical scatterer is p (when Rdmax is identified with

VH). Denote its configuration space by Q̃dmax . Note that the intersection of Q̃ and q⊥+VH is contained

in Q̃dmax
(again, with Rdmax being identified with VH). Further, we claim that with the notation

s4 = s5 ∧min{s > 0 : dist(q⊥, q⊥ + (s− s3)v⊥) > ε},

for every s3 < s < s4, the intersection of Q̃ and q⊥+ (s− s3)v⊥+VH is also contained in Q̃dmax
. Indeed,

since dist(q⊥, q⊥ + (s − s3)v⊥) < ε, the d dimensional ball of radius ε and center q⊥ + (s − s3)v⊥ + p

is contained in the ball of radius 2ε and center q⊥ + p. The latter statement is in general not true for

s = s5, since q⊥ + (s5 − s3)v⊥ can be outside of the projection of S (see Figure 6.3), that is why we

needed to introduce s4.

Now, we can easily map a long free flight in this dmax dimensional billiard to our trajectory segment

Φ[s3,s5](x). Namely, let us choose the free flight of the phase point (q‖, v‖) in Qdmax
. Due to the

construction, this free flight is longer than (s4 − s3)/2. We claim that this is longer then a universal

constant (in the sense that does not depend on x but may depend on ε and also on H since there are

finitely many of them) times t, i.e.

Lemma 6.17. There is a constant c′(ε), such that s3 < s3 + 2c′(ε)τ(x) < s4 ≤ s5.

Proof. It is enough to prove that there exists some c′′(ε) such that s3 + c′′(ε)(s5 − s3) < s4. Since

|(s4− s3)v⊥| > ε, it is enough to give an upper bound for |(s5− s3)v⊥|. Thus we need that the function

∆(y, z) = max{r|∃l ∈ L : y, z + l ⊂ BH3εand dist(y, z + l) = r} (6.12)

on BH3ε ×BH3ε is bounded (then ε divided by this bound is an appropriate choice for c′′(ε)).

In order to see that (6.12) is bounded, first we prove that the set {∆(y, z) ≥ n} is closed for any integer

n. Choose any convergent sequence (yi, zi) → (y∞, z∞) from the above set. There are corresponding

li ∈ L vectors by the definition of ∆(y, z). Then the set {li : i ≥ 1} cannot be infinite, since if it was,

then one could choose a convergent subsequence of li/|li| and the line with this direction containing y∞

would be a subset of BH3ε which is a contradiction. Thus the set {li : i ≥ 1} is finite. Hence one can

choose a subset (yik , zik) → (y∞, z∞) with lik = l, yielding ∆(y∞, z∞) ≥ n. Whence {∆(y, z) ≥ n} is

closed. Now assume by contradiction that ∆(y, z) is not bounded, thus the sets {∆(y, z) ≥ n} for n ≥ 1
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Figure 6.3: Construction of the dmax dimensional billiard table - figure in V ⊥H

are closed subsets of each other. Thus there is a pair (y, z) such that ∆(y, z) =∞. Just like before, one

can easily deduce the existence of an infinite line in BH3ε through y which is a contradiction. Thus we

have proved that (6.12) is bounded and thus verified the existence of an appropriate c′(ε).

Now, we finish the proof of Case 3. Since at least ct time of the free flight is spent in H2ε, the angle

of v and VH is smaller then C1/t with some C1. Thus the points x = (q, v) of Case 3 are elements of the

set Rd/L × V (t), where

V (t) = {v ∈ Sd−1 : ∠(v, VH) < C1/t}.

As before, λd−1(V (t)) < C2t
dmax−d. Every point (q, v) ∈ Rd/L × V (t) can uniquely be written in the

form

(q, v) = (q⊥0 + q
‖
0 , v
⊥ + v‖)

with q⊥0 , v
⊥ ∈ V ⊥H , q

‖
0 , v
‖ ∈ VH . The conditional measure of λd × λd−1 on Rd/L × V (t) to such points

where q⊥0 , v
⊥ are fixed, is also Lebesgue on the possible set of pairs (q

‖
0 , v
‖). Note that since |v⊥| is

small, the set of possible v‖’s is a dmax dimensional sphere of radius close to one. But the set of possible

q
‖
0 ’s depends on q⊥0 , since V ⊥H is not necessarily generated by lattice vectors. Thus write

q(q) = {q̄ ∈ Rd/L : q̄⊥0 = q⊥0 }.

One can easily prove that there exists some η > 0 such that

λd{q : λdmax(q(q)) < η} < CHδ

8cµC2
.

Thus

µ({q : λdmax
(q(q)) < η} × V (t)) <

δ

8
CHt

dmax−d.

Now we can assume that

λdmax
(q(q)) > η. (6.13)

87



Since the c portion of the line segment ΠV ⊥H
ΠQΦ[0,τ(x)]x is spent in H2ε, once q⊥0 , v

⊥ are fixed, the

number of possible q⊥’s (that is, the projection of ΠQΦs3x to V ⊥H ) is bounded. This, the inductive

hypothesis (used on the billiard table Q̃dmax), Lemma 6.17 and (6.13) imply that once q⊥0 , v
⊥ are fixed,

the λdmax × λdmax−1 measure of such coordinates (q
‖
0 , v
‖) with which the free flight is longer than t is

bounded by some universal constant times t−1. Consequently, for t large enough, the µ measure of points

in Case 3 are smaller than
δ

4

∑
H∈H

CHt
dmax−d.

6.6 Proof of Theorem 6.7

6.6.1 Lorentz process with small scatterers

First, we recall the following result of Bourgain, Golse and Wennberg (see [BGW98] and [GW00]).

Consider a billiard table with periodicity ZD (D ≥ 2) and one spherical scatterer of radius r < 1/2.

Define µZ,r and τZ,r for this billiard table as before. Then there exist c′(D) and C ′(D) such that

c′(D)

trD−1
≤ µZ,r(τZ,r > t) ≤ C ′(D)

trD−1
(6.14)

is true whenever

t > r1−D. (6.15)

In the case t ≈ rD−1, the so-called Boltzmann-Grad limit, much more is known than (6.14), see [MS10].

In order to prove Theorem 6.7, we need a slightly extended version of the above estimation.

Let L′ be any D-dimensional lattice and let q1, . . . qn′ ∈ RD/L′. Consider the billiard table with period-

icity L′ and finitely many disjoint spherical scatterers of radius r centered at q1, . . . qn′ . Let Q′, M ′, µ′

and τ ′ be defined accordingly.

Lemma 6.18. There exist c′(L′) and C ′(L′) such that

c′(L′)
trD−1

≤ µ′(τ ′ > t) ≤ C ′(L′)
trD−1

(6.16)

is true whenever

t > r1−D. (6.17)

Remark Obviously, Lemma 6.19 also implies that for any fixed η > 0, (6.16) is true if t > ηr1−D, with

some c′(L′) and C ′(L′) depending also on η. Thus, whenever we refer to (6.17), it may be true only with

some η, but in order to make the exposition simpler, we do not keep track of the η’s.

