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Let N M be von Neumann algebras and £,,: M — N an w-conditional expecta-
tion mapping. For a state iy of N an extension % of  with respect to E, is
described. The relation E,~ E, defined to hold if §% =§*® for every i is an
equivalence relation. The family of equivalence classes possesses an affine structure
and shows analogy with the normal state space of a von Neumann algebra.  © 1990
Academic Press, Inc.

Several steps were taken toward the generalization of the classical notion
of conditional expectation to the noncommutative situation in the
framework of von Neumann algebras. The first, on an axiomatic basis, was
the use of norm-one projections preserving a state @ from a von Neumann
algebra M into its subalgebra M, (see [14, Chap. 11]). The theory so
developed was remarkably successful in many important aspects because of
its deep analogy with the commutative case but it did not deal with the
purely noncommutative situation in which such a norm-one projection
does not exist [15]. To cope with those situations w-conditional expecta-
tions were introduced in [2] (see [12] for a review on the subject).
However, an important feature of norm-one projections is not kept by
w-conditional expectations. Namely, if ¢, is a state on My M and E is a
norm-one projection of M onto M. then E is the conditional expectation
for the state ¢, E. This is no more true for w-conditional expectations. In
[47] we introduced a state extension procedure, which associates to a state
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CLASSES OF CONDITIONAL EXPECTATIONS 9

¢, on M, and a state @ on M an extension ¢¢ of ¢, to M. Actually, ¢
depends only on E, (and not on  itself) and reduces to ¢,0 E,, if E,, is
a projection. The aim of this paper is to establish an equivalence relation
between w-conditional expectations. Namely, E, is equivalent to £, if for
every state ¢, on M, @¢=¢%. There is an extension operation T,
associating to a state ¢, on M the extension ¢{ with respect to the equiva-
lence class &, and vice versa any state ¢ on M may be described by two
“coordinates” ¢ restricted to M, and the equivalence class of E,. From this
point of view, the equivalence classes of w-conditional expectations are the
generalization of classical conditional expectations. In fact, we also prove
that projections correspond to the singleton equivalence classes of
w-conditional expectations.

The first section is devoted to some technical developments of the theory
of spatial derivatives of Connes ([6]), which is our main tool.

In the second section for the sake of completeness we present some facts
concerning m-conditional expectations for the case of a normal (not
necessarily faithful) state with faithful restriction to My < M.

The third section contains the first elements of a possible modular theory
for w-conditional expectations. In particular, we introduce the modular
transformations, which form a bridge between w-conditional expectations
and the modular theory of von Neumann algebras. A result of interest on
its own is that the modular transformations are implemented by unitaries
in the algebra if and only if there exists an operator valued weight from M
into M,. As the Radon-Nikodym cocycle is the product of two spatial
derivative operators, by analogy for us the product of four spatial
derivative operator is of great importance.

In the fourth section we extend some results of our previous paper [4].
We study the extension of a faithful state ¢, on M, with respect to a non-
faithful state @ on M with faithful restriction to M,. So we can treat the
two states ¢y and w = (JJ‘[‘I\//IO)“’ (@ = ¢¢) symmetrically, as needed in the
sequel. Among other results we establish an explicit connection between,
$o° E,, and ¢2.

In the last section the establishement of the equivalence relation between
w-conditional expectations is implemented and the related extension opera-
tions T are studied. In particular, they are shown to form a convex set,
on which the absolute continuity of states induces a partial order. So the
family of equivalence classes shows a remarkable analogy with the normal
state space of a von Neumann algebra.

For technical reasons, in this paper we consider only von Neumann
algebras with separable predual. The standard representation of those
algebras acts on a separable Hilbert space, which guarantees that all von
Neumann algebras involved admit a faithful normal state. In the following
M will denote a von Neumann algebra containing a von Neumann
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subalgebra M, with identity. The commutants will be respectively denoted
by M’' and My, States of M, are labelled by a subscript 0, w,, and @, will
denote the restrictions of w and ¢ to M,. We use frequently an auxiliarly
faithful normal state w; on My with restriction @’ to M’ with no further
explanation. For general reference on the modular theory of von Neumann
algebras we use [13,147. We mention that a concise summary of the
theory of w-conditional expectations is contained in [12].

We denote by # (M) the set of all faithful normal states of the von
Neumann algebra M.

1. THE SPATIAL DERIVATIVES

Let Mc B(H) be a von Neumann algebra with commutant M’ If
Yy e M, then the linear of y is defined as

D(H,y)= {{e H: |al||* < Csp(a*a) forallae M }.

Clearly, M'D(H, /)= D(H, ) and if i is a vector state with vector ¥ then
D(H, y)=M"Y.

In most cases we do not distinguish between a projection and its range.
With this convention we have

LemMMA 1.1 (cf. [4, 1.1]). D(H, ) =supp .

