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Convexity properties of entropy-like functionals on states of a finite dimensional
algebra are discussed. The treatment covers both the quantum mechanical and the
classical cases. The purpose is to generaüze Lieb's convexity theorem and the
monotonicity of the relative entropy using the Jensen inequality of operator convex
functions. From the quasi.entropies defined here the quantum version of Rényi's a-
entropies can be deduced.

Introduction

In this paper we discuss the convexity properties of entropy-like functionals.
Our treatment covers both the quantum mechanical and the classical cases,
however, the main emphasis is on quantum mechanics. Mathematically, the objects
investigated are positive linear functionals on finite dimensional operator algebras.
In the commutative case we obtain simple theorems in probability and the matrix
case is related to quantum mechanics.

When John von Neumann introduced the entropy

S (q ) :  -T rq l ogq

of a density matrix A [18] it turned out immediately that important properties (for
example, concavity and increasing under measurement) are due to the concavity of
the function Í $) : _ r log r. The functional Sr (s) : Tr Í @) has been widely studied
fI, 6, 16, 1,9, 271and the expression "quasi-entropy" was proposed in l27f.In this
paper we carry out an analogous generalization in case of the relative entropy. (Of
course, entropy as the relative entropy with respect to a trace remains a particular
case.) The Kullback-Leibler information for discrimination appeared in the
operator algebra setting in the pioneering work of Umegaki [25], and Lindblad
[15, 16] discussed properties of this quantity (called already relative entropy)

S(qt ,  qz)  :  Trg2( logqz- logqr) .

[57]
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The culminating point was surely Lieb's convexity theorem (sometimes referred as
Wigner-Yanase-"-Dyson-Lieb convexity) which easily implies the concavity of the
relative entropy ([13], see also [8, 20, 23,26f).

The forerunner of the present paper in classical information theory is [4] which
seÍves as a guideline for us. (We note that in [4] and [5] the term fdivergence is
used instead of our quasi-entropy.) We shall define quasi+ntropies

SÍkp, ,)

for positive functionals E and a;. Here / is a function on R* and & is a fixed
operator in a given algebra. When / is operator convex, Sj(,g, a) yields the
convexity and monotonicity properties of the usual relative entropy corresponding
to the choice k : I and Í G) : _ 1og t. The properties above will be proved by
simple application of the Jensen operator inequality. Both the integral
representation of operator convex functions and interpolation theories are avoided
(cf. [3' I1, 24f). The quantum version of Rényi's a-entropies Lzl, 22, 26f can be
deduced from quasi-entropies. Quasi-entropies are not additive and subadditive,
hence their physical importance is restricted. We do not touch here on the infinite
dimensional case but a treatement in a von Neumann algebra context will follow
in a subsequent paper.

The author is grateful to I. Csiszár and J. Fritz for useful conversations and it
is a pleasure to thank E. Lieb and A. Wehrl for comments on the first draft of the
manuscript.

1. Definition

Let ,il be a finite dimensional C*-algebra with a faithful trace r. In other
words

(i) t e.ú!" ,
( i i) t(ab): r(ba), (a, be,ú),
( i i i )  ae ,ú* and t(a):0 imply a:0.

Such a r always exists but it is not unique. Let E and ar be positive functionals
on .il. Then there are density operators Q, and g. such that E(.):r(Qc.) and
ar('):r(q.'). For technical simplicity we assume that ar is faithful, i.e. q, is
invertible. With the trace inner product

(a,  b)":  r (b* a) '

.-al becomes a Hilbert space ff and ar..+L. is a representation of .ú on /((L,b
:ab). We identify L(.ú) with.ú, Thus <p and ar arise as follows:

q(a) - (al ,  l) ,  a(a): (aQ, Q),
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wh€re l: g',l, and o : Q|]2.Here o is a cyclic and separating vector for .ú.
There exists a unique positive operator /r,o such that I

(Á;,oaQ, aQ): E@a*).

It is easy to check that Ár,o:Lu,Rp.L, where Ro a:aq..

To define the quasi-enffopies we choose a continuous functioq I (0, oo)--+ R
and an operator ke,ú. We set

Sj(q, u): (ÍUo,o)kQ, kQ>,.

This quantity does not depend on the trace r.If r'is another functional satisfying
conditions (iHiii) then there is an invertible element c in the centre of .q/ such that
í (a) : r(ca) (ae.ú). Then QL: c- l 8* and Q!-: c_ '8.. So ÁÓ,,o - Á6,o and we
find that S! is independent of z.

