Advanced theory of dynamical systems, Spring 2021

Homework problem set. Due on April 23, Friday

Comments:

- Total available score: 3 + 3 + 4 + 3 + 3 + 4 + 5 = 25 points.
- Upload your solutions by April 23, Friday, 11:59pm to *Moodle* (Homework Topic, Homework assignment). Instructions :
 - Either type up or write up and scan.
 - Single pdf file.
 - A4 size, *Portrait* mode (*not* Landscape).
 - Go for well readable resolution, yet reasonable file size (at most 10 MByte). (Let me know if you need some advice on which application to use.)
- 1. Recall that, for an endomorphism (M, \mathcal{F}, T, μ) and a measurable $A \subset M$ with $\mu(A) > 0$, the *induced* transformation or first return map $T_A : A \to A$ is defined as follows: for $x \in A$ let

$$T_A x = T^{r_A(x)} x$$
, where $r_A(x) = \min\{k \ge 1 | T^k x \in A\}$.

Let μ_A be the conditional measure of μ on A, that is, for measurable $B \subset A$ let $\mu_A(B) = \frac{\mu(B)}{\mu(A)}$. Show that μ_A is indeed an invariant measure for the map T_A . (*Comment:* Do not assume that T is invertible! Consider the next problem, part (c) for a non-invertible example.)

- 2. Figure out what is the first return map T_A and what is the distribution of the first return time r_A (with respect to μ_A) in the following examples. For all of them $M = \mathbb{S}^1$, the circle, represented as the interval [0, 1] with the two endpoints identified, \mathcal{F} is the sigma algebra of Lebesgue measurable sets and μ is the Lebesgue measure.
 - (a) For some irrational $\alpha \in (0, 1)$, T is the rotation by α , i.e. $Tx = x + \alpha \pmod{1}$, and $A = [0, \alpha]$;
 - (b) $Tx = x + \alpha \pmod{1}$, as above, but $A = [0, \beta]$ for some $\beta \in (\alpha, 1)$;
 - (c) $Tx = 2x \pmod{1}$ (the doubling map), and $A = \begin{bmatrix} \frac{1}{2} \\ 1 \end{bmatrix}$.
- 3. (a) Let $T : \mathbb{T}^2 \to \mathbb{T}^2$, $T(x, y) = (x + \alpha, y)$, where $\alpha \in \mathbb{S}^1$ is irrational. Show that, given any $f \in C(\mathbb{T}^2)$, the Birkhoff averages converge uniformly, but the limit is typically not a constant function.
 - (b) Consider $T: M \to M$ (with M compact metric space and T continuous) that is topologically transitive, and assume that for any $f \in C(M)$ the Birkhoff averages converge uniformly. Show that T is uniquely ergodic.
 - (c) Let now $T : \mathbb{T}^2 \to \mathbb{T}^2$, $T(x, y) = (x + y \pmod{1}, y)$. Describe the set of invariant measures and the set of ergodic invariant measures (in class denoted as \mathcal{M}_{inv} and \mathcal{M}_{erg} , respectively) for this example.
- 4. Let $a_n \in \mathbb{R}$ be a bounded sequence. Show that $(ii) \Rightarrow (i)$ where

- (i) lim_{n→∞} 1/n ∑_{k=0}ⁿ⁻¹ |a_k| = 0;
 (ii) ∃J ⊂ Z⁺ a sequence of zero density such that lim_{J ≥ n→∞} a_n = 0.
- 5. Show that, given any automorphism (M, \mathcal{F}, T, μ) , the following properties are equivalent: (i) T is weakly mixing, (ii) $T \times T$ is ergodic, (iii) $T \times T$ is weakly mixing. (Hint: to prove (ii) \rightarrow (i) consider sets of the form $A \times M$ and $A \times A$ in $M \times M$.)
- 6. Let (M, \mathcal{F}, T, μ) be an automorphism and consider the unitary operator $U_T : L^2_{\mu} \to L^2_{\mu}, U_T f = f \circ T$. Prove that
 - (a) the spectrum of U_T is a subset of the complex unit circle \mathbb{S}^1 , and eigenfunctions corresponding to distinct eigenvalues of U_T are orthogonal.
 - (b) 1 is always an eigenvalue of U_T , and T is ergodic iff 1 is a simple eigenvalue. Below we restrict to the ergodic case.
 - (c) All eigenvalues of U_T are simple, and the modulus |f| of any eigenfunction is μ -a.e. constant.
 - (d) If λ, μ are eigenvalues, then so are $\overline{\lambda}$ (complex conjugate) and $\lambda \cdot \mu$.
- 7. Piecewise linear (strong) Markov maps $T : [0, 1] \rightarrow [0, 1]$ are associated to finite partitions $0 = a_0 < a_1 < a_2 < \cdots < a_{q-1} < a_q = 1$ of the interval [0, 1]. When restricted to the subinterval $I_j = (a_{j-1}, a_j)$, the map is given by $T_j := T|_{I_j}$; $T_j x = \frac{x a_{j-1}}{a_j a_{j-1}}$, that is, T_j is a *linear* one-to-one map of I_j onto (0, 1) $(j = 1, 2, \ldots, q)$.
 - (a) Show that the Lebesgue measure is invariant for T. (It is actually ergodic, which you do not have to prove, but may assume for the next question.)
 - (b) For (Lebesgue) almost every $x \in (0,1)$ the quantity $|(T^n)'(x)|$ that is, the derivative of the nth iterate is well-defined. Show that $|(T^n)'(x)|$ grows exponentially with the same rate λ for almost every $x \in (0,1)$. Remark: in this simple context, λ is the occurrence of the "asymptotic expansion rate" or "Lyapunov-exponent". Recall that a numerical sequence b_n grows exponentially with rate λ if $\lim_{n \to \infty} \frac{\ln b_n}{n} = \lambda$.
 - (c) Show that the finite dimensional subspace of polynomials of degree at most K, to be denoted by E_K , is invariant under the action of the Perron-Frobenius operator, and determine the eigenvalues: $1, \beta_1, \ldots, \beta_K$ (in decreasing order). Here β_1 is the rate of exponential decay on E_K . That is, for $f, g \in E_K$ (with arbitrary $K \ge 1$) we have $Corr_n(f,g) \le C(\beta_1)^n$. The smaller $1 - \beta_1$, the slower is the decay.
 - (d) Show that $\beta_1 \ge e^{-\lambda}$, where λ is the Lyapunov exponent.
 - (e) Given any M > 0, construct a piecewise linear (strong) Markov map such that $\lambda > M$ but $1 \beta_1 < M^{-1}$. That is, the Lyapunov exponent can be arbitrarily large and simultaneously, the exponential rate of correlation decay can be made arbitrarily slow. (*Hint:* to obtain a large M, the number of branches q has to be chosen large.)