Calculus 1, Practise Course

10th week

I. l'Hospital's Rule

1. Evaluate the following limits. Use l'Hospital's rule when it is convenient and applicable.
(a) $\lim _{x \rightarrow 1} \frac{\ln x}{x-1}$,
(b) $\lim _{x \rightarrow 0} \frac{e^{a x}-e^{-a x}}{\ln (1+x)}$
(c) $\lim _{x \rightarrow 0} \frac{e^{x}-e^{-x}-2 x}{x-\sin x}$
(d) $\lim _{x \rightarrow \infty} \frac{x e^{x / 2}}{e^{x}+x}$
(e) $\lim _{x \rightarrow \infty} \frac{\ln x^{2}}{\sqrt{x}}$
(f) $\lim _{x \rightarrow 0+} x \ln \sin x$
(g) $\lim _{x \rightarrow 0+} \frac{\ln x}{1+\ln \sin x}$
(h) $\lim _{x \rightarrow 0}(\arcsin x)(\cot x)$
(i) $\lim _{x \rightarrow-\infty} x^{2} e^{x}$
(j) $\lim _{x \rightarrow 0}\left(1 / x-1 /\left(e^{x}-1\right)\right)$
(k) $\lim _{x \rightarrow 1}(1 / \ln x-1 /(x-1))$
(l) $\lim _{x \rightarrow 0}\left(\frac{1}{x}\right)^{\sin x}$
(m) $\lim _{x \rightarrow 0}(\sin x)^{x}$
(n) $\lim _{x \rightarrow 0+}(1+x)^{\ln x}$
(o) $\lim _{x \rightarrow \infty}\left(1+\frac{a}{x}\right)^{x}$, where a is a constant
(p) $\lim _{x \rightarrow 0}\left(e^{a x}+x\right)^{1 / x}$, where a is a constant
(q) $\lim _{x \rightarrow \infty}\left(\log _{2} x-\log _{3} x\right)$
(r) ${ }^{*} \lim _{x \rightarrow 0}\left(\frac{\sin x}{x}\right)^{1 / x^{2}}$
(s) $* \lim _{x \rightarrow 0+} x^{1 /(1+\ln x)}$
(t) ${ }^{*} \lim _{x \rightarrow 0}(1+a x)^{b / x}$
2. Use limit methods to determine which of the two given functions grows faster, or state that they have comparable growth rates.
(a) $x^{2} \ln x, \ln ^{2} x$
(b) $x^{2} \ln x, x^{3}$
(c) $x^{20}, 1.0000001^{x}$
(d) $e^{x^{2}}, x^{x / 10}$
(e) $\ln x, \ln (\ln x)$

II. Graphing functions

1. Sketch the graph of the following functions.
(a) $f(x)=x^{3}-6 x^{2}+9 x$
(b) $f(x)=3 \sqrt{x}-x^{3 / 2}$
(c) $f(x)=\frac{x^{2}+12}{2 x+1}$
(d) $f(x)=x^{6}-3 x^{4}+3 x^{2}-1$
(e) $f(x)=x-2 \arctan \frac{x}{x+1}$
(f) $f(x)=x^{2} e^{1 / x}$
(g) $f(x)=x \sqrt{16-x^{2}}$
(h) $f(x)=x^{2} \sqrt{1-x}$
(i) $f(x)=x^{2} \ln x^{2}$
(j) $f(x)=\frac{x}{1+x^{2}}$
(k) $f(x)=\ln \left(x^{2}+1\right)$
(l) $f(x)=\sin x-x$ on $[0,2 \pi]$
(m) $f(x)=x \sqrt{x+3}$
(n) $f(x)=\frac{1}{e^{-x}-1}$

III. Optimization problems

1. Of all rectangles with a fixed perimeter P, which one has the maximum area?
2. Of all rectangles with a fixed area A, which one has the minimum perimeter?
3. Find positive numbers x and y satisfying the equation $x y=12$ such that the sum $2 x+y$ is a small as possible.
4. Find the point(s) on the hyperbola $x^{2}-y^{2}=2$ closest to the point $(0,1)$
5. A closed box with a square base contain $252 \mathrm{~m}^{3}$. The bottom costs 5 thousand HUF per m^{2}, the top costs 2 thousand HUF per m^{2}, and the sides cost 3 thousand HUF per m^{2}. Find the dimensions that will minimize the cost.
6. Find the dimensions of the closed cylindrical can that will have a capacity of k units of volume and will use the minimum amount of material. Find the ratio of the height h to the radius r of the top and the bottom.
7. The selling price P of an item is $100-0.12 x$ dollars, where x is the number of iems produced per day. If the cost C of producing and selling x items is $40 x+15000$ dollars per day, how many items should be produced and sold every day in order to maximize the profit?
8. * Find the point(s) on the graph of $3 x^{2}+10 x y+3 y^{2}=9$ closest to the origin.
9. * Find the height h and radius r of a cylinder of greatest volume that can be cut within a sphere of radius R.
10. The sum of the squares of two nonnegative numbers is to be 4 . How should they be chosen so that the product of their cube is a maximum?
