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Abstract: Reduction of a state of a quantum system to a subsystem gives
partial quantum information about the true state of the total system. Two
subalgebras A4; and A of B(H) are called complementary if the traceless
subspaces of A; and A, are orthogonal (with respect to the Hilbert-Schmidt
inner product). When both subalgebras are maximal Abelian, then the con-
cept reduces to complementary observables or mutually unbiased bases. In
the paper several characterizations of complementary subalgebras are given
in the general case and several examples are presented. For a 4-level quantum
system, the structure of complementary subalgebras can be described very
well, the Cartan decomposition of unitaries plays a role. It turns out that a
measurement corresponding to the Bell basis is complementary to any local
measurement of the two-qubit-system.
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The study of complementary observables goes back to early quantum mechanics.
Position and momentum are the typical examples of complementary observables and the
main subject was the joint measurement and the uncertainty [8, 9]. In the setting of
finite dimensional Hilbert space and in a mathematically rigorous approach, the paper
[24] of Schwinger might have been the first in 1960. The goal of that paper is the finite
dimensional approximation of the canonical commutation relation. An observable of a
finite system can be identified with a basis of the Hilbert space through the spectral
theorem [1] and instead of complementarity the expression “mutually unbiased” became
popular [29]. The maximum number of mutually unbiased bases is still and open question
[22], nevertheless such bases are used in several contexts, state determination, the “Mean
King’s problem”, quantum cryptography etc. [12, 13, 6].
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Motivated by the frequent use of mutually unbiased bases and complementary reduc-
tions of two qubits [19, 21], the goal of this paper is a general study of complementary
subalgebras. The particular case, when the subalgebras are maximal Abelian, corre-
sponds to complementary observables, or mutually unbiased bases. This case has been
studied in the literature by many people. If the reduction of a quantum state to a
subalgebra is known to us, then this means a partial information about the state. The
concept of complementarity of two subsystems means heuristically that the partial infor-
mation provided jointly by the two subsystems is the largest when it is compared with
the information content of the two subsystems [29].

The paper is organized in the following way. First the entropic uncertainty relation
of Maasen and Uffink is reviewed as a motivation for the concept of complementarity (of
observables or basis). Then the complementarity of observables is reformulated in terms
of commutative subalgebras. This reformulation leads to the complementarity of more
general subalgebras (corresponding to a subsystem of a quantum system). It turns out
that complementarity is a common generalization of the ordinary tensor product and
the twisted fermionic tensor product. When two subalgebras are unitarily equivalent,
complementarity can be read out from the unitary when it is viewed as a block-matrix. A
modification of the construction of complementary bases (going back to Schwinger) yields
examples of complementary subalgebras in arbitrary dimension. The maximal number
of complementary subalgebras remains an open question, however, the case of 4-level
quantum system is analyzed in details. It turns out that a measurement corresponding
to the Bell basis is complementary to any local measurement of the two-qubit-system.

1 Complementary observables

Let A and B be two self-adjoint operators on a finite dimensional Hilbert space. If
A=Y, MP* and B =), \BPP are their spectral decompositions, then

H(A, ) =Zn(90(PiA)) and H(B,w)=Zn(w(PiB))

are the entropies of A and B in a state . (n(t) is the function —t¢logt.)

Assume that the eigenvalues of A and B are free from multiplicities. If these observ-
ables share a common eigenvector and the system is prepared in the corresponding state,
then the measurement of both A and B leads to a sharp distribution and one cannot
speak of uncertainty. In order to exclude this case, let (e;) be an orthonormal basis
consisting of eigenvectors of A, let (f;) be a similar basis for B and we suppose that

¢® == sup {|{e;, f;)|*: 4,5} (1)

is strictly smaller than 1. Then H (A, ¢) + H(B,¢) > 0 for every pure state ¢. Since
the left-hand-side is concave in ¢, it follows that H(A, ¢) + H(B,¢) > 0 for any state



. This inequality is a sort of uncertainty relation. The lower bound was conjectured in
[14] and proven by Maasen and Uffink in [16].

