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Convexity properties of entropy-like functionals on states of a finite dimensional
algebra are discussed. The treatment covers both the quantum mechanical and the
classical cases. The purpose is to generalize Lieb’s convexity theorem and the
monotonicity of the relative entropy using the Jensen inequality of operator convex
functions. From the quasi-entropies defined here the quantum version of Rényi’s a-
entropies can be deduced.

Introduction

In this paper we discuss the convexity properties of entropy-like functionals.
Our treatment covers both the quantum mechanical and the classical cases,
however, the main emphasis is on quantum mechanics. Mathematically, the objects
investigated are positive linear functionals on finite dimensional operator algebras.
In the commutative case we obtain simple theorems in probability and the matrix
case is related to quantum mechanics. ]

When John von Neumann introduced the entropy

S(g) = —Treloge

of a density matrix ¢ [18] it turned out immediately that important properties (for
example, concavity and increasing under measurement) are due to the concavity of
the function f (1) = —tlogt. The functional S,(¢) = Tr f(¢) has been widely studied
[1, 6, 16, 19, 27] and the expression “quasi-entropy” was proposed in [27]. In this
paper we carry out an analogous generalization in case of the relative entropy. (Of
course, entropy as the relative entropy with respect to a trace remains a particular
case.) The Kullback-Leibler information for discrimination appeared in the
operator algebra setting in the pioneering work of Umegaki [25], and Lindblad
[15, 16] discussed properties of this quantity (called already relative entropy)

S(01, 02) = Tro,(loge, —logey).
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The culminating point was surely Lieb’s convexity theorem (sometimes referred as
Wigner—Yanase-Dyson-Lieb convexity) which easily implies the concavity of the
relative entropy ([13], see also [8, 20, 23, 26]).

The forerunner of the present paper in classical information theory is [4] which
serves as a guideline for us. (We note that in [4] and [5] the term f-divergence is
used instead of our quasi-entropy.) We shall define quasi-entropies

S5 (@, w)

for positive functionals ¢ and w. Here f is a function on R™ and k is a fixed
operator in a given algebra. When f is operator convex, S%(9, ®) yields the
convexity and monotonicity properties of the usual relative entropy corresponding
to the choice k =1 and f(t) = —logt. The properties above will be proved by
simple application of the Jensen operator inequality. Both the integral
representation of operator convex functions and interpolation theories are avoided
(cf. [3, 11, 24]). The quantum version of Rényi’s a-entropies [21, 22, 26] can be
deduced from quasi-entropies. Quasi-entropies are not additive and subadditive,
‘hence their physical importance is restricted. We do not touch here on the infinite
dimensional case but a treatement in a von Neumann algebra context will follow
in a subsequent paper.
The author is grateful to 1. Csiszar and J. Fritz for useful conversations and it
is a pleasure to thank E. Lieb and A. Wehrl for comments on the first draft of the
manuscript.

1. Definition

Let o/ be a finite dimensional C*-algebra with a faithful trace t. In other
words
() re Y,
(ii) t(ab) = 1(ba), (a, be ),
(i) aeo/, and 1(a) =0 imply a=0.
Such a t always exists but it is not unique. Let ¢ and @ be positive functionals
on /. Then there are density operators g, and g, such that ¢(-)=1(g,") and

(') =1(g,"). For technical simplicity we assume that o is faithful, ie. g, is
invertible. With the trace inner product

{a.b>. = z(b%a).

</ becomes a Hilbert space # and arL, is a representation of </ on #(L,b
= ab). We identify L(</) with .o/. Thus ¢ and w arise as follows:

¢(a) = <ag, ¢}, w(a)=<aQ, Q),
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where ¢ = o)/? and Q = ¢l/*>. Here Q is a cyclic and separating vector for /.
There exists a unique positive operator 4, , such that
(44,008, aQ) = @(aa*).
It is easy to check that 4,4=L, R, ', where R, a=ag,.
To define the quasi-entropies we choose a continuous function f: (0, co)— R
and an operator ke.o/. We set

S‘}((P, CO) . <f(A¢,Q)kQ’ kg>t

This quantity does not depend on the trace 7. If v’ is another functional satisfying
conditions (i}iii) then there is an invertible element c in the centre of .o/ such that
7'(a) = t(ca) (ae.o/). Then g, =c ', and g, =c "' g,. S0 4y o =44, and we
find that S% is independent of .

In the really interesting cases f will be an operator concave function or
operator monotone function. Let us consider some examples.