Proof. First, we prove the upper estimate. Pick a basis {ai}Di=1 of the lattice L′ and denote by A the

matrix whose i-th column is ai. Also write σi for the i-th smallest singular value of A−1. Further, identify

RD/ZD with the unit cube and RD/L′ with the parallelepiped (ai)
D
i=1. Without loss of generality, we
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may assume that one of the spherical scatterers is centered at the origin (i.e. q1 = 0).

Now assume that for some x′ = (q′, v′) ∈M ′, τ ′(x′) > t. Then for the point

φ(x′) := xZ = (A−1q′,
A−1v′

‖A−1v′‖
),

we have

τZ,rσ1(xZ) > tσ1.

Indeed, the image under A−1 of the sphere of radius r centered at the origin contains the sphere of radius

rσ1 (the images of the possible other scatterers are simply omitted). The Lebesgue measure on Q′ is

transformed by φ to det(A−1) times the Lebesgue measure in RD/ZD minus an ellipse centered at the

origin, which is dominated by the Lebesgue measure on RD/ZD \B(0, rσ1). The image of the Lebesgue

measure on SD−1 by φ is 1
‖A−1v′‖dv

′.

Thus, using (6.14), one can prove the second part of (6.16) with

C ′(L′) = det(A−1)σnσ
−D−1
1 C ′(D)

at least, for t > σ−D1 rD−1, but consequently for t > rD−1 too, possibly with a different C ′(L′).
Now, we prove the lower estimate. Observe that it is enough to prove the statement for the special case

L′ = ZD. Indeed, once c(ZD) is found, one can prove the existence of c(L′) for any L′ the same way as

in the upper estimation.

Thus the statement we going to prove is indeed a slight modification of the first part of (6.14): the

difference is that we have n′ spherical scatterers of radius r centered at arbitrary points q1, . . . qn′ , instead

of just one scatterer. We claim that an obvious modification of the proof of Golse and Wennberg applies

here. Indeed, if q is an integer vector with g.c.d.(q) = 1 and one projects the scatterer configuration to

the line with direction q, then observes a gap of length at least (1/|q| − 2n′r)/n′ among the images of

the scatterers, assuming of course that r < (2n′|q|)−1. Hence there is a principal horizon perpendicular

to q (or “sandwich layer”) whose middle third has width

aq,r =
1

3

(
1

|q|
− 2n′r

)
1

n′
.

Considering only those q’s for which |q| < qmax = (4n′r)−1, the density of the middle third layers is larger

than (12n′)−1 (instead of 1/6, see page 1158 in [GW00] for more details). With these modifications, the

proof of [GW00] yields the statement.

6.6.2 Upper estimate

We assume that there is one principal incipient horizon, if there were more, an analogous proof would

apply. As in Subsection 6.5.2, let us fix an ε, define the estimator environments - one of them is the

2ε neighbourhood of the principal incipient horizon (H2ε), the others have dimension at most d − 2.

The proportionality lemma implies that the c portion of a long enough flight is spent in one of the
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estimator environments. The µ-measure of such points for which this is not H2ε is O(t−2) as in Case 1

of Subsection 6.5.2.

The essence of the proof is the following statement:

Lemma 6.19. For a fixed ε small enough,

λd × λd−1 ({x = (q, v)|q ∈ H2ε, τ(x) > s,ΠQΦ[0,s]x ⊂ H2ε})

=


O(s−2), 3 ≤ d ≤ 5

O(s−2 log s), d = 6

O
(
s

2+d
2−d

)
, d > 6.

Proof. Denote by V the d − 1 dimensional hyperplane defining the incipient horizon. Without loss of

generality, we may assume that the origin is in this horizon, that is H = V . Since V is a lattice subspace,

one can choose a lattice vector vd ∈ L\V such that V ∩L and vd generate L. Since R/L can be identified

with a parallelepiped generated by v1, . . . , vd with v1, . . . vd−1 ∈ V , for every q ∈ Q ∩ H2ε, there is a

unique decomposition

q = qV + qW

with qV ∈ V , qW ‖ vd and |qW | < 2ε cotα, where α is the angle of V and vd. We also write

v = v‖ + v⊥,

where v ∈ Sd−1, v‖ ∈ V, v⊥ ∈ V ⊥.

The idea of the proof is reminiscent to that of Case 3 in Subsection 6.5.2. If there is a long flight in H2ε,

then v is close to V . Thus we can think of this trajectory as a long free flight in a d − 1 dimensional

billiard. Note that here, the d− 1 dimensional scatterer size can be arbitrary small, since the trajectory

is close to V . Thus a delicate analysis of this scatterer size, and the upper estimation of (6.16) are

needed.

Let us chop the set of possible qW ’s and v⊥’s into the following pieces:

Vi = {v⊥ ∈ V ⊥||v⊥| ∈ [2−i, 2−i+1)} i > log s− log 2ε

Qj = {avd||a| ∈ [2−j cotα, 2−j+1 cotα)} j > − log 2ε.

Accordingly, we write

Hj = H2−j+1

\H2−j .

Here, and also in the sequel, log always stands for log2.

Now assume that v⊥ ∈ Vi and qW ∈ Qj for some fix i, j. We want to estimate the λd−1 × λd−2 measure

of parameters qV , v‖ with which (q, v) is an element of the set

Qlong = {x = (q, v)|q ∈ H2ε, τ(x) > s,ΠQΦ[0,s]x ⊂ H2ε}.

We can assume that the projection of qW and v⊥ are oppositely oriented. If they are not, a simpler

version of the forthcoming proof is applicable.

From now, we distinguish four cases.
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vd

Hj

Hk

H

Figure 6.4: H2ε - a d dimensional picture. Densely dotted trajectory: j < i − log s. Densely dashed

trajectory: j ≥ i− log s.

• Case a i < d
d−2 log s and j ≤ i− log s.

In this case, there is a line segment of ΠQΦ[0,s]x of length at least s/5 spent in the strip Hj+1.

Note that for every q ∈ Hj+1, the intersection of Q and q + V is a billiard configuration of

dimension d − 1. Further, this billiard configuration is contained in a larger one, where there is

only one spherical scatterer of radius approximately
√
κ−1

max2−j . Indeed, there is at least one d

dimensional scatterer touching V from the appropriate side. If one takes the d dimensional ball of

radius κ−1
max touching V in this point and considers the intersection of the ball and a close enough

affine hyperplane, obtains a d − 1 dimensional ball of the desired radius (which is roughly the

square root of the distance of the hyperplanes). As in Case 3 of Subsection 6.5.2, by projecting

the previously obtained trajectory segment of length s/5 to the “lower boundary of Hj+1” (i.e.

