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HOW TO USE THIS BOOK

Ĳ Introduction

First of all, welcome to Calculus!

This book is written as a companion to the CLP-2 Integral Calculus textbook.

§§ How to Work Questions

This book is organized into four sections: Questions, Hints, Answers, and Solutions. As
you are working problems, resist the temptation to prematurely peek at the back! It’s
important to allow yourself to struggle for a time with the material. Even professional
mathematicians don’t always know right away how to solve a problem. The art is in
gathering your thoughts and figuring out a strategy to use what you know to find out
what you don’t.

If you find yourself at a real impasse, go ahead and look for a hint in the Hints section.
Think about it for a while, and don’t be afraid to read back in the notes to look for a key
idea that will help you proceed. If you still can’t solve the problem, well, we included the
Solutions section for a reason! As you’re reading the solutions, try hard to understand
why we took the steps we did, instead of memorizing step-by-step how to solve that one
particular problem.

If you struggled with a question quite a lot, it’s probably a good idea to return to it in a few
days. That might have been enough time for you to internalize the necessary ideas, and
you might find it easily conquerable. Pat yourself on the back–sometimes math makes you
feel good! If you’re still having troubles, read over the solution again, with an emphasis
on understanding why each step makes sense.

One of the reasons so many students are required to study calculus is the hope that it will
improve their problem-solving skills. In this class, you will learn lots of concepts, and
be asked to apply them in a variety of situations. Often, this will involve answering one
really big problem by breaking it up into manageable chunks, solving those chunks, then
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putting the pieces back together. When you see a particularly long question, remain calm
and look for a way to break it into pieces you can handle.

§§ Working with Friends

Study buddies are fantastic! If you don’t already have friends in your class, you can ask
your neighbours in lecture to form a group. Often, a question that you might bang your
head against for an hour can be easily cleared up by a friend who sees what you’ve missed.
Regular study times make sure you don’t procrastinate too much, and friends help you
maintain a positive attitude when you might otherwise succumb to frustration. Struggle
in mathematics is desirable, but suffering is not.

When working in a group, make sure you try out problems on your own before coming
together to discuss with others. Learning is a process, and getting answers to questions
that you haven’t considered on your own can rob you of the practice you need to master
skills and concepts, and the tenacity you need to develop to become a competent problem-
solver.

§§ Types of Questions

Q[1]: Questions outlined in blue make up the representative question set. This set of
questions is intended to cover the most essential ideas in each section. These questions
are usually highly typical of what you’d see on an exam, although some of them are
atypical but carry an important moral. If you find yourself unconfident with the idea
behind one of these, it’s probably a good idea to practice similar questions.
This representative question set is our suggestion for a minimal selection of questions to
work on. You are highly encouraged to work on more.

Q[2](˚): In addition to original problems, this book contains problems pulled from quizzes
and exams given at UBC for Math 101 and 105 (second-semester calculus) and Math 121
(honours second-semester calculus). These problems are marked with a star. The authors
would like to acknowledge the contributions of the many people who collaborated to
produce these exams over the years.

Instructions and other comments that are attached to more than one question are written in this font. The
questions are organized into Stage 1, Stage 2, and Stage 3.

§§ Stage 1

The first category is meant to test and improve your understanding of basic underlying
concepts. These often do not involve much calculation. They range in difficulty from
very basic reviews of definitions to questions that require you to be thoughtful about the
concepts covered in the section.
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§§ Stage 2

Questions in this category are for practicing skills. It’s not enough to understand the philo-
sophical grounding of an idea: you have to be able to apply it in appropriate situations.
This takes practice!

§§ Stage 3

The last questions in each section go a little farther than Stage 2. Often they will combine
more than one idea, incorporate review material, or ask you to apply your understanding
of a concept to a new situation.

In exams, as in life, you will encounter questions of varying difficulty. A good skill to
practice is recognizing the level of difficulty a problem poses. Exams will have some easy
questions, some standard questions, and some harder questions.
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INTEGRATION

Chapter 1

1.1Ĳ Definition of the Integral

Exercises
Jump to HINTS, ANSWERS, SOLUTIONS or TABLE OF CONTENTS.

§§ Stage 1

For Questions 1 through 5, we want you to develop an understanding of the model we are using to define
an integral: we approximate the area under a curve by bounding it between rectangles. Later, we will learn
more sophisticated methods of integration, but they are all based on this simple concept.

Q[1]: Give a range of possible values for the shaded area in the picture below.

x

y

1 3

0.75
1.25

2



INTEGRATION 1.1 DEFINITION OF THE INTEGRAL

Q[2]: Give a range of possible values for the shaded area in the picture below.

x

y

1 2 3 4

0.75
1.25

0.25

2.25
1.75

Q[3]: Using rectangles, find a lower and upper bound for
ż 3

1

1
2x dx that differ by at most

0.2 square units.

x

y

y = 1
2x

1 3

Q[4]: Let f (x) be a function that is decreasing from x = 0 to x = 5. Which Riemann sum

approximation of
ż 5

0
f (x)dx is the largest–left, right, or midpoint?

Q[5]: Give an example of a function f (x), an interval [a, b], and a number n such that the
midpoint Riemann sum of f (x) over [a, b] using n intervals is larger than both the left and
right Riemann sums of f (x) over [a, b] using n intervals.

In Questions 6 through 10, we practice using sigma notation. There are many ways to write a given sum in
sigma notation. You can practice finding several, and deciding which looks the clearest.

Q[6]: Express the following sums in sigma notation:

(a) 3 + 4 + 5 + 6 + 7

(b) 6 + 8 + 10 + 12 + 14

(c) 7 + 9 + 11 + 13 + 15

(d) 1 + 3 + 5 + 7 + 9 + 11 + 13 + 15

3



INTEGRATION 1.1 DEFINITION OF THE INTEGRAL

Q[7]: Express the following sums in sigma notation:
(a) 1

3 +
1
9 +

1
27 +

1
81

(b) 2
3 +

2
9 +

2
27 +

2
81

(c) ´2
3 +

2
9 ´

2
27 +

2
81

(d) 2
3 ´

2
9 +

2
27 ´

2
81

Q[8]: Express the following sums in sigma notation:

(a) 1
3 +

1
3 +

5
27 +

7
81 +

9
243

(b) 1
5 +

1
11 +

1
29 +

1
83 +

1
245

(c) 1000 + 200 + 30 + 4 + 1
2 +

3
50 +

7
1000

Q[9]: Evaluate the following sums. You might want to use the formulas from Theorems
1.1.5 and 1.1.6 in the CLP-2 text.

(a)
100
ÿ

i=0

(
3
5

)i

(b)
100
ÿ

i=50

(
3
5

)i

(c)
10
ÿ

i=1

(
i2
´ 3i + 5

)

(d)
b
ÿ

n=1

[(
1
e

)n
+ en3

]
, where b is some integer greater than 1.

Q[10]: Evaluate the following sums. You might want to use the formulas from
Theorem 1.1.6 in the CLP-2 text.

(a)
100
ÿ

i=50

(i´ 50) +
50
ÿ

i=0

i

(b)
100
ÿ

i=10

(i´ 5)3

(c)
11
ÿ

n=1

(´1)n

(d)
11
ÿ

n=2

(´1)2n+1

Questions 11 through 15 are meant to give you practice interpreting the formulas in Definition 1.1.11 of the
CLP-2 text. The formulas might look complicated at first, but if you understand what each piece means, they
are easy to learn.

4



INTEGRATION 1.1 DEFINITION OF THE INTEGRAL

Q[11]: In the picture below, draw in the rectangles whose (signed) area is being

computed by the midpoint Riemann sum
4
ÿ

i=1

b´ a
4

¨ f
(

a +
(

i´
1
2

)
b´ a

4

)
.

x

y

ba

y = f (x)

Q[12](˚):
4
ÿ

k=1

f (1+ k) ¨ 1 is a left Riemann sum for a function f (x) on the interval [a, b] with

n subintervals. Find the values of a, b and n.

Q[13]: Draw a picture illustrating the area given by the following Riemann sum.

3
ÿ

i=1

2 ¨ (5 + 2i)2

Q[14]: Draw a picture illustrating the area given by the following Riemann sum.

5
ÿ

i=1

π

20
¨ tan

(
π(i´ 1)

20

)

Q[15](˚): Fill in the blanks with right, left, or midpoint; an interval; and a value of n.
3
ř

k=0
f (1.5 + k) ¨ 1 is a Riemann sum for f on the interval [ , ] with

n = .

Q[16]: Evaluate the following integral by interpreting it as a signed area, and using
geometry:

ż 5

0
x dx

5
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Q[17]: Evaluate the following integral by interpreting it as a signed area, and using
geometry:

ż 5

´2
x dx

§§ Stage 2

Q[18](˚): Use sigma notation to write the midpoint Riemann sum for f (x) = x8 on [5, 15]
with n = 50. Do not evaluate the Riemann sum.

Q[19](˚): Estimate
ż 5

´1
x3 dx using three approximating rectangles and left hand end points.

Q[20](˚): Let f be a function on the whole real line. Express
ż 7

´1
f (x) dx as a limit of

Riemann sums, using the right endpoints.

Q[21](˚): The value of the following limit is equal to the area below a graph of y = f (x),
integrated over the interval [0, b]:

lim
nÑ8

n
ÿ

i=1

4
n

[
sin
(

2 +
4i
n

)]2

Find f (x) and b.

Q[22](˚): For a certain function f (x), the following equation holds:

lim
nÑ8

n
ÿ

k=1

k
n2

c

1´
k2

n2 =

ż 1

0
f (x) dx

Find f (x).

Q[23](˚): Express lim
nÑ8

n
ÿ

i=1

3
n

e´i/n cos
(

3i
n

)
as a definite integral.

Q[24](˚): Let Rn =
n
ÿ

i=1

iei/n

n2 . Express lim
nÑ8

Rn as a definite integral. Do not evaluate this

integral.

Q[25](˚): Express lim
nÑ8

( n
ÿ

i=1

e´1´2i/n
¨

2
n

)
as an integral in three different ways.

Questions 26 and 27 use the formula for a geometric sum, Equation 1.1.3 in the CLP-2 text.
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INTEGRATION 1.1 DEFINITION OF THE INTEGRAL

Q[26]: Evaluate the sum 1 + r3 + r6 + r9 + ¨ ¨ ¨+ r3n.

Q[27]: Evaluate the sum r5 + r6 + r7 + ¨ ¨ ¨+ r100.

Remember that a definite integral is a signed area between a curve and the x-axis. We’ll spend a lot of
time learning strategies for evaluating definite integrals, but we already know lots of ways to find area of
geometric shapes. In Questions 28 through 33, use your knowledge of geometry to find the signed areas
described by the integrals given.

Q[28](˚): Evaluate
ż 2

´1
|2x| dx.

Q[29]: Evaluate the following integral by interpreting it as a signed area, and using
geometry:

ż 5

´3
|t´ 1|dt

Q[30]: Evaluate the following integral by interpreting it as a signed area, and using
geometry:

ż b

a
x dx

where 0 ď a ď b.

Q[31]: Evaluate the following integral by interpreting it as a signed area, and using
geometry:

ż b

a
x dx

where a ď b ď 0.

Q[32]: Evaluate the following integral by interpreting it as a signed area, and using
geometry:

ż 4

0

a

16´ x2 dx

Q[33](˚): Use elementary geometry to calculate
ż 3

0
f (x) dx, where

f (x) =

#

x, if x ď 1,
1, if x ą 1.

7



INTEGRATION 1.1 DEFINITION OF THE INTEGRAL

Q[34](˚): A car’s gas pedal is applied at t = 0 seconds and the car accelerates
continuously until t = 2 seconds. The car’s speed at half-second intervals is given in the
table below. Find the best possible upper estimate for the distance that the car traveled
during these two seconds.

t (s) 0 0.5 1.0 1.5 2

v (m/s) 0 14 22 30 40

Q[35]: True or false: the answer you gave for Question 34 is definitely greater than or
equal to the distance the car travelled during the two seconds in question.

Q[36]: An airplane’s speed at one-hour intervals is given in the table below. Approximate
the distance travelled by the airplane from noon to 4pm using a midpoint Riemann sum.

time 12:00 pm 1:00 pm 2:00 pm 3:00 pm 4:00 pm

speed (km/hr) 800 700 850 900 750

§§ Stage 3

Q[37](˚): (a) Express

lim
nÑ8

n
ÿ

i=1

2
n

d

4´
(
´2 +

2i
n

)2

as a definite integal.
(b) Evaluate the integral of part (a).

Q[38](˚): Consider the integral:
ż 3

0
(7 + x3) dx. (˚)

(a) Approximate this integral using the left Riemann sum with n = 3 intervals.

(b) Write down the expression for the right Riemann sum with n intervals and calculate
the sum. Now take the limit n Ñ 8 in your expression for the Riemann sum, to
evaluate the integral (˚) exactly.

You may use the identity
n
ÿ

i=1

i3 =
n4 + 2n3 + n2

4

Q[39](˚): Using a limit of right–endpoint Riemann sums, evaluate
ż 4

2
x2 dx.

You may use the formulas
n
ř

i=1
i = n(n+1)

2 and
n
ř

i=1
i2 = n(n+1)(2n+1)

6 .
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INTEGRATION 1.1 DEFINITION OF THE INTEGRAL

Q[40](˚): Find
ż 2

0
(x3 + x) dx using the definition of the definite integral. You may use the

summation formulas
n
ř

i=1
i3 = n4+2n3+n2

4 and
n
ř

i=1
i = n2+n

2 .

Q[41](˚): Using a limit of right–endpoint Riemann sums, evaluate
ż 4

1
(2x´ 1) dx. Do not

use anti-differentiation, except to check your answer.* You may use the formula
n
ř

i=1
i = n(n+1)

2 .

* You’ll learn about this method starting in Section 1.3 of the CLP-2 text. You can also check this answer
using geometry.

Q[42]: Give a function f (x) that has the following expression as a right Riemann sum
when n = 10, ∆(x) = 10 and a = ´5:

10
ÿ

i=1

3(7 + 2i)2 sin(4i) .

Q[43]: Using the method of Example 1.1.2 in the CLP-2 text, evaluate

ż 1

0
2x dx

Q[44]:

(a) Using the method of Example 1.1.2 in the CLP-2 text, evaluate

ż b

a
10x dx

(b)

Using your answer from above, make a guess for

ż b

a
cx dx

where c is a positive constant. Does this agree with Question 43?

Q[45]: Evaluate
ż a

0

a

1´ x2 dx using geometry, if 0 ď a ď 1.

9



INTEGRATION 1.2 BASIC PROPERTIES OF THE DEFINITE INTEGRAL

Q[46]: Suppose f (x) is a positive, decreasing function from x = a to x = b. You give an
upper and lower bound on the area under the curve y = f (x) using n rectangles and a
left and right Riemann sum, respectively, as in the picture below.

x

y

y = f (x)

a b
x

y

y = f (x)

a b

(a) What is the difference between the lower bound and the upper bound? (That is, if we
subtract the smaller estimate from the larger estimate, what do we get?) Give your
answer in terms of f , a, b, and n.

(b) If you want to approximate the area under the curve to within 0.01 square units
using this method, how many rectangles should you use? That is, what should n be?

Q[47]: Let f (x) be a linear function, let a ă b be integers, and let n be a whole number. True

or false: if we average the left and right Riemann sums for
ż b

a
f (x) dx using n rectangles,

we get the same value as the midpoint Riemann sum using n rectangles.

1.2Ĳ Basic properties of the definite integral

Exercises
Jump to HINTS, ANSWERS, SOLUTIONS or TABLE OF CONTENTS.

§§ Stage 1

Q[1]: For each of the following properties of definite integrals, draw a picture illustrating
the concept, interpreting definite integrals as areas under a curve.

For simplicity, you may assume that a ď c ď b, and that f (x), g(x) give positive values.

(a)
ż a

a
f (x)dx = 0 (Theorem 1.2.3.a in the CLP-2 text)

(b)
ż b

a
f (x)dx =

ż c

a
f (x)dx +

ż b

c
f (x)dx (Theorem 1.2.3.c in the CLP-2 text)

(c)
ż b

a
( f (x) + g(x)) dx =

ż b

a
f (x)dx +

ż b

a
g(x)dx (Theorem 1.2.1.a in the CLP-2

text)

10



INTEGRATION 1.2 BASIC PROPERTIES OF THE DEFINITE INTEGRAL

Q[2]: If
ż b

0
cos x dx = sin b, then what is

ż b

a
cos x dx?

Q[3](˚): Decide whether each of the following statements is true or false. If false, provide
a counterexample. If true, provide a brief justification. (Assume that f (x) and g(x) are
continuous functions.)

(a)
ż ´2

´3
f (x)dx = ´

ż 2

3
f (x)dx.

(b) If f (x) is an odd function, then
ż ´2

´3
f (x)dx =

ż 3

2
f (x)dx.

(c)
ż 1

0
f (x) ¨ g(x) dx =

ż 1

0
f (x) dx ¨

ż 1

0
g(x) dx.

Q[4]: Suppose we want to make a right Riemann sum with 100 intervals to approximate
0
ş

5
f (x) dx, where f (x) is a function that gives only positive values.

(a) What is ∆x?

(b) Are the heights of our rectangles positive or negative?

(c) Is our Riemann sum positive or negative?

(d) Is the signed area under the curve y = f (x) from x = 0 to x = 5 positive or negative?

§§ Stage 2

Q[5](˚): Suppose
ż 3

2
f (x)dx = ´1 and

ż 3

2
g(x)dx = 5. Evaluate

ż 3

2

(
6 f (x)´ 3g(x)

)
dx.

Q[6](˚): If
ż 2

0
f (x)dx = 3 and

ż 2

0
g(x)dx = ´4, calculate

ż 2

0

(
2 f (x) + 3g(x)

)
dx.

Q[7](˚): The functions f (x) and g(x) obey

ż ´1

0
f (x)dx = 1

ż 2

0
f (x)dx = 2

ż 0

´1
g(x)dx = 3

ż 2

0
g(x)dx = 4

Find
ş2
´1

[
3g(x)´ f (x)

]
dx.

Q[8]: In Question 45, Section 1.1, we found that
ż a

0

a

1´ x2 dx =
π

4
´

1
2

arccos(a) +
1
2

a
a

1´ a2

when 0 ď a ď 1.

Using this fact, evaluate the following:

11



INTEGRATION 1.2 BASIC PROPERTIES OF THE DEFINITE INTEGRAL

(a)
ż 0

a

a

1´ x2 dx, where ´1 ď a ď 0

(b)
ż 1

a

a

1´ x2 dx, where 0 ď a ď 1

Q[9](˚): Evaluate
ż 2

´1
|2x| dx.

You may use the result from Example 1.2.5 in the CLP-2 text that
b
ş

a
x dx = b2´a2

2 .

Q[10]: Evaluate
ż 5

´5
x|x| dx .

Q[11]: Suppose f (x) is an even function and
ż 2

´2
f (x)dx = 10. What is

ż 0

´2
f (x)dx?

§§ Stage 3

Q[12](˚): Evaluate
ż 2

´2

(
5 +

a

4´ x2
)

dx.

Q[13](˚): Evaluate
ż +2012

´2012

sin x
log(3 + x2)

dx.

Q[14](˚): Evaluate
ż +2012

´2012
x1/3 cos x dx.

Q[15]: Evaluate
ż 6

0
(x´ 3)3 dx .

Q[16]: We want to compute the area of an ellipse, (ax)2 + (by)2 = 1 for some (let’s say
positive) constants a and b.

(a) Solve the equation for the upper half of the ellipse. It should have the form “y = ¨ ¨ ¨ ”

(b) Write an integral for the area of the upper half of the ellipse. Using properties of
integrals, make the integrand look like the upper half of a circle.

(c) Using geometry and your answer to part (b), find the area of the ellipse.

12



INTEGRATION 1.3 THE FUNDAMENTAL THEOREM OF CALCULUS

Q[17]:
Fill in the following table: the product of an (even/odd) function with an (even/odd)
function is an (even/odd) function. You may assume that both functions are defined for
all real numbers.

ˆ even odd
even
odd

Q[18]: Suppose f (x) is an odd function and g(x) is an even function, both defined at
x = 0. What are the possible values of f (0) and g(0)?

Q[19]: Suppose f (x) is a function defined on all real numbers that is both even and odd.
What could f (x) be?

Q[20]: Is the derivative of an even function even or odd? Is the derivative of an odd
function even or odd?

1.3Ĳ The Fundamental Theorem of Calculus

Exercises
Jump to HINTS, ANSWERS, SOLUTIONS or TABLE OF CONTENTS.

§§ Stage 1

Q[1](˚): Suppose that f (x) is a function and F(x) = e(x2´3) + 1 is an antiderivative of f (x).

Evaluate the definite integral
ż

?
5

1
f (x)dx.

Q[2](˚): For the function f (x) = x3 ´ sin 2x, find its antiderivative F(x) that satisfies
F(0) = 1.

Q[3](˚): Decide whether each of the following statements is true or false. Provide a brief
justification.
(a) If f (x) is continuous on [1, π] and differentiable on (1, π), then

ż π

1
f 1(x)dx = f (π)´ f (1).

(b)
ż 1

´1

1
x2 dx = 0.

(c) If f is continuous on [a, b] then
ż b

a
x f (x)dx = x

ż b

a
f (x)dx.

13



INTEGRATION 1.3 THE FUNDAMENTAL THEOREM OF CALCULUS

Q[4]: True or false: an antiderivative of
1
x2 is log(x2) (where by log x we mean logarithm

base e).

Q[5]: True or false: an antiderivative of cos(ex) is sin(ex)
ex .

Q[6]: Suppose F(x) =
ż x

7
sin(t2) dt. What is the instantaneous rate of change of F(x) with

respect to x?

Q[7]: Suppose F(x) =
ż x

2
e1/t dt. What is the slope of the tangent line to y = F(x) when

x = 3?

Q[8]: Suppose F1(x) = f (x). Give two different antiderivatives of f (x).

Q[9]: In Question 45, Section 1.1, we found that

ż a

0

a

1´ x2 dx =
π

4
´

1
2

arccos(a) +
1
2

a
a

1´ a2.

(a) Verify that
d
da

"

π

4
´

1
2

arccos(a) +
1
2

a
a

1´ a2
*

=
a

1´ a2.

(b) Find a function F(x) that satisfies F1(x) =
?

1´ x2 and F(0) = π.

Q[10]: Evaluate the following integrals using the Fundamental Theorem of Calculus Part
2, or explain why it does not apply.

(a)
ż π

´π
cos x dx.

(b)
ż π

´π
sec2 x dx.

(c)
ż 0

´2

1
x + 1

dx.

Questions 11 through 14 are meant to help reinforce key ideas in the Fundamental Theorem of Calculus and
its proof.

Q[11]: As in the proof of the Fundamental Theorem of Calculus, let F(x) =
şx

a f (t) dt. In
the diagram below, shade the area corresponding to F(x + h)´ F(x).

14



INTEGRATION 1.3 THE FUNDAMENTAL THEOREM OF CALCULUS

t

y

a x x + h

y = f (t)

Q[12]: Let F(x) =
ż x

0
f (t)dt, where f (t) is shown in the graph below, and 0 ď x ď 4.

(a) Is F(0) positive, negative, or zero?
(b) Where is F(x) increasing and where is it decreasing?

t

y

1 2 3 4

y = f (t)

Q[13]: Let G(x) =
ż 0

x
f (t)dt, where f (t) is shown in the graph below, and 0 ď x ď 4.

(a) Is G(0) positive, negative, or zero?

(b) Where is G(x) increasing and where is it decreasing?

15



INTEGRATION 1.3 THE FUNDAMENTAL THEOREM OF CALCULUS

t

y

1 2 3 4

y = f (t)

Q[14]: Let F(x) =
ż x

a
t dt. Using the definition of the derivative, find F1(x).

Q[15]: Give a continuous function f (x) so that F(x) =
ż x

0
f (t)dt is a constant.

So far, we have been able to guess many antiderivatives. Often, however, antiderivatives are very difficult
to guess. In Questions 16 through 19, we will find some antiderivatives that might appear in a table of
integrals. Coming up with the antiderivative might be quite difficult (strategies to do just that will form a
large part of this semester), but verifying that your antiderivative is correct is as simple as differentiating.

Q[16]: Evaluate and simplify d
dxtx log(ax)´ xu, where a is some constant and log(x) is the

logarithm base e. What antiderivative does this tell you?

Q[17]: Evaluate and simplify d
dxte

x (x3 ´ 3x2 + 6x´ 6
)
u. What antiderivative does this tell

you?

Q[18]: Evaluate and simplify d
dx

!

log
ˇ

ˇ

ˇ
x +

?
x2 + a2

ˇ

ˇ

ˇ

)

, where a is some constant. What
antiderivative does this tell you?

Q[19]: Evaluate and simplify
d
dx

"

b

x(a + x)´ a log
(?

x +
?

a + x
)*

, where a is some

constant. What antiderivative does this tell you?

§§ Stage 2

Q[20](˚): Evaluate
ż 2

0

(
x3 + sin x)dx.

Q[21](˚): Evaluate
ż 2

1

x2 + 2
x2 dx.

Q[22]: Evaluate
ż

1
1 + 25x2 dx.

16



INTEGRATION 1.3 THE FUNDAMENTAL THEOREM OF CALCULUS

Q[23]: Evaluate
ż

1
?

2´ x2
dx.

Q[24]: Evaluate
ż

tan2 x dx.

Q[25]: Evaluate
ż

3 sin x cos x dx.

Q[26]: Evaluate
ż

cos2 x dx.

Q[27](˚): If

F(x) =
ż x

0
log(2 + sin t)dt and G(y) =

ż 0

y
log(2 + sin t)dt

find F1
(

π
2

)
and G1

(
π
2

)
.

Q[28](˚): Let f (x) =
ż x

1
100(t2

´ 3t + 2)e´t2
dt. Find the interval(s) on which f is

increasing.

Q[29](˚): If F(x) =
ż cos x

0

1
t3 + 6

dt, find F1(x).

Q[30](˚): Compute f 1(x) where f (x) =
ż 1+x4

0
et2

dt.

Q[31](˚): Evaluate
d
dx

#

ż sin x

0
(t6 + 8)dt

+

.

Q[32](˚): Let F(x) =
ż x3

0
e´t sin

(
πt
2

)
dt. Calculate F1(1).

Q[33](˚): Find
d
du

#

ż 0

cos u

dt
1 + t3

+

.

Q[34](˚): Find f (x) if x2 = 1 +
ż x

1
f (t) dt.

Q[35](˚): If x sin(πx) =
ż x

0
f (t)dt where f is a continuous function, find f (4).

Q[36](˚): Consider the function F(x) =
ż x2

0
e´t dt +

ż 0

´x
e´t2

dt.

(a) Find F1(x).

(b) Find the value of x for which F(x) takes its minimum value.

17



INTEGRATION 1.3 THE FUNDAMENTAL THEOREM OF CALCULUS

Q[37](˚): If F(x) is defined by F(x) =
ż x

x4´x3
esin t dt, find F1(x).

Q[38](˚): Evaluate
d
dx

"
ż ´x2

x5
cos

(
et)dt

*

.

Q[39](˚): Differentiate
ż ex

x

?
sin t dt for 0 ă x ă log π.

Q[40](˚): Evaluate
ż 5

1
f (x)dx, where f (x) =

#

3 if x ď 3
x if x ě 3

.

§§ Stage 3

Q[41](˚): If f 1(1) = 2 and f 1(2) = 3, find
ż 2

1
f 1(x) f 2(x)dx.

Q[42](˚): A car traveling at 30 m/s applies its brakes at time t = 0, its velocity (in m/s)
decreasing according to the formula v(t) = 30´ 10t. How far does the car go before it
stops?

Q[43](˚): Compute f 1(x) where f (x) =
ż 2x´x2

0
log
(
1 + et)dt. Does f (x) have an absolute

maximum? Explain.

Q[44](˚): Find the minimum value of
ż x2´2x

0

dt
1 + t4 . Express your answer as an integral.

Q[45](˚): Define the function F(x) =

ż x2

0
sin(

?
t)dt on the interval 0 ă x ă 4. On this

interval, where does F(x) have a maximum?

Q[46](˚): Evaluate lim
nÑ8

π

n

n
ÿ

j=1

sin
(

jπ
n

)
by interpreting it as a limit of Riemann sums.

Q[47](˚): Use Riemann sums to evaluate the limit lim
nÑ8

1
n

n
ÿ

j=1

1

1 + j
n

.
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INTEGRATION 1.4 SUBSTITUTION

Q[48]: Below is the graph of y = f (t), ´5 ď t ď 5. Define F(x) =
ż x

0
f (t) dt for any x in

[´5, 5]. Sketch F(x).

x

y

y = f (x)

´5 ´3 ´1 1 3 5

Q[49](˚): Define f (x) = x3
ż x3+1

0
et3

dt.

(a) Find a formula for the derivative f 1(x). (Your formula may include an integral sign.)

