Calculus 1, Practise Course

3rd week

I. Exponential and logarithmic functions

1. Convert the following expressions to the indicated base.
(a) 2^{x} using base e
(b) $3^{\sin x}$ using base e
(c) $\log _{2}\left(x^{2}+1\right)$ using base e
(d) $\ln |x|$ using base 5
(e) $a^{1 / \log _{10} a}$ using base 10 , for $a>0$ and $a \neq 1$
2. A capacitor is a device that stores electrical charge. The charge on a capacitor accumulates according to the function

$$
Q(t)=a\left(1-e^{-t / c}\right) .
$$

where t is the time measured in seconds, and a ad $c>0$ are physical constants. The steady-state ${ }^{1}$ charge is the value that $Q(t)$ approaches as t becomes large.
(a) Sketch the graph of the charge function for $t \geq 0$, using $a=1$ and $c=10$.
(b) Vary the value of a while holding c fixed. Describe the effect on the curve. How does the steady-state charge vary with a ?
(c) Vary the value of c while holding a fixed. Describe the effect on the curve. How does the steady-state charge vary with c ?
(d) Find a formula that gives the steady-state charge in terms of a and c.
3. Without using a graphing utility, sketch the graph of $y=2^{x}$. Then in the same coordinate system, sketch the graphs of

[^0](a) $y=2^{-x}$
(b) $y=2^{x-1}$
(c) $y=2^{x}+1$
(d) $y=2^{2 x}$
4. Without using a graphing utility, sketch the graph of $y=\log _{2} x$. Then in the same coordinate system, sketch the graphs of
(a) $y=\log _{2}(x-1)$
(b) $y=\log _{2} x^{2}$
(c) $y=\left(\log _{2} x\right)^{2}$
(d) $y=\log _{2} x+1$

II. Trigonometric functions and their inverses

1. Solve the following trigonometric equations.
(a) $\sin ^{2} \theta=\frac{1}{4}, 0 \leq \theta<2 \pi$
(b) $\sin 3 \theta=\frac{\sqrt{2}}{2}, 0 \leq \theta<2 \pi$
(c) $\cos 3 x=\sin 3 x, 0 \leq x<2 \pi$
(d) $\tan ^{2} 2 \theta=1,0 \leq \theta<2 \pi$
2. Without using a calculator, evaluate the following expressions or state that the quantity is undefined.
(a) $\sin ^{-1} 1$
(b) $\cos ^{-1}(-1)$
(c) $\cos ^{-1}\left(-\frac{\sqrt{2}}{2}\right)$
(d) $\sin ^{-1} \frac{\sqrt{3}}{2}$
(e) $\cos ^{-1} 2$
(f) $\cos ^{-1}(\cos (7 \pi / 6))$
(g) $\cos \left(\cos ^{-1}(-1)\right)$
(h) $\tan ^{-1} \sqrt{3}$
(i) $\tan ^{-1}(\tan (\pi / 4))$
(j) $\tan ^{-1}(\tan (3 \pi / 4))$
3. Use a right-triangle sketch to complete the following exercises.
(a) Suppose $\theta=\cos ^{-1}(5 / 13)$. Find $\sin \theta$ and $\tan \theta$.
(b) Suppose $\theta=\tan ^{-1}(4 / 3)$. Find $\sin \theta$ and $\cos \theta$.
4. ${ }^{* 2}$ Draw a right triangle to simplify the given expressions. Assume $x>0$.
(a) $\cos \left(\sin ^{-1} x\right)$
(b) $\cos \left(\sin ^{-1}(x / 3)\right)$
(c) $\sin \left(\cos ^{-1}(x / 2)\right)$
(d) $\sin ^{-1}(\cos \theta), \theta \in[0,2 \pi]$
(e) $\sin \left(2 \cos ^{-1} x\right)$
(f) $\cos \left(2 \sin ^{-1} x\right)$
(g) $\cos \left(\tan ^{-1} x\right)$
(h) $\tan \left(\cos ^{-1} x\right)$
(i) $\cos \left(\tan ^{-1}\left(\frac{x}{\sqrt{9-x^{2}}}\right)\right)$
5. ${ }^{* * 3}$ Prove the following identities.
(a) $\cos ^{-1} x+\cos ^{-1}(-x)=\pi$
(b) $\sin ^{-1} x+\sin ^{-1}(-x)=0$
6. Identify the amplitude and period of the following functions.
(a) $f(x)=2 \sin 2 x$
(b) $f(x)=3 \cos (x / 3)$
(c) $f(t)=5 \sin \left(\frac{1}{2}(t-3)\right)$
(d) $f(x)=3 \cos (\pi x / 24)$
(e) $f(x)=\sin 2 \pi x$
(f) ** $f(x)=\sin ^{4} x+\cos ^{4} x$
(g) $* f(x)=|\cos x|$
7. Sketch the graph of the following functions
(a) $f(x)=3 \sin 2 x$

[^1](b) $g(x)=3 \sin (2 x-\pi / 3)+1$
(c) $h(x)=-2 \cos (\pi x / 24)+2$
8. Design a sine function with the given properties.
(a) It has a period of 12 with a minimum value of -4 at $t=0$ and a maximum value 4 at $t=6$.
(b) It has a period of 24 with a minimum value of 10 at $t=3$ and a maximum value 16 at $t=15$.

[^0]: ${ }^{1}$ steady-state $=$ egyensúlyi

[^1]: ${ }^{2 *}$: more challanging tasks
 $3 * *$: problems for brave hearted