∂H2−j ) we obtain a free flight of length at least s/6 (if ε is small enough) in a d− 1 dimensional

billiard table with periodicity L∩V and one spherical scatterer of radius
√
κ−1

max2−j . Note that this

mapping to the lower dimensional billiard is simpler then that of Subsection 6.5.2, since V ⊥ is one

dimensional, thus the billiard configuration space in q+V is increasing as q moves from ∂H2ε to V

(the issue of moving scatterers is simply absent). Observe that i < d
d−2 log s and j ≤ i− log s imply

j ≤ 2
d−2 log s which yields that (6.17) is satisfied by t = s, r = κ

−1/2
max 2−j/2 and D = d − 1. Thus

the second part of (6.16) implies that whenever v⊥ ∈ Vi and qW ∈ Qj are fixed, the λd−1 × λd−2

measure of parameters qV , v‖ with which (q, v) ∈ Qlong is O(s−12j(d−2)/2).

• Case b d
d−2 log s ≤ i < d+2

d−2 log s and j ≤ 2
d−2 log s.

The same estimation as in Case a yields that the λd−1 × λd−2 measure of parameters qV , v‖ with

which (q, v) ∈ Qlong is O(s−12j(d−2)/2).

• Case c i < d
d−2 log s and j > i− log s.

Note that distance of Π⊥V ΠQx and Π⊥V ΠQΦsx (here, Π⊥V is the orthogonal projection to V ⊥) is at

least s2−i, which is larger than 2−j . Hence there is a k such that a line segment of ΠQΦ[0,s]x of

length at least s/8 is spent in Hk and 2−k is larger than s2−i/4. Now using the same estimation

as in Case a in the strip Hk, one obtains that the λd−1 × λd−2 measure of parameters qV , v‖ with

which (q, v) ∈ Qlong is O(s−1− d−2
2 2i(d−2)/2).
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• Case d d
d−2 log s ≤ i < d+2

d−2 log s and j > 2
d−2 log s, or i ≥ d+2

d−2 log s.

In this case, we simply estimate the measure of the appropriate parameters qV , v‖ by a constant.

Note that λ1(Vi) ∼ 2−i and λ1(Qj) = 2−j . Taking into account this fact and the estimations of Cases

a-d, one obtains that µ(Qlong) is bounded from above by some constant times the following expression:

d
d−2 log s∑

i=log s−log 2ε

 i−log s∑
j=− log 2ε

2−i2−js−12j(d−2)/2

+ 2−is2−is−1− d−2
2 2i(d−2)/2


+

d+2
d−2 log s∑

i= d
d−2 log s

 2
d−2 log s∑
j=− log 2ε

2−i2−js−12j(d−2)/2

+ 2−is
2

2−d

+ s
2+d
2−d .

An elementary computation shows that this is the same order of magnitude as stated in the lemma.

In order to finish the proof of the upper estimate, we need to bound the measure of points x = (q, v)

for which τ(x) > t and the proportionality lemma gives the estimator environment H2ε. Observe that in

this case, the angle of v and V is necessarily smaller than 2ε/t. The Lebesgue measure of point for which

q ∈ H2ε is bounded by the desired order of magnitude due to Lemma 6.19. Thus assume that q /∈ H2ε.

For every such point x = (q, v), there is a point φ(x) = xb = (qb, v), which is the initial point of the free

flight segment in H2ε (i.e. ∃s < (1 − c)τ(x) : Φs(x) = (qb, v), qb ∈ ∂H2ε, ΠQΦ[s,s+cτ(x)]x ⊂ H2ε). The

proportionality lemma also implies that for any such xb,

λ1(φ−1(xb)) <
1

c
max{s : s < τ(xb),ΠQΦ[0,s]xb ⊂ H2ε}.

Thus, also using Lemma 6.19 (with s = ct/2), the integral∫
∂H2ε×{v:∠(v,V )<2ε/t}

λ1(φ−1(xb))dλd−1(qb)× λd−1(v)

can be bounded by the desired order of magnitude which yields the upper estimate of Theorem 6.7.

6.6.3 Lower estimate

Now, we prove the second part of Theorem 6.7, which is a lower estimate in the dispersing case.

In dimension d ≤ 5, the statement is straightforward, since obviously there are horizons of codimension

2 “attached” to the incipient horizon (indeed, a hyperplane parallel to the incipient horizon and close to

it, intersects the scatterers in tiny convex bodies - approximate ellipsoids - which depend continuously

on the distance of the hyperplanes). Then the same argument used to prove (6.1) provides a subset of

the phase space of measure O(t−2) consisting of points having free flight longer than t.

In dimension d ≥ 6, we use a simplified version of the proof of Lemma 6.19. The main observation is

that due to the lower bound on the curvature, the scatterers touch the incipient horizon in finitely many

points (in q1, . . . qn′ , say). Further, the intersection of the scatterers and a hyperplane parallel to the

incipient horizon at distance h from it, is contained in n′ spheres of radius
√
κ−1

minh centered at q1, . . . qn′ .
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Thus in Cases a-d of Lemma 6.19, by such a choice of i and j, where s2−i ≈ 2−j , using the first part of

(6.16) instead of the second, one easily obtains a lower bound of the same order of magnitude. In fact,

for d > 6, only one pair of indices (i, j) is enough. Namely, choose

i = d d

d− 2
log se

and j = di − log se. With this choice and the notation r =
√
κ−1

mins2
−i, s = t, (6.17) is fulfilled, hence

the Lebesgue measure of points x = (q, v) with v⊥ ∈ Vi and qW ∈ Qj having free flight longer than s is

at least some constant times 2−i2−j , thus another constant times s
2+d
2−d .

In dimension d = 6, one needs to consider all indices i with log s− log 2ε < i < 3/2 log s− log κmin and

for a fix i, the index j = i − log s. Similarly to the case d > 6, the lower estimation of order s−2 log s

follows.

6.7 Examples

Equ. (35) of [D12] provides the form of the limiting covariances for the super-diffusive limit of dispersing

Lorentz processes assuming his Conjectures 1 and 3 hold. His derivation of Equ. (35) from the conjectures

can be extended to the semi-dispersing case thus our Theorem 6.6 can be used. His Conjecture 3 is of

dynamical nature and for clarity we briefly summarize what is known and what we expect in general.

For brevity - beside [D12] - we rely here on the works [Y98, BT08] where, for instance, the complexity

hypothesis is also used and the precise forms of exponential decay of correlations (EDC) and of the

central limit theorem (CLT) are given.

