Calculus 1, Practise Course

3rd week

I. Exponential and logarithmic functions

- 1. Convert the following expressions to the indicated base.
 - (a) 2^x using base e
 - (b) $3^{\sin x}$ using base e
 - (c) $\log_2(x^2+1)$ using base e
 - (d) $\ln |x|$ using base 5
 - (e) $a^{1/\log_{10} a}$ using base 10, for a > 0 and $a \neq 1$
- 2. A capacitor is a device that stores electrical charge. The charge on a capacitor accumulates according to the function

$$Q(t) = a \left(1 - e^{-t/c} \right).$$

where t is the time measured in seconds, and a ad c > 0 are physical constants. The *steady-state*¹ charge is the value that Q(t) approaches as t becomes large.

- (a) Sketch the graph of the charge function for $t \ge 0$, using a = 1 and c = 10.
- (b) Vary the value of a while holding c fixed. Describe the effect on the curve. How does the steady-state charge vary with a?
- (c) Vary the value of c while holding a fixed. Describe the effect on the curve. How does the steady-state charge vary with c?
- (d) Find a formula that gives the steady-state charge in terms of a and c.
- 3. Without using a graphing utility, sketch the graph of $y = 2^x$. Then in the same coordinate system, sketch the graphs of

 $^{^{1}}$ steady-state = egyensúlyi

- (a) $y = 2^{-x}$ (b) $y = 2^{x-1}$ (c) $y = 2^{x} + 1$ (d) $y = 2^{2x}$
- 4. Without using a graphing utility, sketch the graph of $y = \log_2 x$. Then in the same coordinate system, sketch the graphs of
 - (a) $y = \log_2(x 1)$ (b) $y = \log_2 x^2$ (c) $y = (\log_2 x)^2$ (d) $y = \log_2 x + 1$

II. Trigonometric functions and their inverses

- 1. Solve the following trigonometric equations.
 - (a) $\sin^2 \theta = \frac{1}{4}, \ 0 \le \theta < 2\pi$
 - (b) $\sin 3\theta = \frac{\sqrt{2}}{2}, \ 0 \le \theta < 2\pi$
 - (c) $\cos 3x = \sin 3x, \ 0 \le x < 2\pi$
 - (d) $\tan^2 2\theta = 1, \ 0 \le \theta < 2\pi$
- 2. Without using a calculator, evaluate the following expressions or state that the quantity is undefined.
 - (a) $\sin^{-1} 1$
 - (b) $\cos^{-1}(-1)$
 - (c) $\cos^{-1}\left(-\frac{\sqrt{2}}{2}\right)$
 - (d) $\sin^{-1} \frac{\sqrt{3}}{2}$
 - (e) $\cos^{-1} 2$
 - (f) $\cos^{-1}(\cos(7\pi/6))$
 - (g) $\cos(\cos^{-1}(-1))$
 - (h) $\tan^{-1}\sqrt{3}$
 - (i) $\tan^{-1}(\tan(\pi/4))$
 - (j) $\tan^{-1}(\tan(3\pi/4))$

- 3. Use a right-triangle sketch to complete the following exercises.
 - (a) Suppose $\theta = \cos^{-1}(5/13)$. Find $\sin \theta$ and $\tan \theta$.
 - (b) Suppose $\theta = \tan^{-1}(4/3)$. Find $\sin \theta$ and $\cos \theta$.
- 4. *² Draw a right triangle to simplify the given expressions. Assume x > 0.

(a)
$$\cos(\sin^{-1} x)$$

(b)
$$\cos(\sin^{-1}(x/3))$$

- (c) $\sin(\cos^{-1}(x/2))$
- (d) $\sin^{-1}(\cos\theta), \theta \in [0, 2\pi]$
- (e) $\sin(2\cos^{-1}x)$
- (f) $\cos(2\sin^{-1}x)$
- (g) $\cos(\tan^{-1}x)$
- (h) $\tan(\cos^{-1}x)$
- (i) $\cos\left(\tan^{-1}\left(\frac{x}{\sqrt{9-x^2}}\right)\right)$
- 5. **³ Prove the following identities.
 - (a) $\cos^{-1}x + \cos^{-1}(-x) = \pi$
 - (b) $\sin^{-1} x + \sin^{-1}(-x) = 0$
- 6. Identify the amplitude and period of the following functions.
 - (a) $f(x) = 2\sin 2x$
 - (b) $f(x) = 3\cos(x/3)$
 - (c) $f(t) = 5\sin\left(\frac{1}{2}(t-3)\right)$
 - (d) $f(x) = 3\cos(\pi x/24)$
 - (e) $f(x) = \sin 2\pi x$
 - (f) ** $f(x) = \sin^4 x + \cos^4 x$

(g) *
$$f(x) = |\cos x|$$

7. Sketch the graph of the following functions

(a) $f(x) = 3\sin 2x$

^{2*}: more challanging tasks

^{3**}: problems for brave hearted

- (b) $g(x) = 3\sin(2x \pi/3) + 1$
- (c) $h(x) = -2\cos(\pi x/24) + 2$
- 8. Design a sine function with the given properties.
 - (a) It has a period of 12 with a minimum value of -4 at t = 0 and a maximum value 4 at t = 6.
 - (b) It has a period of 24 with a minimum value of 10 at t = 3 and a maximum value 16 at t = 15.