(b) Find the equation of the tangent line to the graph of y = f (x) at x = ´1.

Q[50]: Two students calculate
ş

f (x) dx for some function f (x).
• Student A calculates

ş

f (x) dx = tan2 x + x + C
• Student B calculates

ş

f (x) dx = sec2 x + x + C
• It is a fact that d

dxttan2 xu = f (x)´ 1
Who ended up with the correct answer?

Q[51]: Let F(x) =
ż x

0
x3 sin(t) dt.

(a) Evaluate F(3).
(b) What is F1(x)?

Q[52]: Let f (x) be an even function, defined everywhere, and let F(x) be an antiderivative
of f (x). Is F(x) even, odd, or not necessarily either one? (You may use your answer from
Section 1.2, Question 20. )

1.4Ĳ Substitution

Exercises
Jump to HINTS, ANSWERS, SOLUTIONS or TABLE OF CONTENTS.

Recall that we are using log x to denote the logarithm of x with base e. In other courses it
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INTEGRATION 1.4 SUBSTITUTION

is often denoted ln x.

§§ Stage 1

Q[1]:

(a) True or False:
ż

sin(ex) ¨ ex dx =

ż

sin(u) du
ˇ

ˇ

ˇ

ˇ

u=ex
= ´ cos(ex) + C

(b) True or False:
ż 1

0
sin(ex) ¨ ex dx =

ż 1

0
sin(u) du = 1´ cos(1)

Q[2]: Is the following reasoning sound? If not, fix it.

Problem: Evaluate
ż

(2x + 1)2dx.

Work: We use the substitution u = 2x + 1. Then:
ż

(2x + 1)2dx =

ż

u2 du

=
1
3

u3 + C

=
1
3
(2x + 1)3 + C

Q[3]: Is the following reasoning sound? If not, fix it.

Problem: Evaluate
ż π

1

cos(log t)
t

dt.

Work: We use the substitution u = log t, so du = 1
t dt. Then:

ż π

1

cos(log t)
t

dt =
ż π

1
cos(u)du

= sin(π)´ sin(1) = ´ sin(1) .

Q[4]: Is the following reasoning sound? If not, fix it.

Problem: Evaluate
ż π/4

0
x tan(x2) dx.

Work: We begin with the substitution u = x2, du = 2xdx:
ż π/4

0
x tan(x2) dx =

ż π/4

0

1
2

tan(x2) ¨ 2xdx

=

ż π2/16

0

1
2

tan u du

=
1
2

ż π2/16

0

sin u
cos u

du
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INTEGRATION 1.4 SUBSTITUTION

Now we use the substitution v = cos u, dv = ´ sin u du:

=
1
2

ż cos(π2/16)

cos 0
´

1
v

dv

= ´
1
2

ż cos(π2/16)

1

1
v

dv

= ´
1
2
[log |v|]cos(π2/16)

1

= ´
1
2

(
log
(

cos(π2/16)
)
´ log(1)

)

= ´
1
2

log
(

cos(π2/16)
)

Q[5](˚): What is the integral that results when the substitution u = sin x is applied to the

integral
ż π/2

0
f (sin x)dx?

Q[6]: Let f and g be functions that are continuous and differentiable everywhere.
Simplify

ż

f 1(g(x))g1(x) dx´ f (g(x)).

§§ Stage 2

Q[7](˚): Use substitution to evaluate
ż 1

0
xex2

cos(ex2
)dx.

Q[8](˚): Let f (t) be any function for which
ż 8

1
f (t)dt = 1. Calculate the integral

ż 2

1
x2 f (x3)dx.

Q[9](˚): Evaluate
ż

x2

(x3 + 1)101 dx.

Q[10](˚): Evaluate
ż e4

e

dx
x log x

.

Q[11](˚): Evaluate
ż π/2

0

cos x
1 + sin x

dx.

Q[12](˚): Evaluate
ż π/2

0
cos x ¨ (1 + sin2 x)dx.

Q[13](˚): Evaluate
ż 3

1
(2x´ 1)ex2´x dx.
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INTEGRATION 1.4 SUBSTITUTION

Q[14](˚): Evaluate
ż

(x2 ´ 4)x
?

4´ x2
dx.

Q[15]: Evaluate
ż

e
?

log x

2x
a

log x
dx .

§§ Stage 3

Q[16](˚): Calculate
ż 2

´2
xex2

dx.

Q[17](˚): Calculate lim
nÑ8

n
ÿ

j=1

j
n2 sin

(
1 +

j2

n2

)
.

Questions 18 through 22 can be solved by substitution, but it may not be obvious which substitution will
work. In general, when evaluating integrals, it is not always immediately clear which methods are appropri-
ate. If this happens to you, don’t despair, and definitely don’t give up! Just guess a method and try it. Even
if it fails, you’ll probably learn something that you can use to make a better guess.1

Q[18]: Evaluate
ż 1

0

u3

u2 + 1
du.

Q[19]: Evaluate
ż

tan3 θ dθ .

Q[20]: Evaluate
ż

1
ex + e´x dx

Q[21]: Evaluate
ż 1

0
(1´ 2x)

a

1´ x2 dx

Q[22]: Evaluate
ż

tan x ¨ log (cos x)dx

Q[23](˚): Evaluate lim
nÑ8

n
ÿ

j=1

j
n2 cos

(
j2

n2

)
.

Q[24](˚): Calculate lim
nÑ8

n
ÿ

j=1

j
n2

c

1 +
j2

n2 .

1 This is also pretty decent life advice.
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INTEGRATION 1.5 AREA BETWEEN CURVES

Q[25]: Using Riemann sums, prove that

ż b

a
2 f (2x)dx =

ż 2b

2a
f (x)dx

1.5Ĳ Area between curves

Exercises
Jump to HINTS, ANSWERS, SOLUTIONS or TABLE OF CONTENTS.

§§ Stage 1

Q[1]: We want to approximate the area between the graphs of y = cos x and y = sin x
from x = 0 to x = π using a left Riemann sum with n = 4 rectangles.

(a) On the graph below, sketch the four rectangles.

(b) Calculate the Riemann approximation.

x

y

ππ
2

π
4

3π
4

y = cos x
y = sin x

Q[2]: We want to approximate the bounded area between the curves y = arcsin
(

2x
π

)

and y =

c

πx
2

using n = 5 rectangles.

(a) Draw the five (vertical) rectangles on the picture below corresponding to a right
Riemann sum.

(b) Draw five rectangles on the picture below we might use if we were using horizontal
rectangles.
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INTEGRATION 1.5 AREA BETWEEN CURVES

x

y

π
2

y = arcsin
(2x

π

)

y =
b

xπ
2

Q[3](˚): Write down a definite integral that represents the finite area bounded by the
curves y = x3 ´ x and y = x for x ě 0. Do not evaluate the integral explicitly.

Q[4](˚): Write down a definite integral that represents the area of the region bounded by

the line y = ´
x
2

and the parabola y2 = 6´
5x
4

. Do not evaluate the integral explicitly.

Q[5](˚): Write down a definite integral that represents the area of the finite plane region
bounded by y2 = 4ax and x2 = 4ay, where a ą 0 is a constant. Do not evaluate the integral
explicitly.

Q[6](˚): Write down a definite integral that represents the area of the region bounded
between the line x + 12y + 5 = 0 and the curve x = 4y2. Do not evaluate the integral
explicitly.

§§ Stage 2

Q[7](˚): Find the area of the region bounded by the graph of f (x) =
1

(2x´ 4)2 and the

x–axis between x = 0 and x = 1.

Q[8](˚): Find the area between the curves y = x and y = 3x ´ x2, by first identifying the
points of intersection and then integrating.

Q[9](˚): Calculate the area of the region enclosed by y = 2x and y =
?

x + 1.

Q[10](˚): Find the area of the finite region bounded between the two curves y =
?

2 cos(πx/4)
and y = |x|.
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INTEGRATION 1.6 VOLUMES

Q[11](˚): Find the area of the finite region that is bounded by the graphs of
f (x) = x2

?
x3 + 1 and g(x) = 3x2.

Q[12](˚): Find the area to the left of the y–axis and to the right of the curve x = y2 + y.

Q[13]: Find the area of the finite region below y =
?

9´ x2 and above both y = |x| and
y =

?
1´ x2.

§§ Stage 3

Q[14](˚): The graph below shows the region between y = 4 + π sin x and
y = 4 + 2π ´ 2x.

y

x
π
2

π 3π
2

2π

2

4

6

8

y = 4 + π sin(x)

y = 4 + 2π − 2x

Find the area of this region.

Q[15](˚): Compute the area of the finite region bounded by the curves x = 0, x = 3,
y = x + 2 and y = x2.

Q[16](˚): Find the total area between the curves y = x
?

25´ x2 and y = 3x, on the interval
0 ď x ď 4.

Q[17]: Find the area of the finite region below y =
?

9´ x2 and y = x, and above y =
a

1´ (x´ 1)2.

Q[18]: Find the area of the finite region bounded by the curve y = x(x2 ´ 4) and the line
y = x´ 2.

1.6Ĳ Volumes

Exercises
Jump to HINTS, ANSWERS, SOLUTIONS or TABLE OF CONTENTS.

§§ Stage 1

Q[1]: Consider a right circular cone.
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INTEGRATION 1.6 VOLUMES

What shape are horizontal cross-sections? Are the vertical cross-sections the same?

Q[2]: Two potters start with a block of clay h units tall, and identical square cookie
cutters. They form columns by pushing the square cookie cutter straight down over the
clay, so that its cross-section is the same square as the cookie cutter. Potter A pushes their
cookie cutter down while their clay block is sitting motionless on a table; Potter B pushes
their cookie cutter down while their clay block is rotating on a potter’s wheel, so their
column looks twisted. Which column has greater volume?

Column A Column B

Q[3]: Let R be the region bounded above by the graph of y = f (x) shown below and
bounded below by the x-axis, from x = 0 to x = 6. Sketch the washers that are formed by
rotating R about the y-axis. In your sketch, label all the radii in terms of y, and label the
thickness.
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INTEGRATION 1.6 VOLUMES

x

y

y = f (x)

21 4 6

1

3

Q[4](˚): Write down definite integrals that represent the following quantities. Do not
evaluate the integrals explicitly.

(a) The volume of the solid obtained by rotating around the x–axis the region between
the x–axis and y =

?
x ex2

for 0 ď x ď 3.

(b) The volume of the solid obtained by revolving the region bounded by the curves
y = x2 and y = x + 2 about the line x = 3.

Q[5](˚): Write down definite integrals that represent the following quantities. Do not
evaluate the integrals explicitly.
(a) The volume of the solid obtained by rotating the finite plane region bounded by the

curves y = 1´ x2 and y = 4´ 4x2 about the line y = ´1.
(b) The volume of the solid obtained by rotating the finite plane region bounded by the

curve y = x2 ´ 1 and the line y = 0 about the line x = 5.

Q[6](˚): Write down a definite integral that represents the volume of the solid obtained by
rotating around the line y = ´1 the region between the curves y = x2 and y = 8´ x2. Do
not evaluate the integrals explicitly.

Q[7]: A tetrahedron is a three-dimensional shape with four faces, each of which is an
equilateral triangle. (You might have seen this shape as a 4-sided die; think of a pyramid
with a triangular base.) Using the methods from this section, calculate the volume of a
tetrahedron with side-length `. You may assume without proof that the height of a

tetrahedron with side-length ` is
b

2
3`.

` b

2
3`
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INTEGRATION 1.6 VOLUMES

§§ Stage 2

Q[8](˚): Let a ą 0 be a constant. Let R be the finite region bounded by the graph of
y = 1 +

?
xex2

, the line y = 1, and the line x = a. Using vertical slices, find the volume
generated when R is rotated about the line y = 1.

Q[9](˚): Find the volume of the solid generated by rotating the finite region bounded by
y = 1/x and 3x + 3y = 10 about the x–axis.

Q[10](˚): Let R be the region inside the circle x2 + (y´ 2)2 = 1. Let S be the solid
obtained by rotating R about the x-axis.

(a) Write down an integral representing the volume of S.

(b) Evaluate the integral you wrote down in part (a).

Q[11](˚): The region R is the portion of the first quadrant which is below the parabola
y2 = 8x and above the hyperbola y2 ´ x2 = 15.

(a) Sketch the region R.

(b) Find the volume of the solid obtained by revolving R about the x axis.

Q[12](˚): The region R is bounded by y = log x, y = 0, x = 1 and x = 2. (Recall that we
are using log x to denote the logarithm of x with base e. In other courses it is often
denoted ln x.)
(a) Sketch the region R.
(b) Find the volume of the solid obtained by revolving this region about the y axis.

Q[13](˚): The finite region between the curves y = cos( x
2 ) and y = x2 ´ π2 is rotated

about the line y = ´π2. Using vertical slices (disks and/or washers), find the volume of
the resulting solid.

Q[14](˚): The solid V is 2 meters high and has square horizontal cross sections. The
length of the side of the square cross section at height x meters above the base is 2

1+x m.
Find the volume of this solid.

Q[15](˚): Consider a solid whose base is the finite portion of the xy–plane bounded by the
curves y = x2 and y = 8´ x2. The cross–sections perpendicular to the x–axis are squares
with one side in the xy–plane. Compute the volume of this solid.
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INTEGRATION 1.6 VOLUMES

Q[16](˚): A frustrum of a right circular cone (as shown below) has height h. Its base is a
circular disc with radius 4 and its top is a circular disc with radius 2. Calculate the
volume of the frustrum.

h

2

4

§§ Stage 3

Q[17]: The shape of the earth is often approximated by an oblate spheroid, rather than a
sphere. An oblate spheroid is formed by rotating an ellipse about its minor axis (its shortest
diameter).

(a) Find the volume of the oblate spheroid obtained by rotating the upper (positive) half
of the ellipse (ax)2 + (by)2 = 1 about the x-axis, where a and b are positive constants
with a ě b.

(b) Suppose2 the earth has radius at the equator of 6378.137 km, and radius at the poles
of 6356.752 km. If we model the earth as an oblate spheroid formed by rotating the
upper half of the ellipse (ax)2 + (by)2 = 1 about the x-axis, what are a and b?

(c) What is the volume of this model of the earth? (Use a calculator.)

(d) Suppose we had calculated the volume of the earth by modelling it as a sphere with
radius 6378.137 km. What would our absolute and relative errors be, compared to
our oblate spheroid calculation?

Q[18](˚): Let R be the bounded region that lies between the curve y = 4´ (x´ 1)2 and
the line y = x + 1.

(a) Sketch R and find its area.

(b) Write down a definite integral giving the volume of the region obtained by rotating R
about the line y = 5. Do not evaluate this integral.

Q[19](˚): Let R =
 

(x, y) : (x´ 1)2 + y2 ď 1 and x2 + (y´ 1)2 ď 1
(

.

(a) Sketch R and find its area.

(b) If R rotates around the y–axis, what volume is generated?

2 Earth Fact Sheet, NASA, https://nssdc.gsfc.nasa.gov/planetary/factsheet/
earthfact.html, accessed 2 July 2017
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INTEGRATION 1.7 INTEGRATION BY PARTS

Q[20](˚): Let R be the plane region bounded by x = 0, x = 1, y = 0 and y = c
?

1 + x2,
where c ě 0 is a constant.
(a) Find the volume V1 of the solid obtained by revolving R about the x–axis.
(b) Find the volume V2 of the solid obtained by revolving R about the y–axis.
(c) If V1 = V2, what is the value of c?

Q[21](˚): The graph below shows the region between y = 4 + π sin x and
y = 4 + 2π ´ 2x.

y

x
π
2

π 3π
2

2π

2

4

6

8

y = 4 + π sin(x)

y = 4 + 2π − 2x

The region is rotated about the line y = ´1. Express in terms of definite integrals the
volume of the resulting solid. Do not evaluate the integrals.

Q[22]:
On a particular, highly homogeneous* planet, we observe that the density of the
atmosphere h kilometres above the surface is given by the equation ρ(h) = c2´h/6 kg

m3 ,
where c is the density on the planet’s surface.
(a) What is the mass of the atmosphere contained in a vertical column with radius one

metre, sixty kilometres high?

(b) What height should a column be to contain
3000cπ

log 2
kilograms of air?

* This is clearly a simplified model: air density changes all the time, and depends on lots
of complicated factors aside from altitude. However, the equation we’re using is not so
far off from an idealized model of the earth’s atmosphere, taken from Pressure and the
Gas Laws by H.P. Schmid, http://www.indiana.edu/˜geog109/topics/10_Forces&Winds/
GasPressWeb/PressGasLaws.html, accessed 3 July 2017.

1.7Ĳ Integration by parts

Exercises
Jump to HINTS, ANSWERS, SOLUTIONS or TABLE OF CONTENTS.
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INTEGRATION 1.7 INTEGRATION BY PARTS

§§ Stage 1

Q[1]: The method of integration by substitution comes from the rule for
differentiation.
The method of integration by parts comes from the rule for differentiation.

Q[2]: Suppose you want to evaluate an integral using integration by parts. You choose
part of your integrand to be u, and part to be dv. The part chosen as u will be: (differenti-
ated, antidifferentiated). The part chosen as dv will be: (differentiated, antidifferentiated).

Q[3]: Let f (x) and g(x) be differentiable functions. Using the quotient rule for differenti-

ation, give an equivalent expression to
ż

f 1(x)
g(x)

dx.

Q[4]: Suppose we want to use integration by parts to evaluate
ż

u(x) ¨ v1(x)dx for some

differentiable functions u and v. We need to find an antiderivative of v1(x), but there are
infinitely many choices. Show that every antiderivative of v1(x) gives an equivalent final
answer.

Q[5]: Suppose you want to evaluate
ż

f (x)dx using integration by parts. Explain why

dv = f (x)dx, u = 1 is generally a bad choice.

Note: compare this to Example 1.7.8 of the CLP-2 text, where we chose u = f (x), dv =
1dx.

§§ Stage 2

Q[6](˚): Evaluate
ż

x log x dx.

Q[7](˚): Evaluate
ż

log x
x7 dx.

Q[8](˚): Evaluate
ż π

0
x sin x dx.

Q[9](˚): Evaluate
ż π

2

0
x cos x dx.

Q[10]: Evaluate
ż

x3exdx.

Q[11]: Evaluate
ż

x log3 x dx.
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INTEGRATION 1.7 INTEGRATION BY PARTS

Q[12]: Evaluate
ż

x2 sin x dx.

Q[13]: Evaluate
ż

(3t2
´ 5t + 6) log t dt.

Q[14]: Evaluate
ż

?
se
?

sds.

Q[15]: Evaluate
ż

log2 xdx.

Q[16]: Evaluate
ż

2xex2+1dx.

Q[17](˚): Evaluate
ż

arccos y dy.

§§ Stage 3

Q[18](˚): Evaluate
ż

4y arctan(2y)dy.

Q[19]: Evaluate
ż

x2 arctan x dx.

Q[20]: Evaluate
ż

ex/2 cos(2x)dx.

Q[21]: Evaluate
ż

sin(log x)dx.

Q[22]: Evaluate
ż

2x+log2 xdx.

Q[23]: Evaluate
ż

ecos x sin(2x)dx.

Q[24]: Evaluate
ż

xe´x

(1´ x)2 dx.

Q[25](˚): A reduction formula.

(a) Derive the reduction formula

ż

sinn(x)dx = ´
sinn´1(x) cos(x)

n
+

n´ 1
n

ż

sinn´2(x)dx.

32



INTEGRATION 1.8 TRIGONOMETRIC INTEGRALS

(b) Calculate
ż π/2

0
sin8(x)dx.

Q[26](˚): Let R be the part of the first quadrant that lies below the curve y = arctan x and
between the lines x = 0 and x = 1.

(a) Sketch the region R and determine its area.

(b) Find the volume of the solid obtained by rotating R about the y–axis.

Q[27](˚): Let R be the region between the curves T(x) =
?

xe3x and B(x) =
?

x(1+ 2x) on
the interval 0 ď x ď 3. (It is true that T(x) ě B(x) for all 0 ď x ď 3.) Compute the volume
of the solid formed by rotating R about the x-axis.

Q[28](˚): Let f (0) = 1, f (2) = 3 and f 1(2) = 4. Calculate
ż 4

0
f 2
(?

x
)

dx.

Q[29]: Evaluate lim
nÑ8

n
ÿ

i=1

2
n

(
2
n

i´ 1
)

e
2
n i´1 .

1.8Ĳ Trigonometric Integrals

Exercises
Jump to HINTS, ANSWERS, SOLUTIONS or TABLE OF CONTENTS.

Recall that we are using log x to denote the logarithm of x with base e. In other courses it
is often denoted ln x.

§§ Stage 1

Q[1]: Suppose you want to evaluate
ż π/4

0
sin x cosn x dx using the substitution u = cos x.

Which of the following need to be true for your substitution to work?
(a) n must be even
(b) n must be odd
(c) n must be an integer
(d) n must be positive
(e) n can be any real number

Q[2]: Evaluate
ż

secn x tan xdx, where n is a strictly positive integer.

Q[3]: Derive the identity tan2 x + 1 = sec2 x from the easier-to-remember identity sin2 x +
cos2 x = 1.
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§§ Stage 2

Questions 4 through 10 deal with powers of sines and cosines. Review Section 1.8.1 in the CLP-2 text for
integration strategies.

Q[4](˚): Evaluate
ż

cos3 x dx.

Q[5](˚): Evaluate
ż π

0
cos2 x dx.

Q[6](˚): Evaluate
ż

sin36 t cos3 t dt.

Q[7]: Evaluate
ż

sin3 x
cos4 x

dx.

Q[8]: Evaluate
ż π/3

0
sin4 x dx.

Q[9]: Evaluate
ż

sin5 x dx.

Q[10]: Evaluate
ż

sin1.2 x cos x dx.

Questions 12 through 21 deal with powers of tangents and secants. Review Section 1.8.2 in the CLP-2 text
for strategies.

Q[11]: Evaluate
ż

tan x sec2 xdx.

Q[12](˚): Evaluate
ż

tan3 x sec5 x dx.

Q[13](˚): Evaluate
ż

sec4 x tan46 x dx.

Q[14]: Evaluate
ż

tan3 x sec1.5 x dx.

Q[15]: Evaluate
ż

tan3 x sec2 x dx.

Q[16]: Evaluate
ż

tan4 x sec2 x dx.
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Q[17]: Evaluate
ż

tan3 x sec´0.7 x dx.

Q[18]: Evaluate
ż

tan5 x dx.

Q[19]: Evaluate
ż π/6

0
tan6 x dx.

Q[20]: Evaluate
ż π/4

0
tan8 x sec4 x dx.

Q[21]: Evaluate
ż

tan x
?

sec x dx.

Q[22]: Evaluate
ż

sec8 θ tane θ dθ.

§§ Stage 3

Q[23](˚): A reduction formula.
(a) Let n be a positive integer with n ě 2. Derive the reduction formula

ż

tann(x)dx =
tann´1(x)

n´ 1
´

ż

tann´2(x)dx.

(b) Calculate
ż π/4

0
tan6(x)dx.

Q[24]: Evaluate
ż

tan5 x cos2 x dx.

Q[25]: Evaluate
ż

1
cos2 θ

dθ.

Q[26]: Evaluate
ż

cot x dx.

Q[27]: Evaluate
ż

ex sin(ex) cos(ex) dx.

Q[28]: Evaluate
ż

sin(cos x) sin3 x dx.
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Q[29]: Evaluate
ż

x sin x cos x dx.

1.9Ĳ Trigonometric Substitution

Exercises
Jump to HINTS, ANSWERS, SOLUTIONS or TABLE OF CONTENTS.

Recall that we are using log x to denote the logarithm of x with base e. In other courses it
is often denoted ln x.

§§ Stage 1

Q[1](˚): For each of the following integrals, choose the substitution that is most beneficial
for evaluating the integral.

(a)
ż

2x2
?

9x2 ´ 16
dx

(b)
ż

x4 ´ 3
?

1´ 4x2
dx

(c)
ż

(25 + x2)
´5/2

dx

Q[2]: For each of the following integrals, choose a trigonometric substitution that will
eliminate the roots.
(a)

ż

1
?

x2 ´ 4x + 1
dx

(b)
ż

(x´ 1)6

(´x2 + 2x + 4)3/2 dx

(c)
ż

1
?

4x2 + 6x + 10
dx

(d)
ż

a

x2 ´ x dx

Q[3]: In each part of this question, assume θ is an angle in the interval [0, π/2].

(a) If sin θ =
1

20
, what is cos θ ?

(b) If tan θ = 7, what is csc θ ?

(c) If sec θ =

?
x´ 1
2

, what is tan θ ?
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Q[4]: Simplify the following expressions.
(a) sin

(
arccos

( x
2

))

(b) sin
(

arctan
(

1?
3

))

(c) sec (arcsin (
?

x))

§§ Stage 2

Q[5](˚): Evaluate
ż

1
(x2 + 4)3/2 dx.

Q[6](˚): Evaluate
ż 4

0

1

(4 + x2)3/2 dx. Your answer may not contain inverse trigonometric

functions.

Q[7](˚): Evaluate
ż 5/2

0

dx
?

25´ x2
.

Q[8](˚): Evaluate
ż

dx
?

x2 + 25
. You may use that

ż

sec x dx = log
ˇ

ˇ sec x + tan x
ˇ

ˇ+ C.

Q[9]: Evaluate
ż

x + 1
?

2x2 + 4x
dx.

Q[10](˚): Evaluate
ż

dx
x2
?

x2 + 16
.

Q[11](˚): Evaluate
ż

dx
x2
?

x2 ´ 9
for x ě 3. Do not include any inverse trigonometric func-

tions in your answer.

Q[12](˚): (a) Show that
ż π/4

0
cos4 θ dθ = (8 + 3π)/32.

(b) Evaluate
ż 1

´1

dx

(x2 + 1)3 .

Q[13]: Evaluate
ż π/12

´π/12

15x3

(x2 + 1)(9´ x2)5/2 dx.

Q[14](˚): Evaluate
ż

?
4´ x2 dx.

Q[15](˚): Evaluate
ż

?
25x2 ´ 4

x
dx for x ą 2

5 .
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Q[16]: Evaluate
ż

?
17

?
10

x3
?

x2 ´ 1
dx.

Q[17](˚): Evaluate
ż

dx
?

3´ 2x´ x2
.

Q[18]: Evaluate
ż

1
(2x´ 3)3

?
4x2 ´ 12x + 8

dx for x ą 2.

Q[19]: Evaluate
ż 1

0

x2

(x2 + 1)3/2 dx.

You may use that
ş

sec xdx = log | sec x + tan x|+ C.

Q[20]: Evaluate
ż

1
(x2 + 1)2 dx.

§§ Stage 3

Q[21]: Evaluate
ż

x2
?

x2 ´ 2x + 2
dx.

You may assume without proof that
ż

sec3 θ dθ =
1
2

sec θ tan θ +
1
2

log | sec θ + tan θ|+ C.

Q[22]: Evaluate
ż

1
?

3x2 + 5x
dx.

You may use that
ş

sec xdx = log | sec x + tan x|+ C.

Q[23]: Evaluate
ż

(1 + x2)3/2

x
dx. You may use the fact that

ż

csc θ dθ = log | cot θ ´

csc θ|+ C.
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Q[24]: Below is the graph of the ellipse
( x

4

)2
+
( y

2

)2
= 1. Find the area of the shaded

region using the ideas from this section.

x

y

´1

1

Q[25]: Let f (x) =
|x|

4
?

1´ x2
, and let R be the region between f (x) and the x-axis over the

interval [´1
2 , 1

2 ].

(a) Find the area of R.

(b) Find the volume of the solid formed by rotating R about the x-axis.

Q[26]: Evaluate
ż

?
1 + ex dx. You may use the antiderivative

ż

csc θdθ = log | cot θ ´

csc θ|+ C.

Q[27]: Consider the following work.
ż

1
1´ x2 dx =

ż

1
1´ sin2 θ

cos θ dθ using x = sin θ, dx = cos θ dθ

=

ż

cos θ

cos2 θ
dθ

=

ż

sec θ dθ

= log | sec θ + tan θ|+ C Example 1.8.19 in the CLP-2 text

= log
ˇ

ˇ

ˇ

ˇ

1
?

1´ x2
+

x
?

1´ x2

ˇ

ˇ

ˇ

ˇ

+ C
θ
?

1´ x2

x
1

= log
ˇ

ˇ

ˇ

ˇ

1 + x
?

1´ x2

ˇ

ˇ

ˇ

ˇ

+ C

(a) Differentiate log
ˇ

ˇ

ˇ

ˇ

1 + x
?

1´ x2

ˇ

ˇ

ˇ

ˇ

.

(b) True or false:
ż 3

2

1
1´ x2 dx =

[
log

ˇ

ˇ

ˇ

ˇ

1 + x
?

1´ x2

ˇ

ˇ

ˇ

ˇ

]x=3

x=2
(c) Was the work in the question correct? Explain.