• [BT08] For multidimensional (d > 2) dispersing billiards with finite horizon satisfying the com-

plexity hypothesis, EDC and CLT hold and the diffusivity covariance is given by Green-Kubo;

• Conjecture A (Dynamical) For multidimensional (d > 2) semi-dispersing billiards without a

principal horizon and satisfying the complexity hypothesis, EDC and CLT hold and the diffusivity

covariance is given by Green-Kubo;

• Conjecture B (Dynamical) For multidimensional (d > 2) semi-dispersing billiards with at least

one principal horizon and satisfying the complexity hypothesis, EDC and the super-diffusive limit

statement with scaling
√
n log n or

√
t log t hold. (cf. [SzV07, ChD09a] for d = 2).

Example 1: Two hard balls of radii 0 < r < 1/4 on Td. Under the complexity hypothesis it

follows from [BT08] and from Theorem 6.6 that the super-diffusive limiting covariance of the system is

D2 =
1

1− (2r)d|Bd|
|Bd−1|
|Sd−1|

(
1

2
− 2r)2

Here Bd is the d-dimensional unit ball, and Sd−1 is its surface (cf. Equ. (37) of [D12]).
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Example 2: Cylindrical billiard on T3. (We note that this was the first semi-dispersing billiard

whose ergodicity had been established (cf. [KSSz89]).) We assume that on T3 we are given two non-

intersecting cylindrical scatterers C1 and C2 - for simplicity - of equal radii 0 < r < 1/4. Suppose that

the generator of Ci is parallel to the coordinate direction ei, i = 1, 2 and the distances between the two

cylinders - in the coordinate direction 3 - are z and w. In this case we have two principal horizons of

widths z and w parallel to the coordinate plane (e1, e2) and super-diffusion is expected in the directions

e1, e2 whereas regular one in the direction of the axis e3.

D11 = D22 =
1

4(1− 2r2π)
(z2 + w2)

D33 = 0

Of course, - if in the direction of the axis e3 - we apply diffusive scaling, then the limiting covariance

should again be given by the Green-Kubo formula.

6.8 Concluding remarks

1. In order to prove the above Conjecture B, a first step could be determining the limiting joint

distribution of τ and the forthcoming free flight (i.e. τ ◦ Φτ+, where Φτ+ means that the velocity

is the post-collisional one), when τ is large (see also Conjecture 3 in [D12] and [B92], [SzV07] in

the planar case). Thus we formulate another conjecture.

• Conjecture C (Geometric) In a d dimensional dispersing billiard with at least one principal,

non-incipient horizon, if τ is large, then τ ◦ Φτ+ is typically of order τ1/d.

Now we explain why we expect Conjecture C to be true. Note that if τ(x) is larger than some large

t, then x = (q, v) - with probability close to one - is such that q is in a principal horizon H, and

the angle of v and VH is roughly 1/t. Further, the component of v in VH is uniformly distributed.

After some time, the free flight from x reaches the boundary ∂BH × VH of the horizon. Now we

claim that the remaining time until the collision is typically t
d−2
d , or in other words, the distance

of ΠV ⊥H
ΠQΦτ(x)x and BH is roughly t−2/d. Indeed, in the hyperplane qh + VH at distance h from

BH + VH , there are d − 1 dimensional scatterers (approximate ellipsoids of bounded eccentricity

due to the dispersing assumption) of diameter
√
h. Thus (6.16) yields that in this hyperplane, a

λd−1 × λd−2-typical phase point does not collide until time ht if and only if ht << h
2−d
2 . Now a

similar argument used to prove of Lemma 6.19, implies that typically the distance of ΠV ⊥H
ΠQΦτ(x)x

and BH is roughly h = t−2/d. Denote the post collisional velocity by v′. We expect that the angle

of v′ and VH is typically of order t−1/d which would provide Conjecture C. Nevertheless, this angle

can be smaller.

2. [Sz08] also raised the problem of the limiting behavior of a quasi-periodic Lorentz process, for

instance that of the Penrose-Lorentz one. As [W12] points out the tail distribution of the free path
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length is exponential in random Lorentz processes with non-intersecting scatterers whereas - as

we have seen - it is algebraic in the presence of horizons. The simulations of the author suggest

that for a 1-dimensional quasi-periodic paradigm of the Lorentz process, this tail behavior is not

exponential. On the other hand, [KS12] stresses that for the random non-intersecting Lorentz

process one has normal diffusion and observes computationally three different regions for a 2-

dimensional quasi-periodic Lorentz process showing super-diffusion, diffusion and subdiffusion.
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Chapter 7

Lorentz process with infinite horizon

and the martingale method

7.1 Introduction

As it was mentioned in Chapter 1, the super-diffusively rescaled trajectory in planar periodic Lorentz

processes with infinite horizon converges to the Brownian motion. This was first conjectured by [B92],

later proven in [SzV07] (in a slightly weaker form, namely the convergence of finite dimensional distri-

butions), and recently in [ChD09a]. The two proofs are essentially different: [SzV07] uses Young towers,

while [ChD09a] combines the standard pair technique with Bernstein’s big block- small block technique

from Probability theory.

In case of finite horizon, local perturbation does not spoil the Brownian limit, as it was proven in

[DSzV09]. The proof of this result is based on the standard pair technique, but the probabilistic in-

gredient is the martingale method of Stroock and Varadhan [SV06]. Thus there is some hope that the

martingale method might be useful in attacking the corresponding problem in infinite horizon (i.e. Con-

jecture 1.1), too. This is the motivation of our present work.

Here, we identify the possible limit points of the super-diffusively rescaled trajectory in planar periodic

Lorentz processes (which is, of course, Wiener process, solely) with the use of the martingale method.

This is almost the same, as giving a third proof for the Brownian limit in periodic Lorentz process with

infinite horizon - what missing, is checking that the weak limit indeed exists, i.e. proving tightness. We

also stress the fact that our proof is strongly based on the one of [DSzV09] and also uses similar cut-offs

(although not the same) as, and other technical results from [ChD09a].

In Section 7.2 we formulate our statement and provide the basic definitions and lemmas for its proof,

while in Section 7.3, we present the actual proof.
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7.2 Preliminaries

Here, we summarize very briefly the most important notions and notations from Sinai billiards needed

in the present work. For a much ampler description, consult [CM06]. Define D = R2 \ ∪∞i=1Bi, where

B1, . . . , Bk are disjoint strictly convex domains inside the unit torus, whose boundaries are C3-smooth

and whose curvatures are bounded from below. Bk+1, Bk+2, ... are the translational copies of B1, . . . , Bk

with translations in Z2. The billiard flow is the dynamics of a point particle in D, which consists of

free flight inside D and specular reflection on ∂D. It is common to take the Poincaré section on the

boundaries of the scatterer (billiard ball map). The phase space of the billiard ball map is

M = {x = (q, v) ∈ ∂D × S1, 〈v, n〉 ≥ 0},

where n is the normal vector of ∂D at the point q pointing inside D, and the map itself is denoted by

F : M → M. The natural invariant measure on M, which we denote by µ, is the projection of the

Lebesgue measure on the phase space of the billiard flow. In fact, dµ = const cosφdrdφ, where r is

the arc length parameter on ∂D and φ ∈ [−π/2, π/2] is the angle of v and n. We will write q(x) for

the the projection of the point x to its first coordinate (that is q(x) ∈ ∂D). The free flight vector is

∆0(x) = q(F(x))−q(x). We will also write qk(x) = q(Fk(x)) and ∆k(x) = ∆0(Fk(x)) = qk+1(x)−qk(x).