In the really interesting cases / will be an operator concave function or
operator monotone function. Let us consider some examples.

1 .  ÍU) :  _ l ogÍ

sj(E, d : ,(QI!'k* keY2log q. * kg. k* log qr).

2 . f ( t ) : 1 "

3 .  Í@:  t |og t

4 . Í ( t ) : I t * a

sl(E, d: uE(kk*)+ua\k* k).

One can recognize immediately that Lieb's convexity theqrem is related to
Example 2. Examples 1 and 3 give the usual relative entropy (up to order of ttre
functionals in the case /(t): Ílogt). The linear case is quite uninteresting.
Following [21] and l22l we can defrne the a-entropies:

ü(E, c.l) :;|'o,. (ei_, q2), 0 < a < 1.

(Compare with [26] where Ú) = T: Tr.) Now

St (8, ar) : 
3I 

t- (t, a) : r (p. flog q. - log g"])

by the same calculation as in the commutative case.
We note that if Í,G): ÍG)+c, t|.prl

S1@, a) : r(e',-" k* g?ok).

S!'(E, a) : r(Q,plogprkk* - QEklogQ.k*).

si1(q, co) : sl(o, a)+ca{k* k).
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Hence it is not an essential restriction if we fix /(0).
When k:1 we write simply Sr(E,r,t).

2. Properties

In this section we establish the concavity and the monotonicity of the quantity
Sl. Lieb's convexity theorem will be a consequence. Our main tool is the Jensen
inequality of operator concave functions. We recall some ddnitions and basic
facts. A function Í (0' m)-'R is called operator monotone |Í Í(A)</(B)
provided that A and B are positive definite matrices and A (B. The function/ is
operator concave if for positive definite matrices A, B we bave f (iA+(l-l)B)
> 1f (A)+(I-L)f (B) for 0 < 7< 1. / is operator convex if -f is operator
concave. Every operator monotone fünction (on the interval (0, oo)) is operator
concave (Theorem III.3 in l2f) and every operator concave function is C*concave

in the following sense. If I Cf Ci : 1, then
.  i =  I

n n

í(>' Cr A,C,)) I cl f (A,)C,.
-  i = 1  i = l

(Here,4r, Ar,. . . ,  A,are posit ive def inite matr ices and Cr, Cr,. . . ,  C,are arbitrary.)
We shall mostly need the consequence of the inequality above. Namely, it í (0) > 0
and llull ( 1, then

f (uAu*)) uf (A)u*.

For notions related to operator inequalities we refer to [2], [7] and [9]. We note
that a non-linear operator concave function is strictly concave (í,, < O).

THeonBu I. Assume that f is operator conlex. Let "ú, be a subalgebra of the
finite dimensional algebra "ú and let E. a be positiae functionals on ,ú. If a is
faithful a.nd ke.úo, then

' sl(vo, aro) ( sl(E, a),
where E,, ao denote the restrictions of tp and a to.úo.

Proof: We fix faithful traces t and to on .ú and .ú g, respectively. ff and lf o
denote the corresponding inner product spaces. with obvious notations

E@) :  ( a l , l ) ,  q o@d:  ( ao l o ,  l o ) ,

at(a) : (aQ, Q), ao@o) : (asQr, Qr).

The linear operator u; asd)s+ aod) is an isometry. We, check that

Álo,oo :  1:* Á6, ,u.
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Indeed,

(Áoo,ooaoQo, ao0o) :  Qo(aoaő):  (Áo,oagd),  agQ) :  (u* Ár, ,uagQg, agQ,) ,

By the Jensen inequality

f Uoo,pJ { o*f (/r,o)u

and in particular we have

<í uro,ao)kQo, ko,o> { (Í @o,dka, bQ>.
C.onorrany 2, IÍ í is operator conuex, tlrcn

S1k?, a)>- Í(qG)lQ) (1))a;(1).

Proof: By the monotonicity (Theorem 1) sl(q, ar) is not smaller than the quasi-
entropy of the restrictions to C-1.

We can formulate a stronger result using an estimate in [a].
THrongu 3. kt q anil a be faithful states and í a non.linear operator conUex

function. Thcn

S1(9 ,O)> ÍG)
and equality lnlds if and only tÍ q : a. More precisely, there exists a C > 0 suci
that if ő is small enough, tlrcn

S1kn, a)_Í (1) < ó

implies

||q_c,l|| < Có1l2.