Q[28]:
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(a) Suppose we are evaluating an integral that contains the term
?

a2 ´ x2, where a is a
positive constant, and we use the substitution x = a sin u (with inverse
u = arcsin(x/a)), so that

a

a2 ´ x2 =
a

a2 cos2 u = |a cos u|

Under what circumstances is |a cos u| ‰ a cos u?

(b) Suppose we are evaluating an integral that contains the term
?

a2 + x2, where a is a
positive constant, and we use the substitution x = a tan u (with inverse
u = arctan(x/a)), so that

a

a2 + x2 =
a

a2 sec2 u = |a sec u|

Under what circumstances is |a sec u| ‰ a sec u?

(c) Suppose we are evaluating an integral that contains the term
?

x2 ´ a2, where a is a
positive constant, and we use the substitution x = a sec u (with inverse
u = arcsec(x/a) = arccos(a/x)), so that

a

x2 ´ a2 =
a

a2 tan2 u = |a tan u|

Under what circumstances is |a tan u| ‰ a tan u?

1.10Ĳ Partial Fractions

Exercises
Jump to HINTS, ANSWERS, SOLUTIONS or TABLE OF CONTENTS.

Recall that we are using log x to denote the logarithm of x with base e. In other courses it
is often denoted ln x.

§§ Stage 1

Q[1]: Below are the graphs of four different quadratic functions. For each quadratic
function, decide whether it is: (i) irreducible, (ii) the product of two distinct linear
factors, or (iii) the product of a repeated linear factor (and possibly a constant).

x

y

(a)

x

y

(b)

x

y

(c)

x

y

(d)
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INTEGRATION 1.10 PARTIAL FRACTIONS

Q[2](˚): Write out the general form of the partial-fractions decomposition of
x3 + 3

(x2 ´ 1)2(x2 + 1)
. You need not determine the values of any of the coefficients.

Q[3](˚): Find the coefficient of
1

x´ 1
in the partial fraction decomposition of

3x3 ´ 2x2 + 11
x2(x´ 1)(x2 + 3)

.

Q[4]: Re-write the following rational functions as the sum of a polynomial and a rational
function whose numerator has a strictly smaller degree than its denominator. (Remember
our method of partial fraction decomposition of a rational function only works when the
degree of the numerator is strictly smaller than the degree of the denominator.)

(a)
x3 + 2x + 2

x2 + 1

(b)
15x4 + 6x3 + 34x2 + 4x + 20

5x2 + 2x + 8

(c)
2x5 + 9x3 + 12x2 + 10x + 30

2x2 + 5

Q[5]: Factor the following polynomials into linear and irreducible factors.

(a) 5x3 ´ 3x2 ´ 10x + 6

(b) x4 ´ 3x2 ´ 5

(c) x4 ´ 4x3 ´ 10x2 ´ 11x´ 6

(d) 2x4 + 12x3 ´ x2 ´ 52x + 15

Q[6]: Here is a fact:

Suppose we have a rational function with a repeated linear factor (ax + b)n in
the denominator, and the degree of the numerator is strictly less than the
degree of the denominator. In the partial fraction decomposition, we can
replace the terms

A1

ax + b
+

A2

(ax + b)2 +
A3

(ax + b)3 + ¨ ¨ ¨+
An

(ax + b)n (1)

with the single term

B1 + B2x + B3x2 + ¨ ¨ ¨+ Bnxn´1

(ax + b)n (2)

and still be guaranteed to find a solution.

Why do we use the sum in (1), rather than the single term in (2), in partial fraction decom-
position?
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§§ Stage 2

Q[7](˚): Evaluate
ż 2

1

dx
x + x2 .

Q[8](˚): Calculate
ż

1
x4 + x2 dx.

Q[9](˚): Calculate
ż

12x + 4
(x´ 3)(x2 + 1)

dx.

Q[10](˚): Evaluate the following indefinite integral using partial fraction:

F(x) =
ż

3x2 ´ 4
(x´ 2)(x2 + 4)

dx.

Q[11](˚): Evaluate
ż

x´ 13
x2 ´ x´ 6

dx.

Q[12](˚): Evaluate
ż

5x + 1
x2 + 5x + 6

dx.

Q[13]: Evaluate
ż

5x2 ´ 3x´ 1
x2 ´ 1

dx.

Q[14]: Evaluate
ż

4x4 + 14x2 + 2
4x4 + x2 dx.

Q[15]: Evaluate
ż

x2 + 2x´ 1
x4 ´ 2x3 + x2 dx.

Q[16]: Evaluate
ż

3x2 ´ 4x´ 10
2x3 ´ x2 ´ 8x + 4

dx.

Q[17]: Evaluate
ż 1

0

10x2 + 24x + 8
2x3 + 11x2 + 6x + 5

dx.

§§ Stage 3

In Questions 18 and 19, we use partial fraction to find the antiderivatives of two important functions:
cosecant, and cosecant cubed.

Q[18]: Using the method of Example 1.10.5 in the CLP-2 text, integrate
ż

csc x dx.

Q[19]: Using the method of Example 1.10.6 in the CLP-2 text, integrate
ż

csc3 x dx.
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INTEGRATION 1.10 PARTIAL FRACTIONS

The purpose of performing a partial fraction decomposition is to manipulate an integrand into a form that
is easily integrable. These “easily integrable” forms are rational functions whose denominator is a power
of a linear function, or of an irreducible quadratic function. In Questions 20 through 23, we explore the
integration of rational functions whose denominators involve irreducible quadratics.

Q[20]: Evaluate
ż 2

1

3x3 + 15x2 + 35x + 10
x4 + 5x3 + 10x2 dx.

Q[21]: Evaluate
ż
(

3
x2 + 2

+
x´ 3

(x2 + 2)2

)
dx.

Q[22]: Evaluate
ż

1
(1 + x2)3 dx.

Q[23]: Evaluate
ż
(

3x +
3x + 1
x2 + 5

+
3x

(x2 + 5)2

)
dx.

In Questions 24 through 26, we use substitution to turn a non-rational integrand into a rational integrand,
then evaluate the resulting integral using partial fraction. Till now, the partial fraction problems you’ve seen
have all looked largely the same, but keep in mind that a partial fraction decomposition can be a small step
in a larger problem.

Q[24]: Evaluate
ż

cos θ

3 sin θ + cos2 θ ´ 3
dθ.

Q[25]: Evaluate
ż

1
e2t + et + 1

dt.

Q[26]: Evaluate
ż

?
1 + ex dx using partial fraction.

Q[27](˚): The region R is the portion of the first quadrant where 3 ď x ď 4 and

0 ď y ď
10

?
25´ x2

.

(a) Sketch the region R.

(b) Determine the volume of the solid obtained by revolving R around the x–axis.

(c) Determine the volume of the solid obtained by revolving R around the y–axis.

Q[28]: Find the area of the finite region bounded by the curves y =
4

3 + x2 , y =
2

x(x + 1)
,

x =
1
4

, and x = 3.

Q[29]: Let F(x) =
ż x

1

1
t2 ´ 9

dt.

(a) Give a formula for F(x) that does not involve an integral.
(b) Find F1(x).
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1.11Ĳ Numerical Integration

Exercises
Jump to HINTS, ANSWERS, SOLUTIONS or TABLE OF CONTENTS.

Recall that we are using log x to denote the logarithm of x with base e. In other courses it
is often denoted ln x.

§§ Stage 1

Q[1]: Suppose we approximate an object to have volume 1.5m3, when its exact volume is
1.387m3. Give the relative error, absolute error, and percent error of our approximation.

Q[2]: Consider approximating
ż 10

2
f (x) dx, where f (x) is the function in the graph below.

x

y

2 10

(a) Draw the rectangles associated with the midpoint rule approximation and n = 4.

(b) Draw the trapezoids associated with the trapezoidal rule approximation and n = 4.

You don’t have to give an approximation.

Q[3]: Let f (x) = ´
1

12
x4 +

7
6

x3 ´ 3x2.

(a) Find a reasonable value M such that | f 2(x)| ď M for all 1 ď x ď 6.
(b) Find a reasonable value L such that | f (4)(x)| ď L for all 1 ď x ď 6.

Q[4]: Let f (x) = x sin x + 2 cos x. Find a reasonable value M such that | f 2(x)| ď M for all
´3 ď x ď 2.
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Q[5]: Consider the quantity A =

ż π

´π
cos x dx.

(a) Find the upper bound on the error using Simpson’s rule with n = 4 to approximate A
using Theorem 1.11.12 in the CLP-2 text.

(b) Find the Simpson’s rule approximation of A using n = 4.
(c) What is the (actual) absolute error in the Simpson’s rule approximation of A with

n = 4?

Q[6]: Give a function f (x) such that:

• f 2(x) ď 3 for every x in [0, 1], and

• the error using the trapezoidal rule approximating
ż 1

0
f (x) dx with n = 2 intervals

is exactly
1

16
.

Q[7]: Suppose my mother is under 100 years old, and I am under 200 years old.3 Who is
older?

Q[8]:

(a) True or False: for fixed positive constants M, n, a, and b, with b ą a,

M
24

(b´ a)3

n2 ď
M
12

(b´ a)3

n2

(b) True or False: for a function f (x) and fixed constants n, a, and b, with b ą a, the

n-interval midpoint approximation of
ż b

a
f (x) dx is more accurate than the n-interval

trapezoidal approximation.

Q[9](˚): Decide whether the following statement is true or false. If false, provide a
counterexample. If true, provide a brief justification.

When f (x) is positive and concave up, any trapezoidal rule approximation

for
ż b

a
f (x)dx will be an upper estimate for

ż b

a
f (x)dx.

Q[10]: Give a polynomial f (x) with the property that the Simpson’s rule approximation

of
ż b

a
f (x) dx is exact for all a, b, and n.

§§ Stage 2

Questions 11 and 12 ask you to approximate a given integral using the formulas in Equations 1.11.2, 1.11.6,
and 1.11.9 in the CLP-2 text.

3 We’re going somewhere with this.
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Q[11]: Write out all three approximations of
ż 30

0

1
x3 + 1

dx with n = 6. (That is: midpoint,

trapezoidal, and Simpson’s.) You do not need to simplify your answers.

Q[12](˚): Find the midpoint rule approximation to
ż π

0
sin x dx with n = 3.

Questions 13 though 17 ask you to approximate a quantity based on observed data.

Q[13](˚): The solid V is 40 cm high and the horizontal cross sections are circular disks.
The table below gives the diameters of the cross sections in centimeters at 10 cm
intervals. Use the trapezoidal rule to estimate the volume of V.

height 0 10 20 30 40
diameter 24 16 10 6 4

Q[14](˚): A 6 metre long cedar log has cross sections that are approximately circular. The
diameters of the log, measured at one metre intervals, are given below:

metres from left end of log 0 1 2 3 4 5 6
diameter in metres 1.2 1 0.8 0.8 1 1 1.2

Use Simpson’s Rule to estimate the volume of the log.

Q[15](˚): The circumference of an 8 metre high tree at different heights above the ground
is given in the table below. Assume that all horizontal cross–sections of the tree are
circular disks.

height (metres) 0 2 4 6 8
circumference (metres) 1.2 1.1 1.3 0.9 0.2

Use Simpson’s rule to approximate the volume of the tree.

Q[16](˚): By measuring the areas enclosed by contours on a topographic map, a geologist
determines the cross sectional areas A in m2 of a 60 m high hill. The table below gives the
cross sectional area A(h) at various heights h. The volume of the hill is V =

ş60
0 A(h)dh.

h 0 10 20 30 40 50 60
A 10,200 9,200 8,000 7,100 4,500 2,400 100

(a) If the geologist uses the Trapezoidal Rule to estimate the volume of the hill, what will
be their estimate, to the nearest 1,000m3?

(b) What will be the geologist’s estimate of the volume of the hill if they use Simpson’s
Rule instead of the Trapezoidal Rule?
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Q[17](˚): The graph below applies to both parts (a) and (b).

x

y

1

2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7

(a) Use the Trapezoidal Rule, with n = 4, to estimate the area under the graph between
x = 2 and x = 6. Simplify your answer completely.

(b) Use Simpson’s Rule, with n = 4, to estimate the area under the graph between x = 2
and x = 6.

In Questions 18 through 24, we practice finding error bounds for our approximations.

Q[18](˚): The integral
ż 1

´1
sin(x2)dx is estimated using the Midpoint Rule with 1000

intervals. Show that the absolute error in this approximation is at most 2 ¨ 10´6.

You may use the fact that when approximating
şb

a f (x)dx with the Midpoint Rule using n
points, the absolute value of the error is at most M(b´ a)3/24n2 when | f 2(x)| ď M for all
x P [a, b].

Q[19](˚): The total error using the midpoint rule with n subintervals to approximate the

integral of f (x) over [a, b] is bounded by
M(b´ a)3

(24n2)
, if | f 2(x)| ď M for all a ď x ď b.

Using this bound, if the integral
ż 1

´2
2x4 dx is approximated using the midpoint rule with

60 subintervals, what is the largest possible error between the approximation M60 and
the true value of the integral?

Q[20](˚): Both parts of this question concern the integral I =
ż 2

0
(x´ 3)5 dx.

(a) Write down the Simpson’s Rule approximation to I with n = 6. Leave your answer in
calculator-ready form.

(b) Which method of approximating I results in a smaller error bound: the Midpoint
Rule with n = 100 intervals, or Simpson’s Rule with n = 10 intervals? You may use
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the formulas

|EM| ď
M(b´ a)3

24n2 and |ES| ď
L(b´ a)5

180n4 ,

where M is an upper bound for | f 2(x)| and L is an upper bound for | f (4)(x)|, and EM
and ES are the absolute errors arising from the midpoint rule and Simpson’s rule,
respectively.

Q[21](˚): Find a bound for the error in approximating
ż 5

1

1
x

dx using Simpson’s rule with

n = 4. Do not write down the Simpson’s rule approximation S4.

In general the error in approximating
şb

a f (x) dx using Simpson’s rule with n steps is

bounded by
L(b´ a)

180
(∆x)4 where ∆x =

b´ a
n

and L ě | f (4)(x)| for all a ď x ď b.

Q[22](˚): Find a bound for the error in approximating

ż 1

0

(
e´2x + 3x3)dx

using Simpson’s rule with n = 6. Do not write down the Simpson’s rule approximation
Sn.
In general, the error in approximating

şb
a f (x) dx using Simpson’s rule with n steps is

bounded by
L(b´ a)

180
(∆x)4 where ∆x =

b´ a
n

and L ě | f (4)(x)| for all a ď x ď b.

Q[23](˚): Let I =
ż 2

1
(1/x)dx.

(a) Write down the trapezoidal approximation T4 for I. You do not need to simplify your
answer.

(b) Write down the Simpson’s approximation S4 for I. You do not need to simplify your
answer.

(c) Without computing I, find an upper bound for |I ´ S4|. You may use the fact that if
ˇ

ˇ f (4)(x)
ˇ

ˇ ď L on the interval [a, b], then the error in using Sn to approximate
şb

a f (x)dx
has absolute value less than or equal to L(b´ a)5/180n4.

Since
1
x5 is a decreasing function when x ą 0, look for its maximum value when x is as

small as possible.

Q[24](˚): A function s(x) satisfies s(0) = 1.00664, s(2) = 1.00543, s(4) = 1.00435,

s(6) = 1.00331, s(8) = 1.00233. Also, it is known to satisfy
ˇ

ˇs(k)(x)
ˇ

ˇ ď
k

1000
for 0 ď x ď 8

and all positive integers k.
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(a) Find the best Trapezoidal Rule and Simpson’s Rule approximations that you can for

I =
ż 8

0
s(x) dx.

(b) Determine the maximum possible sizes of errors in the approximations you gave in
part (a). Recall that if a function f (x) satisfies

ˇ

ˇ f (k)(x)
ˇ

ˇ ď Kk on [a, b], then

ˇ

ˇ

ˇ

ˇ

ż b

a
f (x) dx´ Tn

ˇ

ˇ

ˇ

ˇ

ď
K2(b´ a)3

12n2 and
ˇ

ˇ

ˇ

ˇ

ż b

a
f (x) dx´ Sn

ˇ

ˇ

ˇ

ˇ

ď
K4(b´ a)5

180n4

Q[25](˚): Consider the trapezoidal rule for making numerical approximations to
ż b

a
f (x) dx. The error for the trapezoidal rule satisfies |ET| ď

M(b´ a)3

12n2 , where

| f 2(x)| ď M for a ď x ď b. If ´2 ă f 2(x) ă 0 for 1 ď x ď 4, find a value of n to guarantee

the trapezoidal rule will give an approximation for
ż 4

1
f (x) dx with absolute error, |ET|,

less than 0.001.

§§ Stage 3

Q[26](˚): A swimming pool has the shape shown in the figure below. The vertical
cross–sections of the pool are semi–circular disks. The distances in feet across the pool
are given in the figure at 2–foot intervals along the sixteen–foot length of the pool. Use
Simpson’s Rule to estimate the volume of the pool.

10’
12’

10’
8’

6’
8’

10’

2’
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Q[27](˚): A piece of wire 1m long with radius 1mm is made in such a way that the
density varies in its cross–section, but is radially symmetric (that is, the local density g(r)
in kg/m3 depends only on the distance r in mm from the centre of the wire). Take as
given that the total mass W of the wire in kg is given by

W = 2π10´6
ż 1

0
rg(r)dr

Data from the manufacturer is given below:
r 0 1/4 1/2 3/4 1

g(r) 8051 8100 8144 8170 8190
(a) Find the best Trapezoidal Rule approximation that you can for W based on the data

in the table.
(b) Suppose that it is known that |g1(r)| ă 200 and |g2(r)| ă 150 for all values of r.

Determine the maximum possible size of the error in the approximation you gave in
part (a). Recall that if a function f (x) satisfies | f 2(x)| ď M on [a, b], then

|I ´ Tn| ď
M(b´ a)3

12n2

where I =
şb

a f (x)dx and Tn is the Trapezoidal Rule approximation to I using n
subintervals.

Q[28](˚): Simpson’s rule can be used to approximate log 2, since log 2 =

ż 2

1

1
x

dx.

(a) Use Simpson’s rule with 6 subintervals to approximate log 2.
(b) How many subintervals are required in order to guarantee that the absolute error is

less than 0.00001?

Note that if En is the error using n subintervals, then |En| ď
L(b´ a)5

180n4 where L is the
maximum absolute value of the fourth derivative of the function being integrated
and a and b are the end points of the interval.

Q[29](˚): Let I =
ż 2

0
cos(x2) dx and let Sn be the Simpson’s rule approximation to I using

n subintervals.

(a) Estimate the maximum absolute error in using S8 to approximate I.

(b) How large should n be in order to ensure that |I ´ Sn| ď 0.0001?

Note: The graph of f4(x), where f (x) = cos(x2), is shown below. The absolute error in

the Simpson’s rule approximation is bounded by
L(b´ a)5

180n4 when | f4(x)| ď L on the

interval [a, b].
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0.5 1.0 1.5 2.0

−300

−200

−100

0

100

x

Q[30](˚): Define a function f (x) and an integral I by

f (x) =
ż x2

0
sin(

?
t)dt, I =

ż 1

0
f (t)dt

Estimate how many subdivisions are needed to calculate I to five decimal places of
accuracy using the trapezoidal rule.

Note that if En is the error using n subintervals, then |En| ď
M(b´ a)3

12n2
, where M is the

maximum absolute value of the second derivative of the function being integrated and a
and b are the limits of integration.

Q[31]: Let f (x) be a function4 with f 2(x) =
x2

x + 1
.

(a) Show that | f 2(x)| ď 1 whenever x is in the interval [0, 1].

(b) Find the maximum value of | f 2(x)| over the interval [0, 1].

(c) Assuming M = 1, how many intervals should you use to approximate
ż 1

0
f (x) dx to

within 10´5?

(d) Using the value of M you found in (b), how many intervals should you use to

approximate
ż 1

0
f (x) dx to within 10´5?

Q[32]: Approximate the function log x with a rational function by approximating the

integral
ż x

1

1
t

dt using Simpson’s rule. Your rational function f (x) should approximate

log x with an error of not more than 0.1 for any x in the interval [1, 3].

Q[33]: Using an approximation of the area under the curve
1

x2 + 1
, show that the

constant arctan 2 is in the interval
[π

4
+ 0.321,

π

4
+ 0.323

]
.

4 For example, f (x) = 1
6 x3 ´ 1

2 x2 + (1 + x) log |x + 1| will do, but you don’t need to know what f (x) is
for this problem.
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You may assume use without proof that
d4

dx4

"

1
1 + x2

*

=
24(5x4 ´ 10x2 + 1)

(x2 + 1)5 . You may

use a calculator, but only to add, subtract, multiply, and divide.

1.12Ĳ Improper Integrals

Exercises
Jump to HINTS, ANSWERS, SOLUTIONS or TABLE OF CONTENTS.

§§ Stage 1

Q[1]: For which values of b is the integral
ż b

0

1
x2 ´ 1

dx improper?

Q[2]: For which values of b is the integral
ż b

0

1
x2 + 1

dx improper?

Q[3]: Below are the graphs y = f (x) and y = g(x). Suppose
ż 8

0
f (x) dx converges, and

ż 8

0
g(x) dx diverges. Assuming the graphs continue on as shown as x Ñ 8, which graph

is f (x), and which is g(x)?

x

y

Q[4](˚): Decide whether the following statement is true or false. If false, provide a
counterexample. If true, provide a brief justification. (Assume that f (x) and g(x) are
continuous functions.)

If
ż 8

1
f (x)dx converges and g(x) ě f (x) ě 0 for all x, then

ż 8

1
g(x)dx converges.

Q[5]: Let f (x) = e´x and g(x) =
1

x + 1
. Note

ş8

0 f (x) dx converges while
ş8

0 g(x) dx

diverges.

For each of the functions h(x) described below, decide whether
ş8

0 h(x) dx converges or
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diverges, or whether there isn’t enough information to decide. Justify your decision.

(a) h(x), continuous and defined for all x ě 0, h(x) ď f (x).

(b) h(x), continuous and defined for all x ě 0, f (x) ď h(x) ď g(x).

(c) h(x), continuous and defined for all x ě 0, ´2 f (x) ď h(x) ď f (x).

§§ Stage 2

Q[6](˚): Evaluate the integral
ż 1

0

x4

x5 ´ 1
dx or state that it diverges.

Q[7](˚): Determine whether the integral
ż 2

´2

1
(x + 1)4/3 dx is convergent or divergent. If it

is convergent, find its value.

Q[8](˚): Does the improper integral
ż 8

1

1
?

4x2 ´ x
dx converge? Justify your answer.

Q[9](˚): Does the integral
ż 8

0

dx
x2 +

?
x

converge or diverge? Justify your claim.

Q[10]: Does the integral
ż 8

´8

cos x dx converge or diverge? If it converges, evaluate it.

Q[11]: Does the integral
ż 8

´8

sin x dx converge or diverge? If it converges, evaluate it.

Q[12]: Evaluate
ż 8

10

x4 ´ 5x3 + 2x´ 7
x5 + 3x + 8

dx, or state that it diverges.

Q[13]: Evaluate
ż 10

0

x´ 1
x2 ´ 11x + 10

dx, or state that it diverges.

Q[14](˚): Determine (with justification!) which of the following applies to the integral
ż +8

´8

x
x2 + 1

dx:

(i)
ż +8

´8

x
x2 + 1

dx diverges

(ii)
ż +8

´8

x
x2 + 1

dx converges but
ż +8

´8

ˇ

ˇ

ˇ

ˇ

x
x2 + 1

ˇ

ˇ

ˇ

ˇ

dx diverges

(iii)
ż +8

´8

x
x2 + 1

dx converges, as does
ż +8

´8

ˇ

ˇ

ˇ

ˇ

x
x2 + 1

ˇ

ˇ

ˇ

ˇ

dx
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Remark: these options, respectively, are that the integral diverges, converges condition-
ally, and converges absolutely. You’ll see this terminology used for series in Section 3.4.1
of the CLP-2 text.

Q[15](˚): Decide whether I =
ż 8

0

| sin x|
x3/2 + x1/2 dx converges or diverges. Justify.

Q[16](˚): Does the integral
ż 8

0

x + 1
x1/3(x2 + x + 1)

dx converge or diverge?

§§ Stage 3

Q[17]: We craft a tall, vuvuzela-shaped solid by rotating the line y =
1
x

from x = a to

x = 1 about the y-axis, where a is some constant between 0 and 1.

x

y

y = 1
x

1a´1

1
a

True or false: No matter how large a constant M is, there is some value of a that makes a
solid with volume larger than M.

Q[18](˚): What is the largest value of q for which the integral
ż 8

1

1
x5q dx diverges?

Q[19]: For which values of p does the integral
ż 8

0

x
(x2 + 1)p dx converge?

Q[20]: Evaluate
ż 8

2

1
t4 ´ 1

dt, or state that it diverges.

Q[21]: Does the integral
ż 5

´5

(
1

a

|x|
+

1
a

|x´ 1|
+

1
a

|x´ 2|

)
dx converge or diverge?
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Q[22]: Evaluate
ż 8

0
e´x sin x dx, or state that it diverges.

Q[23](˚): Is the integral
ż 8

0

sin4 x
x2 dx convergent or divergent? Explain why.

Q[24]: Does the integral
ż 8

0

x
ex +

?
x

dx converge or diverge?

Q[25](˚): Let Mn,t be the Midpoint Rule approximation for
ż t

0

e´x

1 + x
dx with n equal

subintervals. Find a value of t and a value of n such that Mn,t differs from
ş8

0
e´x

1+x dx by at
most 10´4. Recall that the error En introduced when the Midpoint Rule is used with n
subintervals obeys

|En| ď
M(b´ a)3

24n2

where M is the maximum absolute value of the second derivative of the integrand and a
and b are the end points of the interval of integration.

Q[26]: Suppose f (x) is continuous for all real numbers, and
ż 8

1
f (x) dx converges.

(a) If f (x) is odd, does
ż ´1

´8

f (x) dx converge or diverge, or is there not enough

information to decide?

(b) If f (x) is even, does
ż 8

´8

f (x) dx converge or diverge, or is there not enough

information to decide?

Q[27]: True or false: There is some real number x, with x ě 1, such that
ż x

0

1
et dt = 1.

1.13Ĳ More Integration Examples

Exercises
Jump to HINTS, ANSWERS, SOLUTIONS or TABLE OF CONTENTS.

Recall that we are using log x to denote the logarithm of x with base e. In other courses it
is often denoted ln x.

§§ Stage 1

Q[1]: Match the integration method to a common kind of integrand it’s used to
antidifferentiate.
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(A) u = f (x) substitution (I) a function multiplied by its derivative
(B) trigonometric substitution (II) a polynomial function times an exponential function
(C) integration by parts (III) a rational function
(D) partial fractions (IV) the square root of a quadratic function

§§ Stage 2

Q[2]: Evaluate
ż π/2

0
sin4 x cos5 x dx.

Q[3]: Evaluate
ż

a

3´ 5x2 dx.

Q[4]: Evaluate
ż 8

0

x´ 1
ex dx.

Q[5]: Evaluate
ż

´2
3x2 + 4x + 1

dx.

Q[6]: Evaluate
ż 2

1
x2 log x dx.

Q[7](˚): Evaluate
ż

x
x2 ´ 3

dx.

Q[8](˚): Evaluate the following integrals.

(a)
ż 4

0

x
?

9 + x2
dx

(b)
ż π/2

0
cos3 x sin2 x dx

(c)
ż e

1
x3 log x dx

Q[9](˚): Evaluate the following integrals.

(a)
ż π/2

0
x sin x dx

(b)
ż π/2

0
cos5 x dx

Q[10](˚): Evaluate the following integrals.

(a)
ż 2

0
xex dx

(b)
ż 1

0

1
?

1 + x2
dx

(c)
ż 5

3

4x
(x2 ´ 1)(x2 + 1)

dx
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Q[11](˚): Calculate the following integrals.

(a)
ż 3

0

a

9´ x2 dx

(b)
ż 1

0
log(1 + x2)dx

(c)
ż 8

3

x
(x´ 1)2(x´ 2)

dx

Q[12]: Evaluate
ż

sin4 θ ´ 5 sin3 θ + 4 sin2 θ + 10 sin θ

sin2 θ ´ 5 sin θ + 6
cos θ dθ.

Q[13](˚): Evaluate the following integrals. Show your work.

(a)
ż π

4

0
sin2(2x) cos3(2x) dx

(b)
ż (

9 + x2)´ 3
2 dx

(c)
ż

dx
(x´ 1)(x2 + 1)

(d)
ż

x arctan x dx

Q[14](˚): Evaluate the following integrals.

(a)
ż π/4

0
sin5(2x) cos(2x) dx

(b)
ż

a

4´ x2 dx

(c)
ż

x + 1
x2(x´ 1)

dx

Q[15](˚): Calculate the following integrals.

