Calculus 1, Practise Course

1st week

I. Warming up

- 1. Solve the following inequalities.
 - (a) |2x 3| < 1
 - (b) $x^2 + 2x 8 \le 0$
 - (c) $(x-2)^2 \ge 0$
 - (d) $|x^2 7x + 12| > x^2 7x + 12$
 - (e) |3x 5| |2x + 3| > 0
 - (f) $|x^2 5x| > |x^2| |5x|$
- 2. Find out whether the following equations have any solutions.
 - (a) |x| = x + 5(b) |x| = x - 5
- 3. Determine the values of x satisfying the following equalities.
 - (a) $\left|\frac{x-1}{x+1}\right| = \frac{x-1}{x+1}$ (b) $|x^2 - 5x + 6| = -(x^2 - 5x + 6)$ (c) $|(x^2 + 4x + 9) + (2x - 3)| = |x^2 + 4x + 9| + |2x - 3|$ (d) $|(x^4 - 4) - (x^2 + 2)| = |x^4 - 4| - |x^2 + 2|$
- 4. Find the roots of the following equations.
 - (a) $|\sin x| = \sin x + 1$
 - (b) $x^2 2|x| 3 = 0$
- 5. Given the function $f(x) = \frac{x+1}{x-1}$, $(x \neq 1)$. Find $f(2x), 2f(x), f(x^2), [f(x)]^2$.

- 6. Find f(x) if $f(x+1) = x^2 3x + 2$.
- 7. Given the function $f(x) = \frac{5x^2+1}{2-x}$ find $f(3x), f(x^3), 3f(x), [f(x)]^3$.
- 8. Given the function $f(x) = \ln \frac{1-x}{1+x}$. Find the domain of f. Show that at $x_1, x_2 \in (-1, 1)$ the following identity holds true:

$$f(x_1) + f(x_2) = f\left(\frac{x_1 + x_2}{1 + x_1 \cdot x_2}\right)$$

9. Given the function $f(x) = \frac{a^x + a^{-x}}{2}$, a > 0. Show that

$$f(x + y) + f(x - y) = 2f(x)f(y).$$

10. Find a function of the form $f(x) = a + bc^x$, c > 0 if f(0) = 15, f(2) = 30, f(4) = 90.

II. Domains and ranges

1. Find the domains of the following functions.

(a)
$$f(x) = \sqrt{1 - x^2}$$

(b) $f(x) = \sqrt{1 - \sqrt{1 - x^2}}$
(c) $f(x) = \frac{1}{x-1} + \frac{1}{x-2}$
(d) $f(x) = \sqrt{1 - x^2} + \sqrt{x^2 - 1}$
(e) $f(x) = \sqrt{1 - x} + \sqrt{x - 2}$
(f) $f(x) = \log_2 \log_3 \log_4 x$
(g) $f(x) = \ln |4 - x^2|$
(h) $f(x) = \frac{1}{\ln(1+x)}$
(i) $f(x) = \frac{2x-3}{\sqrt{x^2+2x+3}}$
(j) $f(x) = \log_2 \sin(x - 3) + \sqrt{16 - x^2}$

2. Find the domains and the ranges of the following functions.

(a)
$$f(x) = \sqrt{\cos(\sin x)}$$

(b)
$$f(x) = \frac{1}{2 - \cos x}$$

(c)
$$f(x) = \frac{1}{2 - \cos 3x}$$

(d)
$$f(x) = \frac{x}{1 + x^2}$$

II. Linear functions

- 1. Find and graph the linear function
 - (a) that passes through the points (1,3) and (2,5)
 - (b) that passes through the points (2, -3) and (5, 0)
 - (c) that passes through the point (3, 2) and is parallel to the line y = 3x + 8
 - (d) that passes through the points (-1, 4) and perpendicular to the line $y = \frac{x}{4} 7$
 - (e) that passes through the points (1,3) and its slope is m = -2
 - (f) that has y-intercept -3 and slope m = 1/3
- 2. Converting Celsius temperature (C) to Fahrenheit temperature (F) is a linear function. Find and graph this F(C) linear function, if we know that F = 32 if C = 0and F = 212 if C = 100. What is the C(F) function? Is there a temperature at which a Fahrenheit thermometer gives the same reading as a Celsius thermometer? If so, what is it?
- 3. A ray of light comes in along the line x + y = 1 above the x-axis and reflects off the x-axis. The angle of departure is equal to the angle of arrival. Write an equation for the line along which the departing light travels.

III. Some properties of functions

- 1. Find the intervals of increase and decrease of the function $f(x) = ax^2 + bx + c$, and its minimum and maximum values. Apply your results to find the rectangle with the maximum area from among all rectangles of a given perimeter.
- 2. Let consider the function

$$f(x) = a\cos x + b\sin x$$
 $(a^2 + b^2 > 0).$

Show that the given function can be represented as

$$f(x) = \sqrt{a^2 + b^2} \cos(x - \alpha),$$

where $\cos \alpha = a/\sqrt{a^2 + b^2}$ and $\sin \alpha = b/\sqrt{a^2 + b^2}$. Find the minimum and the maximum values of the function f. With the help of the expression above, give the intervals of increase and decrease for the function

$$g(x) = \cos x + \sin x.$$

3. Show that

- (a) the function $f(x) = x^3 + 3x + 5$ increases in the entire domain (don't use derivation!).
- (b) the function $g(x) = \frac{x}{1+x^2}$ decreases in the interval $(1, \infty)$ (don't use derivation!).
- 4. Find the minimum value of the function

$$f(x) = 3^{(x^2 - 2)^3 + 8}$$

- 5. Decide whether the following function is even, odd or neither one.
 - (a) $f(x) = \log_3(x + \sqrt{1 + x^2})$ (b) $f(x) = \ln \frac{1-x}{1+x}$ (c) $f(x) = 2x^3 - x + 1$ (d) $f(x) = 4 - 2x^4 + \sin^2 x$ (e) $f(x) = \sqrt{1 + x + x^2} - \sqrt{1 - x + x^2}$
- 6. Prove that if f(x) is a periodic function with period T, then the function f(ax+b), where a > 0, is periodic with period T/a.
- 7. The periodic function

$$f(x) = A\sin(\omega x + \varphi)$$

is called a *harmonic function* with amplitude |A|, frequency ω and initial phase φ . From the problem above, we know that f(x) is periodic with period $T = 2\pi/\omega$. Indicate the amplitude |A|, frequency ω , initial phase φ and period T of the following harmonics:

- (a) $f(x) = 3\sin(x/2) + 4\cos(x/2)$
- (b) $f(x) = 4\sin 2x \cos 2x$
- 8. Find the period for each of the following functions:
 - (a) $f(x) = \tan 2x$
 - (b) $f(x) = \sin 2\pi x$
 - (c) $f(x) = \sin^4 x + \cos^4 x$
 - (d) $f(x) = |\cos x|$
- 9. Prove that the function $f(x) = \cos x^2$ is not a periodic one.