Article

MR2086989 (2006b:40004) 40A05 Pataki, Gergely (H-LAJO-IF)

On the convergence of some particular series. (English summary) *Tatra Mt. Math. Publ.* **28** (2004), *part II*, 169–177.

Denoting by S the family of all sequences whose terms belong to the interval (0, 1], this paper presents a number of elementary theorems relating to series constructed from sequences in S. One of the first results (Theorem 1.3) takes a fixed $(x_n) \in S$ and the assertion: (*) there exists a > 0 such that $\sum a^{1/x_n} < \infty$, and proves three other assertions equivalent to (*). This leads to the related result (Theorem 2.2): If $(x_n) \in S$ and if $\sum a_n^{1/x_n} < \infty$ for all $(a_n) \in S$ with $\lim a_n =$ 0, then $\lim x_n = 0$. Counterexamples show that the converse of this theorem need not be true. Other similar types of results allow the basic sequences to belong to wider intervals, for instance (Theorem 4.2): If $b_n > 0$, $\sum b_n < \infty$, and if $y_n \in \mathbb{R}$ with $\sup y_n < \infty$, then $\sum b_n^{1-y_n/n} < \infty$. Reviewed by D. C. Russell

© Copyright American Mathematical Society 2006, 2007

Citations

From References: 0 From Reviews: 1