(a)
ż 8

0
e´x sin(2x)dx

(b)
ż

?
2

0

1
(2 + x2)3/2 dx

(c)
ż 1

0
x log(1 + x2)dx

(d)
ż 8

3

1
(x´ 1)2(x´ 2)

dx

Q[16](˚): Evaluate the following integrals.
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(a)
ż

x log x dx

(b)
ż

(x´ 1)dx
x2 + 4x + 5

(c)
ż

dx
x2 ´ 4x + 3

(d)
ż

x2 dx
1 + x6

Q[17](˚): Evaluate the following integrals.

(a)
ż 1

0
arctan x dx.

(b)
ż

2x´ 1
x2 ´ 2x + 5

dx.

Q[18](˚):

(a) Evaluate
ż

x2

(x3 + 1)101 dx.

(b) Evaluate
ż

cos3x sin4x dx.

Q[19]: Evaluate
ż π

π/2

cos x
?

sin x
dx.

Q[20](˚): Evaluate the following integrals.

(a)
ż

ex

(ex + 1)(ex ´ 3)
dx

(b)
ż 4

2

x2 ´ 4x + 4
?

12 + 4x´ x2
dx

Q[21](˚): Evaluate these integrals.

(a)
ż

sin3 x
cos3 x

dx

(b)
ż 2

´2

x4

x10 + 16
dx

Q[22]: Evaluate
ż

x
?

x´ 1 dx.

Q[23]: Evaluate
ż

?
x2 ´ 2
x2 dx for x ě

?
2.

You may use that
ş

sec x dx = log | sec x + tan x|+ C.

Q[24]: Evaluate
ż π/4

0
sec4 x tan5 x dx.
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Q[25]: Evaluate
ż

3x2 + 4x + 6
(x + 1)3 dx.

Q[26]: Evaluate
ż

1
x2 + x + 1

dx.

Q[27]: Evaluate
ż

sin x cos x tan x dx.

Q[28]: Evaluate
ż

1
x3 + 1

dx.

Q[29]: Evaluate
ż

(3x)2 arcsin x dx.

§§ Stage 3

Q[30]: Evaluate
ż π/2

0

?
cos t + 1 dt.

Q[31]: Evaluate
ż e

1

log
?

x
x

dx.

Q[32]: Evaluate
ż 0.2

0.1

tan x
log(cos x)

dx.

Q[33](˚): Evaluate these integrals.

(a)
ż

sin(log x) dx

(b)
ż 1

0

1
x2 ´ 5x + 6

dx

Q[34](˚): Evaluate (with justification).

(a)
ż 3

0
(x + 1)

a

9´ x2 dx

(b)
ż

4x + 8
(x´ 2)(x2 + 4)

dx

(c)
ż +8

´8

1
ex + e´x dx

Q[35]: Evaluate
ż

c

x
1´ x

dx.

Q[36]: Evaluate
ż 1

0
e2xeex

dx.

Q[37]: Evaluate
ż

xex

(x + 1)2 dx.
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Q[38]: Evaluate
ż

x sin x
cos2 x

dx.

You may use that
ş

sec xdx = log | sec x + tan x|+ C.

Q[39]: Evaluate
ż

x(x + a)n dx, where a and n are constants.

Q[40]: Evaluate
ż

arctan(x2) dx.
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APPLICATIONS OF INTEGRATION

Chapter 2

2.1Ĳ Work

Exercises
Jump to HINTS, ANSWERS, SOLUTIONS or TABLE OF CONTENTS.

§§ Stage 1

Q[1]: Find the work (in joules) required to lift a 3-gram block of matter a height of 10
centimetres against the force of gravity (with g = 9.8 m/sec2).

Q[2]: A rock exerts a force of 1 N on the ground where it sits due to gravity. Use g = 9.8
m/sec2.
What is the mass of the rock?
How much work (in joules) does it take to lift that rock one metre in the air?

Q[3]: Consider the equation

W =

ż b

a
F(x)dx

where x is measured in metres and F(x) is measured in kilogram-metres per second
squared (newtons).

For some large n, we might approximate

W «

n
ÿ

i=1

F(xi)∆x

where ∆x = b´a
n and xi is some number in the interval [a + (i´ 1)∆x, a + i∆x]. (This is

just the general form of a Riemann sum).

(a) What are the units of ∆x?
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APPLICATIONS OF INTEGRATION 2.1 WORK

(b) What are the units of F(xi)?

(c) Using your answers above, what are the units of W?

Remark: we already know the units of W from the text, but the Riemann sum illustrates
why they make sense arising from this particular integral.

Q[4]: Suppose f (x) has units
smoot

megaFonzie
, and x is measured in barns*. What are the

units of the quantity
ş1

0 f (x)dx?

* For this problem, it doesn’t matter what the units measure, but a smoot is a silly measure of
length; a megaFonzie is an apocryphal measure of coolness; and a barn is a humorous (but actu-
ally used) measure of area. For explanations (and entertainment) see https://en.wikipedia.
org/wiki/List_of_humorous_units_of_measurement and https://en.wikipedia.org/
wiki/List_of_unusual_units_of_measurement (accessed 27 July 2017).

Q[5]: You want to weigh your luggage before a flight. You don’t have a scale or balance,
but you do have a heavy-duty spring from your local engineering-supply store. You nail
it to your wall, marking where the bottom hangs. You hang a one-litre bag of water (with
mass one kilogram) from the spring, and observe that the spring stretches 1 cm. Where
on the wall should you mark the bottom of the spring corresponding to a hanging mass
of 10kg?

bottom of unloaded spring

bottom of spring with 10kg mass

You may assume that the spring obeys Hooke’s law.

Q[6]: The work done by a force in moving an object from position x = 1 to x = b is
W(b) = ´b3 + 6b2 ´ 9b + 4 for any b in [1, 3]. At what position x in [1, 3] is the force the
strongest?

§§ Stage 2

Q[7](˚): A variable force F(x) = a?
x Newtons moves an object along a straight line when
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APPLICATIONS OF INTEGRATION 2.1 WORK

it is a distance of x meters from the origin. If the work done in moving the object from
x = 1 meters to x = 16 meters is 18 joules, what is the value of a? Don’t worry about the
units of a.

Q[8]: A tube of air is fitted with a plunger that compresses the air as it is pushed in. If the
natural length of the tube of air is `, when the plunger has been pushed x metres past its
natural position, the force exerted by the air is c

`´x N, where c is a positive constant
(depending on the particulars of the tube of air) and x ă `.

x

`

(a) What are the units of c?
(b) How much work does it take to push the plunger from 1 metre past its natural

position to 1.5 metres past its natural position? (You may assume ` ą 1.5.)

Questions 9 through 16 offer practice on two broad types of calculations covered in the text: lifting things
against gravity, and stretching springs. You may make the same physical assumptions as in the text: that is,
springs follow Hooke’s law, and the acceleration due to gravity is a constant´9.8 metres per second squared.

Q[9](˚): Find the work (in joules) required to stretch a string 10 cm beyond equilibrium, if
its spring constant is k = 50 N/m.

Q[10](˚): A force of 10 N (newtons) is required to hold a spring stretched 5 cm beyond its
natural length. How much work, in joules (J), is done in stretching the spring from its
natural length to 50 cm beyond its natural length?

Q[11](˚): A 5-metre-long cable of mass 8 kg is used to lift a bucket off the ground. How
much work is needed to raise the entire cable to height 5 m? Ignore the mass of the
bucket and its contents.

Q[12]: A tank 1 metre high has pentagonal cross sections of area 3 m2 and is filled with
water. How much work does it take to pump out all the water?

You may assume the density of water is 1 kg per 1000 cm3.
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APPLICATIONS OF INTEGRATION 2.1 WORK

Q[13](˚): A sculpture, shaped like a pyramid 3m high sitting on the ground, has been
made by stacking smaller and smaller (very thin) iron plates on top of one another. The
iron plate at height z m above ground level is a square whose side length is (3´ z) m. All
of the iron plates started on the floor of a basement 2 m below ground level.

Write down an integral that represents the work, in joules, it took to move all of the iron
from its starting position to its present position. Do not evaluate the integral. (You can
use 9.8 m/s2 for the acceleration due to gravity and 8000 kg/m3 for the density of iron.)

Q[14]: Suppose a spring extends 5 cm past its natural length when one kilogram is hung
from its end. How much work is done to extend the spring from 5 cm past its natural
length to 7 cm past its natural length?

Q[15]: Ten kilograms of firewood are hoisted on a rope up a height of 4 metres to a
second-floor deck. If the total work done is 400 joules, what is the mass of the 4 metres of
rope?
You may assume that the rope has the same density all the way along.

Q[16]: A 5 kg weight is attached to the middle of a 10-metre long rope, which dangles out
a window. The rope alone has mass 1 kg. How much work does it take to pull the entire
rope in through the window, together with the weight?

Q[17]: A box is dragged along the floor. Friction exerts a force in the opposite direction of
motion from the box, and that force is equal to µˆmˆ g, where µ is a constant, m is the
mass of the box and g is the acceleration due to gravity. You may assume g = 9.8 m/sec2.

(a) How much work is done dragging a box of mass 10 kg along the floor for three
metres if µ = 0.4?

(b) Suppose the box contains a volatile substance that rapidly evaporates. You pull the
box at a constant rate of 1 m/sec for three seconds, and the mass of the box at t
seconds (0 ď t ď 3) is (10´

?
t) kilograms. If µ = 0.4, how much work is done

pulling the box for three seconds?

For Questions 18 and 19, use the principle (introduced after Definition 2.1.1 in the CLP-2 text and utilized
in Example 2.1.5) that the work done on a particle by a force over a distance is equal to the change in kinetic
energy of that particle.

Q[18]: A ball of mass 1 kg is attached to a spring, and the spring is attached to a table.
The ball moves with some initial velocity, and the spring slows it down. At its farthest,
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the spring stretches 10 cm past its natural length. If the spring constant is 5 N/m, what
was the initial velocity of the ball?

You may assume that the ball starts moving with initial velocity v0, and that the only
force slowing it down is the spring. You may also assume that the spring started out at its
natural length, it follows Hooke’s law, and when it is stretched its farthest, the velocity of
the ball is 0 m/sec.

Q[19]: A mild-mannered university professor who is definitely not a spy notices that
when their car is on the ground, it is 2 cm shorter than when it is on a jack. (That is: when
the car is on a jack, its struts are at their natural length; when on the ground, the weight
of the car causes the struts to compress 2 cm.) The university professor calculates that if
they were to jump a local neighborhood drawbridge, their car would fall to the ground
with a speed of 4 m/sec. If the car can sag 20 cm before important parts scrape the
ground, and the car has mass 2000 kg unoccupied (2100 kg with the professor inside),
can the professor, who is certainly not involved in international intrigue, safely jump the
bridge?
Assume the car falls vertically, the struts obey Hooke’s law, and the work done by the
struts is equal to the change in kinetic energy of the car + professor. Use 9.8 m/sec2 for
the acceleration due to gravity.

§§ Stage 3

Q[20]: A disposable paper cup has the shape of a right circular cone with radius 5 cm
and height 15 cm, and is completely filled with water. How much work is done sucking
all the water out of the cone with a straw?

You may assume that 1 m3 of water has mass 1000 kilograms, the acceleration due to
gravity is ´9.8 m/sec2, and that the water moves as high up as the very top of the cup
and no higher.
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Q[21](˚): A spherical tank of radius 3 metres is half–full of water. It has a spout of length
1 metre sticking up from the top of the tank. Find the work required to pump all of the
water in the tank out the spout. The density of water is 1000 kilograms per cubic metre.
The acceleration due to gravity is 9.8 metres per second squared.

1m

3m

Q[22]: A 5-metre cable is pulled out of a deep hole, where it was dangling straight down.
The cable has density ρ(x) = (10´ x) kg/m, where x is the distance from the bottom end
of the rope. (So, the bottom of the cable is denser than the top.) How much work is done
pulling the cable out of the hole?

Q[23]: A rectangular tank is fitted with a plunger that can raise and lower the water level
by decreasing and increasing the length of its base, as in the diagrams below. The tank
has base width 1 m (which does not change) and contains 3 m3 of water.

3 m
1 m

1 m

The force of the water acting on any tiny piece of the plunger is PA, where P is the
pressure of the water, and dA is the area of the tiny piece. The pressure varies with the
depth of the piece (below the surface of the water). Specifically, P = cD, where D is the
depth of the tiny piece and c is a constant, in this case c = 9800 N/m3.

(a) If the length of the base is 3 m, give the force of the water on the entire plunger. (You
can do this with an integral: it’s the sum of the force on all the tiny pieces of the
plunger.)

(b) If the length of the base is x m, give the force of the water on the entire plunger.

(c) Give the work required to move the plunger in so that the base length changes from 3
m to 1 m.
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Q[24]: A leaky bucket picks up 5 L of water from a well, but drips out 1 L every ten
seconds. If the bucket was hauled up 5 metres at a constant speed of 1 metre every two
seconds, how much work was done?
Assume the rope and bucket have negligible mass and one litre of water has 1 kg mass,
and use 9.8 m/sec2 for the acceleration due to gravity.

Q[25]: The force of gravity between two objects, one of mass m1 and another of mass m2,
is F = G

m1m2

r2 , where r is the distance between them and G is the gravitational constant.

How much work is required to separate the earth and the moon far enough apart that the
gravitational attraction between them is negligible?

Assume the mass of the earth is 6 ˆ 1024 kg and the mass of the moon is 7 ˆ 1022 kg,
and that they are currently 400 000 km away from each other. Also, assume G = 6.7ˆ
10´11 m3

kg¨sec2 , and the only force acting on the earth and moon is the gravity between them.

Q[26]: True or false: the work done pulling up a dangling cable of length ` and mass m
(with uniform density) is the same as the work done lifting up a ball of mass m a height
of `/2.

`

`/2

Q[27]: A tank one metre high is filled with watery mud that has settled to be denser at
the bottom than at the top.

At height h metres above the bottom of the tank, the cross-section of the tank has the
shape of the finite region bounded by the two curves y = x2 and y = 2´ h´ 3x2. At
height h metres above the bottom of the tank, the density of the liquid is 1000

?
2´ h

kilograms per cubic metre.

How much work is done to pump all the liquid out of the tank?

You may assume the acceleration due to gravity is 9.8 m/sec2.

Q[28]: An hourglass is 0.2 m tall and shaped such that that y metres above or below its
vertical centre it has a radius of y2 + 0.01 m. It is exactly half-full of sand, which has mass
M = 1

7 kilograms.

How much work is done on the sand by quickly flipping the hourglass over?
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Assume that the work done is only moving against gravity, with g = 9.8 m/sec2, and the
sand has uniform density. Also assume that at the instant the hourglass is flipped over,
the sand has not yet begun to fall, as in the picture above.

Q[29]: Suppose at position x a particle experiences a force of F(x) =
?

1´ x4 N.
Approximate the work done moving the particle from x = 0 to x = 1/2, accurate to
within 0.01 J.

2.2Ĳ Averages

Exercises
Jump to HINTS, ANSWERS, SOLUTIONS or TABLE OF CONTENTS.

Recall that we are using log x to denote the logarithm of x with base e. In other courses it
is often denoted ln x.

§§ Stage 1

Q[1]: Below is the graph of a function y = f (x). Its average value on the interval [0, 5] is
A. Draw a rectangle on the graph with area

ş5
0 f (x)dx.

x

y

5

A
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Q[2]: Suppose a car travels for 5 hours in a straight line, with an average velocity of 100
kph. How far did the car travel?

Q[3]: A force F(x) acts on an object from position x = a metres to position x = b metres,
for a total of W joules of work. What was the average force on the object?

Q[4]: Suppose we want to approximate the average value of the function f (x) on the
interval [a, b]. To do this, we cut the interval [a, b] into n pieces, then take n samples by
finding the function’s output at the left endpoint of each piece, starting with a. Then, we
average those n samples. (In the example below, n = 4.)

x

y

a b

average these y-values

(a) Using n samples, what is the distance between two consecutive sample points xi and
xi+1?

(b) Assuming n ě 4, what is the x-coordinate of the fourth sample?

(c) Assuming n ě 4, what is the y-value of the fourth sample?

(d) Write the approximation of the average value of f (x) over the interval [a, b] using
sigma notation.

Q[5]: Suppose f (x) and g(x) are functions that are defined for all numbers in the interval
[0, 10].
(a) If f (x) ď g(x) for all x in [0, 10], then is the average value of f (x) is less than or equal

to the average value of g(x) on the interval [0, 10], or is there not enough information
to tell?

(b) Suppose f (x) ď g(x) for all x in [0.01, 10]. Is the average value of f (x) less than or
equal to the average value of g(x) over the interval [0, 10], or is there not enough
information to tell?

Q[6]: Suppose f is an odd function, defined for all real numbers. What is the average of f
on the interval [´10, 10]?

§§ Stage 2

Q[7](˚): Find the average value of f (x) = sin(5x) + 1 over the interval ´π/2 ď x ď π/2.

Q[8](˚): Find the average value of the function y = x2 log x on the interval 1 ď x ď e.
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Q[9](˚): Find the average value of the function f (x) = 3 cos3 x + 2 cos2 x on the interval
0 ď x ď π

2 .

Q[10](˚): Let k be a positive constant. Find the average value of the function f (x) =
sin(kx) on the interval 0 ď x ď π/k.

Q[11](˚): The temperature in Celsius in a 3 m long rod at a point x metres from the left
end of the rod is given by the function T(x) = 80

16´x2 . Determine the average temperature
in the rod.

Q[12](˚): What is the average value of the function f (x) =
log x

x
on the interval [1, e]?

Q[13](˚): Find the average value of f (x) = cos2(x) over 0 ď x ď 2π.

Q[14]: The carbon dioxide concentration in the air at a particular location over one year is
approximated by C(t) = 400 + 50 cos

( t
12 π

)
+ 200 cos

( t
4380 π

)
parts per million, where t

is measured in hours.
(a) What is the average carbon dioxide concentration for that location for that year?
(b) What is the average over the first day?
(c) Suppose measurements were only made at noon every day: that is, when

t = 12 + 24n, where n is any whole number between 0 and 364. Then the daily
variation would cease: 50 cos

(
(12+24n)

12 π
)
= 50 cos (π + 2πn) = 50 cos π = ´50. So,

the approximation for the concentration of carbon dioxide in the atmosphere might
be given as

N(t) = 350 + 200 cos
(

t
4380

π

)
ppm

What is the relative error in the yearly average concentration of carbon dioxide
involved in using N(t), instead of C(t)?

You may assume a day has exactly 24 hours, and a year has exactly 8760 hours.

Q[15]: Let S be the solid formed by rotating the parabola y = x2 from x = 0 to x = 2
about the x-axis.

(a) What is the average area of the circular cross-sections of S? Call this value A.

(b) What is the volume of S?

(c) What is the volume of a cylinder with circular cross-sectional area A and length 2?

For Questions 16 through 18, let the root mean square of f (x) on [a, b] be

d

1
b´ a

ż b

a
f 2(x)dx. This is the

formula used in Example 2.2.6 in the CLP-2 text.

Q[16]: Let f (x) = x.
(a) Calculate the average of f (x) over [´3, 3].
(b) Calculate the root mean square of f (x) over [´3, 3].

70



APPLICATIONS OF INTEGRATION 2.2 AVERAGES

Q[17]: Calculate the root mean square of f (x) = tan x over
[
´π

4 , π
4

]
.

Q[18]: A force acts on a spring, and the spring stretches and contracts. The distance
beyond its natural length at time t is f (t) = sin (tπ) cm, where t is measured in seconds.
The spring constant is 3 N/cm.

(a) What is the force exerted by the spring at time t, if it obeys Hooke’s law?

(b) Find the average of the force exerted by the spring from t = 0 to t = 6.

(c) Find the root mean square of the force exerted by the spring from t = 0 to t = 6.

§§ Stage 3

Q[19](˚): A car travels two hours without stopping. The driver records the car’s speed
every 20 minutes, as indicated in the table below:

time in hours 0 1/3 2/3 1 4/3 5/3 2
speed in km/hr 50 70 80 55 60 80 40

(a) Use the trapezoidal rule to estimate the total distance traveled in the two hours.
(b) Use the answer to part (a) to estimate the average speed of the car during this period.

Q[20]: Let s(t) = et.

(a) Find the average of s(t) on the interval [0, 1]. Call this quantity A.

(b) For any point t, the difference between s(t) and A is s(t)´ A. Find the average value
of s(t)´ A on the interval [0, 1].

(c) For any point t, the absolute difference between s(t) and A is |s(t)´ A|. Find the
average value of |s(t)´ A| on the interval [0, 1].

Q[21]: Consider the two functions f (x) and g(x) below, both of which have average A on
[0, 4].

x

y

4

A

y = f (x)

y = g(x)

(a) Which function has a larger average on [0, 4]: f (x)´ A or g(x)´ A?
(b) Which function has a larger average on [0, 4]: | f (x)´ A| or |g(x)´ A|?
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Q[22]: Suppose the root mean square of a function f (x) on the interval [a, b] is R. What is
the volume of the solid formed by rotating the portion of f (x) from a to b about the
x-axis?

x

y

a

b

y = f (x)

As in Example 2.2.6 of the CLP-2 text, let the root mean square of f (x) on [a, b] be

d

1
b´ a

ż b

a
f 2(x)dx.

Q[23]: Suppose f (x) = ax2 + bx + c, and the average value of f (x) on the interval [0, 1] is
the same as the average of f (0) and f (1). What is a?

Q[24]: Suppose f (x) = ax2 + bx + c, and the average value of f (x) on the interval [s, t] is
the same as the average of f (s) and f (t). Is it possible that a ‰ 0?

That is– does the result of Question 23 generalize?

Q[25]: Let f (x) be a function defined for all numbers in the interval [a, b], with average
value A over that interval. What is the average of f (a + b´ x) over the interval [a, b]?

Q[26]: Suppose f (t) is a continuous function, and A(x) is the average of f (t) on the
interval from 0 to x.

(a) What is the average of f (t) on [a, b], where a ă b? Give your answer in terms of A.

(b) What is f (t)? Again, give your answer in terms of A.

Q[27]:
(a) Find a function f (x) with average 0 over [´1, 1] but f (x) ‰ 0 for all x in [´1, 1], or

show that no such function exists.
(b) Find a continuous function f (x) with average 0 over [´1, 1] but f (x) ‰ 0 for all x in

[´1, 1], or show that no such function exists.

Q[28]: Suppose f (x) is a positive, continuous function with lim
xÑ8

f (x) = 0, and let A(x)

be the average of f (x) on [0, x].

True or false: lim
xÑ8

A(x) = 0.

Q[29]: Let A(x) be the average of the function f (t) = e´t2
on the interval [0, x]. What is

lim
xÑ8

A(x)?
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2.3Ĳ Centre of Mass and Torque

Exercises
Jump to HINTS, ANSWERS, SOLUTIONS or TABLE OF CONTENTS.

§§ Stage 1

Q[1]: Using symmetry, find the centroid of the finite region between the curves
y = (x´ 1)2 and y = ´x2 + 2x + 1.

x

y

y = (x´ 1)2

y = ´x2 + 2x + 1

Q[2]: Using symmetry, find the centroid of the region inside the unit circle, centred on the
origin, and outside a rectangle, also centred on the origin, with width 1 and height 0.5.

x

y

Q[3]: A long, straight, thin rod has a number of weights attached along it. True or false: if
it balances at position x, then the mass to the right of x is the same as the mass to the left
of x.

Q[4]: A straight rod with negligible mass has the following weights attached to it:

• A weight of mass 1 kg, 1m from the left end,
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• a weight of mass 2 kg, 3m from the left end,

• a weight of mass 2 kg, 4m from the left end, and

• a weight of mass 1 kg, 6m from the left end.

Where is the centre of mass of the weighted rod?

Q[5]: For each picture below, determine whether the centre of mass is to the left of, to the
right of, or along the line x = a, or whether there is not enough information to tell. The
shading of a region indicates density: darker shading corresponds to a denser area. In
part (d), the right hand side of the right hand Bˆ A rectangle has x = 2a.

x

y

a

(a)

x

y

a

(b)

a
x

y

(c)

A

A

B

B

a
x

y
(d) (e)

A
A/2

B
2B

a
x

y

Q[6]: Tank A is spherical, of radius 1 metre, and filled completely with water. The bottom
of tank A is three metres above the ground, where Tank B sits. Tank B is tall and
rectangular, with base dimensions 2 metres by 1 metre, and empty. Calculate the work
done by gravity to drain all the water from Tank A to Tank B by modelling the situation
as a point mass, of the same mass as the water, being moved from the height of the centre
of mass of A to the height of the centre of mass of the water after it has been moved to B.
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2 m 1 m

B

1 m
A

3 m

You may use 1000 kg/m3 for the density of water, and g = 9.8 m/sec2 for the acceleration
due to gravity.

Q[7]: Let S be the region bounded above by y = 1
x and and below by the x-axis,

1 ď x ď 3. Let R be a rod with density ρ(x) = 1
x at position x, 1 ď x ď 3.

(a) What is the area of a thin slice of S at position x with width dx?

(b) What is the mass of a small piece of R at position x with length dx?

(c) What is the total area of S?

(d) What is the total mass of R?

(e) What is the x-coordinate of the centroid of S?

(f) What is the centre of mass of R?

In Questions 8 through 10, you will derive the formulas for the centre of mass of a rod of variable density, and
the centroid of a two-dimensional region using vertical slices (Equations 2.3.2 and 2.3.3 in the CLP-2 text).
Knowing the equations by heart will allow you to answer many questions in this section; understanding
where they came from will you allow to generalize their ideas to answer even more questions.
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Q[8]: Suppose R is a straight, thin rod with density ρ(x) at a position x. Let the left
endpoint of R lie at x = a, and the right endpoint lie at x = b.
(a) To approximate the centre of mass of R, imagine chopping it into n pieces of equal

length, and approximating the mass of each piece using the density at its midpoint.
Give your approximation for the centre of mass in sigma notation.

m1 m2 mna b
(b) Take the limit as n goes to infinity of your approximation in part (a), and express the

result using a definite integral.

Q[9]: Suppose S is a two-dimensional object and at (horizontal) position x its height is
T(x)´ B(x). Its leftmost point is at position x = a, and its rightmost point is at position
x = b.

To approximate the x-coordinate of the centroid of S, we imagine it as a straight, thin rod
R, where the mass of R from a ď x ď b is equal to the area of S from a ď x ď b.

(a) If S is the sheet shown below, sketch R as a rod with the same horizontal length,
shaded darker when R is denser, and lighter when R is less dense.

x

y T(x)

B(x)

a b

(b) If we cut S into strips of very small width dx, what is the area of the strip at position
x?

(c) Using your answer from (b), what is the density ρ(x) of R at position x?

(d) Using your result from Question 8(b), give the x-coordinate of the centroid of S. Your
answer will be in terms of a, b, T(X), and B(x).

Q[10]: Suppose S is flat sheet with uniform density, and at (horizontal) position x its
height is T(x)´ B(x). Its leftmost point is at position x = a, and its rightmost point is at
position x = b.

To approximate the y-coordinate of the centroid of S, we imagine it as a straight, thin,
vertical rod R. We slice S into thin, vertical strips, and model these as weights on R with:

• position y on R, where y is the centre of mass of the strip, and

• mass in R equal to the area of the strip in S.

(a) If S is the sheet shown below, slice it into a number of vertical pieces of equal length,
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approximated by rectangles. For each rectangle, mark its centre of mass. Sketch R as
a rod with the same vertical height, with weights corresponding to the slices you
made of S.

x

y T(x)

B(x)

a ba1 b1

(b) Imagine a thin strip of S at position x, with thickness dx. What is the area of the
strip? What is the y-value of its centre of mass?

(c) Recall the centre of mass of a rod with n weights of mass Mi at position yi is given by

n
ř

i=1
(Mi ˆ yi)

n
ř

i=1
Mi

Considering the limit of this formula as n goes to infinity, give the y-coordinate of the
centre of mass of S.

Q[11](˚): Express the x–coordinate of the centroid of the triangle with vertices (´1,´3),
(´1, 3), and (0, 0) in terms of a definite integral. Do not evaluate the integral.

§§ Stage 2

Use Equations 2.3.2 and 2.3.3 in the CLP-2 text to find centroids and centres of mass in Questions 12
through 23.

Q[12]: A long, thin rod extends from x = 0 to x = 7 metres, and its density at position x is
given by ρ(x) = x kg/m. Where is the centre of mass of the rod?

Q[13]: A long, thin rod extends from x = ´3 to x = 10 metres, and its density at position
x is given by ρ(x) = 1

1+x2 kg/m. Where is the centre of mass of the rod?

Q[14](˚): Find the y-coordinate of the centroid of the region bounded by the curves y = 1,
y = ´ex, x = 0 and x = 1. You may use the fact that the area of this region equals e.

Q[15](˚): Consider the region bounded by y = 1?
16´x2

, y = 0, x = 0 and x = 2.

(a) Sketch this region.

(b) Find the y–coordinate of the centroid of this region.
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Q[16](˚): Find the centroid of the finite region bounded by y = sin(x), y = cos(x), x = 0,
and x = π/4.