Let (¥, H,, m,) be the GNS-triple corresponding to . It is possible to
define for ¢ e D(H, ) a bounded operator R¥(¢): H,, — H such that

R¥Y(&)myla) ¥ =al (a e M).

It is easy to check that aR¥(¢)= R¥(&) n,(a) for every a e M. This implies
that
RY(&)) RY(&,)*¥eM'

whenever &,, &, e D(H, ). We introduce the notation
@%(&)=R"(&) R¥(&)*.
If ¢'e(M’)} then one can define a quadratic form g on D(q)=
D(H,y)+ D(H, )" as

(5)_{45'(9“’(5)) if £eD(H, )
Bl it &1 D(H W)
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g is lower semicontinuous and there exists a positive selfadjoint operator
A(¢', ), the spatial derivative of ¢’ with respect to ¢ defined and studied
by Connes in [6], such that

(i) 14(g", ¥)'? &7 =q(&) if £e D(g)
(ii) D(q) is a core for A(¢’, yr)"".

Note that if i is a vector state then g(a'¥)=¢'(¢'[M¥]a'*)if a’e M’ and
g(&)=01if ¢ L M'¥=D(H, ).

LEmMMA 1.2, Let ¢, ¢he (M)} and ,, Y, e M . Assume that ¢ L ¢}
and \r, Ly, as well ¢+ ¢4 and b+, are faithful. If p' =supp ¢\ and
p=supp y, then

AP\, )= pp' AP+ 2. ¥ + ).
Proof. In 1.6 of [4] we proved that

AP,y + )= p" AP\ + 5, Wy + k).
It follows from [4, 1.2] that

D(H, ,+y5)=D(H, y,)®D(H, ).
Since Hy, , ,,=H, @ H,,, one can see that

@V g+ £,)=0%(L1) + O%(Ey)

if £, € D(H, ;). Therefore,

APy +Y2) = A(dy, )+ 441, ¥2)
(with form sum). Since Ker 4(¢4}, ¥;) > (supp ¥;)*, we have

A(¢’1’ 'pl+¢’2)P=A(¢'Jls !}'J,)

In the following, for a positive selfadjoint operator 4 and for ze C, 4~
denotes the sum of 0 on ker 4 and the usual power 47 on supp A.

TueoreMm 1.3.  Let ¢’ and  be as above and z € C. Then

(i) supp 4(¢’, ) =supp ¢" supp ¥
(i) A(g", ) =4, ¢') "
Proof. We refer to [6] and Lemma 1.2.



12 CECCHINI AND PETZ
2. THE @-CONDITIONAL EXPECTATION

For a von Neumann algebra M we shall use its staridard form intro-
duced by Haagerup [7]. We recall that it is a quadruple (n, H, J, 2),
where

n: M — B(H) is a faithful normal representation on the
Hilbert space H, J is the modular conjugation and £ is
the (self-polar) positive cone in H.

If NcM is a subalgebra of M, we set p=supp @, p,=supp(@|N),
M,=p,Np, and ¢@,=¢|N. Let (mn H,J, ?)((n,, Hy, Jy, %) be the
standard form of M (M) and @ (&,) the vector representative of ¢ (¢,)
in & (%,). We define an isometry V: H,— H by

Vrglag) @y =mn(ay)® (ao € My).

LEMMA 2.1. V*r(M) V< (nq(M,))".
Proof.  One can verify directly that
VEA Vrg(ag) mo(b,) @y, mol(bs) Do >
= (molay) V*A V(b)) Dy, mo(by) Dy >

for every aq, b,, b, e My and 4 e n(M)'.
By Tomita’s theorem we have

JoV*JIn(a) JVJye mo(My)

for every aeM and there exists a unique element xe M, such that
JoV*JIn(a) JVJy=my(x). We define £ ,(a) as this element x e M.

ProposITION 2.2 [2]. E,: M—>p,-N-p, is a completely positive

P

mapping, supp E,=p, o< E,= @, and E,(p)= p,.

Proof. These properties follow from the construction.

LemMa 2.3. Let My be a von Neumann subalgebra of M c B(H), ¢ a
normal state of M and @, = @ | M. Assume that wy is a normal state on M,
and w' = wj|M'. Then for n' € D(H, w;),

(A, @) P n'n' > =LA@, wg)Z 0,0’ >
implies
A(p, ') n' = A(po, wp)" '

Jor cvery re R
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Proof. We follow the idea in [10]. Let [;° 4 dE;, be the spectral resolu-
tion of 4= A(p, w") and H,,=jg)~ dE;. So (t+ H,) ' = (t+4)"" for all
t>0. We set 4y=A(¢p,, wy) and p,=supp w,= D(H, w;). We use that
O“(n')= 0% (') (see 1.4 of [4]) and get