Proof: kt Ú,_Ú, be the Jordan decomposition of cp_a and e the support of
Ú,.If .ú,is thesubalgebrageneratedbye andEg,@oaÍetherestrict ionsof 12,ar
to .ú o, then

llq-ialll: llEo-aroll
and by the -monotonicity

s/(po, c,ro) ( Sr(8, ar).

Since /"(1) > 0 we can apply 2.1. Theorem of [4] (see also (a.1) in [5]) to E6 and
ar6 and it completes the proof.

It was proved in [10] by the same method that

l lq-al lz ( 2s(E, a;).

Now we are going to obtain a more general monotonicity related to
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Uhlmann's theorem [24]. Instead of interpolation we use the Jensen inequality in
adequate form. We recall that a linear map {: ilo-.ú is a.Schwarz map if it
satisfres the inequality a(a6)*a(ao) ( a(afias).

TrreoneN,I 4. I.et .ú 6 and ,ú be finite dimersional algebras and a: il o--' il a
Schwarz map. Assume thnt Qo, 0)o ,il E, Ú) are faithful positiue functionals on il,
and ,ú, respectiuely, such that

ooa { a l6,  goa { go.

Then for eÜery operator monotone function f with"f(O): a and for any keilg we
haue

S!(eo, ad 2 slk,kt, a).

Proof: ,úg and,d become Hilbert spaces with trace inner products. So (Po,0)o,
(p, @ ean be represented by means of vectors as follows:

q (a ) :  (a l , l ) ,  Eo@d:  (ao lo , l r ) ,

we set u: .ffs- *'I;:l:*l; 
ao(ad: (aooo' oo)'

uasd)s: a(as)Q

and obtain a contraction. We show that

u* Á4,ou ( /oo,oo

by a simple calculation

(a* Á6,ouagd)o, dooo) : (a(ao)* l ,  a(ad* l): q(a(ao)a(co)*)

( go(ao a8): (Áoo,oga,o()o, ao0o).

Now an invocation to the Jensen inequality completes the proof

S}(Eo, oo) : <f uro,a)kQo, ko'o> ) (Í@* /6'oa)k8g, kQ,)

rne i Jnt "o nn"o,i,.( : :,:^' :::;ll"l; j;' :: f],."si -entro py and t he
following construction.

LBrraua 5. Izt (Pt, Qz, Q)t, (D2 be faithful wsitive functionals on "ú and 8
: ,ú @,ú . We consider the furctionals

en(ar@ az) : Aq, (ar) + {1 - 1) qz@z),

@ rz(ar@ oz) : ).a, (a r) + (l - 1) e4@2)



QUASr-ENTROPTES FOR FTNTTE QUANTUM SYSTEMS

on fi when 0 < .1< 1. Then

sj@h(en, @rz): lsl(vt arr)+(t -),)sj(Ez, ia'z).

Proof: If t is a faithful trace on ,ú, t|ten Ttz:T@t is a faitbful
With our usual notations we have

f f rz  :  2f@tr ,  d l rz  : r /TorgJ l - |Q, ,

Hence lT12,a17: Ár,,o,@/,,,o, is independent
gives tbs statement

sl@*(Err, cnrr)
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trace on 0.

ke ,ú ,0< ,d< .1 .
IÍ

then

7E1+Q-1)Ez4  E , 1ct4*(1-A)a2 4 ot,

ln :  J l l ra . , / t -L l r .
of /.. Now simple calculation

_ (Í (Á o n,nl J (ft o k) (JI O' a J t _ l o,), (k @ k) (^,/7 o, a,f t _ l' o,s
: A (í (Áo,,n1) kQ 1, ka } + Q _ D (Í @ o,,a2) kQ z, kQ).

Tsnonru 6. Let f be operator-conoex. Then for any ke,il

sj(q' ')
is a jointly cam)ex function of q and a.

haf: We are going to use the construction and the notation of the previous
lemma. We have

S|@k(Qrz, @tz) - ASI(qt, arr)+(1 -),)Sj(E2, co).

i lo:{a@a: ae, i l} is a subalgebra of 8. Set Qo:Qtz| i lg and ia,g: la,12|.úg,
Eüdently, ,úg is isomorphic to ,ú and the isomorphism carries E9 into 1E,+
+(1-l) q2 and a;s into 7ar+(1-tr)c,tz.Therefore

Si**(qo, cdo) : SI(kEr+(|-,t) E2, ka)t+(- A)r l ,r)

and an appeal to Theorem I completes the proof.

An alternative version of rheorem 6 is the following, where / is not only
operator concave but even operator monotone (compare with [11]).