Q[17](˚): Let A denote the area of the plane region bounded by x = 0, x = 1, y = 0 and

y =
k

?
1 + x2

, where k is a positive constant.

(a) Find the coordinates of the centroid of this region in terms of k and A.
(b) For what value of k is the centroid on the line y = x?

Q[18](˚): The region R is the portion of the plane which is above the curve y = x2 ´ 3x
and below the curve y = x´ x2.
(a) Sketch the region R
(b) Find the area of R.
(c) Find the x coordinate of the centroid of R.

Q[19](˚): Let R be the region where 0 ď x ď 1 and 0 ď y ď 1
1+x2 . Find the x–coordinate of

the centroid of R.

Q[20](˚): Find the centroid of the region below, which consists of a semicircle of radius 3
on top of a rectangle of width 6 and height 2.

y

x

−2

−1

1

2

3

321−1−2−3

Q[21](˚): Let D be the region below the graph of the curve y =
?

9´ 4x2 and above the
x-axis.
(a) Using an appropriate integral, find the area of the region D; simplify your answer

completely.
(b) Find the centre of mass of the region D; simplify your answer completely. (Assume it

has constant density ρ.)

Q[22]: The finite region S is bounded by the lines y = arcsin x, y = arcsin(2´ x), and
y = ´π

2 . Find the centroid of S.

Q[23]: Calculate the centroid of the figure bounded by the curves y = ex, y = 3(x ´ 1),
y = 0, x = 0, and x = 2.
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§§ Stage 3

Q[24](˚): Find the y-coordinate of the centre of mass of the (infinite) region lying to the
right of the line x = 1, above the x–axis, and below the graph of y = 8/x3.

Q[25](˚): Let A be the region to the right of the y-axis that is bounded by the graphs of
y = x2 and y = 6´ x.

(a) Find the centroid of A, assuming it has constant density ρ = 1. The area of A is
22
3

(you don’t have to show this).

(b) Write down an expression, using horizontal slices (disks), for the volume obtained
when the region A is rotated around the y-axis. Do not evaluate any integrals; simply
write down an expression for the volume.

Q[26](˚): (a) Find the y–coordinate of the centroid of the region bounded by y = ex,
x = 0, x = 1, and y = ´1.

(b) Calculate the volume of the solid generated by rotating the region from part (a) about
the line y = ´1.

Q[27]: Suppose a rectangle has width 4 m, height 3 m, and its density x metres from its
left edge is x2 kg/m2. Find the centre of mass of the rectangle.

x

y

4

3

Q[28]: Suppose a circle of radius 3 m has density (2 + y) kg/m2 at any point y metres
above its bottom. Find the centre of mass of the circle.

3´3
x

y
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Q[29]: A right circular cone of uniform density has base radius r m and height h m. We
want to find its centre of mass. By symmetry, we know that the centre of mass will occur
somewhere along the straight vertical line through the tip of the cone and the centre of its
base. The only question is the height of the centre of mass.

x

y

h

r

We will model the cone as a rod R with height h, such that the mass of the section of the
rod from position a to position b is the same as the volume of the cone from height a to
height b. (You can imagine that the cone is an umbrella, and we’ve closed it up to look
like a cane.*)

x

y

h

r

h

0

(a) Using this model, calculate how high above the base of the cone its centre of mass is.
(b) If we cut off the top h´ k metres of the cone (leaving an object of height k), how high

above the base is the new centre of mass?

* This analogy isn’t exact: if the cone were an umbrella, closing it would move the outside fabric verti-
cally. A more accurate, but less familiar, image might be vacuum-wrapping an umbrella, watching it
shrivel towards the middle but not move vertically.

Q[30]: An hourglass is shaped like two identical truncated cones attached together. Their
base radius is 5 cm, the height of the entire hourglass is 18 cm, and the radius at the
thinnest point is .5 cm. The hourglass contains sand that fills up the bottom 6 cm when
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it’s settled, with mass 600 grams and uniform density. We want to know the work done
flipping the hourglass smoothly, so the sand settles into a truncated, inverted-cone shape
before it starts to fall down.

18 cm

5 cm

0.5

6 cm

8.8 cm

Using the methods of Section 2.1 to calculate the work done would be quite tedious.
Instead, we will model the sand as a point of mass 0.6 kg, being lifted from the centre of
mass of its original position to the centre of mass of its upturned position. Using the
results of Question 29, how much work was done on the sand?

To simplify your calculation, you may assume that the height of the upturned sand (that
is, the distance from the skinniest part of the hourglass to the top of the sand) is 8.8 cm.
(Actually, it’s 3

?
937´ 1 « 8.7854 cm.) So, the top 0.2 cm of the hourglass is empty.
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Q[31]: Tank A is in the shape of half a sphere of radius 1 metre, with its flat face resting
on the ground, and is completely filled with water. Tank B is empty and rectangular,
with a square base of side length 1 m and a height of 3 m.

1 m

A

1 m

B

3 m

(a) To pump the water from Tank A to Tank B, we need to pump all the water from Tank
A to a height of 3 m. How much work is done to pump all the water from Tank A to a
height of 3 m? You may model the water as a point mass, originally situated at the
centre of mass of the full Tank A.

(b) Suppose we could move the water from Tank A directly to its final position in Tank B
without going over the top of Tank B. (For example, maybe tank A is elastic, and
Tank B is just Tank A after being smooshed into a different form.) How much work is
done pumping the water? (That is, how much work is done moving a point mass
from the centre of mass of Tank A to the centre of mass of Tank B?)

(c) What percentage of work from part (a) was “wasted” by pumping the water over the
top of Tank B, instead of moving it directly to its final position?

You may assume that the only work done is against the acceleration due to gravity,
g = 9.8 m/sec2, and that the density of water is 1000 kg/m3.
Remark: the answer from (b) is what you might think of as the net work involved in
pumping the water from Tank A to Tank B. When work gets “wasted,” the pump does
some work pumping water up, then gravity does equal and opposite work bringing the
water back down.

Q[32]: Let R be the region bounded above by y = 2x sin(x2) and below by the x-axis,

0 ď x ď
b

π
2 . Give an approximation of the x-value of the centroid of R with error no

more than 1
100 .

You may assume without proof that
ˇ

ˇ

ˇ

d4

dx4

 

2x2 sin(x2)
(

ˇ

ˇ

ˇ
ď 415 over the interval

[
0,
b

π
2

]
.

2.4Ĳ Separable Differential Equations

Exercises
Jump to HINTS, ANSWERS, SOLUTIONS or TABLE OF CONTENTS.

Recall that we are using log x to denote the logarithm of x with base e. In other courses it
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is often denoted ln x.

§§ Stage 1

Q[1]: Below are pairs of functions y = f (x) and differential equations. For each pair,
decide whether the function is a solution of the differential equation.

function differential equation

(a) y = 5(ex ´ 3x2 ´ 6x´ 6)
dy
dx

= y + 15x2

(b) y =
´2

x2 + 1
y1(x) = xy2

(c) y = x3/2 + x
(

dy
dx

)2

+
dy
dx

= y

Q[2]: Following Definition 2.4.1 in the CLP-2 text, a separable differential equation has
the form

dy
dx

(x) = f (x) g
(
y(x)

)
.

Show that each of the following equations can be written in this form, identifying f (x)
and g(y).
(a) 3y dy

dx = x sin y
(b) dy

dx = ex+y

(c) dy
dx + 1 = x

(d)
(

dy
dx

)2
´ 2x dy

dx + x2 = 0

Q[3]: Suppose we have the following functions:

• y is a differentiable function of x

• f is a function of x, with
ş

f (x)dx = F(x)

• g is a nonzero function of y, with
ş 1

g(y) dy = G(y) = G(y(x)).

In the work below, we set up a solution to the separable differential equation

dy
dx

= f (x)g(y) = f (x)g(y(x)))

without using the mnemonic of Equation 2.4.1 in the CLP-2 text.

By deleting some portion of our work, we can create the solution as it would look using
the mnemonic. What portion can be deleted?

Remark: the purpose of this exercise is to illuminate what, exactly, the mnemonic is a
shortcut for. Despite its peculiar look, it agrees with what we already know about
integration.
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dy
dx

= f (x)g(y(x))

Since g(y(x)) is a nonzero function, we can divide both sides by it.

1
g(y(x))

¨
dy
dx

= f (x)

If these functions of x are the same, then they have the same antiderivative
with respect to x.

ż

1
g(y(x))

¨
dy
dx

dx =

ż

f (x)dx

The left integral is in the correct form for a change of variables to y. To make
this easier to see, we’ll use a u-substitution, since it’s a little more familiar
than a y-substitution. If u = y, then du

dx = dy
dx , so du = dy

dx dx.
ż

1
g(u)

du =

ż

f (x)dx

Since u was just the same as y, again for cosmetic reasons, we can swap it
back. (Formally, you could have skipped the step above–we just included it to
be extra clear that we’re not using any integration techniques we haven’t seen
before.)

ż

1
g(y)

dy =

ż

f (x)dx

We’re given the antiderivatives in question.

G(y) + C1 = F(x) + C2

G(y) = F(x) + (C2 ´ C1)

where C1 and C2 are arbitrary constants. Then also C2 ´ C1 is an arbitrary
constant, so we might as well call it C.

G(y) = F(x) + C

Q[4]: Suppose y = f (x) is a solution to the differential equation dy
dx = xy.

True or false: f (x) + C is also a solution, for any constant C.

Q[5]: Suppose a function y = f (x) satisfies |y| = Cx, for some constant C ą 0.

(a) What is the largest possible domain of f (x), given the information at hand?

(b) Give an example of function y = f (x) with the following properties, or show that
none exists:
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• |y| = Cx,

• dy
dx exists for all x ą 0, and

• y ą 0 for some values of x, and y ă 0 for others.

Q[6]: Express the following sentence1 as a differential equation. You don’t have to solve
the equation.

About 0.3 percent of the total quantity of morphine in the bloodstream is
eliminated every minute.

Q[7]: Suppose a particular change is occurring in a language, from an old form to a new
form.* Let p(t) be the proportion (measured as a number between 0, meaning none, and
1, meaning all) of the time that speakers use the new form. Piotrowski’s law† predicts the
following.

Use of the new form over time spreads at a rate that is proportional to the
product of the proportion of the new form and the proportion of the old form.

Express this as a differential equation. You do not need to solve the differential equation.

* An example is the change in German from “wollt” to “wollst” for the second-person conjugation of
the verb “wollen.” This example is provided by the site Laws in Quantitative Linguistics, “Change in
Language” http://lql.uni-trier.de/index.php/Change_in_language accessed 18 August
2017.

† Piotrowski’s law is paraphrased from the page Piotrowski-Gesetz on Glottopedia, http://www.
glottopedia.org/index.php/Piotrowski-Gesetz, accessed 18 August 2017. According to this
source, the law was based on work by the married couple R. G. Piotrowski and A. A. Piotrowskaja,
later generalized by G. Altmann.

1 The sentence is paraphrased from the Pharmakokinetics website of Université de Lausanne, “Elimina-
tion Kinetics,” at https://sepia.unil.ch/pharmacology/index.php?id=94 . The half-life of
morphine is given on the same website at https://sepia.unil.ch/pharmacology/index.php?
id=85 . Accessed 12 August 2017.
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Q[8]: Consider the differential equation y1 = y
2 ´ 1.

(a) When y = 0, what is y1?
(b) When y = 2, what is y1?
(c) When y = 3, what is y1?
(d) On the axes below, interpret the marks we have made, and use them to sketch a

possible solution to the differential equation.

x

y

1

1

Q[9]: Consider the differential equation y1 = y´ x
2 .

(a) If y(1) = 0, what is y1(1)?

(b) If y(1) = 2, what is y1(1)?

(c) If y(1) = ´2, what is y1(1)?

(d) Draw a sketch similar to that of Question 8(d) showing the derivatives of y at the
points with integer values for x in [0, 6] and y in [´3, 3].

(e) Sketch a possible graph of y.

§§ Stage 2

Q[10](˚): Find the solution to the separable initial value problem:

dy
dx

=
2x
ey , y(0) = log 2

Express your solution explicitly as y = y(x).

Q[11](˚): Find the solution y(x) of
dy
dx

=
xy

x2 + 1
, y(0) = 3.

Q[12](˚): Solve the differential equation y1(t) = e
y
3 cos t. You should express the solution
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y(t) in terms of t explicitly.

Q[13](˚): Solve the differential equation

dy
dx

= xex2´log(y2)

Q[14](˚): Let y = y(x). Find the general solution of the differential equation y1 = xey.

Q[15](˚): Find the solution to the differential equation
yy1

ex ´ 2x
=

1
y

that satisfies y(0) = 3.

Solve completely for y as a function of x.

Q[16](˚): Find the function y = f (x) that satisfies

dy
dx

= ´xy3 and f (0) = ´
1
4

Q[17](˚): Find the function y = y(x) that satisfies y(1) = 4 and

dy
dx

=
15x2 + 4x + 3

y

Q[18](˚): Find the solution y(x) of y1 = x3y with y(0) = 1.

Q[19](˚): Solve the initial value problem

x
dy
dx

+ y = y2 y(1) = ´1

Q[20](˚): A function f (x) is always positive, has f (0) = e and satisfies f 1(x) = x f (x) for
all x. Find this function.

Q[21](˚): Solve the following initial value problem:

dy
dx

=
1

(x2 + x)y
y(1) = 2

Q[22](˚): Find the solution of the differential equation
1 +

a

y2 ´ 4
tan x

y1 =
sec x

y
that satisfies

y(0) = 2. You don’t have to solve for y in terms of x.
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Q[23](˚): The fish population in a lake is attacked by a disease at time t = 0, with the
result that the size P(t) of the population at time t ě 0 satisfies

dP
dt

= ´k
?

P

where k is a positive constant. If there were initially 90,000 fish in the lake and 40,000
were left after 6 weeks, when will the fish population be reduced to 10,000?

Q[24](˚): An object of mass m is projected straight upward at time t = 0 with initial speed
v0. While it is going up, the only forces acting on it are gravity (assumed constant) and a
drag force proportional to the square of the object’s speed v(t). It follows that the
differential equation of motion is

m
dv
dt

= ´(mg + kv2)

where g and k are positive constants. At what time does the object reach its highest point?

Q[25](˚): A motor boat is traveling with a velocity of 40 ft/sec when its motor shuts off at
time t = 0. Thereafter, its deceleration due to water resistance is given by

dv
dt

= ´k v2

where k is a positive constant. After 10 seconds, the boat’s velocity is 20 ft/sec.
(a) What is the value of k?
(b) When will the boat’s velocity be 5 ft/sec?

Q[26](˚): Consider the initial value problem dx
dt = k(3´ x)(2´ x), x(0) = 1, where k is a

positive constant. (This kind of problem occurs in the analysis of certain chemical
reactions.)
(a) Solve the initial value problem. That is, find x as a function of t.
(b) What value will x(t) approach as t approaches +8.

Q[27](˚): The quantity P = P(t), which is a function of time t, satisfies the differential
equation

dP
dt

= 4P´ P2

and the initial condition P(0) = 2.

(a) Solve this equation for P(t).

(b) What is P when t = 0.5? What is the limiting value of P as t becomes large?

Q[28](˚): An object moving in a fluid has an initial velocity v of 400 m/min. The velocity
is decreasing at a rate proportional to the square of the velocity. After 1 minute the
velocity is 200 m/min.
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(a) Give a differential equation for the velocity v = v(t) where t is time.

(b) Solve this differential equation.

(c) When will the object be moving at 50 m/min?

§§ Stage 3

Q[29](˚): An investor places some money in a mutual fund where the interest is
compounded continuously and where the interest rate fluctuates between 4% and 8%.
Assume that the amount of money B = B(t) in the account in dollars after t years
satisfies the differential equation

dB
dt

=
(
0.06 + 0.02 sin t

)
B

(a) Solve this differential equation for B as a function of t.

(b) If the initial investment is $1000, what will the balance be at the end of two years?

Q[30](˚): An endowment is an investment account in which the balance ideally remains
constant and withdrawals are made on the interest earned by the account. Such an
account may be modeled by the initial value problem B1(t) = aB´m for t ě 0, with
B(0) = B0 . The constant a reflects the annual interest rate, m is the annual rate of
withdrawal, and B0 is the initial balance in the account.
(a) Solve the initial value problem with a = 0.02 and B(0) = B0 = $30, 000. Note that

your answer depends on the constant m.
(b) If a = 0.02 and B(0) = B0 = $30, 000, what is the annual withdrawal rate m that

ensures a constant balance in the account?

Q[31](˚): A certain continuous function y = y(x) satisfies the integral equation

y(x) = 3 +
ż x

0

(
y(t)2

´ 3y(t) + 2
)

sin t dt (˚)

for all x in some open interval containing 0. Find y(x) and the largest interval for which
(˚) holds.

Q[32](˚): A cylindrical water tank, of radius 3 meters and height 6 meters, is full of water
when its bottom is punctured. Water drains out through a hole of radius 1 centimeter. If

• h(t) is the height of the water in the tank at time t (in meters) and
• v(t) is the velocity of the escaping water at time t (in meters per second) then
• Torricelli’s law states that v(t) =

a

2gh(t) where g = 9.8 m/sec2. Determine how
long it takes for the tank to empty.

Q[33](˚): A spherical tank of radius 6 feet is full of mercury when a circular hole of radius
1 inch is opened in the bottom. How long will it take for all of the mercury to drain from
the tank?
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Use the value g = 32 feet/sec2. Also use Torricelli’s law, which states when the height of
mercury in the tank is h, the speed of the mercury escaping from the tank is v =

a

2gh.

Q[34](˚): Consider the equation

f (x) = 3 +
ż x

0

(
f (t)´ 1

)(
f (t)´ 2

)
dt

(a) What is f (0)?

(b) Find the differential equation satisfied by f (x).

(c) Solve the initial value problem determined in (a) and (b).

Q[35](˚):

A tank 2 m tall is to be made with circular cross–sections with radius r = yp. Here y
measures the vertical distance from the bottom of the tank and p is a positive constant to
be determined. You may assume that when the tank drains, it obeys Torricelli’s law, that
is

A(y)
dy
dt

= ´c
?

y

for some constant c where A(y) is the cross–sectional area of the tank at height y. It is
desired that the tank be constructed so that the top half (y = 2 to y = 1) takes exactly the
same amount of time to drain as the bottom half (y = 1 to y = 0). Determine the value of
p so that the tank has this property. Note: it is not possible or necessary to find c for this
question.

Q[36]: Suppose f (t) is a continuous, differentiable function and the root mean square of
f (t) on [a, x] is equal to the average of f (t) on [a, x] for all x. That is,

1
x´ a

ż x

a
f (t)d(t) =

d

1
x´ a

ż x

a
f 2(t)dt (˚)

You may assume x ą a.

(a) Guess a function f (t) for which the average of f (t) is the same as the root mean
square of f (t) on any interval.

(b) Differentiate both sides of the given equation.

(c) Simplify your answer from (b) by using Equation (˚) to replace all terms containing
şx

a f 2(t)dt with terms containing
şx

a f (t)dt.

(d) Let Y(x) =
şx

a f (t)dt, so the equation from (c) becomes a differential equation. Find
all functions that satisfy it.

(e) What is f (t)?
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Q[37]: Find the function y(x) such that

d2y
dx2 =

2
y3 ¨

dy
dx

and if x = ´ 1
16 log 3, then y = 1 and dy

dx = 3.
You do not need to solve for y explicitly.
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SEQUENCES AND SERIES

Chapter 3

3.1Ĳ Sequences

Exercises
Jump to HINTS, ANSWERS, SOLUTIONS or TABLE OF CONTENTS.
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§§ Stage 1

Q[1]: Assuming the sequences continue as shown, estimate the limit of each sequence
from its graph.

x

y

1
(a)

x

y

1
(b)

x

y

1
(c)

Q[2]: Suppose an and bn are sequences, and an = bn for all n ě 100, but an ‰ bn for
n ă 100.
True or false: lim

nÑ8
an = lim

nÑ8
bn.

Q[3]: Let tanu
8
n=1, tbnu

8
n=1, and tcnu

8
n=1, be sequences with lim

nÑ8
an = A, lim

nÑ8
bn = B, and

lim
nÑ8

cn = C. Assume A, B, and C are nonzero real numbers.

Evaluate the limits of the following sequences.

(a)
an ´ bn

cn

(b)
cn

n

(c)
a2n+5

bn

Q[4]: Give an example of a sequence tanu
8
n=1 with the following properties:
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• an ą 1000 for all n ď 1000,

• an+1 ă an for all n, and

• lim
nÑ8

an = ´2

Q[5]: Give an example of a sequence tanu
8
n=1 with the following properties:

• an ą 0 for all even n,
• an ă 0 for all odd n,
• lim

nÑ8
an does not exist.

Q[6]: Give an example of a sequence tanu
8
n=1 with the following properties:

• an ą 0 for all even n,
• an ă 0 for all odd n,
• lim

nÑ8
an exists.

Q[7]: The limits of the sequences below can be evaluated using the squeeze theorem. For
each sequence, choose an upper bounding sequence and lower bounding sequence that
will work with the squeeze theorem.

(a) an =
sin n

n

(b) bn =
n2

en(7 + sin n´ 5 cos n)
(c) cn = (´n)´n

Q[8]: Below is a list of sequences, and a list of functions.
(a) Match each sequence

 

an
(8

n=1 to any and all functions f (x) such that f (n) = an for all
positive whole numbers n.

(b) Match each sequence
 

an
(8

n=1 to any and all functions f (x) such that
lim

nÑ8
an = lim

xÑ8
f (x).

an = 1 +
1
n

f (x) = cos(πx)

bn = 1 +
1
|n|

g(x) =
cos(πx)

x

cn = e´n h(x) =

#

x+1
x x is a whole number

1 else

dn = (´1)n i(x) =

#

x+1
x x is a whole number

0 else

en =
(´1)n

n
j(x) =

1
ex
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Q[9]: Let tanu
8
n=1 be a sequence defined by an = cos n.

(a) Give three different whole numbers n that are within 0.1 of an odd integer multiple
of π, and find the corresponding values of an.

(b) Give three different whole numbers n such that an is close to 0. Justify your answers.

(c) Give three different whole numbers n such that an is close to 1. Justify your answers.

Remark: this demonstrates intuitively, though not rigorously, why lim
nÑ8

cos n is undefined.
We consistently find terms in the sequence that are close to ´1, and also consistently find
terms in the sequence that are close to 0. Contrast this to a sequence like

 

cos(2πn)
(

,
whose terms are always 1, and whose limit therefore is 1. It is possible to turn the ideas of
this question into a rigorous proof that lim

nÑ8
cos n is undefined. See the solution.

§§ Stage 2

Q[10]: Determine the limits of the following sequences.

(a) an =
3n2 ´ 2n + 5

4n + 3

(b) bn =
3n2 ´ 2n + 5

4n2 + 3

(c) cn =
3n2 ´ 2n + 5

4n3 + 3

Q[11]: Determine the limit of the sequence an =
4n3 ´ 21
ne + 1

n
.

Q[12]: Determine the limit of the sequence bn =
4
?

n + 1
?

9n + 3
.

Q[13]: Determine the limit of the sequence cn =
cos(n + n2)

n
.

Q[14]: Determine the limit of the sequence an =
nsin n

n2 .

Q[15]: Determine the limit of the sequence dn = e´1/n.

Q[16]: Determine the limit of the sequence an =
1 + 3 sin(n2)´ 2 sin n

n
.

Q[17]: Determine the limit of the sequence bn =
en

2n + n2 .
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Q[18](˚): Find the limit, if it exists, of the sequence
 

ak
(

, where

ak =
k! sin3 k
(k + 1)!

Q[19](˚): Consider the sequence
!

(´1)n sin
( 1

n
))

. State whether this sequence converges
or diverges, and if it converges give its limit.

Q[20](˚): Evaluate lim
nÑ8

[
6n2 + 5n

n2 + 1
+ 3 cos(1/n2)

]
.

§§ Stage 3

Q[21](˚): Find the limit of the sequence
"

log
(

sin
1
n

)
+ log(2n)

*

.

Q[22]: Evaluate lim
nÑ8

[
a

n2 + 5n´
a

n2 ´ 5n
]
.

Q[23]: Evaluate lim
nÑ8

[
a

n2 + 5n´
a

2n2 ´ 5
]
.

Q[24]: Evaluate the limit of the sequence
"

n
[(

2 + 1
n

)100
´ 2100

]*8

n=1
.

Q[25]: Write a sequence tanu
8
n=1 whose limit is f 1(a) for a function f (x) that is

differentiable at the point a.
Your answer will depend on f and a.

Q[26]: Let tAnu
8
n=3 be the area of a regular polygon with n sides, with the distance from

the centroid of the polygon to each corner equal to 1.

1

A(3) = 3
?

3
4

1

A(4) = 2

1

A(5) = 2.5 sin(0.4π)

(a) By dividing the polygon into n triangles, give a formula for An.
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(b) What is lim
nÑ8

An?

Q[27]: Suppose we define a sequence t fnu, which depends on some constant x, as the
following:

fn(x) =

#

1 n ď x ă n + 1
0 else

For a fixed constant x ě 1, t fnu is the sequence t0, 0, 0, . . . , 0, 1, 0, . . . , 0, 0, 0, . . .u. The sole
nonzero element comes in position k, where k is what we get when we round x down to a
whole number. If x ă 1, then the sequence consists of all zeroes.

Since we can plug in different values of x, we can think of fn(x) as a function of
sequences: a different x gives you a different sequence. On the other hand, if we imagine
fixing n, then fn(x) is just a function, where fn(x) gives the nth term in the sequence
corresponding to x.

(a) Sketch the curve y = f2(x).

(b) Sketch the curve y = f3(x).

(c) Define An =
ş8

0 fn(x)dx. Give a simple description of the sequence tAnu
8
n=1.

(d) Evaluate lim
nÑ8

An.

(e) Evaluate lim
nÑ8

fn(x) for a constant x, and call the result g(x).

(f) Evaluate
ż 8

0
g(x)dx.

Q[28]: Determine the limit of the sequence bn =

(
1 +

3
n
+

5
n2

)n
.

Q[29]: A sequence
 

an
(8

n=1 of real numbers satisfies the recursion relation an+1 =
an + 8

3
for n ě 1.

(a) Suppose a1 = 4. What is lim
nÑ8

an?

(b) Find x if x =
x + 8

3
.

(c) Suppose a1 = 1. Show that lim
nÑ8

an = L, where L is the solution to equation above.

Q[30]: Zipf’s Law applied to word frequency can be phrased as follows:

The most-used word in a language is used n times as frequently as the n-th
most word used in a language.

(a) Suppose the sequence tw1, w2, w3, . . .u is a list of all words in a language, where wn is
the word that is the nth most frequently used. Let fn be the frequency of word wn. Is
t f1, f2, f3, . . .u an increasing sequence or a decreasing sequence?

(b) Give a general formula for fn, treating f1 as a constant.
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(c) Suppose in a language, w1 (the most frequently used word) has frequency 6%. If the
language follows Zipf’s Law, then what frequency does w3 have?

(d) Suppose f6 = 0.3% for a language following Zipf’s law. What is f10?

(e) The word “the” is the most-used word in contemporary American English. In a
collection of about 450 million words, “the” appeared 22,038,615 times. The
second-most used word is “be,” followed by “and.” About how many usages of these
words do you expect in the same collection of 450 million words?

Sources: Zipf’s word frequency law in natural language: A critical review and future directions,
Steven T. Piantadosi. Psychon Bull Rev. 2014 Oct; 21(5): 1112–1130. Accessed online 11
October 2017

Word Frequency Data, https://www.wordfrequency.info/free.asp?s=yAccessed
online 11 October 2017

3.2Ĳ Series

Exercises
Jump to HINTS, ANSWERS, SOLUTIONS or TABLE OF CONTENTS.

§§ Stage 1

Q[1]: Write out the first five partial sums corresponding to the series
8
ÿ

n=1

1
n

.

You don’t need to simplify the terms.

Q[2]: Every student who comes to class brings their instructor cookies, and leaves them
on the instructor’s desk. Let Ck be the total number of cookies on the instructor’s desk
after the kth student comes.
If C11 = 20, and C10 = 17, how many cookies did the 11th student bring to class?

Q[3]: Suppose the sequence of partial sums of the series
8
ÿ

n=1

an is tSNu =

"

N
N + 1

*

.

(a) What is tanu?
(b) What is lim

nÑ8
an?

(c) Evaluate
8
ÿ

n=1

an.

Q[4]: Suppose the sequence of partial sums of the series
8
ÿ

n=1

an is tSNu =

"

(´1)N +
1
N

*

.

What is tanu?
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Q[5]: Let f (N) be a formula for the Nth partial sum of
8
ÿ

n=1

an. (That is, f (N) = SN.) If

f 1(N) ă 0 for all N ą 1, what does that say about an?

Questions 6 through 8 invite you to explore geometric sums in a geometric way. This is complementary to
than the algebraic method discussed in the text.

Q[6]: Suppose the triangle outlined in red in the picture below has area one.