457012 = @o(@*3(n")) = @(O“(n')) = @(@“ (1))
= |42y | = | H ') 2

for all n’' € D(H, wy). Since D(H, m}) is a core for 4}/?, we conclude that
Ado= poH, po-

So

polt+40) "' po< polt + H,) ™' po.
Letting n — oo we infer as in Lemma 2 of [10] that

Po(t+40) " po< polt +4) ' po
and therefore

Le+do) "'’y <L(e+40) "'’

for every n' € D(H, wy). We have
Ay, y=n"" fx LA™ AP+ A1, o' > di,
(4]
and

AP’ 'y =n"" JU KA P=2(A+ d0)~ 10, v > di,

As the values of the two integrals are the same by our hypothesis and the
preceding formula implies an inequality of the integrands, we obtain
L+do) ' n'sn'>=L(+4)""n',n">
for every ¢ > 0. Through polarization we also have
polt+4)" ' =(t+4,)" " 7"
By derivation,

polt+4) 2y =(14+44)73y
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and the Schwarz inequality ensures
(t+d) "' =(t+4d0)"" 7"

Reference to the Stone Weierstrass theorem furnishes the proof.

PROPOSITION 2.4. Let My M and ¢, w normal states on M such that
Po=@|M,, wo=w|M, are faithful. Then E,=E,, if and only if

[Do, Dw], = [Dpo, Dwg], p= pLD¢g, D],
with p=supp ¢ =supp w for all te R

Proof. Let M acting on H be in standard form with a positive cone #.
Let @ and Q be the vectors in # representing ¢ and . Set @’ and wj the
vector states given by £ on M’ and Mj. Then A(p, ') is the relative
modular operator of ¢ and w and supp 4(@g, wy) = [My2] supp @,. If we
consider the action of M, restricted to [M 2], then the relative modular
operator of ¢, and w, is exactly A(¢,, wg) restricted to the same space.
(Concerning relative modular operators we refer to [3].)

The monotonicity of the transition probability (cf. [12]) yields

{A(@o, w5)'? 2, Q) < {A(p, )'* 2, 2.

In the particular case in which E, = E,,, we also have the reverse inequality.
(See again [12], where P (¢, ®) stands for {A(p,w')">Q.Q>.) The
equality

(Ao, p)2 2, 2> = A(p, ') 2, Q)
allows us to apply Lemma 2.3 and to obtain
A(p, ') @ =[Do, D], 2= [Dgy, Dwy], 2= A(p,, )" 2.
Therefore,

p[Do, Dw],p=p[Dpy, D], p

with p=supp w. [De, Dw], is a partial isometry with initial projection
suppw=p and with final projection supp ¢ = p. (Note that E,=E,
implies immediately that supp ¢ =supp o). Hence

[Dg, Dw],= p[ Doy, Dwg], p.

[Do,, Dw,], must commute with p since it is a unitary.
To prove the converse we assume that (M, H,J, ) and (M, H,, Jo,
#,) are the standard forms of M and M. Let @, Qe 2 (P, 2, %) be
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the vector representatives of ¢ and w. If V: H, — H is the isometry defined
by

VaQ2, = a2 (aeM,),
then it is sufficient to prove that

Va®,=ad (aeM,)

Since

Va[ Doy, Dag], 2¢=al[ Doy, Dwg], @ =al[ Do, Dogy], p2
=a[De, D], 2

for all re R and ae M,, we obtain by analytic continuation that

Va®,=Va A(¢y, wy)'"? A(wo, wp) ™12 Q4
=aAlp, )" Alw, 0 )" Q=ad.

ProPoSITION 2.5. Let @ be normal state on M with support p. Assume
that @ restricted to the subalgebra My is faithful. Then the following proper-
ties are equivalent for ae My

(i) E,la)=a
(i1) po?(a)p=0a?(pap) for all teR.

Proof. We use the notation of the previous proposition and identify H,
with a subspace of H (considering a,®, and a,@ to be identical for every
age My).

First we note that E (ay)®=J,PJa,® for ayeM,. If E (a,)=a, for
a,eM, then PJa,®=Joa,® and |[Jag®| = |ay®| = |Jeay®| gives
Joao® = Jua,®. The latter condition implies obviously E (a,) = a,.

By the method of Lemma 1.2 one can see easily that a*®@=
JA(@, ') ad, where ¢’ is the vector state on M’ associated with @. Using
Jag®=JJ A(p, )2 af® and similarly Jya,@ =JoJ, A(@g, 04)"° af®
(a,e M) we obtain from Ja, @ = J,a,P that

A(p, ¢')'? agd = A(¢o, @) af .
Lemma 2.3 tells us then that
A(g, ') af® = A(@q, o)" ag®.
We have

M, @) agf@=A(p, ¢')' pap®=a?(paip)P
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and
Ao, 9o)" af®=0a?(af)P.