1. f(t) = —logt
Si (@, ) = (0> k* ko,/* log 0, — ko, k* log 0,).
2. filty =g
89, ©) = 1(0s *k* g k).
3. f(t) =tlogt
S5(¢, w) = 1{g, log g, kk* — o, klog g, k*).
4. f(t) =ut+v
(@, w) = up (kk*)+vew (k* k).

One can recognize immediately that Lieb’s convexity theorem is related to
Example 2. Examples 1 and 3 give the usual relative entropy (up to order of the

functionals in the case f(t) =tlogt). The linear case is quite uninteresting.
Following [21] and [22] we can define the a-entropies:

1
So(@, ) =—logz(e, " ¢i), O<a<l.

(Compare with [26] where @ =7 = Tr.) Now
Si(p, w) = lin} Sy (@, w) = (0, [log o, —log g, 1)

by the same calculation as in the commutative case.
We note that if f;(t) = f(t)+c, then
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Hence it is not an essential restriction if we fix f(0).
When k =1 we write simply S;(¢, ).

2. Properties

In this section we establish the concavity and the monotonicity of the quantity
S%. Lieb’s convexity theorem will be a consequence. Our main tool is the Jensen
inequality of operator concave functions. We recall some definitions and basic
facts. A function f: (0, ©)— R is called operator monotone if f(4)< f(B)
provided that 4 and B are positive definite matrices and 4 < B. The function f is
operator concave if for positive definite matrices 4, B we have f(14+(1—4)B)
2 Af(A)+(1-4) f(B) for 0< A< 1. f is operator convex if —f is operator
concave. Every operator monotone function (on the interval (0, o)) is operator
concave (Theorem II1.3 in [2]) and every operator concave function is C*-concave

in the following sense. If C2C,= 1, then
; =1

¥

(T Cr4C)> ¥ CHfA)C,.

(Here A,, A,,..., A, are positive definite matrices and C,, C,, ..., C, are arbitrary.)
We shall mostly need the consequence of the inequality above. Namely, if 1(0) > 0
and |[v]] £ 1, then

f (vAv*) = vf (A) v*.

For notions related to operator inequalities we refer to [2], [7] and [9]. We note
that a non-linear operator concave function is strictly concave (f” < 0).

THEOREM 1. Assume that f is operator convex. Let .o/ , be a subalgebra of the
finite dimensional algebra of and let ¢, w be positive functionals on . If w is
Saithful and ke .o/, then

S?(Q’o, o) < S_’;’((pa w),
where @o, w, denote the restrictions of ¢ and w to of .

Proof: We fix faithful traces = and 7, on .o/ and ./, respectively. # and #,
denote the corresponding inner product spaces. With obvious notations

p(a) = <ad, ¢>, @olag) = {agdo, ¢o),
w(a) =<aQ, Q5, wy(ag) = {agQy, Qo).
The linear operator v: a,02,— a,Q is an isometry. We. check that

L
400 =V 4400,
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Indeed,
(44,000 L205 020> = @o(aga) = (440802, ag Q> = (v* A4,00a0 R0, ag 2.
By the Jensen inequality
Flgg00) < V*f(dy0)v
and in particular we have
(44,00 K20, kQ0) < {f (44,0 kQ, kQ).
CoroLLARY 2. If f is operator convex, then
Sr(@, ©) = f (oo (D)o (D).

Proof: By the monotonicity (Theorem 1) S, (¢, ) is not smaller than the quasi-
entropy of the restrictions to C-1.

We can formulate a stronger result using an estimate in [4].

Tueorem 3. Let @ and o be faithful states and f a non-linear operator convex
function. Then

Sp (¢, @) > f(1)

and equality holds if and only if ¢ = w. More precisely, there exists a C > 0 such
that if 6 is small enough, then

Sp(p, 0)—f(1) <9
implies
llp—oll < Co'2.

Proof: Let ; —y, be the Jordan decomposition of ¢ —w and e the support of
Y. If o/ is the subalgebra generated by e and ¢,, w, are the restrictions of 0, ©
to .o/, then :

ll —oll = lloo—woll
and by the monotonicity
S7(0o, o) < S; (0, w).

Since (1) > 0 we can apply 2.1. Theorem of [4] (see also (4.1) in [5]) to ¢, and
wo and it completes the proof.

It was proved in [10] by the same method that
llo -l < 28(p, w).

Now we are going to obtain a more general monotonicity related to



62 Di7PETZ

Uhlmann’s theorem [24]. Instead of interpolation we use the Jensen inequality in
adequate form. We recall that a linear map «: o/,— .o/ is a Schwarz map if it
satisfies the inequality o (ao)* a(ao) < a(af a,).