Analogously, one can define the Sinai billiard on the torus T2 = R2/Z2. Then one needs to introduce

D0 = T2 \ ∪ki=1Bi, and define M0, F0 and µ0 as before. Now µ is the periodic extension of µ0. Since

µ is infinite and µ0 is finite, we choose the constant in the definition of µ such that µ0 is a probability

measure. The functions qk and ∆k can also be defined on M0 as the restriction of the corresponding

functions on M.

Hyperbolicity and ergodicity of F0 (nice properties) were proven by Sinai [S70]. An unpleasant property

of the billiard map is the presence of singularities (corresponding to grazing collisions). An elegant and

flexible approach to overcome this problem and prove statistical properties is the standard pair method

developed by Chernov and Dolgopyat [ChD09b]. What follows, is an informal description of this method.

For almost every x ∈M0, stable and unstable manifolds through x exist. There is a factor of stretching

in the unstable direction, which is bounded from below by some Λ > 1. Nevertheless, these factors

are not bounded from above (the closer is x to the grazing collisions, {cosφ = 0}, the stronger is the

expansion), which makes difficult to control the distortion of unstable manifolds. That is why it is

common to introduce the following additional (secondary) singularities

S±k = {(r, φ) : φ = ±π/2∓ k−2}

for k larger than some k0, yielding bounded distortion of an unstable manifold disjoint to all singularities.

An unstable curve is some curve W ⊂M such that at every point x ∈W , the tangent space TxW is in

the unstable cone (slightly weaker property than the unstable manifold). Further, W is homogeneous,

if does not intersect any singularity. A pair l = (W,ρ) is called a standard pair, if W is a homogeneous

unstable curve and ρ is a regular probability density supported on W . In order to define the desired

regularity of the density ρ, we need one more notion. For two points x, y on W , we write s±(x, y) for the

smallest integer n such that F±n0 (x) and F±n0 (y) are separated by some singularity curve. A function f
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is called dynamically Hölder continuous, if there exists some θf < 1 such that for any x and y lying on

some unstable (stable, resp.) curve W , the following inequality holds

|f(x)− f(y)| < Kfθ
s±(x,y)
f .

Now, the regularity property required for the density ρ is that log ρ should be dynamically Hölder

continuous. For a standard pair l = (W,ρ), we write El for the integral with respect to ρ, Pl(A) = ρ(A)

and length(l) = length(W ). Once we have a standard pair, its image under the map F0 is a bunch of

unstable curves and some measures living on them.

A nice property of standard pairs is that this image is in fact a weighted sum of standard pairs. That

is why we call weighted sums of standard pairs standard families. Formally, a standard family is a set

G = {(Wa, νa)}, a ∈ A of standard pairs and a probability measure λG on the index set A. This family

defines a probability measure on M0 by

µG(B) =

∫
νa(B ∩Wa)dλG(a).

Every x ∈Wa (for some a ∈ A), chops Wa into two pieces. The length of the shorter one is denoted by

rG . Now the Z-function of G is defined by

ZG = sup
ε>0

µG(rG < ε)

ε
.

Note that if G consists of one standard pair, then ZG = 2/|W |. In any case, we assume ZG <∞.

A most important property of the billiard map is that while the unstable curves are expanded due to

hyperbolicity, they are also cut by the singularities of F0; and in some sense, the expansion prevails

fragmentation. Formally, the following Growth lemma holds true:

Lemma 7.1 ([DSzV09] Prop 1.). Let l = (W,ρ) be some standard pair. Then

El(A ◦ Fn0 ) =
∑
a

ca,nElan(A),

where ca,n > 0,
∑
a ca,n = 1; lan = (Wan, ρan) are standard pairs such that ∪aWan = Fn0 W and ρan is

the push-forward of ρ by Fn0 up to a multiplicative factor. Finally, there are universal constants κ, C1

(depending only on D), such that if n > κ| log length(W )|, then∑
length(lan)<ε

ca,n < C1ε.

Another way of stating basically the same lemma is that there are universal constants θ < 1, C2, C3

(depending only on D) such that for a standard family G = {(Wa, νa)}, a ∈ A, and Gn = Fn0 (G), one has

ZGn < C2θ
nZG + C3.

If we fix some large constant Cp and call a standard family proper if its Z function is smaller than Cp,

then briefly one can say that the image of G becomes proper in logZG steps.

The essence of the standard pair technique is that the measures carried on two proper standard families
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can be coupled together exponentially fast. Then one of the two standard families is chosen to be µ0

itself (it can be proven that there exists G such that µG = µ0). As a result, one obtains the following

Equidistribution statement.

Lemma 7.2 ([Ch06b] Theorem 4). Let G be a proper standard family. For any dynamically Hölder

continuous f there exists some θf < 1 such that for any n ≥ 0,

|
∫
M0

f ◦ Fn0 dµG −
∫
M0

fdµ0| ≤ Bfθnf .

We want to identify the possible limit points of the rescaled trajectory of the particle in case of

infinite horizon. We assume that there are at least two non-parallel infinite corridors. The observable,

we are interested in, is ∆0. One difficulty is that ∆0 is not dynamically Hölder continuous if the horizon

is infinite. To overcome this problem, we introduce a cut-off of the free flight vector, thus we obtain a

dynamically Hölder continuous version. That is, we define ∆̂j to be equal to ∆j once the distance of

the scatterers hit by the particle at time j and j+ 1 is less than R, otherwise let ∆̂j be zero (we will set

R =
√
N logβ N). Note that this is slightly different than ∆j1{∆j<R}. With this notation, write

q̂j = q0 +

j−1∑
i=0

∆̂i.

The following lemma is proven in its form in [ChD09a] (note also that the first half of part (a) is a

purely geometric statement, (b) is a consequence of the Equidistribution, (c) was essentially proven in

[SzV07]).

Proposition 7.3. Let l be a standard pair.

(a) M0 is divided by the singularity curves of F0 to cells Dm, such that ∆0 ∼ Cm on Dm. Then for

any n > 0,

µ0

[
Dm1

∩ F−n(Dm2
)
]
< min{Cm−3

2 , Cm
−9/4
1 m−2

2 }.

