Calculus 1, Practise Course

2nd week

I. Composite functions

1. Let $f(x)=x^{2}, g(x)=2^{x}$ and $h(x)=\sin x$. Determine the following functions
(a) $(f \circ g)(x)$
(b) $(f \circ h)(x)$
(c) $(f \circ g \circ h)(t)+(h \circ g)(t)$
2. Express each of the following functions in terms of f, g, h (see above) using only the operations,$+ \cdot$, .
(a) $F(x)=2^{\sin x}$
(b) $F(x)=\sin 2^{x}$
(c) $F(x)=\sin ^{2} x$
(d) $F(t)=2^{2^{t}}\left(a^{b^{c}}\right.$ always means $a^{\left(b^{c}\right)}$, because $\left(a^{b}\right)^{c}=a^{b \cdot c}$ in simpler form.)
(e) $F(u)=\sin \left(2^{u}+2^{u^{2}}\right)$
(f) $F(y)=\sin \left(\sin \left(\sin \left(2^{2^{2 \sin y}}\right)\right)\right)$
(g) $F(x)=2^{\sin ^{2} x}+\sin x^{2}+2^{\sin \left(x^{2}+\sin x\right)}$
3. Let $g(x)=x^{2}+3$. Find a function f that produces the given decomposition.
(a) $(f \circ g)(x)=x^{2}$
(b) $(f \circ g)(x)=x^{4}+6 x^{2}+9$
(c) $(g \circ f)(x)=x^{4}+3$
(d) $(g \circ f)(x)=x^{2 / 3}+3$
(e) $(f \circ g)(x)=\frac{1}{x^{2}+3}$
4. Let $g(x)=x^{2}$ and let

$$
h(x)=\left\{\begin{array}{l}
0, \text { if } x \text { is rational } \\
1 . \text { if } x \text { is irrational. }
\end{array}\right.
$$

(a) For which y is $h(y) \leq y$?
(b) For which y is $h(y) \leq g(y)$?
(c) What is $g(h(x))-h(x)$?
(d) For which w is $g(w) \leq w$?
5. For which number a, b, c and d will the function

$$
f(x)=\frac{a x+b}{c x+d}
$$

satisfy that $(f \circ f)(x)=x$ for all real x ?
6. Let consider the following functions.

$$
f(x)=\left\{\begin{array}{l}
2 x-1, \text { if } x \in(-\infty, 1] \\
2, \text { if } x \in[1,5]
\end{array} \quad \text { and } \quad g(x)=\left\{\begin{array}{l}
\frac{6-x}{7-x}, \text { if } x \in(-\infty, 6) \\
\left(1+\frac{1}{x}\right)^{6}, \text { if } x \in[6, \infty)
\end{array}\right.\right.
$$

Give $f \circ g$.

II. Inverse functions

1. Find the inverse of the following functions
(a) $f(x)=\frac{x+1}{x-2}, x \neq 2$.
(b) $f(x)=\left(1-x^{3}\right)^{1 / 5}+2$
(c) $f(x)=x^{3}+6 x^{2}+12 x, x \in \mathbb{R}$.
(d) $f(x)=\frac{e^{x}}{e^{x}+2}$
(e) $f(x)=\frac{x}{x-2}$, i) for $x>2$, ii) for $x<2$
(f) $f(x)=\frac{1}{2 x+3}, D_{f}=\mathbb{R} \backslash\left\{-\frac{3}{2}\right\}$.
(g) $f(x)=\left(\frac{x-1}{1+x}\right)^{2}-1,(x \in(-1,1))$
(h) $f(x)=x^{2}, D_{f}=(-\infty,-1]$.
(i) $f(x)=x^{3}-3 x^{2}+3 x+4$
(j)

$$
f(x)= \begin{cases}\frac{7 x-5}{3}, & \text { if }-1 \leq x<1 \\ \frac{2}{1+x}, & \text { if } 1 \leq x \leq 2\end{cases}
$$

(k) $f(x)=\log _{a}\left(x+\sqrt{x^{2}+1}\right),(a>1, a \neq 1)$
2. For which real α numbers will be the following function invertible? Give the inverse function, including its domain and its range.

$$
f(x)= \begin{cases}\alpha x^{2}, & \text { if }-1 \leq x<0 \\ 2 \alpha-x, & \text { if } 0<x \leq 1\end{cases}
$$

3. Show that the functions

$$
f(x)=x^{2}-x+1, \quad(x \geq 1 / 2) \quad \text { and } \quad \varphi(x)=1 / 2+\sqrt{x-3 / 4}
$$

are mutually inverse and with this knowledge solve the equation

$$
x^{2}-x+1=1 / 2+\sqrt{x-3 / 4}
$$

III. Transformations of functions and graphs

1. Sketch the graph of the following functions
(a) $f(x)=-\sqrt{2 x+1}$
(b) $f(x)=\sqrt{1-x / 2}$
(c) $f(x)=(x-1)^{3}+2$
(d) $f(x)=(1-x)^{3}+2$
(e) $f(x)=\left|x^{2}-1\right|$
(f) $f(x)=\frac{1}{2 x}-1$
(g) $f(x)=3 \sqrt{-2(x+5 / 2)}-4 / 5$
(h) $f(x)=\frac{x+3}{x+1}$
(i) $f(x)=3 \cos x-\sqrt{3} \sin x$

Hint: transform the given function to $f(x)=A \cos (x+\phi)$ form.
2. Graph both f and f^{-1} on the same set of axes.
(a) $f(x)=\sqrt{x+2},(x \geq-2)$
(b) $f(x)=\sqrt{3-x},(x \leq 3)$
(c) $f(x)=(x-2)^{2}-1$, for $x \geq 2$
(d) $f(x)=e^{2 x+6}$

IV. Symmetry of functions and graphs

1. Determine whether the graphs of the following equations and functions are symmetric about the x-axis, the y-axis or the origin.
(a) $f(x)=x^{4}-5 x^{2}-12$
(b) $f(x)=3 x^{7}-5 x^{5}-5 x$
(c) $f(x)=x^{5}-x^{3}+3$
(d) $x^{2 / 3}+y^{2 / 3}=1$
(e) $x^{3}-y^{5}=0$
(f) $|x|+|y|=1$
2. Assume f is an even function and g is an odd function, the domain of both of them is the all real line. What can we say about the symmetry of the following functions?
(a) $f \cdot g$
(b) f / g
(c) $f \circ g$
(d) $f \circ f$
(e) $g \circ g$
(f) f^{2}
(g) g^{2}
