Dynamical systems, Spring 2024

Homework problem set #1. Due on March 26, Tuesday

One of the 11 problems below can be regarded as a bonus problem. That is, with complete solutions for 10 problems you can obtain full credit. Solving all the 11 problems properly deserves extra credit.

- 1. Consider the one dimensional map $T_{\lambda}: \mathbb{R} \to \mathbb{R}$, $T_{\lambda}x = x^5 \lambda x$, where the parameter λ satisfies $-\infty < \lambda \le 1$. Investigate the λ -dependence of
 - (a) the fixed points and their stability properties.
 - (b) the asymptotic behavior of the orbit $T_{\lambda}^{n}x$, $n \geq 0$ for any initial condition $x \in \mathbb{R}$.
- 2. Consider the doubling map $T: \mathbb{S}^1 \to \mathbb{S}^1$, $Tx = 2x \pmod{1}$. Let $D \subset \mathbb{S}^1$ denote the set of points x such that $\{T^nx|n=0,1,2\dots\}$ is dense in \mathbb{S}^1 . Prove that $\lambda(D)=1$ (where λ is the Lebesgue measure).
- 3. We mentioned in class that

$$T: [0,1] \to [0,1], \qquad T(x) = \begin{cases} 0 & \text{if } x = 0, \\ 1/x \pmod{1} & \text{if } x \neq 0. \end{cases}$$

(the Gauss map) has an absolutely continuous invariant (probability) measure, with density $\rho(x) = \frac{1}{\ln 2} \frac{1}{1+x}$. Provide a detailed argument for this fact.

- 4. Recall from class that on $\Sigma^+ = \{0,1\}^{\mathbb{N}}$, that is, the space of infinite sequences of 2 symbols, we defined a metric as $d(\underline{a},\underline{b}) = 2^{-s(\underline{a},\underline{b})}$, where $s(\underline{a},\underline{b}) = \min\{k \geq 1 | a_k \neq b_k\}$ (here $\underline{a} = (a_1,a_2,...)$ and similarly for \underline{b}). Prove that $d(\underline{a},\underline{b})$ is indeed a metric, in particular, it satisfies the triangular inequality.
- 5. Consider $T:[0,1]\to [0,1],\ Tx=4x(1-x)$ (the logistic map with $\mu=4$). Verify that T has an absolutely continuous invariant (probability) measure, with density $\rho(x)=C(x(1-x))^{-1/2}$. (C=?)
- 6. Fix a positive integer $K \geq 1$, and let $\Sigma_K^+ = \{0, 1, ..., K-1\}^{\mathbb{N}}$, that is, the space of infinite sequences of K symbols. The shift map $\sigma: \Sigma_K^+ \to \Sigma_K^+$ is defined in the usual way.
 - (a) What are the periodic points of this shift map with K symbols? Specify a point in Σ_K^+ that has a dense orbit.
 - (b) Consider now the map $T_K: \mathbb{S}^1 \to \mathbb{S}^1$, $T_K x = Kx \pmod{1}$. How are these two dynamical systems related?
- 7. Show that the map $T: [-1,1] \to [-1,1]$, $Tx = 8x^4 8x^2 + 1$ has an absolutely continuous invariant (probability) measure, and determine the density. (*Hint*: in class we discussed the case of $Tx = 2x^2 1$, you may proceed along the same lines, just instead of $2x \pmod{1}$ consider $4x \pmod{1}$ as a map of the unit circle in \mathbb{C} .)
- 8. Consider the linear maps $T: \mathbb{R}^2 \to \mathbb{R}^2$, T(x) = Ax for the matrices A below. In each case, describe the asymptotic behavior and sketch the phase portrait. In hyperbolic cases, determine the stable and unstable subspaces $(W^s \text{ and } W^u)$.

1

(a) $\begin{bmatrix} 4 & 3 \\ 2 & 1 \end{bmatrix}$ (b) $\begin{bmatrix} 3 & 1 \\ 0 & 1/3 \end{bmatrix}$ (c) $\begin{bmatrix} 0 & 1/5 \\ 1/5 & 0 \end{bmatrix}$ (d) $\begin{bmatrix} \sqrt{3} & 1 \\ -1 & \sqrt{3} \end{bmatrix}$.

- 9. Let $T: \mathbb{T}^2 \to \mathbb{T}^2$ be a hyperbolic toral automorphism. Show that, for the matrix A associated to T, the eigenvalues are irrational numbers while the eigendirections, as lines on \mathbb{R}^2 , have irrational slope.
- 10. Let $T: \mathbb{T}^2 \to \mathbb{T}^2$ be a hyperbolic toral automorphism. Show that $x \in \mathbb{T}^2$ is a periodic point for T if and only if both of its coordinates are rational.
- 11. Consider the logistic map $T_{\mu}x = \mu x(1-x)$ with $\mu > 2+\sqrt{5}$. Show that there exists some $\lambda > 1$ such that $|T'_{\mu}(x)| > \lambda$ whenever $x \in I_0 \cup I_1$. (Recall that we denoted $T_{\mu}^{-1}[0,1] = I_0 \cup I_1$, where I_0 and I_1 are disjoint intervals.)