(b) For any i ≥ 0,

El
(

∆̂i

)
= µ0

(
∆̂i

)
+O

(
θiR

)
= O

(
θiR

)
,

and analogously, for k > 1 and i1 ≤ i2 ≤ · · · ≤ ik,

El
(

∆̂i1 ⊗ · · · ⊗ ∆̂ik

)
= µ0

(
∆̂i1 ⊗ · · · ⊗ ∆̂ik

)
+O

(
θi1Rk

)
,

and

El
(
‖∆̂i1‖ . . . ‖∆̂ik‖

)
= µ0

(
‖∆̂i1‖ . . . ‖∆̂ik‖

)
+O

(
θi1Rk

)
.

(c)

µ0

(
∆̂j ⊗ ∆̂j

)
= 2σ2 logR+O(1),

where σ2 is a non degenerate 2× 2-matrix, explicitly given in [SzV07].
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(d)

µ0

(
‖∆̂j ⊗ ∆̂k‖

)
< Cθ|j−k|,

whenever j 6= k.

Now, we proceed to our main statement. Let WN (x) be element of C([0, 1],R2) with WN (x)(j/N) =

qj(x)/
√
N logN and linearly interpolated between j/N and (j + 1)/N . When x is chosen according to

some standard pair l, WN (x) generates a measure WN,l on C[0, 1]. In this Chapter, we are going to

prove the following statement.

Theorem 7.4. Suppose that for some fixed l there is a sequence of integers Nk such that WNk,l is

weakly convergent. Then its limit is the Wiener measure with covariance matrix σ2.

Remark 7.5. The statement of Theorem 7.4 is also true for l being replaced by some proper standard

family G. Consequently, for the invariant measure, too.

7.3 Proof by martingale method

Here, we are going to prove Theorem 7.4 by the martingale method of Stroock and Varadhan. That is, we

prove the following statement: For any W limit point of the super-diffusively scaled billiard trajectory,

φ(W(t))− φ(W(0))− 1

2

∫ t

0

∑
a,b∈{1,2}

D2
abφ(W(s))σ2

abds

is a martingale, where σ2
ab is an element of the super-diffusive covariance matrix, D2

ab stands for partial

derivatives of second order, and φ : R2 → R is a smooth function with compact support. In order to see

this, it suffices to prove that for any smooth functions ψ1, ...ψm and for any 0 < s1 < s2 < · · · < sm <

t1 < t2,

El

φ(W(t2))− φ(W(t1))− 1

2

∫ t2

t1

∑
a,b∈{1,2}

D2
abφ(W(s))σ2

abds

 k∏
j=1

ψj(W(sj))

 = 0. (7.1)

We will prove the following simplified version of (7.1) (it will be clear, how its proof provides also

the more general statement (7.1)):

El

φ(Ŵ(t))− φ(Ŵ(0))− 1

2

∫ 1

0

∑
a,b∈{1,2}

D2
abφ(Ŵ(s))σ2

abds

 = 0, (7.2)

(where Ŵ is a limiting point of the super diffusively scaled variant of the process q̂j and l is a standard

pair) and

max
m≤N

qm −
∑m−1
j=0 ∆̂j√

N logN
⇒ 0, (7.3)

where the weak convergence is with respect to the measure generated by l.

For this fixed l = (W,ρ) and any x ∈ W , n ≥ 0, define rn(x) the following way. The image of W under
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Fn0 is cut into several homogeneous unstable curves W1,W2, . . . . There is an i such that Fn0 x ∈ Wi.

Now, Wi is cut by Fn0 x into two pieces, the length of the shorter one is denoted by rn(x). Observe that

the growth lemma implies the existence of some C depending on l such that for every ε > 0 and every

n ∈ Z+,

Pl(rn(x) < ε) < Cε.

Important remark: from now on, every appearance of C might mean a different constant. Nevertheless,

each C depends only on the length of l (and of course on D). Similarly, O has some involved constant

which only depend on D and the length of l.

Since the free flight of length m is attained by point on M which belong to some homogeneity strip of

width m−2, one obtains

Pl(∆̂n(x) >
√
N logβ N) < Pl(rn(x) < N−1 log−2β N) < CN−1 log−2β N.

Thus

Pl(∃1 ≤ n ≤ N : ∆̂n 6= ∆n) = O(log−2β N) (7.4)

which implies (7.3).

The rest of this Chapter is devoted to the proof of (7.2). Let α > 0 be small, mp = pNα, and fix

some p ≥ 2 integer. For a smooth φ with compact support:

φ

(
q̂mp+1√
N logN

)
− φ

(
q̂mp√
N logN

)
=

mp+1−1∑
j=mp

φ

(
q̂j+1√
N logN

)
− φ

(
q̂j√

N logN

)
=

=

mp+1−1∑
j=mp

1√
N logN

〈
Dφ

(
q̂j√

N logN

)
, ∆̂j

〉

+
1

2

mp+1−1∑
j=mp

1

N logN

〈
D2φ

(
q̂j√

N logN

)
∆̂j , ∆̂j

〉
+O

(∑mp+1−1
j=mp

‖∆̂j‖3

(N logN)3/2

)
=: S1

1 + S1
2 + S1

3

Now, using Proposition 7.3 b, we have

El
(
‖∆̂j‖3

)
< C

√
N logβ N∑
k=1

1

k3
k3 +O

(
θjN3/2 log3/2N

)
= O

(
N1/2 logβ N

)
, (7.5)

(here, we also used that due to p ≥ 2, we have θj << N for any mp < j). Thus we conclude

El(S1
3) = O

(
NαN1/2 logβ NN−3/2 log−3/2N

)
= O

(
Nα−1 logβ−3/2N

)
.

Further, for mp ≤ j < mp+1,

Dφ

(
q̂j√

N logN

)
= Dφ

(
q̂mp−1√
N logN

)
+

1√
N logN

j−1∑
k=mp−1

D2φ

(
q̂mp−1√
N logN

)
∆̂k

+O

(
1

N logN
D3φ

(
q̂mp−1√
N logN

)(
q̂j − q̂mp−1

)⊗2
)

=: S2
1 + S2

2 + S2
3 ,
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where S2
3 is the error term in the Taylor expansion. Now, we want to substitute S2

1 + S2
2 + S2

3 to S1
1 .

The substitution of S2
1 + S2

2 will be computed, while the one of S2
3 is an error term. To estimate the

latter, observe that both coordinates of S2
3 are bounded by

C
1

N logN

 j−1∑
k=mp−1

‖∆̂k‖

2

.

Thus, when substituting S2
3 to S1

1 , one obtains a term whose modulus has l-expectation not larger than

some constant times

1

N3/2 log3/2N
El
[mp+1−1∑

j=mp

∑
mp−1≤k1≤k2≤j−1

‖∆̂k1‖‖∆̂k2‖‖∆̂j‖
]
. (7.6)

To estimate (7.6), we introduce a second cut-off: let
ˆ̂
∆j to be equal to ∆j once the distance of the

scatterers hit by the particle at time j and j + 1 is less than AN , otherwise let
ˆ̂
∆j be zero (we will set

AN = N9α).