Theorem 1 With the notation above the uncertainty relation
H(A,p)+ H(B,p) > —2logc
holds.
Let n be the dimension of the underlying Hilbert space. We may assume that ¢ is a
pure state corresponding to a vector ®. Then ¢(P/) = |{e;, ®)|? and p(PE) = |(f;, ®)|%.

The n x n matrix T; ; := ((fi, €;)):; is unitary and 7" sends the vector

f = ((e1, D), (€2, D), ..., (en, D))

into
Tf = (<f17 CD>’ <f2a(1>>’ ] <fnaq>)) .

The vectors f and T'f are elements of C* and this space may be endowed with dif-
ferent L? norms. Using interpolation theory we shall estimate the norm of the linear
transformation 7' with respect to different LP norms. Since 7T is a unitary

lgll = 1Tl (g€ C).

With the notation (1) we have also

ITgllo < cllglh (9€C").

Let us set
N(p,p') = sup{||Tqllp/llglly:g € C*, g # 0}

for 1 <p<ooand 1l < p < oco. The Riesz—Thorin convexity theorem says that

the function
(t,s) —logN(t~", s7") (2)

is convex on [0, 1] x [0, 1] (where 07! is understood to be co). Application of convexity
of (2) on the segment [(0,1), (1/2,1/2)] yields

ITgllzx < ¢ lgll,  (9€C),

where 0 < A < 1 and = (1 — A/2)~!. This is rewritten by means of a more convenient
parameterization in the form

ITgll, < =*?ligll,  (9€C),
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where 2 < p < oo and p ! + ¢! = 1. Consequently

2
tog |71l < (1~ - ) toge + log [ (3)
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One checks easily that

dlog ||T'fll,
dp p=2 4

1 dlog || fllq 1
— __H(B ——oWdl —ZH(A, ).
(B,p) and o W (4,9)

Hence dividing (3) by p — 2 and letting p \, 2 we obtain

—LH(B,p) < llogc+1H(A, ¢)

which proves the theorem for a pure state.

Concavity of the left hand side of the stated inequality in ¢ ensures the lower estimate
for mixed states. O

The theorem can be formulated in an algebraic language. Let A and B be maximal
Abelian subalgebras of the algebra M, (C) of n x n matrices. Set

¢ :=sup {ITr PQ : P € A, Q € B are minimal projections}. (4)

The theorem tells that
H(p|A) + H(p|B) > —2logc. (5)

Both the definition of ¢ and the statement are formulated without the underlying Hilbert
space.

Question 1 Can we make the proof of (5) without using the Hilbert space?

Let A and B self-adjoint operators with eigenvectors (e;) and (f;), respectively and let
¢ be the pure state corresponding to e;. Then H(A, @) =0 and H(B, ¢) = logn. Hence
this example shows that the lower bound for the entropy sum in Theorem 1 is sharp. If
(6) holds then the pair (A, B) of observables are called complementary [1]. According
to another terminology, the bases (e;); and (fy); are called mutually unbiased if (6)
holds. Mutually unbiased bases appeared in a different setting in the paper [12, 29],
where state determination was discussed.

The lower bound in the uncertainty (5) is the largest if ¢® is the smallest. Since
n?c®> > n, the smallest value of ¢ is 1/n. This happens if and only if

|<6]’,fk>‘2:n71 (j,k:1,2,...,n), (6)

that is, the two bases are mutually unbiased. This is an extremal property of the mutually
unbiased bases. The largest lower bound is attained if ¢ is a vector state generated by
one of the basis vectors.

The complementarity of observables is also the property of the spectral measures
associated with them. Therefore the extension to POVM’s is natural. For a POVM
€ = (E;); and for a unit vector ®, we define an entropy quantity as

H(E,®) = Zn(<<1>,Ei<1>>)-
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