(a) Express the combined area of the black triangles as a series, assuming the pattern
continues forever.

(b) Evaluate the series using the picture (not the formula from your book).

Q[7]: Suppose the square outlined in red in the picture below has area one.

(a) Express the combined area of the black squares as a series, assuming the pattern
continues forever.

(b) Evaluate the series using the picture (not the formula from your book).
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Q[8]: In the style of Questions 6 and 7, draw a picture that represents
8
ÿ

n=1

1
3n as an area.

Q[9]: Evaluate
100
ÿ

n=0

1
5n .

Q[10]: Every student who comes to class brings their instructor cookies, and leaves them
on the instructor’s desk. Let Ck be the total number of cookies on the instructor’s desk
after the kth student comes.
If C20 = 53, and C10 = 17, what does C20 ´ C10 = 36 represent?

Q[11]: Evaluate
100
ÿ

n=50

1
5n . (Note the starting index.)

Q[12]:

(a) Starting on day d = 1, every day you give your friend $ 1
d+1 , and they give $1

d back to
you. After a long time, how much money have you gained by this arrangement?

(b) Evaluate
8
ÿ

d=1

(
1
d
´

1
(d + 1)

)
.

(c) Starting on day d = 1, every day your friend gives you $(d + 1), and they take
$(d + 2) from you. After a long time, how much money have you gained by this
arrangement?

(d) Evaluate
8
ÿ

d=1

((d + 1)´ (d + 2)).

Q[13]: Suppose
8
ÿ

n=1

an = A,
8
ÿ

n=1

bn = B, and
8
ÿ

n=1

cn = C.

Evaluate
8
ÿ

n=1

(an + bn + cn+1).

Q[14]: Suppose
8
ÿ

n=1

an = A,
8
ÿ

n=1

bn = B ‰ 0, and
8
ÿ

n=1

cn = C.

True or false:
8
ÿ

n=1

(
an

bn
+ cn

)
=

A
B
+ C.
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§§ Stage 2

Q[15](˚): To what value does the series 1 +
1
3
+

1
9
+

1
27

+
1

81
+

1
243

+ ¨ ¨ ¨ converge?

Q[16](˚): Evaluate
8
ÿ

k=7

1
8k

Q[17](˚): Show that the series
8
ÿ

k=1

(
6
k2 ´

6
(k + 1)2

)
converges and find its limit.

Q[18](˚): Find the sum of the convergent series
8
ÿ

n=3

(
cos

(π

n

)
´ cos

( π

n + 1

))
.

Q[19](˚): The nth partial sum of a series
8
ÿ

n=1

an is known to have the formula sn =
1 + 3n
5 + 4n

.

(a) Find an expression for an, valid for n ě 2.

(b) Show that the series
8
ÿ

n=1

an converges and find its value.

Q[20](˚): Find the sum of the series
8
ÿ

n=2

3 ¨ 4n+1

8 ¨ 5n . Simplify your answer completely.

Q[21](˚): Relate the number 0.23̄ = 0.233333 . . . to the sum of a geometric series, and use
that to represent it as a rational number (a fraction or combination of fractions, with no
decimals).

Q[22](˚): Express 2.656565 . . . as a rational number, i.e. in the form p/q where p and q are
integers.

Q[23](˚): Express the decimal 0.321 = 0.321321321 . . . as a fraction.

Q[24](˚): Find the value of the convergent series

8
ÿ

n=2

(
2n+1

3n +
1

2n´ 1
´

1
2n + 1

)

Simplify your answer completely.

101



SEQUENCES AND SERIES 3.2 SERIES

Q[25](˚): Evaluate

8
ÿ

n=1

[(1
3

)n
+
(
´

2
5

)n´1]

Q[26](˚): Find the sum of the series
8
ÿ

n=0

1 + 3n+1

4n .

Q[27]: Evaluate
8
ÿ

n=5

log
(

n´ 3
n

)
.

Q[28]: Evaluate
8
ÿ

n=2

(
2
n
´

1
n + 1

´
1

n´ 1

)
.

§§ Stage 3

Q[29]: An infinitely long, flat cliff has stones hanging off it, attached to thin wire of
negligible mass. Starting at position x = 1, every metre (at position x, where x is some

whole number) the stone has mass
1
4x kg and is hanging 2x metres below the top of the

cliff.

1 2 3 4 5 6

How much work in joules does it take
to pull up all the stones to the top of the cliff?

You may use g = 9.8 m/sec2.
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Q[30]: Find the combined volume of an infinite collection of spheres, where for each whole

number n = 1, 2, 3, . . . there is exactly one sphere of radius
1

πn .

Q[31]: Evaluate
8
ÿ

n=3

(
sin2 n

2n +
cos2(n + 1)

2n+1

)
.

Q[32]: Suppose a series
8
ÿ

n=1

an has sequence of partial sums tSNu, and the series
8
ÿ

N=1

SN

has sequence of partial sums tSMu =

#

M
ÿ

N=1

SN

+

.

If SM =
M + 1

M
, what is an?

Q[33]: Create a bullseye using the following method:

Starting with a red circle of area 1, divide the radius into thirds, creating two rings and a
circle. Colour the middle ring blue.

Continue the pattern with the inside circle: divide its radius into thirds, and colour the
middle ring blue.

Step 1 Step 2

Continue in this way indefinitely: dividing the radius of the innermost circle into thirds,
creating two rings and another circle, and colouring the middle ring blue.
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What is the area of the red portion?

3.3Ĳ Convergence Tests

Exercises
Jump to HINTS, ANSWERS, SOLUTIONS or TABLE OF CONTENTS.

§§ Stage 1

Q[1]: Select the series below that diverge by the divergence test.

(A)
8
ÿ

n=1

1
n

(B)
8
ÿ

n=1

n2

n + 1
(C)

8
ÿ

n=1

sin n (D)
8
ÿ

n=1

sin(πn)

Q[2]: Select the series below whose terms satisfy the conditions to apply the integral test.

(A)
8
ÿ

n=1

1
n

(B)
8
ÿ

n=1

n2

n + 1
(C)

8
ÿ

n=1

sin n (D)
8
ÿ

n=1

sin n + 1
n2

Q[3]: Suppose there is some threshold after which a person is considered old, and before
which they are young.

Let Olaf be an old person, and let Yuan be a young person.

104



SEQUENCES AND SERIES 3.3 CONVERGENCE TESTS

(a) Suppose I am older than Olaf. Am I old?

(b) Suppose I am younger than Olaf. Am I old?

(c) Suppose I am older than Yuan. Am I young?

(d) Suppose I am younger than Yuan. Am I young?

Q[4]: Below are graphs of two sequences with positive terms. Assume the sequences
continue as shown. Fill in the table with conclusions that can be made from the direct
comparison test, if any.

x

y

n

if
ř

an converges if
ř

an diverges

and if tanu is the red series then
ř

bn then
ř

bn

and if tanu is the blue series then
ř

bn then
ř

bn

Q[5]: For each pair of series below, decide whether the second series is a valid
comparison series to determine the convergence of the first series, using the direct
comparison test and/or the limit comparison test.

(a)
8
ÿ

n=10

1
n´ 1

, compared to the divergent series
8
ÿ

n=10

1
n

.

(b)
8
ÿ

n=1

sin n
n2 + 1

, compared to the convergent series
8
ÿ

n=1

1
n2 .

(c)
8
ÿ

n=5

n3 + 5n + 1
n6 ´ 2

, compared to the convergent series
8
ÿ

n=5

1
n3 .

(d)
8
ÿ

n=5

1
?

n
, compared to the divergent series

8
ÿ

n=5

1
4
?

n
.

Q[6]: Suppose an is a sequence with lim
nÑ8

an =
1
2

. Does
8
ÿ

n=7

an converge or diverge, or is it

not possible to determine this from the information given? Why?
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Q[7]: What flaw renders the following reasoning invalid?

Q: Determine whether
8
ÿ

n=1

sin n
n

converges or diverges.

A: First, we will evaluate lim
nÑ8

sin n
n

.

• Note
´1
n
ď

sin n
n

ď
1
n

for n ě 1.

• Note also that lim
nÑ8

´1
n

= lim
nÑ8

1
n
= 0.

• Therefore, by the Squeeze Theorem, lim
nÑ8

sin n
n

= 0 as well.

So, by the divergence test,
8
ÿ

n=1

sin n
n

converges.

Q[8]: What flaw renders the following reasoning invalid?

Q: Determine whether
8
ÿ

n=1

(sin(πn) + 2) converges or diverges.

A: We use the integral test. Let f (x) = sin(πx) + 2. Note f (x) is always
positive, since sin(x) + 2 ě ´1 + 2 = 1. Also, f (x) is continuous.

ż 8

1
[sin(πx) + 2]dx = lim

bÑ8

ż b

1
[sin(πx) + 2]dx

= lim
bÑ8

[
´

1
π

cos(πx) + 2x
ˇ

ˇ

ˇ

ˇ

b

1

]

= lim
bÑ8

[
´

1
π

cos(πb) + 2b +
1
π
(´1)´ 2

]

= 8

By the integral test, since the integral diverges, also
8
ÿ

n=1

(sin(πn) + 2)

diverges.

Q[9]: What flaw renders the following reasoning invalid?

Q: Determine whether the series
8
ÿ

n=1

2n+1n2

en + 2n
converges or diverges.

A: We want to compare this series to the series
8
ÿ

n=1

2n+1

en . Note both this series

and the series in the question have positive terms.

First, we find that
2n+1n2

en + 2n
ą

2n+1

en when n is sufficiently large. The

justification for this claim is as follows:

• We note that en(n2 ´ 1) ą n2 ´ 1 ą 2n for n sufficiently large.
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• Therefore, en ¨ n2 ą en + 2n

• Therefore, 2n+1 ¨ en ¨ n2 ą 2n+1(en + 2n)

• Since en + 2n and en are both expressions that work out to be positive for
the values of n under consideration, we can divide both sides of the
inequality by these terms without having to flip the inequality. So,
2n+1n2

en + 2n
ą

2n+1

en .

Now, we claim
8
ÿ

n=1

2n+1

en converges.

Note
8
ÿ

n=1

2n+1

en = 2
8
ÿ

n=1

2n

en = 2
8
ÿ

n=1

(
2
e

)n
. This is a geometric series with r = 2

e .

Since 2/e ă 1, the series converges.

Now, by the Direct Comparison Test, we conclude that
8
ÿ

n=1

2n+1n2

en + 2n
converges.

Q[10]: Which of the series below are alternating?

(A)
8
ÿ

n=1

sin n (B)
8
ÿ

n=1

cos(πn)
n3 (C)

8
ÿ

n=1

7
(´n)2n (D)

8
ÿ

n=1

(´2)n

3n+1

Q[11]: Give an example of a convergent series for which the ratio test is inconclusive.

Q[12]: Imagine you’re taking an exam, and you momentarily forget exactly how the
inequality in the ratio test works. You remember there’s a ratio, but you don’t remember
which term goes on top; you remember there’s something about the limit being greater
than or less than one, but you don’t remember which way implies convergence.

Explain why

lim
nÑ8

ˇ

ˇ

ˇ

ˇ

an+1

an

ˇ

ˇ

ˇ

ˇ

ą 1

or, equivalently,

lim
nÑ8

ˇ

ˇ

ˇ

ˇ

an

an+1

ˇ

ˇ

ˇ

ˇ

ă 1

should mean that the sum
8
ř

n=1
an diverges (rather than converging).

Q[13]: Give an example of a series
8
ÿ

n=a
an, with a function f (x) such that f (n) = an for all

whole numbers n, such that:

•
ż 8

a
f (x)dx diverges, while
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•
8
ÿ

n=a
an converges.

Q[14](˚): Suppose that you want to use the Limit Comparison Test on the series
8
ÿ

n=0

an

where
an =

2n + n
3n + 1

. Write down a sequence tbnu such that lim
nÑ8

an

bn
exists and is nonzero. (You

don’t have to carry out the Limit Comparison Test)

Q[15](˚): Decide whether each of the following statements is true or false. If false,
provide a counterexample. If true provide a brief justification.

(a) If lim
nÑ8

an = 0, then
8
ř

n=1
an converges.

(b) If lim
nÑ8

an = 0, then
8
ř

n=1
(´1)nan converges.

(c) If 0 ď an ď bn and
8
ř

n=1
bn diverges, then

8
ř

n=1
an diverges.

§§ Stage 2

Q[16](˚): Does the series
8
ÿ

n=2

n2

3n2 +
?

n
converge?

Q[17](˚): Determine, with explanation, whether the series
8
ÿ

n=1

5k

4k + 3k converges or di-

verges.

Q[18](˚): Determine whether the series
8
ÿ

n=0

1
n + 1

2

is convergent or divergent. If it is

convergent, find its value.

Q[19]: Does the following series converge or diverge?
8
ÿ

k=1

1
?

k
?

k + 1

Q[20]: Evaluate the following series, or show that it diverges:
8
ÿ

k=30

3(1.001)k.

Q[21]: Evaluate the following series, or show that it diverges:
8
ÿ

n=3

(
´1
5

)n
.
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Q[22]: Does the following series converge or diverge?
8
ÿ

n=7

sin(πn)

Q[23]: Does the following series converge or diverge?
8
ÿ

n=7

cos(πn)

Q[24]: Does the following series converge or diverge?
8
ÿ

k=1

ek

k!
.

Q[25]: Evaluate the following series, or show that it diverges:
8
ÿ

k=0

2k

3k+2 .

Q[26]: Does the following series converge or diverge?
8
ÿ

n=1

n!n!
(2n)!

.

Q[27]: Does the following series converge or diverge?
8
ÿ

n=1

n2 + 1
2n4 + n

.

Q[28](˚): Show that the series
8
ÿ

n=3

5
n(log n)3/2 converges.

Q[29](˚): Find the values of p for which the series
8
ÿ

n=2

1
n(log n)p converges.

Q[30](˚): Does
8
ÿ

n=1

e´
?

n
?

n
converge or diverge?

Q[31](˚): Use the comparison test (not the limit comparison test) to show whether the
series
8
ÿ

n=2

?
3n2 ´ 7

n3 converges or diverges.

Q[32](˚): Determine whether the series
8
ÿ

k=1

3
?

k4 + 1
?

k5 + 9
converges.

Q[33](˚): Does
8
ÿ

n=1

n42n/3

(2n + 7)4 converge or diverge?

Q[34](˚): Determine, with explanation, whether each of the following series converge or
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diverge.

(a)
8
ÿ

n=1

1
?

n2 + 1

(b)
8
ÿ

n=1

n cos(nπ)

2n

Q[35](˚): Determine whether the series

8
ÿ

k=1

k4 ´ 2k3 + 2
k5 + k2 + k

converges or diverges.

Q[36](˚): Determine whether each of the following series converge or diverge.

(a)
8
ÿ

n=2

n2 + n + 1
n5 ´ n

(b)
8
ÿ

m=1

3m + sin
?

m
m2

Q[37]: Evaluate the following series, or show that it diverges:
8
ÿ

n=5

1
en .

Q[38](˚): Determine whether the series
8
ÿ

n=2

6
7n is convergent or divergent. If it is conver-

gent, find its value.

Q[39](˚): Determine, with explanation, whether each of the following series converge or
diverge.

(a) 1 + 1
3 +

1
5 +

1
7 +

1
9 + ¨ ¨ ¨ .

(b)
8
ÿ

n=1

2n + 1
22n+1

Q[40](˚): Determine, with explanation, whether each of the following series converges or
diverges.

(a)
8
ÿ

k=2

3
?

k
k2 ´ k

.

(b)
8
ÿ

k=1

k1010k(k!)2

(2k)!
.

(c)
8
ÿ

k=3

1
k(log k)(log log k)

.
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Q[41](˚): Determine whether the series
8
ÿ

n=1

n3 ´ 4
2n5 ´ 6n

is convergent or divergent.

Q[42](˚): What is the smallest value of N such that the partial sum
N
ÿ

n=1

(´1)n

n ¨ 10n approxi-

mates
8
ÿ

n=1

(´1)n

n ¨ 10n within an accuracy of 10´6?

Q[43](˚): It is known that
8
ÿ

n=1

(´1)n´1

n2 =
π2

12
(you don’t have to show this). Find N so

that SN, the Nth partial sum of the series, satisfies |π
2

12 ´ SN| ď 10´6. Be sure to say why
your method can be applied to this particular series.

Q[44](˚): The series
8
ÿ

n=1

(´1)n+1

(2n + 1)2 converges to some number S (you don’t have to prove

this). According to the Alternating Series Estimation Theorem, what is the smallest value
of N for which the Nth partial sum of the series is at most 1

100 away from S? For this value
of N, write out the Nth partial sum of the series.

§§ Stage 3

Q[45](˚): Determine, with explanation, whether the following series converge or diverge.

(a)
8
ÿ

n=1

nn

9nn!

(b)
8
ÿ

n=1

1
nlog n

Q[46](˚): (a) Prove that
ż 8

2

x + sin x
1 + x2 dx diverges.

(b) Explain why you cannot conclude that
8
ÿ

n=1

n + sin n
1 + n2 diverges from part (a) and the

Integral Test.

(c) Determine, with explanation, whether
8
ÿ

n=1

n + sin n
1 + n2 converges or diverges.

Q[47](˚): Show that
8
ÿ

n=1

e´
?

n
?

n
converges and find an interval of length 0.05 or less that

contains its exact value.

Q[48](˚): Suppose that the series
8
ÿ

n=1

an converges and that 1 ą an ě 0 for all n. Prove that
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the series
8
ÿ

n=1

an

1´ an
also converges.

Q[49](˚): Suppose that the series
8
ř

n=0
(1´ an) converges, where an ą 0 for n = 0, 1, 2, 3, ¨ ¨ ¨ .

Determine whether the series
8
ř

n=0
2nan converges or diverges.

Q[50](˚): Assume that the series
8
ÿ

n=1

nan ´ 2n + 1
n + 1

converges, where an ą 0 for

n = 1, 2, ¨ ¨ ¨ . Is the following series

´ log a1 +
8
ÿ

n=1

log
( an

an+1

)

convergent? If your answer is NO, justify your answer. If your answer is YES, evaluate

the sum of the series ´ log a1 +
8
ř

n=1
log
( an

an+1

)
.

Q[51](˚): Prove that if an ě 0 for all n and if the series
8
ÿ

n=1

an converges, then the series

8
ÿ

n=1

a2
n also converges.

A number of phenomena roughly follow a distribution called Zipf’s law. We discuss some of these in Ques-
tions 52 and 53.

Q[52]: Suppose the frequency of word use in a language has the following pattern:

The n-th most frequently used word accounts for
α

n
percent of the total words

used.

So, in a text of 100 words, we expect the most frequently used word to appear α times,
while the second-most-frequently used word should appear about α

2 times, and so on.

If books written in this language use 20, 000 distinct words, then the most commonly
used word accounts for roughly what percentage of total words used?

Q[53]:

Suppose the sizes of cities in a country adhere to the following pattern: if the largest city
has population α, then the n-th largest city has population α

n .

If the largest city in this country has 2 million people and the smallest city has 1 person,
then the population of the entire country is

ř2ˆ106

n=1
2ˆ106

n . (For many n’s in this sum 2ˆ106

n
is not an integer. Ignore that.) Evaluate this sum approximately, with an error of no more
than 1 million people.
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3.4Ĳ Absolute and Conditional Convergence

Exercises
Jump to HINTS, ANSWERS, SOLUTIONS or TABLE OF CONTENTS.

§§ Stage 1

Q[1](˚): Decide whether the following statement is true or false. If false, provide a
counterexample. If true provide a brief justification.

If
8
ÿ

n=1

(´1)n+1bn converges, then
8
ÿ

n=1

bn also converges.

Q[2]: Describe the series
8
ÿ

n=1

an based on whether
8
ÿ

n=1

an and
8
ÿ

n=1

|an| converge or diverge,

using vocabulary from this section where possible.

ř

an converges
ř

an diverges

ř

|an| converges

ř

|an| diverges

§§ Stage 2

Q[3](˚): Determine whether the series
8
ÿ

n=1

(´1)n

9n + 5
is absolutely convergent, conditionally

convergent, or divergent; justify your answer.

Q[4](˚): Determine whether the series
8
ÿ

n=1

(´1)2n+1

1 + n
is absolutely convergent,

conditionally convergent, or divergent.

Q[5](˚): The series
8
ÿ

n=1

(´1)n´1 1 + 4n

3 + 22n either: converges absolutely; converges

conditionally; diverges; or none of the above. Determine which is correct.

113



SEQUENCES AND SERIES 3.4 ABSOLUTE AND CONDITIONAL CONVERGENCE

Q[6](˚): Does the series
8
ÿ

n=5

?
n cos n

n2 ´ 1
converge conditionally, converge absolutely, or

diverge?

Q[7](˚): Determine (with justification!) whether the series
8
ÿ

n=1

n2 ´ sin n
n6 + n2 converges

absolutely, converges but not absolutely, or diverges.

Q[8](˚): Determine (with justification!) whether the series
8
ÿ

n=0

(´1)n(2n)!
(n2 + 1)(n!)2 converges

absolutely, converges but not absolutely, or diverges.

Q[9](˚): Determine (with justification!) whether the series
8
ÿ

n=2

(´1)n

n(log n)101 converges

absolutely, converges but not absolutely, or diverges.

Q[10]: Show that the series
8
ÿ

n=1

sin n
n2 converges.

Q[11]: Show that the series
8
ÿ

n=1

(
sin n

4
´

1
8

)n
converges.

Q[12]: Show that the series
8
ÿ

n=1

sin2 n´ cos2 n + 1
2

2n converges.

§§ Stage 3

Q[13](˚): Both parts of this question concern the series S =
8
ÿ

n=1

(´1)n´124n2e´n3
.

(a) Show that the series S converges absolutely.

(b) Suppose that you approximate the series S by its fifth partial sum S5. Give an upper
bound for the error resulting from this approximation.
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Q[14]: You may assume without proof the following:

8
ÿ

n=0

(´1)n

(2n)!
= cos(1)

Using this fact, approximate cos 1 as a rational number, accurate to within 1
1000 .

Check your answer against a calculator’s approximation of cos(1): what was your actual
error?

Q[15]: Let an be defined as

an =

#

´en/2 if n is prime
n2 if n is not prime

Show that the series
8
ÿ

n=1

an

en converges.

3.5Ĳ Power Series

Exercises
Jump to HINTS, ANSWERS, SOLUTIONS or TABLE OF CONTENTS.

§§ Stage 1

Q[1]: Suppose f (x) =
8
ÿ

n=0

(
3´ x

4

)n
. What is f (1)?

Q[2]: Suppose f (x) =
8
ÿ

n=1

(x´ 5)n

n! + 2
. Give a power series representation of f 1(x).

Q[3]: Let f (x) =
8
ÿ

n=a
An(x ´ c)n for some positive constants a and c, and some sequence

of constants tAnu. For which values of x does f (x) definitely converge?

Q[4]: Let f (x) be a power series centred at c = 5. If f (x) converges at x = ´1, and
diverges at x = 11, what is the radius of convergence of f (x)?
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§§ Stage 2

Q[5](˚): (a) Find the radius of convergence of the series

8
ÿ

k=0

(´1)k2k+1xk

(b) You are given the formula for the sum of a geometric series, namely:

1 + r + r2 + ¨ ¨ ¨ =
1

1´ r
, |r| ă 1

Use this fact to evaluate the series in part (a).

Q[6](˚): Find the radius of convergence for the power series
8
ÿ

k=0

xk

10k+1(k + 1)!

Q[7](˚): Find the radius of convergence for the power series
8
ÿ

n=0

(x´ 2)n

n2 + 1
.

Q[8](˚): Consider the power series
8
ÿ

n=1

(´1)n(x + 2)n
?

n
, where x is a real number. Find the

interval of convergence of this series.

Q[9](˚): Find the radius of convergence and interval of convergence of the series

8
ÿ

n=0

(´1)n

n + 1

(
x + 1

3

)n

Q[10](˚): Find the interval of convergence for the power series

8
ÿ

n=1

(x´ 2)n

n4/5(5n ´ 4)
.

Q[11](˚): Find all values x for which the series
8
ÿ

n=1

(x + 2)n

n2 converges.

Q[12](˚): Find the interval of convergence for
8
ÿ

n=1

4n

n
(x´ 1)n.
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Q[13](˚): Find, with explanation, the radius of convergence and the interval of
convergence of the power series

8
ÿ

n=0

(´1)n (x´ 1)n

2n(n + 2)

Q[14](˚): Find the interval of convergence for the series
8
ÿ

n=1

(´1)nn2(x ´ a)2n where a is a

constant.

Q[15](˚): Find the interval of convergence of the following series:

(a)
8
ÿ

k=1

(x + 1)k

k29k .

(b)
8
ÿ

k=1

ak(x´ 1)k, where ak ą 0 for k = 1, 2, ¨ ¨ ¨ and
8
ÿ

k=1

( ak
ak+1

´
ak+1

ak+2

)
=

a1

a2
.

Q[16](˚): Find a power series representation for
x3

1´ x
.

Q[17]: Suppose f 1(x) =
8
ÿ

n=0

(x´ 1)n

n + 2
, and

ż x

5
f (t)dt = 3x +

8
ÿ

n=1

(x´ 1)n+1

n(n + 1)2 .

Give a power series representation of f (x).

§§ Stage 3

Q[18](˚): Determine the values of x for which the series

8
ÿ

n=2

xn

32n log n

converges absolutely, converges conditionally, or diverges.

Q[19](˚): (a) Find the power–series representation for
ż

1
1 + x3 dx centred at 0 (i.e. in

powers of x).

(b) The power series above is used to approximate
ż 1/4

0

1
1 + x3 dx. How many terms are

required to guarantee that the resulting approximation is within 10´5 of the exact value?
Justify your answer.
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Q[20](˚): (a) Show that
8
ÿ

n=0

nxn =
x

(1´ x)2 for ´1 ă x ă 1.

(b) Express
8
ÿ

n=0

n2xn as a ratio of polynomials. For which x does this series converge?

Q[21](˚): Suppose that you have a sequence tbnu such that the series
ř8

n=0(1´ bn)
converges. Using the tests we’ve learned in class, prove that the radius of convergence of

the power series
8
ÿ

n=0

bnxn is equal to 1.

Q[22](˚): Assume
 

an
(

is a sequence such that nan decreases to C as n Ñ 8 for some real
number C ą 0

(a) Find the radius of convergence of
8
ÿ

n=1

anxn . Justify your answer carefully.

(b) Find the interval of convergence of the above power series, that is, find all x for which
the power series in (a) converges. Justify your answer carefully.

Q[23]: An infinitely long, straight rod of negligible mass has the following weights:

• At every whole number n, a mass of weight
1
2n at position n, and

• a mass of weight
1
3n at position ´n.

At what position is the centre of mass of the rod?
0 1´1

1
21

1
31

2´2

1
22

1
32

3´3

1
23

1
33

Q[24]: Let f (x) =
8
ÿ

n=0

An(x´ c)n, for some constant c and a sequence of constants tAnu.

Further, let f (x) have a positive radius of covergence.

If A1 = 0, show that y = f (x) has a critical point at x = c. What is the relationship
between the behaviour of the graph at that point and the value of A2?
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Q[25]: Evaluate
8
ÿ

n=3

n
5n´1 .

Q[26]: Find a polynomial that approximates f (x) = log(1 + x) to within an error of 10´5

for all values of x in
(

0, 1
10

)
.

Then, use your polynomial to approximate log(1.05) as a rational number.

Q[27]: Find a polynomial that approximates f (x) = arctan x to within an error of 10´5 for
all values of x in

(
´1

4 , 1
4

)
.

3.6Ĳ Taylor Series

Exercises
Jump to HINTS, ANSWERS, SOLUTIONS or TABLE OF CONTENTS.

§§ Stage 1

Q[1]: Below is a graph of y = f (x), along with the constant approximation, linear
approximation, and quadratic approximation centred at a = 2. Which is which?

x

y

2

y = f (x)

A

B

C

Q[2]: Suppose T(x) is the Taylor series for f (x) = arctan3 (ex + 7) centred at a = 5. What
is T(5)?

119



SEQUENCES AND SERIES 3.6 TAYLOR SERIES

Q[3]: Below are a list of common functions, and their Taylor series representations.
Match the function to the Taylor series and give the radius of convergence of the series.

function series

A.
1

1´ x
I.

8
ÿ

n=0

(´1)n xn+1

n + 1

B. log(1 + x) II.
8
ÿ

n=0

(´1)n x2n+1

(2n + 1)!

C. arctan x III.
8
ÿ

n=0

(´1)n x2n

(2n)!

D. ex IV.
8
ÿ

n=0

(´1)n x2n+1

2n + 1

E. sin x V.
8
ÿ

n=0

xn

F. cos x VI.
8
ÿ

n=0

xn

n!

Q[4]:

(a) Suppose f (x) =
8
ÿ

n=0

n2

(n! + 1)
(x´ 3)n for all real x. What is f (20)(3) (the twentieth

derivative of f (x) at x = 3)?