Now, we compute the contribution of the ∆’s for fixed k1 ≤ k2 < j with (the indices n1, n2, n3 stand

for the realization of ∆̂k1 , ∆̂k2 , ∆̂j , respectively):

El
[
‖∆̂k1 −

ˆ̂
∆k1‖‖∆̂k2‖‖∆̂j‖

]
< µ0

[
‖∆̂k1 −

ˆ̂
∆k1‖‖∆̂k2‖‖∆̂j‖

]
+O(θk1N3/2 log3β N)

< C
√
N logβ N

√
N logβ N∑
n1=AN

√
N logβ N∑
n3=1

n1n3n
−9/4
1 n−2

3

<
√
N logβ NA

−1/4
N logN. (7.7)

In the first inequality, we used the Equidistribution (note that ∆̂0 − ˆ̂
∆0 is also dynamically Hölder

continuous), while in the second one, we used Proposition 7.3 (a) and the fact that p ≥ 2. One can

similarly compute that for k1 ≤ k2 < j,

El
[
‖ ˆ̂
∆k1‖‖∆̂k2‖‖∆̂j‖

]
< ANEl

[
‖∆̂k2‖‖∆̂j‖

]
+O(ANθ

k2N log2β N)

< CAN

√
N logβ N∑
n2=1

√
N logβ N∑
n3=1

n2n3n
−9/4
2 n−2

3 < CAN logN.

Combining the above estimations we conclude that (7.6) is bounded by

CN−3/2 log−3/2N
(
N3α ·

√
N logβ+1NA

−1/4
N +N3α ·AN logN

)
= o(Nα−1),

if we choose AN = N9α, and α is small. At the last step, we want to substitute

D2φ

(
q̂j√

N logN

)
(7.8)

in S1
2 with

D2φ

(
q̂mp−1√
N logN

)
. (7.9)

102



It is easy to see that the difference between S1
2 and the formula obtained from S1

2 with (7.8) being

replaced by (7.9) is in

O

 1

(N logN)3/2

∑
mp≤j≤mp+1−1

∑
mp−1≤k<j

‖∆̂k‖‖∆̂j‖2
 (7.10)

As before, we have

El
[
‖ ˆ̂
∆k‖‖∆̂j‖2

]
≤ CAN

√
N logβ N∑
n2=1

n−3
2 n2

2 +O
(
ANθ

jN log2β N
)
< CAN logN. (7.11)

This, and (7.7) imply that the expectation of (7.10) with respect to l is bounded by

CN−3/2 log−3/2N ·N2α
(√

N logβ+1NA
−1/4
N +AN logN

)
= o(Nα−1).

Hence, for p ≥ 2 we obtain

φ

(
q̂mp+1√
N logN

)
− φ

(
q̂mp√
N logN

)

=

mp+1−1∑
j=mp

1√
N logN

〈
Dφ

(
q̂mp−1√
N logN

)
, ∆̂j

〉

+
1

N logN

[1

2

mp+1−1∑
j=mp

〈
D2φ

(
q̂mp−1√
N logN

)
∆̂j , ∆̂j

〉
+

∑
mp≤j<mp+1,mp−1≤k<j

〈
D2φ

(
q̂mp−1√
N logN

)
∆̂k, ∆̂j

〉]
+ hp, (7.12)

where El(hp) = o
(
Nα−1

)
.

With the notation

fp(x) = φ

(
q̂mp+1(x)
√
N logN

)
− φ

(
q̂mp(x)
√
N logN

)
,

for any x ∈M,

φ

(
q̂N (x)√
N logN

)
− φ

(
q̂0(x)√
N logN

)
=

N1−α∑
p=0

fp(x)

Thus, in order to verify (7.2), we need to prove

El
N1−α∑
p=0

[
fp(x)−Nα−1 1

2

∑
a,b∈{1,2}

D2
abφ

(
q̂mp(x)
√
N logN

)
σ2
ab

]
= o(1). (7.13)

First, we verify that El(f0 + f1) = o(1). Note that Proposition 7.3 (b) implies

El‖q̂m2
− q̂0‖ <

m2∑
k=0

µ0(‖∆̂k‖) +O(θk
√
N logβ N) = O(

√
N logβ N).

Since β < 1/2, the Markov inequality and the fact that φ has compact support and is in C1, implies

El(f0 + f1) = o(1).
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For p ≥ 2, as in [DSzV09], we want to use the Markov decomposition at time τp = (mp−1 + mp)/2.

Now, we will also need some Markov decomposition at time τ̃p = (3mp−1 + mp)/4. However, observe

that since q̂mp is not necessarily equal to qmp , fp(x) and

f ′p(x) = φ

(
q̂ 3

2N
α(Fmp−1+Nα/2x)
√
N logN

)
− φ

(
q̂ 1

2N
α(Fmp−1+Nα/2x)
√
N logN

)
,

which is easier to deal with using the Markov decomposition, are not equal in general. That is why we

need some more computation. Observe that the decomposition (7.12) can also be written in terms of f ′p

instead of fp. The difference is that q̂mp−1
should be replaced by

q̂′mp−1
= q(mp−1+mp)/2 −

Nα/2∑
j=1

∆̂j ,

and hp should be replaced by some h′p. Observe that our previous computation also yields El(h′p) =

o(Nα−1).

Now, we claim that

lim
N→∞

N1−α∑
p=2

El
(
fp − f ′p

)
= 0. (7.14)

To prove (7.14), observe that with the notation

L = {x ∈M : ∃j ≤ N : ∆j(x) 6= ∆̂j(x)}

for the set of points having long flight, fp coincides with f ′p on M \ L, which has l-measure at least

1− C log−2β N by (7.4). Since
∑
p fp is bounded,∫

L

∑
p

fpdl = o(1).

Thus in order to prove (7.14), is is enough to establish∫
L

∑
p

f ′pdl = o(1). (7.15)

This statement is not obvious, since
∑
p f
′
p is not bounded. However, with the notation

L(x) = #{p < N1−α : ∃j ∈ [mp,mp+1],∆j(x) 6= ∆̂j(x)},

we have for any x ∈ L, ∑
p

f ′p(x) < 2(L(x) + 1)‖φ‖.

Thus, it is enough to prove ∫
L
L(x)dl = o(1). (7.16)
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We will prove that ∫
L
Leven(x)dl = o(1), (7.17)

where

Leven(x) = #{p < N1−α, p is even and ∃j ∈ [mp,mp+1]∆j(x) 6= ∆̂j(x)}.

This, together with a very same computation for the odd p’s implies (7.16). To prove (7.17), first observe

that

Pl(Leven(x) = 1) < C log−2β N.

We claim that analogously,

Pl(Leven(x) = k) < Ck log−2βkN (7.18)

for every k positive integer, with a uniform C. This implies (7.17), since
∑
k>1 kC

k log−2βkN = o(1).

