Calculus 1, Practise Course

10th week

I. l'Hospital's Rule

1. Evaluate the following limits. Use l'Hospital's rule when it is convenient and applicable.

(a)
$$\lim_{x\to 1} \frac{\ln x}{x-1}$$
,
(b) $\lim_{x\to 0} \frac{e^{ax} - e^{-ax}}{\ln(1+x)}$
(c) $\lim_{x\to 0} \frac{e^x - e^{-x} - 2x}{x-\sin x}$
(d) $\lim_{x\to\infty} \frac{xe^{x/2}}{e^x + x}$
(e) $\lim_{x\to\infty} \frac{\ln x^2}{\sqrt{x}}$
(f) $\lim_{x\to 0+} x \ln \sin x$
(g) $\lim_{x\to 0+} \frac{\ln x}{1+\ln \sin x}$
(h) $\lim_{x\to 0} (\arcsin x)(\cot x)$
(i) $\lim_{x\to -\infty} x^2 e^x$
(j) $\lim_{x\to 0} (1/x - 1/(e^x - 1))$
(k) $\lim_{x\to 1} (1/\ln x - 1/(x - 1))$
(l) $\lim_{x\to 0} \left(\frac{1}{x}\right)^{\sin x}$
(m) $\lim_{x\to 0} (\sin x)^x$
(n) $\lim_{x\to 0+} (1+x)^{\ln x}$

- (o) $\lim_{x\to\infty} \left(1+\frac{a}{x}\right)^x$, where *a* is a constant
- (p) $\lim_{x\to 0} (e^{ax} + x)^{1/x}$, where a is a constant
- (q) $\lim_{x\to\infty} (\log_2 x \log_3 x)$
- (r) *lim_{$x\to 0$} $\left(\frac{\sin x}{x}\right)^{1/x^2}$
- (s) * $\lim_{x\to 0+} x^{1/(1+\ln x)}$
- (t) $*\lim_{x\to 0} (1+ax)^{b/x}$
- 2. Use limit methods to determine which of the two given functions grows faster, or state that they have comparable growth rates.
 - (a) $x^{2} \ln x$, $\ln^{2} x$ (b) $x^{2} \ln x$, x^{3} (c) x^{20} , 1.0000001^{x} (d) $e^{x^{2}}$, $x^{x/10}$ (e) $\ln x$, $\ln(\ln x)$

II. Graphing functions

1. Sketch the graph of the following functions.

(a)
$$f(x) = x^3 - 6x^2 + 9x$$

(b) $f(x) = 3\sqrt{x} - x^{3/2}$
(c) $f(x) = \frac{x^2 + 12}{2x + 1}$
(d) $f(x) = x^6 - 3x^4 + 3x^2 - 1$
(e) $f(x) = x - 2 \arctan \frac{x}{x + 1}$
(f) $f(x) = x^2 e^{1/x}$
(g) $f(x) = x\sqrt{16 - x^2}$
(h) $f(x) = x^2\sqrt{1 - x}$
(i) $f(x) = x^2 \ln x^2$
(j) $f(x) = \frac{x}{1 + x^2}$
(k) $f(x) = \ln(x^2 + 1)$
(l) $f(x) = \sin x - x$ on $[0, 2\pi]$
(m) $f(x) = x\sqrt{x + 3}$

(n)
$$f(x) = \frac{1}{e^{-x} - 1}$$

III. Optimization problems

- 1. Of all rectangles with a fixed perimeter P, which one has the maximum area?
- 2. Of all rectangles with a fixed area A, which one has the minimum perimeter?
- 3. Find positive numbers x and y satisfying the equation xy = 12 such that the sum 2x + y is a small as possible.
- 4. Find the point(s) on the hyperbola $x^2 y^2 = 2$ closest to the point (0, 1)
- 5. A closed box with a square base contain 252 m^3 . The bottom costs 5 thousand HUF per m^2 , the top costs 2 thousand HUF per m^2 , and the sides cost 3 thousand HUF per m^2 . Find the dimensions that will minimize the cost.
- 6. Find the dimensions of the closed cylindrical can that will have a capacity of k units of volume and will use the minimum amount of material. Find the ratio of the height h to the radius r of the top and the bottom.
- 7. The selling price P of an item is 100 0.12x dollars, where x is the number of iems produced per day. If the cost C of producing and selling x items is 40x + 15000 dollars per day, how many items should be produced and sold every day in order to maximize the profit?
- 8. * Find the point(s) on the graph of $3x^2 + 10xy + 3y^2 = 9$ closest to the origin.
- 9. * Find the height h and radius r of a cylinder of greatest volume that can be cut within a sphere of radius R.
- 10. The sum of the squares of two nonnegative numbers is to be 4. How should they be chosen so that the product of their cube is a maximum?