Calculus 1, Practise Course

8th week

I. Derivatives

1. Investigate the following functions for differentiability. Give the derivatives too.

(a)
$$f(x) = \sqrt[3]{(x+2)^2}$$

(b)
$$f(x) = \sqrt{1 - x^2}$$

(c)
$$f(x) = \sqrt{\frac{x+1}{x-1}}$$

(d) *
$$f(x) = \begin{cases} x^2 \sin \frac{1}{x}, & \text{ha } x \neq 0 \\ 0, & \text{ha } x = 0 \end{cases}$$

(e)
$$f(x) = (\frac{ax+b}{cx+d})^{-2/3}, \quad a, b, c, d \in \mathbb{R}$$

(f)
$$f(x) = \arcsin(\cos x)$$

2. Show that the function $y = xe^{-x^2/2}$ satisfies the equation $xy' = (1 - x^2)y$.

3. Show that the function $y = xe^{-x}$ satisfies the equation

$$xy' = (1 - x)y.$$

- 4. Let $f: \mathbb{R} \to \mathbb{R}$ be a differentiable function, $g(x) = \sin^2 x$ and $h(x) = \cos^2 x$. Give the derivative of the function $F = (f \circ g) + (g \circ h)$.
- 5. Give a closed expression for the following sums with the help of the derivatives.

(a)
$$F(x) = 1 + 2x + \dots + nx^{n-1}, \quad n \ge 2$$

(b)
$$G(x) = 1 + 2^2x + \dots n^2x^{n-1}, \quad n \ge 2$$

(*Hint:* Observe that $G(x) = (xF(x))'$)

6. * Find a formula for the *n*th derivative of $y = \frac{1}{x(1-x)}$.

7. * Consider the function

$$f(x) = \begin{cases} x^2, & \text{if, } x \ge 0, \\ -x^2, & \text{if } x < 0. \end{cases}$$

Show that f''(0) does not exist.

8. * Find all derivatives of $y = 2x^2 + x - 1 + \frac{1}{x}$.

II. Tangent lines

1. Determine the tangent lines of the following functions corresponding to the given x_0 value.

(a)
$$f(x) = \sin \sqrt{x}$$
, $x_0 = \pi^2$

(b)
$$f(x) = x^3 - 8x$$
, $x_0 = 3$

(c)
$$f(x) = e^{\sin x}$$
, $x_0 = \pi$.

(d)
$$f(x) = \frac{(x^2-1)^2}{x^3-6x-1}, x_0 = 0$$

2. What can we say about a, b and c, if the $f(x) = ax^2 + bx + c$ parabola touches the x axis, i.e. one of its tangent line is the x axis?

3. * Prove that if the graph of $f(x) = x^3 + px + q$ touches the x axis, then $(p/3)^3 + (q/2)^2 = 0$.

4. ** Give the values of parameters a and b to make f continuous everywhere and having tangent line everywhere.

$$f(x) = \begin{cases} \frac{m^2}{|x|}, & \text{ha } |x| > c\\ ax^2 + b, & \text{ha } |x| \le c \end{cases}$$

5. A straight line passing through the point of contact perpendicularly to the tangent line is called the **normal to the curve**. The equation of the normal of the function y = y(x) at the point $P(x_0, y_0)$ is given by

$$y = y_0 - \frac{1}{y'(x_0)}(x - x_0), \quad y'(x_0) \neq 0.$$

2

Write the equations of the tangent line and the normal:

(a) to the curve $y = x^3 - 3x + 2$ at the point P(2,4)

(b) to the parabola $y = 2x^2 - x + 5$ at $x = -\frac{1}{2}$.

(c) * to the curve $y = x^4 + 3x^2 - 16$ at the points of intersection with the parabola $y = 3x^2$.

III. Logarithmic differentiation

1. Find the derivative of the following functions.

(a)
$$f(x) = x^{10x}, (x > 0)$$

(b)
$$f(x) = (2x)^{2x}, (x > 0)$$

(c)
$$f(x) = (\sin x)^{\tan x}$$

(d) *
$$f(x) = x^x + x^{x^x}$$
, $x > 0$

(e)
$$f(x) = \left(\frac{x^8(x+7)^{1/3}\cos^3 x}{\sqrt{x-1}}\right)^6$$

(f)
$$f(x) = \sqrt[3]{\frac{x^2(x+1)}{(x-2)(x^2+2)(x+3)}}$$

- 2. Find an equation of the tangent line to $y = x^{\sqrt{x}}$ at x = 4. Determine whether the graph of the function has any horizontal tangent line.
- 3. Find an equation of the line tangent to $y = x^{\sin x}$ at the point x = 1.

IV. Implicit differentiation

1. Use implicit differentiation to find $\frac{dy}{dx}$.

(a)
$$\sin x + \sin y = y$$

(b)
$$6x^3 + 7y^3 = 13xy$$

(c)
$$e^{xy} = 2y$$

(d)
$$\sin xy = x + y$$

(e)
$$\sqrt{x+y^2} = \sin y$$

(f)
$$\ln x + e^{-y/x} = 5$$

$$(g) e^x \sin y - e^{-y} \cos x = 0$$

2. Determine an equation of the tangent line to the curve at the given point.

(a)
$$\sin y + 5x = y^2$$
, $(0,0)$

(b)
$$x^3 + y^3 = 2xy$$
, $(1, 1)$

(c)
$$x^2 + xy + y^2 = 7$$
, (2, 1)

- (d) $(x^2 + y^2)^2 = \frac{25xy^2}{4}$, (1, 2)
- (e) $\cos(x-y) + \sin y = \sqrt{2}, (\pi/2, \pi/4)$
- (f) $x + y^3 y = 1$, x = 1
- (g) $4x^3 = y^2(4-x), x=2$
- 3. Find $\frac{d^2 y}{d x^2}$.
 - (a) $x + y^2 = 1$
 - (b) $e^{2y} + x = y$
 - (c) $x + y = e^{x-y}$
 - (d) $x^3 y^3 = 1$
- 4. ** Show that the ellipse $4x^2 + 9y^2 = 45$ and the hyperbola $x^2 4y^2 = 5$ are orthogonal (perpendicular).
- 5. ** Show that the parabolas $y^2 = 4x + 4$ and $y^2 = 4 4x$ intersect at right angles.
- 6. ** Show that the circles $x^2 + y^2 12x 6y + 25 = 0$ and $x^2 + y^2 + 2x + y 10 = 0$ are tangent to each other at the point (2, 1).