(b) Suppose g(x) =
8
ÿ

n=0

n2

(n! + 1)
(x´ 3)2n for all real x. What is g(20)(3)?

(c) If h(x) =
arctan(5x2)

x4 , what is h(20)(0)? What is h(22)(0)?

§§ Stage 2

In Questions 5 through 8, you will create Taylor series from scratch. In practice, it is often preferable to
modify an existing series, rather than creating a new one, but you should understand both ways.

Q[5]: Using the definition of a Taylor series, find the Taylor series for f (x) = log(x)
centred at x = 1.

Q[6]: Find the Taylor series for f (x) = sin x centred at a = π.

Q[7]: Using the definition of a Taylor series, find the Taylor series for g(x) =
1
x

centred at
x = 10. What is the interval of convergence of the resulting series?
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SEQUENCES AND SERIES 3.6 TAYLOR SERIES

Q[8]: Using the definition of a Taylor series, find the Taylor series for h(x) = e3x centred
at x = a, where a is some constant. What is the radius of convergence of the resulting
series?

In Questions 9 through 16, practice creating new Taylor series by modifying known Taylor series, rather
than creating your series from scratch.

Q[9](˚): Find the Maclaurin series for f (x) =
1

2x´ 1
.

Q[10](˚): Let
8
ÿ

n=0

bnxn be the Maclaurin series for f (x) =
3

x + 1
´

1
2x´ 1

,

i.e.
8
ÿ

n=0

bnxn =
3

x + 1
´

1
2x´ 1

. Find bn.

Q[11](˚): Find the coefficient c5 of the fifth degree term in the Maclaurin series
8
ÿ

n=0

cnxn for

e3x.

Q[12](˚): Express the Taylor series of the function

f (x) = log(1 + 2x)

about x = 0 in summation notation.

Q[13](˚): The first two terms in the Maclaurin series for x2 sin(x3) are ax5 + bx11 , where a
and b are constants. Find the values of a and b.

Q[14](˚): Give the first two nonzero terms in the Maclaurin series for
ż

e´x2
´ 1

x
dx.

Q[15](˚): Find the Maclaurin series for
ż

x4 arctan(2x)dx.

Q[16](˚): Suppose that
d f
dx

=
x

1 + 3x3 and f (0) = 1. Find the Maclaurin series for f (x).

In past chapters, we were only able to exactly evaluate very specific types of series: geometric and telescoping.
In Questions 17 through 25, we expand our range by relating given series to Taylor series.
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SEQUENCES AND SERIES 3.6 TAYLOR SERIES

Q[17](˚): The Maclaurin series for arctan x is given by

arctan x =
8
ÿ

n=0

(´1)n x2n+1

2n + 1

which has radius of convergence equal to 1. Use this fact to compute the exact value of
the series below:

8
ÿ

n=0

(´1)n

(2n + 1)3n

Q[18](˚): Evaluate
8
ÿ

n=0

(´1)n

n!
.

Q[19](˚): Evaluate
8
ÿ

k=0

1
ekk!

.

Q[20](˚): Evaluate the sum of the convergent series
8
ÿ

k=1

1
πkk!

.

Q[21](˚): Evaluate
8
ÿ

n=1

(´1)n´1

n 2n .

Q[22](˚): Evaluate
8
ÿ

n=1

n + 2
n!

en .

Q[23]: Evaluate
8
ÿ

n=1

2n

n
, or show that it diverges.

Q[24]: Evaluate
8
ÿ

n=0

(´1)n

(2n + 1)!

(π

4

)2n+1 (
1 + 22n+1

)

or show that it diverges.

Q[25](˚): (a) Show that the power series
8
ÿ

n=0

x2n

(2n)!
converges absolutely for all real

numbers x.

(b) Evaluate
8
ÿ

n=0

1
(2n)!

.

122



SEQUENCES AND SERIES 3.6 TAYLOR SERIES

Q[26]:
(a) Using the fact that arctan(1) =

π

4
, how many terms of the Taylor series for arctangent

would you have to add up to approximate π with an error of at most 4ˆ 10´5?
(b) Example 3.6.13 in the CLP–2 text mentions the formula

π = 16 arctan
1
5
´ 4 arctan

1
239

Using the Taylor series for arctangent, how many terms would you have to add up to
approximate π with an error of at most 4ˆ 10´5?

(c) Assume without proof the following:

arctan
1
2
+ arctan

1
3
= arctan

(
3 + 2

2 ¨ 3´ 1

)

Using the Taylor series for arctangent, how many terms would you have to add up to
approximate π with an error of at most 4ˆ 10´5?

Q[27]: Suppose you wanted to approximate the number log(1.5) as a rational number
using the Taylor expansion of log(1 + x). How many terms would you need to add to get
10 decimal places of accuracy? (That is, an absolute error less than 5ˆ 10´11.)

Q[28]: Suppose you wanted to approximate the number e as a rational number using the
Maclaurin expansion of ex. How many terms would you need to add to get 10 decimal
places of accuracy? (That is, an absolute error less than 5ˆ 10´11.)

You may assume without proof that 2 ă e ă 3.

Q[29]: Suppose you wanted to approximate the number log(0.9) as a rational number
using the Taylor expansion of log(1´ x). Which partial sum should you use to get 10
decimal places of accuracy? (That is, an absolute error less than 5ˆ 10´11.)

Q[30]: Define the hyperbolic sine function as

sinh x =
ex ´ e´x

2
.

Suppose you wanted to approximate the number sinh(b) using the Maclaurin series of
sinh x, where b is some number in (´2, 1). Which partial sum should you use to
guarantee 10 decimal places of accuracy? (That is, an absolute error less than 5ˆ 10´11.)

You may assume without proof that 2 ă e ă 3.

Q[31]: Let f (x) be a function with

f (n)(x) =
(n´ 1)!

2

[
(1´ x)´n + (´1)n´1(1 + x)´n

]

for all n ě 1.
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SEQUENCES AND SERIES 3.6 TAYLOR SERIES

Give reasonable bounds (both upper and lower) on the error involved in approximating
f
(
´1

3

)
using the partial sum S6 of the Taylor series for f (x) centred at a = 1

2 .

Remark: One function with this quality is the inverse hyperbolic tangent function.1

§§ Stage 3

Q[32](˚): Use series to evaluate lim
xÑ0

1´ cos x
1 + x´ ex .

Q[33](˚): Evaluate lim
xÑ0

sin x´ x + x3

6
x5 .

Q[34]: Evaluate lim
xÑ0

(
1 + x + x2

)2/x
using a Taylor series for the natural logarithm.

Q[35]: Use series to evaluate

lim
xÑ8

(
1 +

1
2x

)x

Q[36]: Evaluate the series
8
ÿ

n=0

(n + 1)(n + 2)
7n or show that it diverges.

Q[37]: Write the series f (x) =
8
ÿ

n=0

(´1)nx2n+4

(2n + 1)(2n + 2)
as a combination of familiar functions.

Q[38]:
(a) Find the Maclaurin series for f (x) = (1´ x)´1/2. What is its radius of convergence?
(b) Manipulate the series you just found to find the Maclaurin series for g(x) = arcsin x.

What is its radius of convergence?

Q[39](˚): Find the Taylor series for f (x) = log(x) centred at a = 2. Find the interval of
convergence for this series.

Q[40](˚): Let I(x) =
ż x

0

1
1 + t4 dt.

(a) Find the Maclaurin series for I(x).

(b) Approximate I(1/2) to within ˘0.0001.

(c) Is your approximation in (b) larger or smaller than the true value of I(1/2)? Explain.

1 Of course it is! Actually, hyperbolic tangent is tanh(x) =
ex ´ e´x

ex + e´x , and inverse hyperbolic tangent is

its functional inverse.
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SEQUENCES AND SERIES 3.6 TAYLOR SERIES

Q[41](˚): Using a Maclaurin series, the number a = 1/5´ 1/7 + 1/18 is found to be an

approximation for I =
ż 1

0
x4e´x2

dx. Give the best upper bound you can for |I ´ a|.

Q[42](˚): Find an interval of length 0.0002 or less that contains the number

I =
ż 1

2

0
x2e´x2

dx

Q[43](˚): Let I(x) =
ż x

0

e´t ´ 1
t

dt.

(a) Find the Maclaurin series for I(x).

(b) Approximate I(1) to within ˘0.01.

(c) Explain why your answer to part (b) has the desired accuracy.

Q[44](˚): The function Σ(x) is defined by Σ(x) =
ż x

0

sin t
t

dt.

(a) Find the Maclaurin series for Σ(x).
(b) It can be shown that Σ(x) has an absolute maximum which occurs at its smallest

positive critical point (see the graph of Σ(x) below). Find this critical point.
(c) Use the previous information to find the maximum value of Σ(x) to within ˘0.01.

x

y

Q[45](˚): Let I(x) =
ż x

0

cos t´ 1
t2 dt.

(a) Find the Maclaurin series for I(x).
(b) Use this series to approximate I(1) to within ˘0.01
(c) Is your estimate in (b) greater than I(1)? Explain.

Q[46](˚): Let I(x) =
ż x

0

cos t + t sin t´ 1
t2 dt

(a) Find the Maclaurin series for I(x).

(b) Use this series to approximate I(1) to within ˘0.001

(c) Is your estimate in (b) greater than or less than I(1)?

Q[47](˚): Define f (x) =
ż x

0

1´ e´t

t
dt.

(a) Show that the Maclaurin series for f (x) is
8
ÿ

n=1

(´1)n´1

n ¨ n!
xn.
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(b) Use the ratio test to determine the values of x for which the Maclaurin series
8
ÿ

n=1

(´1)n´1

n ¨ n!
xn converges.

Q[48](˚): Show that
ż 1

0

x3

ex ´ 1
dx ď

1
3

.

Q[49](˚): Let cosh(x) =
ex + e´x

2
.

(a) Find the power series expansion of cosh(x) about x0 = 0 and determine its interval
of convergence.

(b) Show that 32
3 ď cosh(2) ď 32

3 + 0.1.

(c) Show that cosh(t) ď e
1
2 t2

for all t.

Q[50]: The law of the instrument says “If you have a hammer then everything looks like
a nail” — it is really a description of the “tendency of jobs to be adapted to tools rather
than adapting tools to jobs.”* Anyway, this is a long way of saying that just because we
know how to compute things using Taylor series doesn’t mean we should neglect other
techniques.
(a) Using Newton’s method, approximate the constant 3

?
2 as a root of the function

g(x) = x3 ´ 2. Using a calculator, make your estimation accurate to within 0.01.
(b) You may assume without proof that

3
?

x = 1 +
1
6
(x´ 1) +

8
ÿ

n=2

(´1)n´1 (2)(5)(8) ¨ ¨ ¨ (3n´ 4)
3n n!

(x´ 1)n.

for all real numbers x. Using the fact that this is an alternating series, how many
terms would you have to add for the partial sum to estimate 3

?
2 with an error less

than 0.01?

* Quote from Silvan Tomkins’s Computer Simulation of Personality: Frontier of Psychological Theory. See also
Birmingham screwdrivers.

Q[51]: Let f (x) = arctan(x3). Write f (10)
(

1
5

)
as a sum of rational numbers with an error

less than 10´6 using the Maclaurin series for arctangent.

Q[52]: Consider the following function:

f (x) =

#

e´1/x2
x ‰ 0

0 x = 0

(a) Sketch y = f (x).

(b) Assume (without proof) that f (n)(0) = 0 for all whole numbers n. Find the Maclaurin
series for f (x).
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(c) Where does the Maclaurin series for f (x) converge?

(d) For which values of x is f (x) equal to its Maclaurin series?

Q[53]: Suppose f (x) is an odd function, and f (x) =
8
ÿ

n=0

f (n)(0)
n!

xn. Simplify

8
ÿ

n=0

f (2n)(0)
(2n)!

x2n.
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HINTS TO PROBLEMS

Part II
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Hints for Exercises 1.1. — Jump to TABLE OF CONTENTS.

H-1: Draw a rectangle that encompasses the entire shaded area, and one that is
encompassed by the shaded area. The shaded area is no more than the area of the bigger
rectangle, and no less than the area of the smaller rectangle.

H-2: We can improve on the method of Question 1 by using three rectangles that together
encompass the shaded region, and three rectangles that together are encompassed by the
shaded region.

H-3: Four rectangles suffice.

H-4: Try drawing a picture.

H-5: Try an oscillating function.

H-6: The ordering of the parts is intentional: each sum can be written by changing some
small part of the sum before it.

H-7: If we raise ´1 to an even power, we get +1, and if we raise it to an odd power, we
get ´1.

H-8: Sometimes a little anti-simplification can make the pattern more clear.

(a) Re-write as 1
3 +

3
9 +

5
27 +

7
81 +

9
243 .

(b) Compare to the sum in the hint for (a).

(c) Re-write as 1 ¨ 1000 + 2 ¨ 100 + 3 ¨ 10 + 4
1 +

5
10 +

6
100 +

7
1000 .

H-9: (a), (b) These are geometric sums.
(c) You can write this as three separate sums.
(d) You can write this as two separate sums. Remember that e is a constant. Don’t be
thrown off by the index being n instead of i.

H-10:

(a) Write out the terms of the two sums.

(b) A change of index is an easier option than expanding the cubic.

(c) Which terms cancel?

(d) Remember 2n + 1 is odd for every integer n. The index starts at n = 2, not n = 1.

H-11: Since the sum adds four pieces, there will be four rectangles. However, one might
be extremely small.

H-12: Write out the general formula for the left Riemann sum from Definition 1.1.11 in
the CLP-2 text and choose a, b and n to make it match the given sum.

H-13: Since the sum runs from 1 to 3, there are three intervals. Suppose 2 = ∆x = b´a
n .

You may assume the sum given is a right Riemann sum (as opposed to left or midpoint).

H-14: Let ∆x =
π

20
. Then what is b´ a?
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H-15: Notice that the index starts at k = 0, instead of k = 1. Write out the given sum
explicitly without using summation notation, and sketch where the rectangles would fall
on a graph of y = f (x). Then try to identify b´ a, and n, followed by “right”, “left”, or
“midpoint”, and finally a.

H-16: The area is a triangle.

H-17: There is one triangle of positive area, and one of negative area.

H-18: Review Definition 1.1.11 in the CLP-2 text.

H-20: You’ll want the limit as n goes to infinity of a sum with n terms. If you’re having a
hard time coming up with the sum in terms of n, try writing a sum with a finite number
of terms of your choosing. Then, think about how that sum would change if it had n
terms.

H-21: The main step is to express the given sum as the right Riemann sum,

n
ÿ

i=1

f (a + i∆x)∆x.

Don’t be afraid to guess ∆x and f (x) (review Definition 1.1.11 in the CLP-2 text). Then

write out explicitly
n
ř

i=1
f (a + i∆x)∆x with your guess substituted in, and compare the

result with the given sum. Adjust your guess if they don’t match.

H-22: The main step is to express the given sum as the right Riemann sum
n
ř

k=1
f (a + k∆x)∆x. Don’t be afraid to guess ∆x and f (x) (review Definition 1.1.11 in the

CLP-2 text). Then write out explicitly
n
ř

k=1
f (a + k∆x)∆x with your guess substituted in,

and compare the result with the given sum. Adjust your guess if they don’t match.

H-23: The main step is to express the given sum in the form
řn

i=1 f (x˚i )∆x. Don’t be
afraid to guess ∆x, x˚i (for either a left or a right or a midpoint sum — review Definition
1.1.11 in the CLP-2 text) and f (x). Then write out explicitly

řn
i=1 f (x˚i )∆x with your

guess substituted in, and compare the result with the given sum. Adjust your guess if
they don’t match.

H-24: The main step is to express the given sum in the form
n
ř

i=1
f (x˚i )∆x. Don’t be afraid

to guess ∆x, x˚i (probably, based on the symbol Rn, assuming we have a right Riemann
sum — review Definition 1.1.11 in the CLP-2 text) and f (x). Then write out explicitly

n
ř

i=1
f (x˚i )∆x with your guess substituted in, and compare the result with the given sum.

Adjust your guess if they don’t match.

H-25: Try several different choices of ∆x and x˚i .

H-26: Let x = r3, and re–write the sum in terms of x.

H-27: Note the sum does not start at r0 = 1.
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H-28: Draw a picture. See Example 1.1.15 in the CLP-2 text.

H-29: Draw a picture. Remember |x| =
"

x x ě 0
´x x ă 0 .

H-30: Draw a picture: the area we want is a trapezoid. If you don’t remember a formula
for the area of a trapezoid, think of it as the difference of two triangles.

H-31: You can draw a very similar picture to Question 30, but remember the areas are
negative.

H-32: If y =
?

16´ x2, then y is nonnegative, and y2 + x2 = 16.

H-33: Sketch the graph of f (x).

H-34: At which time in the interval, for example, 0 ď t ď 0.5, is the car moving the
fastest?

H-35: What are the possible speeds the car could have reached at time t = 0.25?

H-36: You need to know the speed of the plane at the midpoints of your intervals, so (for
example) noon to 1pm is not one of your intervals.

H-37: Sure looks like a Riemann sum.

H-38: For part (b): don’t panic! Just take it one step at a time. The first step is to write
down the Riemann sum. The second step is to evaluate the sum, using the given identity.
The third step is to evaluate the limit n Ñ 8.

H-39: The first step is to write down the Riemann sum. The second step is to evaluate the
sum, using the given formulas. The third step is to evaluate the limit as n Ñ 8.

H-40: The first step is to write down the Riemann sum. The second step is to evaluate the
sum, using the given formulas. The third step is to evaluate the limit n Ñ 8.

H-41: You’ve probably seen this hint before. It is worth repeating. Don’t panic! Just take
it one step at a time. The first step is to write down the Riemann sum. The second step is
to evaluate the sum, using the given formula. The third step is to evaluate the limit
n Ñ 8.

H-42: Using the definition of a right Riemann sum, we can come up with an expression
for f (´5 + 10i). In order to find f (x), set x = ´5 + 10i.

H-43: Recall that for a positive constant a, d
dx ta

xu = ax log a, where log a is the natural
logarithm (base e) of a.

H-44: Part (a) follows the same pattern as Question 43–there’s just a little more algebra
involved, since our lower limit of integration is not 0.

H-45: Your area can be divided into a section of a circle and a triangle. Then you can use
geometry to find the area of each piece.

H-46:

(a) The difference between the upper and lower bounds is the area that is outside of the
smaller rectangles but inside the larger rectangles. Drawing both sets of rectangles on
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one picture might make things clearer. Look for an easy way to compute the area you
want.

(b) Use your answer from Part (a). Your answer will depend on f , a, and b.

H-47: Since f (x) is linear, there exist real numbers m and c such that f (x) = mx + c. It’s a
little easier to first look at a single triangle from each sum, rather than the sums in their
entirety.

Hints for Exercises 1.2. — Jump to TABLE OF CONTENTS.

H-1:

(a) What is the length of this figure?

(b) Think about cutting the area into two pieces vertically.

(c) Think about cutting the area into two pieces another way.

H-2: Use the identity
b
ş

a
f (x) dx =

c
ş

a
f (x) dx +

b
ş

c
f (x) dx.

H-4: Note that the limits of the integral given are in the opposite order from what we
might expect: the smaller number is the top limit of integration.

Recall ∆x = b´a
n .

H-5: Split the “target integral” up into pieces that can be evaluated using the given
integrals.

H-6: Split the “target integral” up into pieces that can be evaluated using the given
integrals.

H-7: Split the “target integral” up into pieces that can be evaluated using the given
integrals.

H-8: For part (a), use the symmetry of the integrand. For part (b), the area
1
ş

0

?
1´ x2 dx is

easy to find–how is this useful to you?

H-9: The evaluation of this integral was also the subject of Question 9 in Section 1.1. This
time try using the method of Example 1.2.6 in the CLP-2 text.

H-10: Use symmetry.

H-11: Check Theorem 1.2.11 in the CLP-2 text.

H-12: Split the integral into a sum of two integrals. Interpret each geometrically.

H-13: Hmmmm. Looks like a complicated integral. It’s probably a trick question. Check
for symmetries.

H-14: Check for symmetries again.

H-15: What does the integrand look like to the left and right of x = 3?
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H-16: In part (b), you’ll have to factor a constant out through a square root. Remember
the upper half of a circle looks like

?
r2 ´ x2.

H-17: For two functions f (x) and g(x), define h(x) = f (x) ¨ g(x). If h(´x) = h(x), then
the product is even; if h(´x) = ´h(x), then the product is odd.

The table will not be the same as if we were multiplying even and odd numbers.

H-18: Note f (0) = f (´0).

H-19: If f (x) is even and odd, then f (x) = ´ f (x) for every x.

H-20: Think about mirroring a function across an axis. What does this do to the slope?

Hints for Exercises 1.3. — Jump to TABLE OF CONTENTS.

H-2: First find the general antiderivative by guessing and checking.

H-3: Be careful. Two of these make no sense at all.

H-4: Check by differentiating.

H-5: Check by differentiating.

H-6: Use the Fundamental Theorem of Calculus Part 1.

H-7: Use the Fundamental Theorem of Calculus, Part 1.

H-8: You already know that F(x) is an antiderivative of f (x).

H-9: (a) Recall d
dxtarccos xu = ´1?

1´x2
.

(b) All antiderivatives of
?

1´ x2 differ from one another by a constant. You already
know one antiderivative.

H-10: In order to apply the Fundamental Theorem of Calculus Part 2, the integrand must
be continuous over the interval of integration.

H-11: Use the definition of F(x) as an area.

H-12: F(x) represents net signed area.

H-13: Note G(x) = ´F(x), when F(x) is defined as in Question 12.

H-14: Using the definition of the derivative, F1(x) = lim
hÑ0

F(x + h)´ F(x)
h

.

The area of a trapezoid with base b and heights h1 and h2 is 1
2 b(h1 + h2).

H-15: There is only one!

H-16: If d
dxtF(x)u = f (x), that tells us

ş

f (x) dx = F(x) + C.

H-17: When you’re differentiating, you can leave the ex factored out.

H-18: After differentiation, you can simplify pretty far. Keep at it!
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H-19: This derivative also simplifies considerably. You might need to add fractions by
finding a common denominator.

H-20: Guess a function whose derivative is the integrand, then use the Fundamental
Theorem of Calculus Part 2.

H-21: Split the given integral up into two integrals.

H-22: The integrand is similar to
1

1 + x2 , so something with arctangent seems in order.

H-23: The integrand is similar to
1

?
1´ x2

, so factoring out
?

2 from the denominator will

make it look like some flavour of arcsine.

H-24: We know how to antidifferentiate sec2 x, and there is an identity linking sec2 x with
tan2 x.

H-25: Recall 2 sin x cos x = sin(2x).

H-26: cos2 x =
1 + cos(2x)

2
H-28: There is a good way to test where a function is increasing, decreasing, or constant,
that also has something to do with topic of this section.

H-29: See Example 1.3.5 in the CLP-2 text.

H-30: See Example 1.3.5 in the CLP-2 text.

H-31: See Example 1.3.5 in the CLP-2 text.

H-32: See Example 1.3.5 in the CLP-2 text.

H-33: See Example 1.3.6 in the CLP-2 text.

H-34: Apply d
dx to both sides.

H-35: What is the title of this section?

H-36: See Example 1.3.6 in the CLP-2 text.

H-37: See Example 1.3.6 in the CLP-2 text.

H-38: See Example 1.3.6 in the CLP-2 text.

H-39: See Example 1.3.6 in the CLP-2 text.

H-40: Split up the domain of integration.

H-41: It is possible to guess an antiderivative for f 1(x) f 2(x) that is expressed in terms of
f 1(x).

H-42: When does the car stop? What is the relation between velocity and distance
travelled?

H-43: See Example 1.3.5 in the CLP-2 text. For the absolute maximum part of the
question, study the sign of f 1(x).
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H-44: See Example 1.3.5 in the CLP-2 text. For the “minimum value” part of the question,
study the sign of f 1(x).

H-45: See Example 1.3.5 in the CLP-2 text. For the “maximum” part of the question,
study the sign of F1(x).

H-46: Review the definition of the definite integral and in particular Definitions 1.1.9 and
1.1.11 in the CLP-2 text.

H-47: Review the definition of the definite integral and in particular Definitions 1.1.9 and
1.1.11 in the CLP-2 text.

H-48: Carefully check the Fundamental Theorem of Calculus: as written, it only applies
directly to F(x) when x ě 0.

Is F(x) even or odd?

H-49: In general, the equation of the tangent line to the graph of y = f (x) at x = a is
y = f (a) + f 1(a) (x´ a).

H-50: Recall tan2 x + 1 = sec2 x.

H-51: Since the integration is with respect to t, the x3 term can be moved outside the
integral.

H-52: Remember that antiderivatives may have a constant term.

Hints for Exercises 1.4. — Jump to TABLE OF CONTENTS.

H-1: One is true, the other false.

H-2: You can check whether the final answer is correct by differentiating.

H-3: Check the limits.

H-4: Check every step. Do they all make sense?

H-6: What is d
dxt f (g(x))u?

H-7: What is the derivative of the argument of the cosine?

H-8: What is the title of the current section?

H-9: What is the derivative of x3 + 1?

H-10: What is the derivative of log x?

H-11: What is the derivative of 1 + sin x?

H-12: cos x is the derivative of what?

H-13: What is the derivative of the exponent?

H-14: What is the derivative of the argument of the square root?

H-15: What is d
dx

 a

log x
(

?
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H-16: There is a short, slightly sneaky method — guess an antiderivative — and a really
short, still-more-sneaky method.

H-17: Review the definition of the definite integral and in particular Definitions 1.1.9 and
1.1.11 in the CLP-2 text.

H-18: If w = u2 + 1, then u2 = w´ 1.

H-19: Using a trigonometric identity, this is similar (though not identical) to
ş

tan θ ¨ sec2 θ dθ.

H-20: If you multiply the top and the bottom by ex, what does this look like the
antiderivative of?

H-21: You know methods other than substitution to evaluate definite integrals.

H-22: tan x =
sin x
cos x

H-23: Review the definition of the definite integral and in particular Definitions 1.1.9 and
1.1.11 in the CLP-2 text.

H-24: Review the definition of the definite integral and in particular Definitions 1.1.9 and
1.1.11 in the CLP-2 text.

H-25: Find the right Riemann sum for both definite integrals.

Hints for Exercises 1.5. — Jump to TABLE OF CONTENTS.

H-1: When we say “area between,” we want positive area, not signed area.

H-2: We’re taking rectangles that reach from one function to the other.

H-3: Draw a sketch first.

H-4: Draw a sketch first.

H-5: You can probably find the intersections by inspection.

H-6: To find the intersection, plug x = 4y2 into the equation x + 12y + 5 = 0.

H-7: If the bottom function is the x-axis, this is a familiar question.

H-8: Part of the job is to determine whether y = x lies above or below y = 3x´ x2.

H-9: Guess the intersection points by trying small integers.

H-10: Draw a sketch first. You can also exploit a symmetry of the region to simplify your
solution.

H-11: Figure out where the two curves cross. To determine which curve is above the
other, try evaluating f (x) and g(x) for some simple value of x. Alternatively, consider x
very close to zero.

H-12: Think about whether it will easier to use vertical strips or horizontal strips.

H-13: Writing an integral for this is nasty. How can you avoid it?
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H-14: You are asked for the area, not the signed area. Be very careful about signs.

H-15: You are asked for the area, not the signed area. Draw a sketch of the region and be
very careful about signs.

H-16: You have to determine whether

• the curve y = f (x) = x
?

25´ x2 lies above the line y = g(x) = 3x for all 0 ď x ď 4
or

• the curve y = f (x) lies below the line y = g(x) for all 0 ď x ď 4 or

• y = f (x) and y = g(x) cross somewhere between x = 0 and x = 4.

One way to do so is to study the sign of f (x)´ g(x) = x
(?

25´ x2 ´ 3
)
.

H-17: Flex those geometry muscles.

H-18: These two functions have three points of intersection. This question is slightly
messy, but uses the same concepts we’ve been practicing so far.

Hints for Exercises 1.6. — Jump to TABLE OF CONTENTS.

H-1: The horizontal cross-sections were discussed in Example 1.6.1 of the CLP-2 text.

H-2: What are the dimensions of the cross-sections?

H-3: There are two different kinds of washers.

H-4: Draw sketches. The mechanically easiest way to answer part (b) uses the method of
cylindrical shells, which is in the optional section 1.6 of the CLP-2 text. The method of
washers also works, but requires you to have more patience and also to have a good idea
what the specified region looks like. Look at your sketch very careful when identifying
the ends of your horizontal strips.

H-5: Draw sketchs.

H-6: Draw a sketch.

H-7: If you take horizontal slices (parallel to one face), they will all be equilateral
triangles.

Be careful not to confuse the height of a triangle with the height of the tetrahedron.

H-8: Sketch the region.

H-9: Sketch the region first.

H-10: You can save yourself quite a bit of work by interpreting the integral as the area of
a known geometric figure.

