Calculus 1, Practise Course

9th week

I. Using the derivatives

1. The following limits represents $f^{\prime}(a)$ for some function f and some real numbers a. Evaluate the limits with the help of this knowledge.
(a) $\lim _{x \rightarrow 0} \frac{x+e^{x}-1}{x}$
(b) $\lim _{h \rightarrow 0} \frac{\sqrt[3]{27+h}-3}{h}$
(c) $\lim _{x \rightarrow 2} \frac{\left(x^{4}-15\right)^{7}-1}{x-2}$
(d) $\lim _{x \rightarrow \pi} \frac{x \cos x+\pi}{x-\pi}$
2. Suppose $f^{\prime}(x)<2$, for all $x \geq 2$, and $f(2)=7$. Show that $f(4)<11$.
3. Suppose $f^{\prime}(x)>1$, for all $x>0$, and $f(0)=0$. Show that $f(x)<x$, for all $x>0$.
4. * We know that $\left(e^{x}\right)^{\prime}=e^{x}$ for all x. Are there any more functions tha coincide with their derivatives everywhere?
(Hint: Supposing that $f^{\prime}(x)=f(x)$ for all x, intvestigate the function $g(x)=\frac{f(x)}{e^{x}}$.)

II. Derivatives of inverse functions, derivatives of arcus functions

1. Consider the following functions. Without finding the inverse, evaluate the derivative of the inverse at the given point.
(a) $f(x)=\ln (5 x+e) \quad(1,0)$
(b) $f(x)=x^{2}-2 x-3$, for $x \leq 1,(12,-3)$
(c) $f(x)=(x+2)^{2},(36,4)$
(d) $f(x)=\log _{10} 3 x,(0,1 / 3)$
2. Evaluate the derivative of the following functions.
(a) $f(x)=\arcsin 4 x$
(b) $f(x)=\arccos \left(e^{-2 x}\right)$
(c) $f(x)=\arcsin \left(e^{\sin x}\right)$
(d) $g(t)=2 t \operatorname{arctg} t-\ln \left(1+t^{2}\right)$
(e) $f(z)=\ln (\operatorname{arctg} z)$
(f) $f(x)=\sin (\operatorname{arctg}(\ln x))$
(g) $f(x)=\frac{1}{\operatorname{arctg}\left(x^{2}+4\right)}$
(h) $f(x)=\arccos (1 / x)$
3. * Prove the following formulas with the help of derivatives.
(a) $\arcsin x+\arccos x=\pi / 2$
(Hint: Derivate the function $f(x)=\arcsin x+\arccos x=\pi / 2)$
(b) $2 \sin ^{2} x=1-\cos 2 x$
(c) $\arccos x \frac{1-x^{2}}{1+x^{2}}=2 \operatorname{arctg} x, x \geq 0$
4. * Use derivatives to show that $\operatorname{arctg} \frac{2}{x^{2}}$ and $\operatorname{arctg}(x+1)-\operatorname{arctg}(x-1)$ differ by a constant. Moreover

$$
\operatorname{arctg} \frac{2}{x^{2}}=\operatorname{arctg}(x+1)-\operatorname{arctg}(x-1), \quad \text { for } x \neq 0
$$

III. Mean value theorems (Rolle, Lagrange, Cauchy)

1. Prove that the polynomial $f(x)=x^{7}+14 x-3$ has got exactly one root.
2. Consider the polynomial $p(x)=5 x^{3}-2 x^{2}+3 x-4$. Prove that $p(x)$ has a zero between 0 and 1 that is the only zero of $p(x)$.
3. Show that the equation $3 \tan x+x^{3}=2$ has exactly one solution on the interval $[0, \pi / 4]$.
4. Prove that $x^{3}+p x+q=0$ has exactly one real root if $p>0$.
5. Prove that the polynomial $f(x)=x^{n}+a x+b$ has got at least two real roots if n is even and at least three, if n is odd.
6. Prove that $|\sin x-\sin y| \leq|x-y|$.
7. Prove that $|\tan x+\tan y| \geq|x+y|$, if $x, y \in(-\pi / 2, \pi / 2)$.
8. Prove that $\frac{x}{1+x}<\ln (1+x)<x$, if $x>0$. Give an estimation for the value $\ln (1+x)$.
9. ${ }^{* *}$ Let f be an infinitely differentiable function. Suppose that, for some positive integer n,