(See (f1) in Theorem C.1 of [3].) Finally, (ii) may be concluded.
The converse is given by the same argument by reversing the implica-
tions.

3. THE MODULAR TRANSFORMATION

Let ¢ be a normal state on M with support p and assume that ¢,=
@ | M, is faithful. Let ¢“ and ¢*° stand for the modular groups of ¢ and ¢,.
(We recall that the former is an automorphism group of pMp.) The
modular transformation family of M, for ¢ is a family of mappings ¢
M, - M defined as

a"™M(a)=07(po®(a)p)

for te R and ae M,. Reformulating Proposition 2.5, we have

w, My

ProrosiTioN 3.1. {aeM,:q¢

(a)=pap,teR}={aeMy: E (a)=a}.

Let wy be a faithful normal state on Mj, and set ' = wqy|M'. For each
te R, the partial isometry

u @, wp)=A(p, )" 4@, wp) ™"
implements ¢#™°; that is,
a?™(a)=u,(p, 0p) au(@, wp)*
for te R and ae M,,. Clearly,
u (@, wg)* =u_(wo, ).

In the rest of this section we assume that ¢ is faithful. We recall that
P(M, M) denotes the set of operator valued weights from M ™ into the
extended positive part of M, (see [8; 14, 11.5]).

ProrosiTioN 3.2. Let M, My, ¢, and wy be as above and assume that ¢
is faithful. Then the following conditions are equivalent:

(1) P(M, M,) is nonempty.

(ii) There exists a so-continuous c”-cocycle V, and a so-continuous
a™-cocycle W' such that u,(o, w)=VW' , (teR).
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(il1) There is a so-continuous a®-cocycle V, such that

GPMY(go )= V*a, V, (te R, age M,).

Proof. Assume (i) and take FEeP(M, M,). Then there exists
E~'e P(M{, M) characterized by

Ao E ') = Ao, @ < E~")
(see [14, 12.117]). We write
(@, o) = A(@, @) A= E, ') ™" A(pg, @' E )" A, ) "
So
V,=4(@<E ') A(p, ') "= [D(¢-E), Dp],
is a o”-cocycle and
wy=A(w s E~", o) A(wh, o) "= [D(w' < E~ "), Doy ],

is a o“-cocycle.

(ii) — (iii) is trivial. If v, is a so-continuous o*-cocycle then there exists
a weight ¢ on M such that v, = [ D¢, D¢ ],. If (iii) holds then ¢”| M, =0
and Haagerup’s theorem tells us that P(M, M) is nonempty [§; 14, 12.1]).

PROPOSITION 3.3. The family oc?™ of mappings My, — M for a faithful
normal state ¢ has the following properties:
i) o ;(GT'MO(M())) < M.
(i) t—a?>™(a) is a so-continuous for all ae M.
(ifi] oPeaPMgg¥ o= g@Mi (4 reR).
(iv) If a, be M, then there is a function f: {ze C: 0<Rez<1}->C
continuous, bounded, and analytic on the interior of its domain with
flity=g(af(a)a?™ (b))  (teR)
fi+in=q(e?™M(b)a?(a)) (1eR)
Furthermore, the conditions (i)-(iv) characterize a?-™".
Proof. (i)-(iii) are obvious. Since
@(af(a)a7™(b)) = p(ac® (b))
@(af™M(b) a?(a)=a® (b)a),

(iv) is the KMS-condition for .
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Conversely, if ¢¥™M: M, — M satisfies (i)-(iv), then a(a)=0c¥?c*(a) is

—f

a so-continuous group of automorphism of M, and it satisfies the KMS
conditions with ¢,. Therefore, «(a)=¢?"(a) and the claim follows.

PrOPOSITION 3.4. Let ¢, we F(M) and MycM. If E,=E, then

M .M
e

Proof. Due to [11], E,=E,, is equivalent to [De, Dw],=[D(¢|M,),
D(w|M,)], for every teR (see also Proposition 2.4). For brevity, we
denote this unitary by u,. Hence,

afa?”(a)=uc?(0?(@))uf =u,07(u_,0%(@u* )uf=07"(a),
where we wrote ¢, for ¢ | M, and w, for w|M,.

PrROPOSITION 3.5, Let ¢, we F (M) and M, be a maximal abelian von
Neumann subalgebra of M. Then E,=E,, if and only if 6" =g "™,

Proof. 6™™Y(a)=0%™g) means that
[A(@g, @5)" A(@, )" A(w, @ )" A(wqy, wy) ™", a]l=0

for every te R. (Now [ , ] stands for the commutator of two operators.)
Hence

[Do, Dw]_,=A4(py, ©5) " uy A(we, )"
= A(po, w5) " Uy A(@g, )" [Dpo, Dyl _,
for some ug e Mj. Since
A(@o, ) ™" uy A(@o, o) €My M,

it follows that [De, Do] ,eM, for all reR. According to [11] we
conclude that £,=E,.
The converse was the previous proposition.