THEOREM 4. Let .o/, and o/ be finite dimensional algebras and a: of o— o/ a
Schwarz map. Assume that @o, wo and ¢, o are faithful positive functionals on of
and =f, respectively, such that

Wou < Wy, QPOU K Qg.

Then for every operator monotone function f with f(0) =0 and for any ke .o/, we
have

S5 (@0, w0) = 57 (9, 0).

Proof: o/, and .o/ become Hilbert spaces with trace inner products. So ¢, ®,,
@, ® can be represented by means of vectors as follows:

@la) =<ag, ¢>,  @olag) = {aoPo, o),
w(a) =<a, Q>, wqy(ag) = a2, 2.
We set v: #,— # by the formula
vay 2 = afay) 2
and obtain a contraction. We show that
V¥ 44,00 < 44,0,
by a simple calculation
v* 4y 0000 o, a9 Qo) = {a(ag)* ¢, alag)* ¢) = (P(“ (ao)oc(ao)*)
< @olag af) = {444,040 205 a0 o).
Now an invocation to the Jensen inequality completes the proof
S5 (@0, o) = (S (dpg,00) kR0, kQ0) = {f (0% 44,0 0) kQo, kQo)
2 (v*f (44,0 vkQo, kQo)» = ST (0, 0).

The joint convexity is based on the monotonicity of the quasi-entropy and the
following construction.

Lemma 5. Let ¢y, ¢,, w,, ®, be faithful positive functionals on of and %
=/ @®. We consider the functionals

¢12(a, D ay) = A, (a)) +(1=4) 9, (a,),
w15(a; @ ay) = Aoy (a)+(1 -2 w,(a,)
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on B when 0< A< 1. Then

S}@"(qolz, ;) = lS’}(Q’u w;)+(1 —A)S’}((st @,).

Proof: If t is a faithful trace on ./, then 7,, = 1@ is a faithful trace on %.
With our usual notations we have

Hi=HDH, Q1z=ﬁ91®\/1“292a ¢12=\/I¢1®\/1—'1¢2-'
Hence 44, ,0,, = 44,0, 44,0, is independent of 1. Now simple calculation
gives the statement

S5 (@12, @12)
= ([ (4g,,0, ) k@R (/22,©/1-492,), k® K (/12,®/T-12,)
= A{f (44,0 k2, kQ>+(1=2){f (44,0, k2, kQ,).
THeOREM 6. Let f be operator-convex. Then for any ke .of
S (9, o)
is a jointly canvex function of ¢ and o.

Proof: We are going to use the construction and the notation of the previous
lemma. We have

S;eak(q’lz, Wy3) = lS’j‘(q)l’ w;)+(1 —A)S;((Pz, ).

oo ={a®a: aco/} is a subalgebra of #. Set ¢, = ¢, |4, and wy = w,,|.7,. -
Evidently, ./, is isomorphic to &/ and the isomorphism carries ¢, into i@, +
+(1-2) ¢, and w, into Aw,+(1—Ai)w,. Therefore

S?‘Bk(q’o, o) = S} (/1(P1 +(1=24) @3, Ao, +(1-17) wz)
and an appeal to Theorem 1 completes the proof.

An alternative version of Theorem 6 is the following, where f is not only
operator concave but even operator monotone (compare with [11]).

THEOREM 7. Assume that f is operator-monotone and f(0) = 0. Let @,, ¢,, o,
®,, @, ® be faithful positive functionals on the finite dimensional algebra </ and let
ked, 0< i< 1.

If
‘o +(1=De, <0, Ao+(1-No, < o,
then

AST (@1, 01)+(1=2) S} (2, ©) < S5(g, ©).
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Proof: The proof is essentially the same as that of Theorem 6. The only
difference that at the last point one has to invoke to Theorem 4 instead of
Theorem 1.

3. Discussion

We have seen that convexity properties of the quasi-entropies are simple
consequences of the Jensen operator inequality. Under fairly general conditions on
f one can not expect nice additivity and subadditivity properties. However, the a-
entropies are additive. Let ¢,, w, and ¢,, w, be faithful states on .7, and o/,.
Then '

1—gq o S =g 1—a o
Q(p1®<p2 Qw1®w2 =% Q(pl Qw1®grp2 sz
and

Sa((p1® ?2, w1®w2) = Sa((pl’ w1)+Sa((p2’ wZ)

follows.

Despite the fact that we always treated faithful functionals, the results can be
extended to arbitrary ones by means of continuity arguments. When non-invertible
densities may occur it is convenient to use continuous functions f on [0, ). Also
the usual relative entropy is available in this way through a-entropies or by means
of the function f(¢) =tlogt.

Since our list on related papers is surely incomplete we refer to [26] where a
very rich bibliography is given.
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