Calculus 1, Practise Course

8th week

I. Derivatives

1. Investigate the following functions for differentiability. Give the derivatives too.
(a) $f(x)=\sqrt[3]{(x+2)^{2}}$
(b) $f(x)=\sqrt{1-x^{2}}$
(c) $f(x)=\sqrt{\frac{x+1}{x-1}}$
(d) $* f(x)= \begin{cases}x^{2} \sin \frac{1}{x}, & \text { ha } x \neq 0 \\ 0, & \text { ha } x=0\end{cases}$
(e) $f(x)=\left(\frac{a x+b}{c x+d}\right)^{-2 / 3}, \quad a, b, c, d \in \mathbb{R}$
(f) $f(x)=\arcsin (\cos x)$
2. Show that the function $y=x e^{-x^{2} / 2}$ satisfies the equation $x y^{\prime}=\left(1-x^{2}\right) y$.
3. Show that the function $y=x e^{-x}$ satisfies the equation

$$
x y^{\prime}=(1-x) y .
$$

4. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a differentiable function, $g(x)=\sin ^{2} x$ and $h(x)=\cos ^{2} x$. Give the derivative of the function $F=(f \circ g)+(g \circ h)$.
5. Give a closed expression for the following sums with the help of the derivatives.
(a) $F(x)=1+2 x+\cdots+n x^{n-1}, \quad n \geq 2$
(b) $G(x)=1+2^{2} x+\ldots n^{2} x^{n-1}, \quad n \geq 2$
(Hint: Observe that $\left.G(x)=(x F(x))^{\prime}\right)$
6. * Find a formula for the nth derivative of $y=\frac{1}{x(1-x)}$.
7. * Consider the function

$$
f(x)= \begin{cases}x^{2}, & \text { if, } x \geq 0 \\ -x^{2}, & \text { if } x<0\end{cases}
$$

Show that $f^{\prime \prime}(0)$ does not exist.
8. * Find all derivatives of $y=2 x^{2}+x-1+\frac{1}{x}$.

II. Tangent lines

1. Determine the tangent lines of the following functions corresponding to the given x_{0} value.
(a) $f(x)=\sin \sqrt{x}, \quad x_{0}=\pi^{2}$
(b) $f(x)=x^{3}-8 x, \quad x_{0}=3$
(c) $f(x)=e^{\sin x}, \quad x_{0}=\pi$.
(d) $f(x)=\frac{\left(x^{2}-1\right)^{2}}{x^{3}-6 x-1}, x_{0}=0$
2. What can we say about a, b and c, if the $f(x)=a x^{2}+b x+c$ parabola touches the x axis, i.e. one of its tangent line is the x axis?
3. * Prove that if the graph of $f(x)=x^{3}+p x+q$ touches the x axis, then $(p / 3)^{3}+$ $(q / 2)^{2}=0$.
4. ${ }^{* *}$ Give the values of parameters a and b to make f continous everywhere and having tangent line everywhere.

$$
f(x)= \begin{cases}\frac{m^{2}}{|x|}, & \text { ha }|x|>c \\ a x^{2}+b, & \text { ha }|x| \leq c\end{cases}
$$

5. A straight line passing through the point of contact perpendicularly to the tangent line is called the normal to the curve. The equation of the normal of the function $y=y(x)$ at the point $P\left(x_{0}, y_{0}\right)$ is given by

$$
y=y_{0}-\frac{1}{y^{\prime}\left(x_{0}\right)}\left(x-x_{0}\right), \quad y^{\prime}\left(x_{0}\right) \neq 0 .
$$

Write the equations of the tangent line an the normal:
(a) to the curve $y=x^{3}-3 x+2$ at the point $P(2,4)$
(b) to the parabola $y=2 x^{2}-x+5$ at $x=-\frac{1}{2}$.
(c) * to the curve $y=x^{4}+3 x^{2}-16$ at the points of intersection with the parabola $y=3 x^{2}$.

III. Logarithmic differentiation

1. Find the derivative of the following functions.
(a) $f(x)=x^{10 x},(x>0)$
(b) $f(x)=(2 x)^{2 x},(x>0)$
(c) $f(x)=(\sin x)^{\tan x}$
(d) * $f(x)=x^{x}+x^{x^{x}}, \quad x>0$
(e) $f(x)=\left(\frac{x^{8}(x+7)^{1 / 3} \cos ^{3} x}{\sqrt{x-1}}\right)^{6}$
(f) $f(x)=\sqrt[3]{\frac{x^{2}(x+1)}{(x-2)\left(x^{2}+2\right)(x+3)}}$
2. Find an equation of the tangent line to $y=x^{\sqrt{x}}$ at $x=4$. Determine whether the graph of the function has any horizontal tangent line.
3. Find an equation of the line tangent to $y=x^{\sin x}$ at the point $x=1$.

IV. Implicit differentiation

1. Use implicit differentiation to find $\frac{\mathrm{d} y}{\mathrm{~d} x}$.
(a) $\sin x+\sin y=y$
(b) $6 x^{3}+7 y^{3}=13 x y$
(c) $e^{x y}=2 y$
(d) $\sin x y=x+y$
(e) $\sqrt{x+y^{2}}=\sin y$
(f) $\ln x+e^{-y / x}=5$
(g) $e^{x} \sin y-e^{-y} \cos x=0$
2. Determine an equation of the tangent line to the curve at the given point.
(a) $\sin y+5 x=y^{2},(0,0)$
(b) $x^{3}+y^{3}=2 x y,(1,1)$
(c) $x^{2}+x y+y^{2}=7,(2,1)$
(d) $\left(x^{2}+y^{2}\right)^{2}=\frac{25 x y^{2}}{4},(1,2)$
(e) $\cos (x-y)+\sin y=\sqrt{2},(\pi / 2, \pi / 4)$
(f) $x+y^{3}-y=1, x=1$
(g) $4 x^{3}=y^{2}(4-x), x=2$
3. Find $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}$.
(a) $x+y^{2}=1$
(b) $e^{2 y}+x=y$
(c) $x+y=e^{x-y}$
(d) $x^{3}-y^{3}=1$
4. ${ }^{* *}$ Show that the ellipse $4 x^{2}+9 y^{2}=45$ and the hyperbola $x^{2}-4 y^{2}=5$ are orthogonal (perpendicular).
5. ** Show that the parabolas $y^{2}=4 x+4$ and $y^{2}=4-4 x$ intersect at right angles.
6. ${ }^{* *}$ Show that the circles $x^{2}+y^{2}-12 x-6 y+25=0$ and $x^{2}+y^{2}+2 x+y-10=0$ are tangent to each other at the point $(2,1)$.