4. STATE EXTENSION

Let M, be a von Neumann subalgebra of M. Let ¢, and w be normal
states on M, and M, respectively, and assume that w|M, is faithful. Set (r,
H, J, #) and (n,, Hy, Jo, %) to be the standard forms of M and M,. We
choose representatives @, 2,, and Q for ¢,, w,, and w from the corre-
sponding cones. The application

u: mo(ag) 2o — mlag) 2



CLASSES OF CONDITIONAL EXPECTATIONS 19

defines an isometry of H, into H, One can check that
umy(ay) = nlay)u (age My).
Therefore the state @ given by the vector u(®,) e H as
¢ola)=(n(a) u®y, ud,

is an extension of ¢,. We call it the canonical extension with respect to .

PROPOSITION 4.1. Let M, M, ¢, and w be as above. Then the function

it > o([Dpy, Dwy] a[D_‘P(Je D, ],)

admits an analytical extension F to the strip {ze C: 0<Re z< 3} and
@gla)=F(3).
Proof. With the notation above we have
o([D@o, Dwg 17 a[ Do, Dy ],)
= (n(a) uno([ Dy, Dwy1,)20, unto([ Do, Drg] )20

Here the function it — my([ Do, Dwy],) 2, has an analytical extension to
the strip {zeC: 0<Rez< 3} and its value at 1 is @,,.

CoroLLARY 4.2. If E ([Dg,, Dwy],)=[Dpy, Dw,], for every telR.
Then ¢g =g E,,.

Proof.  As E,_ is a completely positive unital mapping we know that
E (ua)=uFE (a) provided that « is a unitary with £_(u)=u (cf. [14, 9.2]).
So

U)([D(P(), D(ol):[r* (I[D(P(), D(U()].') =w(£w([D(P()v Dwﬁ]{* a[Dng’ DwO]!))
=w([Dgg, Day1} E (a)[ Doy, Dwy],).

By the uniqueness of the analytical continuation we arrive at
@5(a)=dG(E,(a)).

PROPOSITION 4.3. Let My, M, ¢,, and w be as above. Then ¢ is a
norm-continuous function of ¢.

Proof. We may consider the algebra M, in standard form with a
positive cone %,. Due to p.315 of [13] ¢{— ¢, in norm implies that
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Dy — D if Dy (D) is the vector representative of ¢f (¢@,) in %,. The asser-
tion follows immediately from the definition of the extension.

ProrosiTiON 4.4.  [f M acts on a Hilbert space H and o is a vector state
with a vector 2 € H then

@g(a)=<a Ay, o) A(wy, wo) "2 Q,
A(@o, @5)"2 Ao, )2 2

if wg is a faithful normal state on My,

Proof.  A(py, wh)" A(w,, wy)™" Q= [Dep,, Dw,], 2 and the proposi-
tion follows from Proposition 1 and 2.2 of [4].

CorOLLARY 4.5. The extension of w|M, with respect to ¢ is w.

PROPOSITION 4.6. Let w,, w,eM, " have a faithful restriction to M,
and E,, = E,, . Then for every faithful normal state ¢, on M, the extensions
of o with respect to w,; and w, coincide.

Proof.  One can argue in the same way as in Theorem 3.7 of [4] in the
faithful case.

In the light of the previous proposition, if E: M—M, is an
w-conditional expectation (with a nonspecified state @), we can also
write @ .

We recall that according to our convention @ is an auxiliary faithful
normal state on the algebra M, with restriction o’ to M’.

ProposiTiON 4.7, Let the standard representation of M act on a Hilbert
space H. Let w be a normal state on M, wg=w|Mye F(M,), ¢ € F (M),
and @ the extension of @q to M with respect to w. The operator

T(wp) = A(@, ')~ 2 Alwo, 03)"2 A(go, 0h) 7 A(p, )

is defined on D(H, ') and its closure T is a partial isometry belonging to M
and not depending on ).

Proof. Let Q be the vector rerpesentative of w in the natural positive
cone. The state ¢, is a vector state given by the vector

@0= A((P(): w;))uz A(wm wé})_uz Q

and ¢ has a vector representative @ in the natural positive cone. The
correspondence v': a®, — a® (ae M) defines a partial isometry with initial
projection [M@®,] and final projection [M@®]. Clearly, v'eM' If
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&' e D(H, w') then A(p, w' )" &'e D(H, ¢) and it is of the form «'® for an
aeM’. So

A(wq, o) A(@o, @5) ™ Alg, )2 &'
= A(wy, wy)? A(py, wy) ™2 a'®
=a A(wg, 05)'? A(@o, wy) 12 0'®y
=a'v' A(wg, wy)* A(py, wh) 12 By=a'v'Q.
Therefore we have

IT(wp)]I* = o' (a'v' [MQ] v'*a'*).

