Dynamical systems, Spring 2024

Homework problem set #3. Due on May 21, Tuesday

One of the 8 problems below can be regarded as a bonus problem. That is, with complete solutions for 7 problems you can obtain full credit. Solving all the 8 problems properly deserves extra credit.

- 1. We discussed in class that $\Lambda \subset M$ is an *attractor* for the invertible topological dynamical system $T: M \to M$ if there exists an open neighborhood $U \supset \Lambda$ such that for the closure $N = \overline{U}$ it holds that $T(N) \subset U$ (that is, U is a *trapping region*) and $\Lambda = \bigcap_{n=0}^{\infty} T^n N$. Show that in such a case Λ is a closed invariant set (invariance means $\Lambda = T(\Lambda) = T^{-1}(\Lambda)$).
- 2. As usual, let us represent \mathbb{T}^2 as $[0,1]^2$ with the opposite sides identified. Let a > 0 be some small parameter (say $a < \frac{1}{100}$) and consider $F : \mathbb{T}^2 \to \mathbb{T}^2$, $F(x,y) = (x+a\sin(2\pi x), y+a\cos(2\pi x)\sin(2\pi y))$. Identify the fixed points, verify that all of them are hyperbolic, and classify them into sources, sinks and saddles. Find the (global) stable and unstable manifolds for each fixed point.
- 3. Consider the one-sided full shift with two symbols, $\sigma : \Sigma^+ \to \Sigma^+$. Prove that this system has the shadowing property. That is, given a δ -pseudo orbit construct a point the true orbit of which is ε -shadowing the pseudo orbit (where δ is appropriately chosen for ε).
- 4. Let M be a compact metric space, and for $\varepsilon > 0$ let $C(\varepsilon)$, $N(\varepsilon)$ and $S(\varepsilon)$ denote the minimum cardinality of ε -covers, the minimum cardinality of ε -nets, and the maximum cardinality of ε -separated sets, respectively. Prove that $C(2\varepsilon) \le N(\varepsilon) \le S(\varepsilon) \le C(\varepsilon)$.
- 5. Prove (ii), (iii), (iv), (vi), (vii) and (viii) from the list of properties of $H(\alpha)$ and $H(\alpha|\beta)$. (You may rely on (i) and (v).)
- 6. Prove (1), (2), (3), (5), (6) and (7) from the list of properties of h(T). (You may rely on (4) and (i-xii).)
- 7. Let A be a primitive adjacency matrix (i.e. the entries A_{kl} take values 0 or 1, and $\exists N \geq 1$ such that $(A^N)_{kl} > 0$ for any k, l). Then according to the Perron-Frobenius theorem A has a simple largest eigenvalue, to be denoted by $\lambda > 0$. Let furthermore u_k and s_k denote the associated left and right eigenvectors, respectively, normalized so that $\sum_{k=0}^{K-1} s_k u_k = 1$.
 - (a) Verify that $\pi_{kl} = \lambda^{-1} u_k^{-1} A_{kl} u_l$ is the transition matrix of an irreducible aperiodic Markov chain, and that the corresponding stationary distribution is $p_k = s_k u_k$.
 - (b) Consider the associated Markov shift, compute its entropy and conclude that this is a measure of maximal entropy.
- 8. (a) Let us fix the parameters $d_1, ..., d_r \in \mathbb{R}$, and introduce the notation $Z = \sum_{i=1}^r e^{d_i}$. Consider the simplex

$$\Delta = \{ \underline{p} = (p_1, ..., p_r) \in \mathbb{R}^r \mid p_i \ge 0, \sum_{i=1}^r p_i = 1 \},\$$

and the function $F: \Delta \to \mathbb{R}$, $F(\underline{p}) = -\sum_{i=1}^{r} p_i \log p_i + \sum_{i=1}^{r} d_i \cdot p_i$. Show that the maximum of $F(\underline{p})$ on Δ is $\log Z$, attained at the unique point $p_j = \frac{e^{d_j}}{Z}, j = 1, ..., r$.

(b) Let us introduce furthermore

$$\Delta_s = \{ \underline{p} = (p_1, ..., p_r) \in \mathbb{R}^r \mid p_i \ge 0, \sum_{i=1}^r p_i = s \},\$$

for $0 < s \leq 1$. Show that the maximum of F on Δ_s is $s(\log Z - \log s)$, taken at the point $p_j = \frac{se^{d_j}}{Z}, j = 1, ..., r$.