$$
f(1)=f(0)=f^{\prime}(0)=f^{\prime \prime}(0)=\cdots=f^{(n)}(0)=0
$$

Prove that $f^{(n+1)}(x)=0$ for some x on $(0,1)$.
10. Find an equation of the tangent line to $y=x^{\sqrt{x}}$ at $x=4$. Determine whether the graph of the function has any horizontal tangent line.
11. Find an equation of the line tangent to $y=x^{\sin x}$ at the point $x=1$.

IV. Maxima and minima

1. Find the critical points of the following functions.
(a) $f(x)=3 x^{3}+\frac{3 x^{2}}{2}-2 x$
(b) $f(x)=\frac{x^{4}}{4}-\frac{x^{3}}{3}-3 x^{2}+10$
(c) $f(x)=x^{2} \sqrt{x+5}$
(d) $g(x)=\frac{x}{\sqrt{x-10}}$
(e) $f(x)=(\arcsin x)(\arccos x)$
(f) $f(t)=t^{2}-2 \ln \left(t^{2}+1\right)$
(g) $f(x)=x-5 \operatorname{arctg} x$
2. Determine the location and value of the absolute extreme values of f on the given interval, if they exist.
(a) $f(x)=x^{3}-3 x^{2}$ on $[-1,3]$
(b) $f(x)=2 x^{6}-15 x^{4}+24 x^{2}$ on $[-2,2]$
(c) $f(x)=\frac{x}{\left(x^{2}+3\right)^{2}}$ on $[-2,2]$
(d) $f(x)=(2 x)^{x}$ on $[0.1,1]$
(e) $f(x)=x^{2}+\arccos x$ on $[-1,1]$
(f) $f(x)=x^{3} e^{-x}$ on $[-1,5]$
(g) $f(t)=\frac{3 t}{t^{2}+1}$ on $[-2,2]$
(h) $f(x)=x-\sin x$ on $[0, \pi / 2]$
(i) $f(x)=\left\{\begin{array}{ll}x^{3}-\frac{x}{3} & \text { if } 0 \leq x \leq 1 \\ x^{2}+x-\frac{4}{3} & \text { if } 1<x \leq 2\end{array}\right.$ on [0,2]
3. * Prove that for all real x

$$
\frac{2}{3} \leq \frac{x^{2}+1}{x^{2}+x+1} \leq 2
$$

V. Increasing and decreasing functions, convexity, concavity

1. Find the intervals on which f is increasing and the intervals on which it is decrasing. Locate the local minimum and maximum values.
(a) $f(x)=x^{3}+4 x$
(b) $f(x)=-\frac{x^{3}}{3}+\frac{x^{2}}{2}+2 x$
(c) $f(x)=2 x^{5}-\frac{15 x^{4}}{4}+\frac{5 x^{3}}{3}$
(d) $f(x)=\frac{e^{x}}{e^{2 x}+1}$
(e) $f(x)=x^{2} \ln x^{2}+1$
(f) $f(x)=x^{2 / 3}\left(x^{2}-4\right)$
(g) $f(x)=-2 \cos x-x$ on $[0,2 \pi]$
(h) $f(x)=\sqrt{9-x^{2}}+\arcsin (x / 3)$
(i) $f(x)=\frac{x^{2}}{x^{2}-1}$
(j) $f(x)=\arctan \left(\frac{x}{x^{2}+2}\right)$
2. Determine the intervals on which the following functions are convex or concave.
(a) $f(x)=x^{4}-2 x^{3}+1$
(b) $f(x)=5 x^{4}-20 x^{3}+10$
(c) $f(x)=\frac{1}{1+x^{2}}$
(d) $f(x)=e^{x}(x-3)$
(e) $f(x)=\sqrt{x} \ln x$
(f) $f(x)=\sqrt[3]{x-4}$
(g) $f(x)=x^{4} e^{x}+x$
(h) $f(x)=2 x^{2} \ln x-5 x^{2}$
(i) $f(t)=2+\cos 2 t$ on $[0, \pi]$