We show that [M@,] = [MQ]. Let p'=[MQ]eM’ and as M. Then

—J¥2

plado=p'a A(¢y, wp)"? Ad(p, ') w
=a A(pg, w5)'? d(@, ') P p'Q=ad,

(2.3 of [4] was applied). So v'[MQJv*=0v"v'* =[M@&] and we obtain

1T(@)]* = '(a'[MP]a'*).

On the other hand, if p, denotes the support of ¢ then

1p,&'I1*=4(e', @) a'pl* = w'(a'[MP]a’*)

and we conclude that the closure of 7(wy) is a partial isometry with initial
projection p,,.

We choose @, and 2, in the positive cone so that @, L &, @, L Q and
@, + D, 2, + Q2 are separating (for M). We set ¢ and @ for the functionals

(@ + D), (2, +P)> and  (.(2,+02), (£, +82))

on M. Then we have
T(wy), = A(w, @) ™" A(wq, p)" A(@o, @5) "
= A((I)! w)iu p(_,)[.DﬂJo, D(ro(J].' A(dj, CO)” A(C‘D! w)*ir A((j_), w)”pw
= O'c-:,(pw[Dﬂ)o, D@O]:)[D@s DQ_?} —t P>

where we denoted by p, (p,,) the support projection of ¢ (w). We have
thus established that T(wg), € M and does not depend on the auxiliary wg;
from now we denote it by T,.
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Let £ D(H, w') and ne D(H, w)+ D(H, w)*. The function

f— <T{‘S> f?>
= {d(wg, 05)" A(@o, wg) “ A, @')* & A, ') > (teR)

admits analytic continuation to the strip S={zeC: 0<Imz<3} and its
value at the point /2 is {T(wy), & n)> (cf [4, 2.5]). Therefore, if
D(H, ") D(H, ©') then T(wy) < T(t)).

Let i, be another faithful normal state on M}, and take t;, = (@§ + wg)/2.
Then

D(H,w'yUD(H, W)= D(H,7') and  T(wy) T(Wh) < T(th).

As they are bounded, T(wg)= T(yrg).
To prove TeM we fix £ H and a’e M'. We show that

Ta't,n>=<{a'T, >

for each ne D(H, w)+ D(H, w)". We may choose w; such that ¢,
a'ée D(H, wg). This is always possible, for instance, if ¢ is a faithful
normal state on Mj then the normalization of the functional

Wo(.)+ <& &0+ .a'd, a'>

will satisfy our requirement.{7a'¢, > = {T(wpy) a'é, n» is the value at i/2
of the anlytic extension of

Ft— {a'é n> (reR)

(remember that D(H, @) is in the domain of T(wg)) and similarly
{a'TE ny={T(wy&, a"*n > is the value of the analytic extension of

G t—{TE a*n> (teR).

(Recall as a’e M’ then a'*ye D(H, w)+ D(H, w")*.) Since T,eM, we
have F(t)= G(t) for all € R; therefore,

(Twp)&, a*ny={T(wp) a'é, n

and our claim follows.
We note that the symmetry of ¢ and w gives that the final projection of
T is supp .
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PrROPOSITION 4.8. Let @, w, and T be as in the previous proposition. Then
E,(a)=E,(TaT*)
Jfor every ae M.
Proof. We remark that the proof of 4.1 in [4] works if we take into
account Proposition 4.7.
COROLLARY 4.9. @(T*aT)= @o(E,(a)) for every ae M.
Proof. @(T*aT)=@(E,(T*aT))=@o(E,(TT*aTT*))=@o(E.(a))-

Let M be a finite dimensional von Neumann algebra and M, a sub-
algebra of M. Let t be a faithful tracial state on M and E: M — M, the
t-preserving conditional expectation. In [1] conditional density matrices
were defined as the matrices K € M such that £(K*K) =TI and it was shown
that each conditional density matrix K gives an extension of the states on
M, to M. A variant of this extension is

o(a)=1([¢o]"* K*K[9,]'? a).

which defines an extension of ¢u(-)=1(.[@y]) ([@oeMy). If w(.)=
7(.[@]) is a state on M with faithful restriction t(.[®,]) ([@o] € M) to
M, then choosing K= [w] '? [w,]"* we recapture the extension @f.

5. AN EQUIVALENCE FOR CONDITIONAL EXPECTATIONS

We have seen that for ¢,e.% (M,) the extensions (pgl and cbg’l coincide
if E,1=E,.. However, the former may occur even if E# E ..

