Markov Chains and Dynamical Systems, Fall 2025 Sample problems on Dynamical Systems for the Final Exam

The Final Exam is cumulative. There will be 1 or 2 problems on Markov chains, and 3 or 4 problems on Dynamical Systems.

Other types of problems may also occur on the exam. Anything we had in class, quizzes or homeworks can be relevant.

- 1. (a) Find the binary code of $x = \frac{5}{9}$, that is, the sequence of digits $x_k \in \{0, 1\}$, $k = 1, 2, \ldots$ such that $\frac{5}{9} = \sum_{k=1}^{\infty} x_k 2^{-k}$. (*Hint:* Consider the orbit of x under the doubling map.)
 - (b) The rational number $y \in (0,1)$ has binary code 110111011101... (the word 1101 is repeated periodically). Find p, q coprime integers such that y = p/q.
 - (c) Recall that the orbit of a point $z \in (0,1)$ equidistributes under the dobling map if for any interval $I \subset (0,1)$ we have

$$\lim_{n \to \infty} \frac{\#\{k = 0, \dots, n - 1 \mid T^k z \in I\}}{n} = |I|$$

where |I| is the length (ie. the Lebesgue measure) of I. Find the binary code for some $z \in I$ such that the orbit of z (under the doubling map) is dense on \mathbb{S}^1 , but does not equidistribute.

- 2. (a) Prove that $log_5(3)$ is an irrational number.
 - (b) Consider the first symbols in the base-5 expansions for the sequence of numbers $3, 9, 27, \ldots 3^n, \ldots$ Compute the asymptotic frequencies of the four possible options: 1, 2, 3 and 4.
- 3. Consider the one dimensional map $T: \mathbb{R} \to \mathbb{R}$, $Tx = x + \sin x$.
 - (a) Find all fixed points and discuss their stability properties.
 - (b) Describe the asymptotic behavior of the orbit $T^n x$, $n \geq 0$ for any initial condition $x \in \mathbb{R}$.
- 4. Consider the one parameter family of maps $T_{\lambda}: \mathbb{R} \to \mathbb{R}$, $T_{\lambda}x = \lambda x^2$, with $\lambda \in \mathbb{R}$.
 - (a) For each $\lambda \in \mathbb{R}$, find all fixed points and discuss their stability properties.
 - (b) What does it mean that for some $\lambda_1 \in \mathbb{R}$ the family has a saddle-node bifurcation? Does there exist such a λ_1 for this particular family? Why?
 - (c) What does it mean that for some $\lambda_2 \in \mathbb{R}$ the family has a period doubling bifurcation? Does there exist such a λ_2 for this particular family? Why?
- 5. Consider the map $T: \mathbb{R} \to \mathbb{R}$,

$$T(x) = \begin{cases} 10x & \text{if } x \le \frac{1}{2} \\ 10 - 10x & \text{if } x > \frac{1}{2}. \end{cases}$$

For $x_0 \in \mathbb{R}$, let $x_n = T^n x_0$ for $n \ge 1$.

- (a) Show that $\lim_{n\to\infty} x_n = -\infty$ whenever $x_0 \notin [0,1]$.
- (b) Let $\Lambda_1 = \{x \in [0,1) \mid Tx \in [0,1)\}$. Show that Λ_1 consists of two intervals. How can you characterize the numbers $x \in \Lambda_1$ by their decimal digits?
- (c) For any integer $k \geq 2$, let $\Lambda_k = \{x \in [0,1) \mid T^j x \in [0,1); j = 1, \dots k\}$. Show that Λ_k consists of 2^k intervals. How can you characterize the numbers $x \in \Lambda_k$ by their decimal digits?
- (d) $\Lambda = \{x \in [0,1) \mid T^j x \in [0,1); \forall j \geq 1\}$. How can you characterize the numbers $x \in \Lambda$ by their decimal digits?
- 6. Consider the map $T : [0, 1] \to [0, 1]$,

$$T(x) = \begin{cases} \frac{3}{2}x & \text{if } 0 \le x < \frac{2}{3}, \\ 2x - \frac{4}{3} & \text{if } \frac{2}{3} \le x \le 1. \end{cases}$$

Is Lebesgue measure invariant for T? If yes, explain why, if no, find another absolutely continuous invariant measure (ie. an invariant density).

- 7. Consider the linear maps $T: \mathbb{R}^2 \to \mathbb{R}^2$, T(x) = Ax for the matrices A below. In each case, describe the asymptotic behavior and sketch the phase portrait. In hyperbolic cases, determine the stable and unstable subspaces (W^s) and W^u .
 - (a) $\begin{bmatrix} 4 & 3 \\ 2 & 1 \end{bmatrix}$ (b) $\begin{bmatrix} 3 & 1 \\ 0 & 1/3 \end{bmatrix}$ (c) $\begin{bmatrix} 0 & 1/5 \\ 1/5 & 0 \end{bmatrix}$ (d) $\begin{bmatrix} \sqrt{3} & 1 \\ -1 & \sqrt{3} \end{bmatrix}$.
- 8. Consider the matrix $A = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}$.
 - (a) Determine the eigenvalues and the eigenvectors of A.
 - (b) Let $T: \mathbb{T}^2 \to \mathbb{T}^2$ denote the toral automorphism associated to A, that is, the CAT map. Find some $\underline{x} \in \mathbb{T}^2$ ($\underline{x} \neq (0,0)$) that is homoclinic to the fixed point (0,0).
- 9. Let $\Sigma = \{0,1\}^{\mathbb{Z}}$ (the space of bi-infinite binary sequences), and let $\sigma : \Sigma \to \Sigma$ denote the corresponding two-sided full shift.
 - (a) How do you define the distance of $d(\underline{i},\underline{j})$ for two points $\underline{i},\underline{j} \in \Sigma$? (Let $\underline{i} = ...i_{-1}i_0i_1...$ and similarly for j).
 - (b) Find all the fixed points of σ .
 - (c) Find some $\underline{i} \in \Sigma$ which is periodic for σ with prime period 7.
 - (d) Find some $\underline{j} \in \Sigma$ that satisfies both of the following two criteria. (i) $d(\underline{i},\underline{j}) < 0.01$ (with \underline{i} from problem (c)). (ii) j is homoclinic to (one of) the fixed point(s) from problem (b).

2