Tnnonnu 7. Assüíne that Í is operator+nonatone and f (0):0. Itt (Pt, Q2,0)1,
Ú)z, Q, a be faithful posititle functionals on the finite dimensiotnl algebra .ú and let

),Sj(v,r crt)+(1 -A)Sl(qr, arz) ( Sl(E, r).
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Proof: The proof is essentially the same as that of Theorem 6. The only
difference that at the last point one has to invoke to Theorem 4 instead of
Theorem 1.

3. Discussion

We have seen that convexity properties of the quasi-entropies are simple
consequences of the Jensen operator inequality. Under fairly general conditions on

f one can not expect nice additivity and subadditivity properties. However, the a-
entropies are additive. Let E1, r-r;1 and Qz,0)z be faithful states on "ú, and.ú,.
Then

p',,ő,zQ7,1o-2: a',," aL1E ale;" a?,2

S,(qrO ez., o)rOa;z) : S,(Er, a;r)+S"(E z, @z)

follows.
Despite the fact that we always treated faitMul functionals, the results can be

extended to arbitrary ones by means of continuity arguments. When non-invertible
densities may occur it is convenient to use continuous functions / on [0, oo). Also
the usual relative entropy is available in this way through a-entropies or by means
of the function í (t) : t|ogt.

Since our list on related papers is surely incomplete we refer to l26f where a
very rich bibliography is given.

REFERENCES

[1] Alberti, P. M. and Uhlmanq A.: Stochasticity and Partial Order, VEB Deutscher Verlag der
Wiss.. Berlin 1981.
Ando, T.: Tbpics on operator inequalities, Lecture notes, Hokkaido Univ., Sapporo 1978.
-: Lin. Alg. and Appl. 26 (1979), 203*241.
Csiszár, I.: Measures of information type for dffirence of probability distributions (in Hungarian)'
C. Sc. Thesis, Budapest 1966.

[5] -: Stuilia Sci. Math. Hungar. 2 (1967), 299-318.

[ó] Davies' E. B: Non-Iinear functionals in quantum mechanics, Lecture notes, 1980

[7] Davis, C.: Proc. Amer. Math. Soc. Symposia (Conuexity) 7 (1963), 187-201.

[8] Epstein, H.: Comrrutn. Math. Phys. 31 (1973), 317-325.

[9] Hansen, F. and Pedersen, G. K.: Math. Ann. 258 (1982), 229-24I.

[10] Hiai, F., Ohya, M. and Tsukada, M.: Pacif ic J. 'Math.96 (1981),99-109.

[11] Kosaki, H: Commun. Math. Phys.87 (1982),315-329.

[12] Kullback, S.: Irformation theory and statistics, John Wiley, New York 1959.

[13] Lieb, E. H.: Adu. Math. tL (1973), 267-288.

[14] - : Bull. Amer. Math. Soc. 81 (1975), 1-13.

[15] Lindblad, G.: Commun. Math. Phys. 33 (1973), 305*322.

uó] - : ibid. 39 (|914), |11_1|9.

t2)
t3l
t4l



QUASr-ENTROPIES FOR FINITE QUANTUM SYSTEMS 65

[17] - i ibid. 40 (1975\ 1.47-151.

[18] Neumann, J. von: Matlematisclw Grundlagen der Quantenrneclranic, Springer, Berlin 1932.

[19] Peta D.: Spoctral scale of self-adjoint operators and trace inequalities, J. Math. AnaI. AppI., to
app€ar.

[20] Pusa W. and Woronowicz, S. L.: l,ett. Math. Phvs- 2 (1978\, 50]512.

t21] Rényi A... on nuasure of entropy and informatiory Proc. of the 4th Berkeley Symp' on Math. Stat.
and Probability, l, 547-56L Berkeley 1960.

L22f -: Wahrscheinlichkeitsrechnwq, VEB Deutscher Verlag der Wiss., Berlin 1962.

[23] SimoÍ\ B.: Trace ideals and their applications, London Math. Soc' Lecture Note Ser. 35,

Camb'ridge Univ. Press, Cambridge 1979.

[24] UhlmanÍL A.: Comtrutn. Math. Phys.54 (1977),2l-32.

[25] Umegakt, H.: Ködai Math. Sem. Rep' t4 (1962)' 59_85,

t26l Wehrl, A:: Reu. Moilern Phys. 5O (1978)' 221-2ffi.

Lnl -: Found. Phys.9 (1979),939-946.

[28] Wigner, E. P. and Yanasg M. M.: Proc. Nat. Acad. Sci. (U.S.) 49 (1963)' 910-918.