LEMMA 5.1. Let o', w>eM* such that wi=w"|M,, wi=w’|M, are
. o T ~ ol ~w? . .
in #F(My). Then, for Yo, poe F(My) and 0.>0, ¢y <ady implies

~811 érx&gﬁ.
Proof. Assume that M acts on a Hilbert space H such that
w'(.)={.Q2' 2"y and 0?(.)= {.2% Q%>

2
{Ol ¢} 28

~ it )
for some vectors ', Q*e H. Then ¢§, ¢, ¢, ¢¢ have the vector repre-
sentatives

Ao, wp)? A(wy, wp) ™ Q7 A(@o, wp)'? Aw], wh) ~2 Q2
AWg, wy)' 7 A(w/), wi) ™ Ues1o N Ao, wp)'? A}, wy) ™72 22,



24 CECCHINI AND PETZ

respectively. Our hypothesis is equivalent to the existence of an ¢'e M’
such that

a’ A((p()s wi))”z A(w(l): Q)E)) = Ql = A((p()s w;))uz A((Dé, CU;)) B Ql

and ||a’|| <o We can write the left-hand side as
a' A(po, o) Ao, 05) ™' Ao, wp) " A(wg, wh) ™72 2,
which equals
A(po, 0)"* AWo, @) ' @’ Ao @p)'"? d(wy, wp) ™12 1
So we arrive at
a Ao, w3)"2 A(}, )2 2" = Ao, wh)? A(0F, )~ Q2
and this gives our claim.

PROPOSITION 5.2. Let w', w*e M* such that »'|M, and w* M, are in
F(My). Then the following conditions are equivalent:
(i) (0'Mg)” =o'
(ii) For every p e F (M) (;3[‘))1 = q”)g’z.
(iii) There exists a gy F (M,) such that qﬁg’l:qfvg’z.
Proof. (i) — (i) — (ili) are obvious and (iii) — (ii) follows from the
lemma.

If @' and @* are as in Proposition 5.2 then we we say that £~ E,_ if
the equivalent conditions (i)-(iii) hold. Due to condition (ii), this way an
equivalence relation is defined. If the subalgebra A, is trivial then our
relation ~ reduces to the identity of states.

Let M be a finite dimensional von Neumann algebra, M, a subalgebra
of M, and t a faithful tracial state on M. If @ is a state on M with density
[w] and its restriction to M, has a density [w,] then for a faithful state
Pol.)=1(.[9]) and for a conditional density matrix K,

956((0!) =1([9o]"? K*K[@,]"? a)

defines the extension of ¢, as was pointed out at the end of Section 4. It
is easy to see that ¢4 =@y if and only if K= UL with a unitary U. This
shows that there is a one-to-one correspondence between equivalence
classes of conditional expectations and the matrices K*K with K a condi-

tional density matrix.
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LEMMA 5.3. If we F(M) then the set {[Dp, Do],: teR, o F (M)}
generates the von Neumann algebra M.

Proof. Arguing contradiction, assume that there is a hermitian y € M*
such that ||| =1 and ([ D¢, Dw],)=0 for every € R and ¢ € # (M). Let
V. — _ be the Jordan decomposition of . Then

lijr([qu),D(U]{):l/ff([D({),D(ﬂ]f). (*}

Choose 1> 1>0 and a state ¢ =y , + A4 _ + v such that ¢ is faithful and
the support of v is orthogonal to that of y. So we obtain from (*) that

¥ (DY, Dol,)=1Y ([Dy _, Dwl,)
for all e R. In particular, for 1 =0 we have
Y (suppy )=y (suppy )=0,
since
Y ([DY ., Dwl)=y ([DY_,Dw],)=0
must hold. Therefore, we arrive at the desired contradiction.

PROPOSITION 3.4. The equivalence class of an w-conditional expectation
E,, is a singleton if and only if E. =E,,; that is, E,, is a projection of norm
one.

Proof. Assume that |[[E,]| = 1. For every ¢, % (M), the conditional
expectations corresponding to @§ and w are equivalent and, according to
the hypothesis, they must coincide. Applying Proposition 2.4 we obtain
that supp ¢§ =supp w = p and

[D(ﬁga Dw]J:p[D(PO’ D(Cﬁ)|M0)],

for every teR. Proposition 2.5 tells us that [Deq, D(w|My)], is a fixed
point of E,,. By the previous lemma, E,, leaves fixed the whole M, and so
E2=E,

Conversely, if E, is a projection and E,~E, then ¢o=¢,cE,
(=(p|My)”) and Corollary 4 in [11] guarantees that £ =E .

Let & be an equivalence class of conditional expectations. We define the
extension operation T%: F(M,) - M, as

Tﬁ(cpn):ﬁi;'
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for (any) state w on M (with the property w|M,e % (M,)) such that
E,e&. Tt follows from Proposition 4.3 that T¢ is norm continuous.