Now pick any 1 ≤ i < i+Nα ≤ j ≤ N . We prove that

Pl(∆i 6= ∆̂i,∆j 6= ∆̂j) < C2N−2 log−4β N, (7.19)

which obviously implies (7.18) for k = 2 (for larger k’s, the proof goes the same way). We have

Pl(∆i 6= ∆̂i,∆j 6= ∆̂j) =
∑
a

caPla(∆j−i 6= ∆̂j−i), (7.20)

where {la}a is the collection of standard pairs in the image of l under F i+1, for which for any point x in

γa, ∆0(F−1x) 6= ∆̂0(F−1x). We already know that
∑
a ca < CN−1 log−2β N . Let S1 + S2 be the sum

in (7.20), where S1 corresponds to a’s, for which length(la) < N−3. Then the growth lemma implies

S1 < CN−3. For a’s, where length(la) > N−3, the image of la becomes proper in C logN steps, thus

(the proof of (7.4)) implies S2 <
∑
a caCN

−1 log−2β N with a uniform C. Thus we have verified (7.19),

and finished the proof of (7.14).

As it was already mentioned, we will also need a Markov decomposition at time (3mp−1 + mp)/4.

Thus, we still need to slightly adjust fp, that is to define

q̂′′mp−1
= q(3mp−1+mp)/4 −

Nα/4∑
j=1

∆̂j ,

and

f ′′p (x) :=

mp+1−1∑
j=mp

1√
N logN

〈
Dφ

(
q̂′mp−1√
N logN

)
, ∆̂j

〉

+
1

N logN

[1

2

mp+1−1∑
j=mp

〈
D2φ

(
q̂′mp−1√
N logN

)
∆̂j , ∆̂j

〉

+
∑

mp≤j<mp+1,mp−1≤k≤mp−1+ 3
8N

α

〈
D2φ

(
q̂′mp−1√
N logN

)
∆̂k, ∆̂j

〉

+
∑

mp≤j<mp+1,mp−1+ 3
8N

α<k<j

〈
D2φ

(
q̂′′mp−1√
N logN

)
∆̂k, ∆̂j

〉]
+ h′p. (7.21)
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Next, we prove that the contribution of this adjustment asymptotically vanishes, i.e.

El(|f ′p − f ′′p |) = o
(
Nα−1

)
. (7.22)

In order to prove (7.22), write

Lp = {x ∈M : ∃j ∈ [mp−1 +
1

4
Nα,mp−1 +

1

2
Nα] : ∆j(x) 6= ∆̂j(x)}

for the set of phase points, where f ′p 6= f ′′p . Further, observe that for any x ∈ Lp, the only difference

between f ′p(x) and f ′′p (x) is that in the fourth line of (7.21) q̂′′mp−1
is replaced by q̂′mp−1

in the case of

f ′p(x). Thus, for any x ∈ Lp,

|f ′p − f ′′p | < C
1

N logN
Nα
√
N logβ N

∑
mp≤j<mp+1

‖∆̂j‖.

Consequently, the Markov decomposition at time mp−1 +Nα/2 implies∫
Lp
|f ′p − f ′′p |dl < CN−1+α+1/2

∑
a

ca
∑

mp≤j<mp+1

Ela(‖∆̂j‖), (7.23)

where {la}a is the collection of standard pairs in the image of l under Fmp−1+Nα/2, for which for any

point x in γa, there is a j ∈ [0, Nα/4], such that ∆̂0(F−jx) 6= ∆0(F−jx). Note that
∑
a ca = l(Lp). If

we denote by S1 +S2 the sum in (7.23), where S1 corresponds to a’s with length(la) < N−2, then using

the obvious estimation Ela(‖∆̂j‖) <
√
N logβ N and the growth lemma, we obtain S1 < CN2α−2 logβ N .

Since in C logN steps the standard pairs of the sum S2 develop to proper families, Proposition 7.3 (b)

and (7.4) imply S2 < N−1+α+1/2l(Lp)Nα < N−1+α+1/2+α−1+α. (7.22) follows.

Combining (7.14) and (7.22), (7.13) is equivalent to the statement

El
(
f ′′p
)

= Nα−1 1

2

∑
a,b∈{1,2}

El
(
D2
abφ

(
q̂mp(x)
√
N logN

))
σ2
ab(1 + o(1)). (7.24)

Since El(h′p) is in o(Nα−1), in order to prove (7.24), it suffices to verify that T1 + T2 + T3 + T4 is equal

to the right hand side of (7.24), where Ti is the l-expected value of line i in formula (7.21) - except for

T4, where we omit h′p. The proof of this is similar to the one in [DSzV09].

So as to estimate T1, T2 and T3, we use Markov decomposition at time (mp−1 + mp)/2. Since in any

case, the first three lines of (7.21) are bounded by CN2α, the standard pairs that are shorter than N−2

contribute to T1 + T2 + T3 with a term which is bounded by CN−2+2α. If we denote by T ′1, T ′2 and T ′3

the contribution of the standard pairs that are longer than N−2, then we have

T ′1 = O

(
1√

N logN
Nαθ

1
2N

α√
N logβ N

)
. (7.25)

Indeed, the value ofDφ

(
q̂′mp−1√
N logN

)
on some points which will form a standard pair at time (mp−1+mp)/2

is some constant with error O(θ
1
2N

α

), thus Proposition 7.3 (b) implies (7.25).
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Now, using Proposition 7.3 (c) one can analogously compute that

T ′2 = Nα−1 1

2

∑
a,b∈{1,2}

El
(
D2
abφ

(
q̂mp(x)
√
N logN

))
σ2
ab(1 + o(1)). (7.26)

Similarly to the estimation of T ′1, we can bound T ′3. Note that D2φ

(
q̂′mp−1√
N logN

)
∆̂k on some points which

will form a standard pair at time (mp−1 + mp)/2 is some constant with error O(θ
1
2N

α

), but now, this

constant is only bounded by
√
N logβ N . Thus again, Proposition 7.3 (b) yields

T ′3 = O

(
1

N logN
N2α
√
N logβ Nθ

1
8N

α√
N logβ N

)
. (7.27)

Finally, we use Markov decomposition at time (3mp + mp+1)/4 to estimate T4. As before, since the

last line of (7.21) is bounded by CN2α, the standard pairs that are shorter than N−2 can be neglected.

Using the same argument as in the proof of (7.25), and now also Proposition 7.3 (d), we conclude that

the contribution of the longer standard pairs is in

O

 1

N logN

∑
mp≤j<mp+1,mp−1+ 3

8N
α<k<j

(
θj−k + θ

1
8N

α

N log2β N
) .

This, together with our previous estimations, yields (7.24). We have finished the proof of (7.2).
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[P18] Pólya, G.: Zahlentheoretisches und wahrscheinlichkeitstheoretisches über die Sichtweite im Walde,

Arch. Math. Phys. Ser. 2, 27, 135-142, (1918).
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