PROPOSITION 5.5. Let @, Yo F(My) and &, & are equivalence classes
of conditional expectations. Then T (@.) <aT*(@,) implies

T (o) <aT (o) if 2> 0.

Proof. See Lemma 5.1.

If 7% () < aT*(¢p,) then we can write 7% < a7, since this relation is
independent of ¢,e.% (M,). In the same spirit we can form convex com-
binations of extension operations and introduce topology as is justified by
the next propositions.

PROPOSITION 5.6. Let &, &, and & be the equivalence classes of condi-
tional expectations, 0 <A <1 and @, yoe F(M,). If

AT o)+ (1 — 1) T®(po) = T (o)
then

AT (o) + (1 — A T%(o) = T4 ()

Proof. Let @} be the vector representative of T%(¢,) (i=1, 2, 3). Then
Alau, @y, u_, @5+ (1—A) au, D5, u_, P> = {au, P, u_,®3> if ae M
and u, = [DYry, D@y, = A(Yo, 5)" (g, wp) ™" Since

Ao, 0)"* (g, wo) ~ 2 DY

is vector representative of T%(yr,) (i=1, 2, 3) and the function

2= Ay, wo) A(py, wp) 7 @f)

is analytic on the strip {ze C: 0<Re z< 3} (see [4], 2.2), we complete the
proof by analytic continuation.

PrOPOSITION 5.7.  Let &, and & be the equivalence classes of conditional
expectations and @q, o€ F (M,). If

T (o) = T%(9,) in norm
then

T () = T"(Yo) in norm.
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Proof. Let us consider M in a standard form with positive cone #. Let
@ (@,) be the vector representative of T%(¢,) (T%(¢p,)). There is a partial
isometry u, € My such that u,®@=®, as T(¢,) | Mg=T(¢,)| My = 0,.
According to p. 315 of [13] we have @, — @. Set

¥, =Aq, w)"* A(pq, w) 2 D,
and

V= Ao, wp)? A(pq, wy) ' @

Those vectors are the representatives of T () and T¢ (). Therefore it

¢

suffices to prove that ¥, — ¥, or equivalently, u, ¥ — ¥. Indeed

uy V=, Ao, 04)" Ao, 05) ™' @
=AY, w5)"? A(py, wg) ™! : u, @
. A(‘/’U: ('!)(’J)U2 A((p(), [36)7 44 (pu = Wu'

For a,eM, we have u,a,®=ayu,®=a,P,—a,® and obtain that
u, & — ¢ for every ¢ in the closure of M @®. Since ¥e [M,®], the proof is
complete.

Proposition 5.7 allows us to define a topology on the set of equivalence
classes of conditional expectations. It is easy to see that the formation of
convex combinations is jointly continuous with respect to this topology.

Let @, yeM and let @, ¥ be their vector representatives from the
natural positive cone, respectively. We recall that ¢ is defined to be
absolute continuous with respect to  (that is, ¢ <) if there exists a
positive selfadjoint operator 4’ affiliated with A’ such that @ =/'¥. It is
not difficult to see that ¢ <y if and only if there exists an increasing
sequence (¢,) in M such that ¢,(a) =+ @(a) («¢e M) and ¢, < i,y with
some 4, >0 (see [9, Theorem 2.21]).

PROPOSITION 5.8. Let & and & be equivalence classes of conditional
expectations and @q, Yo F (My). If T (@y) < T*(p,) then T(,) <
T ().

Proof.  We proceed as in the proof of Lemma 5.1. Let @' be the vector
representative of 7%(¢,) from the positive cone. By assumption @' = j'®?>
for a positive selfadjoint operator 4’ affiliated with M’. M®? < D(h') and
h'|M,@” is an isometry. So [M,®>] < D(h'). We have

AWy, wo)" A(@g, wo) " H D=0 Iy, wh)" I(@q, wh) " S
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for all re R and, by analytic continuation, we obtain
Ao, @0)' A(@o, wh) ™2 K> = ' Ao, ©6)" Ao, wi) 1 P2

Since A(Yq, @h)"? Ad(@y, wp) " ®'=W¥' is a vector representative of
T%(y,) (i=1,2), we have arrived at ¥'=h'd".
Now we can see (via the spectral theorem) that T9(y,) < T % (o).

We close this section with an example. Let M,, M, be von Neumann
algebras, M=M, ®M,, My=M, ® Cl= M. To each faithful state w, on
M, there corresponds an operation T%: F(M,)— M, defined by
T%(w,)=w,; ®w,. Those extension operations are of the type described
above, as 7™ is the extension operation corresponding to the equivalence
class of the (projection) conditional expectation mapping a®#b into
a®@ w,(b)I. So as they are a convex subset of the extension operations, they
correspond to statistical independence between M, and M,, while the
other equivalence classes can be used to investigate dependence.
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