H-11: See Example 1.6.3 in the CLP-2 text.

H-12: See Example 1.6.5 in the CLP-2 text.
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H-13: Sketch the region. To find where the curves intersect, look at where cos( x
2 ) and

x2 ´ π2 both have roots.

H-14: See Example 1.6.6 in the CLP-2 text.

H-15: See Example 1.6.6 in the CLP-2 text. Imagine cross-sections with shadow parallel
to the y-axis, sticking straight out of the xy-plane.

H-16: See Example 1.6.1 in the CLP-2 text.

H-17: (a) Don’t be put off by phrases like “rotating an ellipse about its minor axis.” This
is the same kind of volume you’ve been calculating all section.
(b) Hopefully, you sketched the ellipse in part (a). What was its smallest radius? Its
largest? These correspond to the polar and equitorial radii, respectively.
(c) Combine your answers from (a) and (b).
(d) Remember that the absolute error is the absolute difference of your two results–that
is, you subtract them and take the absolute value. The relative error is the absolute error
divided by the actual value (which we’re taking, for our purposes, to be your answer
from (c)). When you take the relative error, lots of terms will cancel, so it’s easiest to not
use a calculator till the end.

H-18: To find the points of intersection, set 4´ (x´ 1)2 = x + 1.

H-19: You can somewhat simplify your calculations in part (a) (but not part (b)) by using
the fact that R is symmetric about the line y = x.

When you’re solving an equation for x, be careful about your signs: x´ 1 is negative.

H-20: The mechanically easiest way to answer part (b) uses the method of cylindrical
shells, which we have not covered. The method of washers also works, but requires you
have enough patience and also to have a good idea what R looks like. So it is crucial to
first sketch R. Then be very careful in identifying the left end of your horizontal strips.

H-21: Note that the curves cross. The area of this region was found in Problem 14 of
Section 1.5. It would be useful to review that problem.

H-22: You can use ideas from this section to answer the question. If you take a very thin
slice of the column, the density is almost constant, so you can find the mass. Then you
can add up all your little slices. It’s the same idea as volume, only applied to mass.

Do be careful about units: in the problem statement, some are given in metres, others in
kilometres.

If you’re having a hard time with the antiderivative, try writing the exponential function
with base e. Remember 2 = elog 2.

Hints for Exercises 1.7. — Jump to TABLE OF CONTENTS.

H-1: Read back over Sections 1.4 and 1.7 of the CLP-2 text. When these methods are
introduced, they are justified using the corresponding differentiation rules.
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H-2: Remember our rule:
ş

udv = uv´
ş

vdu. So, we take u and use it to make du, and
we take dv and use it to make v.

H-3: According to the quotient rule,

d
dx

"

f (x)
g(x)

*

=
g(x) f 1(x)´ f (x)g1(x)

g2(x)
.

Antidifferentiate both sides of the equation, then solve for the expression in the question.

H-4: Remember all the antiderivatives differ only by a constant, so you can write them
all as v(x) + C for some C.

H-5: What integral do you have to evaluate, after you plug in your choices to the
integration by parts formula?

H-6: You’ll probably want to use integration by parts. (It’s the title of the section, after
all). You’ll break the integrand into two parts, integrate one, and differentiate the other.
Would you rather integrate log x, or differentiate it?

H-7: This problem is similar to Question 6.

H-8: Example 1.7.5 in the CLP-2 text shows you how to find the antiderivative. Then the
Fundamental Theorem of Calculus Part 2 gives you the definite integral.

H-9: Compare to Question 8. Try to do this one all the way through without peeking at
another solution!

H-10: If at first you don’t succeed, try using integration by parts a few times in a row.
Eventually, one part will go away.

H-11: Similarly to Question 10, look for a way to use integration by parts a few times to
simplify the integrand until it is antidifferentiatable.

H-12: Use integration by parts twice to get an integral with only a trigonometric function
in it.

H-13: If you let u = log t in the integration by parts, then du works quite nicely with the
rest of the integrand.

H-14: Those square roots are a little disconcerting– get rid of them with a substitution.

H-15: This can be solved using the same ideas as Example 1.7.8 in the CLP-2 text.

H-16: Not every integral should be evaluated using integration by parts.

H-17: You know, or can easily look up, the derivative of arccosine. You can use a similar
trick as the book did when antidifferentiating other inverse trigonometric functions in
Example 1.7.9 of the CLP-2 text.

H-18: After integrating by parts, do some algebraic manipulation to the integral until it’s
clear how to evaluate it.

H-19: After integration by parts, use a substitution.
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H-20: This example is similar to Example 1.7.10 in the CLP-2 text. The functions ex/2 and
cos(2x) both do not substantially alter when we differentiate or antidifferentiate them. If
we use integration by parts twice, we’ll end up with an expression that includes our
original integral. Then we can just solve for the original integral in the equation, without
actually integrating.

H-21: This looks a bit like a substitution problem, because we have an “inside function.”

It might help to review Example 1.7.11 in the CLP-2 text.

H-22: Start by simplifying.

H-23: sin(2x) = 2 sin x cos x

H-24: What is the derivative of xe´x?

H-25: You’ll want to do an integration by parts for (a)–check the end result to get a guess
as to what your parts should be. A trig identity and some amount of algebraic
manipulation will be necessary to get the final form.

H-26: See Examples 1.7.9 and 1.6.5 in the CLP-2 text for refreshers on integrating
arctangent, and using washers.

Remember tan2 x + 1 = sec2 x, and sec2 x is easy to integrate.

H-27: Your integral can be broken into two integrals, which yield to two different
integration methods.

H-28: Think, first, about how to get rid of the square root in the argument of f 2, and,
second, how to convert f 2 into f 1. Note that you are told that f 1(2) = 4 and f (0) = 1,
f (2) = 3.

H-29: Interpret the limit as a right Riemann sum.

Hints for Exercises 1.8. — Jump to TABLE OF CONTENTS.

H-1: Go ahead and try it!

H-2: Use the substitution u = sec x.

H-3: Divide both sides of the second identity by cos2 x.

H-4: See Example 1.8.6 in the CLP-2 text. Note that the power of cosine is odd, and the
power of sine is even (it’s zero).

H-5: See Example 1.8.7 in the CLP-2 text. All you need is a helpful trig identity.

H-6: The power of cosine is odd, so we can reserve one cosine for du, and turn the rest
into sines using the identity sin2 x + cos2 x = 1.

H-7: Since the power of sine is odd (and positive), we can reserve one sine for du, and
turn the rest into cosines using the identity sin2 + cos2 x = 1.

H-8: When we have even powers of sine and cosine both, we use the identities in the last
two lines of Equation 1.8.3 in the CLP-2 text.
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H-9: Since the power of sine is odd, you can use the substitution u = cos x.

H-10: Which substitution will work better: u = sin x, or u = cos x?

H-11: Try a substitution.

H-12: For practice, try doing this in two ways, with different substitutions.

H-13: A substitution will work. See Example 1.8.14 in the CLP-2 text for a template for
integrands with even powers of secant.

H-14: Try the substitution u = sec x.

H-15: Compare to Question 14.

H-16: What is the derivative of tangent?

H-17: Don’t be scared off by the non-integer power of secant. You can still use the
strategies in the notes for an odd power of tangent.

H-18: Since there are no secants in the problem, it’s difficult to use the substitution
u = sec x that we’ve enjoyed in the past. Example 1.8.12 in the CLP-2 text provides a
template for antidifferentiating an odd power of tangent.

H-19: Integrating even powers of tangent is surprisingly different from integrating odd
powers of tangent. You’ll want to use the identity tan2 x = sec2 x´ 1, then use the
substitution u = tan x, du = sec2 x dx on (perhaps only a part of) the resulting integral.
Example 1.8.16 in the CLP-2 text show you how this can be accomplished.

H-20: Since there is an even power of secant in the integrand, we can use the substitution
u = tan x.

H-21: How have we handled integration in the past that involved an odd power of
tangent?

H-22: Remember e is some constant. What are our strategies when the power of secant is
even and positive? We’ve seen one such substitution in Example 1.8.15 of the CLP-2 text.

H-23: See Example 1.8.16 in the CLP-2 text for a strategy for integrating powers of
tangent.

H-24: Write tan x =
sin x
cos x

.

H-25:
1

cos θ
= sec θ

H-26: cot x =
cos x
sin x

H-27: Try substituting.

H-28: To deal with the “inside function,” start with a substitution.

H-29: Try an integration by parts.
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Hints for Exercises 1.9. — Jump to TABLE OF CONTENTS.

H-1: The beginning of this section has a template for choosing a substitution. Your goal is
to use a trig identity to turn the argument of the square root into a perfect square, so you
can cancel

a

(something)2 = |something|.

H-2: You want to do the same thing you did in Question 1, but you’ll have to complete
the square first.

H-3: Since θ is acute, you can draw it as an angle of a right triangle. The given
information will let you label two sides of the triangle, and the Pythagorean Theorem
will lead you to the third.

H-4: You can draw a right triangle with angle θ, and use the given information to label
two of the sides. The Pythagorean Theorem gives you the third side.

H-5: As in Question 1, choose an appropriate substitution. Your answer should be in
terms of your original variable, x, which can be achieved using the methods of
Question 3.

H-6: As in Question 1, choose an appropriate substitution. Your answer will be a number,
so as long as you change your limits of integration when you substitute, you don’t need
to bother changing the antiderivative back into the original variable x. However, you
might want to use the techniques of Question 4 to simplify your final answer.

H-7: Question 1 guides the way to finding the appropriate substitution. Since the integral
is definite, your final answer will be a number. Your limits of integration should be
common reference angles.

H-8: Question 1 guides the way to finding the appropriate substitution. Since you have
in indefinite integral, make sure to get your answer back in terms of the original variable,
x. Question 3 gives a reliable method for this.

H-9: A trig substitution is not the easiest path.

H-10: To antidifferentiate, change your trig functions into sines and cosines.

H-11: The integrand should simplify quite far after your substitution.

H-12: In part (a) you are asked to integrate an even power of cos x. For part (b) you can
use a trigonometric substitution to reduce the integral of part (b) almost to the integral of
part (a).

H-13: What is the symmetry of the integrand?

H-14: See Example 1.9.3 in the CLP-2 text.

H-15: To integrate an even power of tangent, use the identity tan2 x = sec2 x´ 1.

H-16: A trig substitution is not the easiest path.

H-17: Complete the square. Your final answer will have an inverse trig function in it.

H-18: To antidifferentiate even powers of cosine, use the formula cos2 θ = 1
2(1 + cos(2θ)).

Then, remember sin(2θ) = 2 sin θ cos θ.

142



H-19: After substituting, use the identity tan2 x = sec2 x´ 1 more than once.

Remember
ż

sec xdx = log
ˇ

ˇ sec x + tan x
ˇ

ˇ+ C.

H-20: There’s no square root, but we can still make use of the substitution x = tan θ.

H-21: You’ll probably want to use the identity tan2 θ + 1 = sec2 θ more than once.

H-22: Complete the square — refer to Question 2 if you want a refresher. The constants
aren’t pretty, but don’t let them scare you.

H-23: After substituting, use the identity sec2 u = tan2 u + 1. It might help to break the
integral into a few pieces.

H-24: Make use of symmetry, and integrate with respect to y (rather than x).

H-25: Use the symmetry of the function to re-write your integrals without an absolute
value.

H-26: Think of ex as
(
ex/2)2

, and use a trig substitution. Then, use the identity
sec2 θ = tan2 θ + 1.

H-27:

(a) Use logarithm rules to simplify first.

(b) Think about domains.

(c) What went wrong in part (b)? At what point in the work was that problem
introduced?
There is a subtle but important point mentioned in the introductory text to
Section 1.9 of the CLP-2 text that may help you make sense of things.

H-28: Consider the ranges of the inverse trigonometric functions. For (c), also consider
the domain of

?
x2 ´ a2.

Hints for Exercises 1.10. — Jump to TABLE OF CONTENTS.

H-1: If a quadratic function can be factored as (ax + b)(cx + d) for some constants
a, b, c, d, then it has roots ´ b

a and ´d
c .

H-2: Review Equations 1.10.7 through 1.10.11 of the CLP-2 text. Be careful to fully factor
the denominator.

H-3: Review Example 1.10.1 in the CLP-2 text. Is the “Algebraic Method” or the “Sneaky
Method” going to be easier?

H-4: For each part, use long division as in Example 1.10.4 of the CLP-2 text.

H-5: (a) Look for a pattern you can exploit to factor out a linear term.
(b) If you set y = x2, this is quadratic. Remember (x2 ´ a) = (x +

?
a)(x´

?
a) as long as

a is positive.
(c),(d) Look for integer roots, then use long division.
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H-6: Why do we do partial fraction decomposition at all?

H-7: What is the title of this section?

H-8: You can save yourself some work in developing your partial fraction decomposition
by renaming x2 to y and comparing the result with Question 7.

H-9: Review Steps 3 (particularly the “Sneaky Method”) and 4 of Example 1.10.3 in the
CLP-2 text.

H-10: Review Steps 3 (particularly the “Sneaky Method”) and 4 of Example 1.10.3 in the
CLP-2 text. Remember d

dxtarctan xu = 1
1+x2 .

H-11: Fill in the blank: the integrand is a function.

H-12: The integrand is yet another function.

H-13: Since the degree of the numerator is the same as the degree of the denominator, we
can’t do our partial fraction decomposition before we simplify the integrand.

H-14: The degree of the numerator is not smaller than the degree of the denominator.
Your final answer will have an arctangent in it.

H-15: In the partial fraction decomposition, several constants turn out to be 0.

H-16: Factor (2x´ 1) out of the denominator to get started. You don’t need long division
for this step.

H-17: When it comes time to integrate, look for a convenient substitution.

H-18: csc x =
1

sin x
=

sin x
sin2 x

H-19: Use the partial fraction decomposition from Queston 18 to save yourself some time.

H-20: In the final integration, complete the square to make a piece of the integrand look
more like the derivative of arctangent.

H-21: Review Question 20 in Section 1.9 for antidifferentiation tips.

H-22: Partial fraction decomposition won’t simplify this any more. Use a trig
substitution.

H-23: To evaluate the antiderivative, break one of the fractions into two fractions.

H-24: cos2 θ = 1´ sin2 θ

H-25: If you’re having a hard time making the substitution, multiply the numerator and
the denominator by ex.

H-26: Try the substitution u =
?

1 + ex. You’ll need to do long division before you can
use partial fraction decomposition.

H-27: The mechanically easiest way to answer part (c) uses the method of cylindrical
shells, which we have not covered. The method of washers also works, but requires you
have enough patience and also to have a good idea what R looks like. So look at the
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sketch in part (a) very carefully when identifying the left endpoints of your horizontal
strips.

H-28: You’ll need to use two regions, because the curves cross.

H-29: For (b), use the Fundamental Theorem of Calculus Part 1.

Hints for Exercises 1.11. — Jump to TABLE OF CONTENTS.

H-1: The absolute error is the difference of the two values; the relative error is the
absolute error divided by the exact value; the percent error is one hundred times the
relative error.

H-2: You should have four rectangles in one drawing, and four trapezoids in another.

H-3: Sketch the second derivative–it’s quadratic.

H-4: You don’t have to find the actual, exact maximum the second derivative
achieves–you only have to give a reasonable “ceiling” that it never breaks through.

H-5: To compute the upper bound on the error, find an upper bound on the fourth
derivative of cosine, then use Theorem 1.11.12 in the CLP-2 text.

To find the actual error, you need to find the actual value of A.

H-6: Find a function with f 2(x) = 3 for all x in [0, 1].

H-7: You’re allowed to use common sense for this one.

H-8: For part (b), consider Question 7.

H-9: Draw a sketch.

H-10: The error bound for the approximation is given in Theorem 1.11.12 in the CLP-2
text. You want this bound to be zero.

H-11: Follow the formulas in Equations 1.11.2, 1.11.6, and 1.11.9 in the CLP-2 text.

H-12: See Section 1.11.1 in the CLP-2 text. You should be able to simplify your answer to
an exact value (in terms of π).

H-13: See Section 1.11.2 in the CLP-2 text. To set up the volume integral, see Example
1.6.6 in the CLP-2 text. Note the dimensions given for the cross sections are diameters,
not radii.

H-14: See Section 1.11.3 in the CLP-2 text, and compare to Question 13. Note the table
gives diameters, not radii.

H-15: See §1.11.3 in the CLP-2 text. To set up the volume integral, see Example 1.6.6 in
the CLP-2 text, or Question 14.

Note that the table gives the circumference, not radius, of the tree at a given height.

H-18: The main step is to find an appropriate value of M. It is not necessary to find the
smallest possible M.
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H-19: The main step is to find M. This question is unusual in that its wording requires
you to find the smallest possible allowed M.

H-20: The main steps in part (b) are to find the smallest possible values of M and L.

H-21: As usual, the biggest part of this problem is finding L. Don’t be thrown off by the
error bound being given slightly differently from Theorem 1.11.12 in the CLP-2 text:
these expressions are equivalent, since ∆x = b´a

n .

H-22: The function e´2x =
1

e2x is positive and decreasing, so its maximum occurs when x
is as small as possible.

H-23:

H-24: The “best ... approximations that you can” means using the maximum number of
intervals, given the information available.

The final sentence in part (b) is just a re-statement of the error bounds we’re familiar with

from Theorem 1.11.12 in the CLP-2 text. The information
ˇ

ˇs(k)(x)
ˇ

ˇ ď
k

1000
gives you

values of M and L when you set k = 2 and k = 4, respectively.

H-25: Set the error bound to be less than 0.001, then solve for n.

H-26: See Section 1.11.3 in the CLP-2 text. To set up the volume integral, see Example
1.6.2 in the CLP-2 text.

Since the cross-sections of the pool are semi-circular disks, a section that is d metres

across will have area 1
2 π
(

d
2

)2
square feet. Based on the drawing, you may assume the

very ends of the pool have distance 0 feet across.

H-27: See Example 1.11.14 in the CLP-2 text.

Don’t get caught up in the interpretation of the integral. It’s nice to see how integrals can
be used, but for this problem, you’re still just approximating the integral given, and
bounding the error.

When you find the second derivative to bound your error, pay attention to the difference
between the integrand and g(r).

H-28: See Example 1.11.15 in the CLP-2 text. You’ll want to use a calculator for the
approximation in (a), and for finding the appropriate number of intervals in (b).
Remember that Simpson’s rule requires an even number of intervals.

H-29: See Example 1.11.15 in the CLP-2 text.

Rather than calculating the fourth derivative of the integrand, use the graph to find the
largest absolute value it attains over our interval.

H-30: See Example 1.11.14 in the CLP-2 text.

You’ll have to differentiate f (x). To that end, you may also want to review the
fundamental theorem of calculus and, in particular, Example 1.3.5 in the CLP-2 text.
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You don’t have to find the best possible value for M. A reasonable upper bound on
| f 2(x)|will do.

To have five decimal places of accuracy, your error must be less than 0.000005. This
ensures that, if you round your approximation to five decimal places, they will all be
correct.

H-31: To find the maximum value of | f 2(x)|, check its critical points and endpoints.

H-32: In using Simpson’s rule to approximate
ż x

1

1
t

dt with n intervals, a = 1, b = x, and

∆x =
x´ 1

n
.

H-33:

•
ş2

1
1

1+x2 dx = arctan(2)´ π
4 , so arctan(2) = π

4 +
ş2

1
1

1+x2 dx

• If an approximation A of the integral
ş2

1
1

1+x2 dx has error at most ε, then

A´ ε ď
ş2

1
1

1+x2 dx ď A + ε.

• Looking at our target interval will tell you how small ε needs to be, which in turn
will tell you how many intervals you need to use.

• You can show, by considering the numerator and denominator separately, that
| f (4)(x)| ď 30.75 for every x in [1, 2].

• If you use Simpson’s rule to approximate
ş2

1
1

1+x2 dx, you won’t need very many
intervals to get the requisite accuracy.

Hints for Exercises 1.12. — Jump to TABLE OF CONTENTS.

H-1: There are two kinds of impropreity in an integral: an infinite discontinuity in the
integrand, and an infinite limit of integration.

H-2: The integrand is continuous for all x.

H-3: What matters is which function is bigger for large values of x, not near the origin.

H-4: Read both the question and Theorem 1.12.17 in the CLP-2 text very carefully.

H-5: (a) What if h(x) is negative? What if it’s not?
(b) What if h(x) is very close to f (x) or g(x), rather than right in the middle?
(c) Note |h(x)| ď 2 f (x).

H-6: First: is the integrand unbounded, and if so, where?

Second: when evaluating integrals, always check to see if you can use a simple
substitution before trying a complicated procedure like partial fractions.

H-7: Is the integrand bounded?
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H-8: See Example 1.12.21 in the CLP-2 text. Rather than antidifferentiating, you can find
a nice comparison.

H-9: Which of the two terms in the denominator is more important when x « 0? Which
one is more important when x is very large?

H-10: Remember to break the integral into two pieces.

H-11: Remember to break the integral into two pieces.

H-12: The easiest test in this case is limiting comparison, Theorem 1.12.22 in the CLP-2
text.

H-13: Not all discontinuities cause an integral to be improper–only infinite
discontinuities.

H-14: Which of the two terms in the denominator is more important when x is very
large?

H-15: Which of the two terms in the denominator is more important when x « 0? Which
one is more important when x is very large?

H-16: What are the “problem x’s” for this integral? Get a simple approximation to the
integrand near each.

H-17: To find the volume of the solid, cut it into horizontal slices, which are thin circular
disks.

The true/false statement is equivalent to saying that the improper integral giving the
volume of the solid when a = 0 diverges to infinity.

H-18: Review Example 1.12.8 in the CLP-2 text. Remember the antiderivative of 1
x looks

very different from the antiderivative of other powers of x.

H-19: Compare to Example 1.12.14 in the CLP-2 text. You can antidifferentiate with a
u-substitution.

H-20: To evaluate the integral, you can factor the denominator.

Recall lim
xÑ8

arctan x =
π

2
. For the other limits, use logarithm rules, and beware of

indeterminate forms.

H-21: Break up the integral. The absolute values give you a nice even function, so you
can replace |x´ a|with x´ a if you’re careful about the limits of integration.

H-22: Use integration by parts twice to find the antiderivative of e´x sin x, as in
Example 1.7.10 of the CLP-2 text. Be careful with your signs — it’s easy to make a
mistake with all those negatives.

If you’re having a hard time taking the limit at the end, review the Squeeze Theorem,
Theorem 1.4.17 in the CLP-1 text.

H-23: What is the limit of the integrand when x Ñ 0?

H-24: The only “source of impropriety” is the infinite domain of integration. Don’t be
afraid to be a little creative to make a comparison work.
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H-25: There are two things that contribute to your error: using t as the upper bound
instead of infinity, and using n intervals for the approximation.

First, find a t so that the error introduced by approximating
ş8

0
e´x

1+x dx by
şt

0
e´x

1+x dx is at
most 1

210´4. Then, find your n.

H-26: Look for a place to use Theorem 1.12.20 of the CLP-2 text.

Examples 1.2.9 and 1.2.10 in the CLP-2 text have nice results about the area under an
even/odd curve.

H-27: x should be a real number

Hints for Exercises 1.13. — Jump to TABLE OF CONTENTS.

H-1: Each option in each column should be used exactly once.

H-2: The integrand is the product of sines and cosines. See how this was handled with a
substitution in Section 1.8.1 of the CLP-2 text.

After your substitution, you should have a polynomial expression in u–but it might take
some simplification to get it into a form you can easily integrate.

H-3: We notice that the integrand has a quadratic polynomial under the square root. If
that polynomial were a perfect square, we could get rid of the square root: try a trig
substitution, as in Section 1.9 of the CLP-2 text.

The identity sin(2θ) = 2 sin θ cos θ might come in handy.

H-4: Notice the integral is improper. When you compute the limit, l’Hôpital’s rule might
help.

If you’re struggling to think of how to antidifferentiate, try writing
x´ 1

ex = (x´ 1)e´x.

H-5: Which method usually works for rational functions (the quotient of two
polynomials)?

H-6: It would be nice to replace logarithm with its derivative,
1
x

.

H-7: The integrand is a rational function, so it is possible to use partial fractions. But
there is a much easier way!

H-8: You should prepare your own personal internal list of integration techniques
ordered from easiest to hardest. You should have associated to each technique your own
personal list of signals that you use to decide when the technique is likely to be useful.

H-9: Despite both containing a trig function, the two integrals are easiest to evaluate
using different methods.

H-10: For the integral of secant, see See Section 1.8.3 or Example 1.10.5 in the CLP-2 text.

In (c), notice the denominator is not yet entirely factored.
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H-11: Part (a) can be done by inspection – use a little highschool geometry! Part (b) is
reminiscent of the antiderivative of logarithm–how did we find that one out? Part (c) is
an improper integral.

H-12: Use the substitution u = sin θ.

H-13: For (c), try a little algebra to split the integral into pieces that are easy to
antidifferentiate.

H-14: If you’re stumped, review Sections 1.8, 1.9, and 1.10 in the CLP-2 text.

H-15: For part (a), see Example 1.7.11 in the CLP-2 text. For part (d), see Example 1.10.4
in the CLP-2 text.

H-16: For part (b), first complete the square in the denominator. You can save some work
by first comparing the derivative of the denominator with the numerator. For part (d)
use a simple substitution.

H-17: For part (b), complete the square in the denominator. You can save some work by
first comparing the derivative of the denominator with the numerator.

H-18: For part (a), the numerator is the derivative of a function that appears in the
denominator.

H-19: The integral is improper.

H-20: For part (a), can you convert this into a partial fractions integral? For part (b), start
by completing the square inside the square root.

H-21: For part (b), the numerator is the derivative of a function that is embedded in the
denominator.

H-22: Try a substitution.

H-23: Note the quadratic function under the square root: you can solve this with
trigonometric substitution, as in Section 1.9 of the CLP-2 text.

H-24: Try a substitution, as in Section 1.8.2 of the CLP-2 text.

H-25: What’s the usual trick for evaluating a rational function (quotient of polynomials)?

H-26: If the denominator were x2 + 1, the antiderivative would be arctangent.

H-27: Simplify first.

H-28: x3 + 1 = (x + 1)(x2 ´ x + 1)

H-29: You have the product of two quite dissimilar functions in the integrand–try
integration by parts.

H-30: Use the identity cos(2x) = 2 cos2 x´ 1.

H-31: Using logarithm rules can make the integrand simpler.

H-32: What is the derivative of the function in the denominator? How could that be
useful to you?

H-33: For part (a), the substitution u = log x gives an integral that you have seen before.
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H-34: For part (a), split the integral in two. One part may be evaluated by interpreting it
geometrically, without doing any integration at all. For part (c), multiply both the
numerator and denominator by ex and then make a substitution.

H-35: Let u =
?

1´ x.

H-36: Use the substitution u = ex.

H-37: Use integration by parts. If you choose your parts well, the resulting integration
will be very simple.

H-38: sin x
cos2 x = tan x sec x

H-39: The cases n = ´1 and n = ´2 are different from all other values of n.

H-40: x4 + 1 = (x2 +
?

2x + 1)(x2 ´
?

2x + 1)

Hints for Exercises 2.1. — Jump to TABLE OF CONTENTS.

H-1: Watch your units: 1 J = 1 kg¨m2

sec2 , but your mass is not given in kilograms, and your
height is not given in metres.

H-2: The force of the rock on the ground is the product of its mass and the acceleration
due to gravity.

H-3: Adding or subtracting two quantities of the same units doesn’t change the units.
For example, if I have one metre of rope, and I tie on two more metres of rope, I have
1 + 2 = 3 metres of rope–not 3 centimetres of rope, or 3 kilograms of rope.

Multiplying or dividing quantities of some units gives rise to a quantity with the product
or quotient of those units. For example, if I buy ten pounds of salmon for $50, the price of

my salmon is
50 dollars
10 pounds

=
50
10

dollars
pound = 5 dollars

pound . (Not 5 pound-dollars, or 5 pounds.)

H-4: See Question 3.

H-5: Hooke’s law says that the force required to stretch a spring x units past its natural
length is proportional to x; that is, there is some constant k associated with the individual
spring such that the force required to stretch it x m past its natural length is kx.

H-6: Definition 2.1.1 in the CLP-2 text tells us the work done by the force from x = 1 to
x = b is W(b) =

şb
1 F(x) dx, where F(x) is the force on the object at position x. To recover

the equation for F(x), use the Fundamental Theorem of Calculus.

H-7: Review Definition 2.1.1 in the CLP-2 text for calculating the work done by a force
over a distance.

H-8: For (a), c
`´x is meausured in Newtons, while ` and x are in metres. For (b), notice the

similarities and differences between the tube of air and a spring obeying Hooke’s law.

H-9: See Example 2.1.2 in the CLP-2 text. Be careful about your units.

H-10: Be careful about the units.
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H-11: Suppose that the bucket is a distance y above the ground. How much work is
required to raise it an additional height dy?

H-12: Since you’re given the area of the cross-section, it doesn’t matter what shape it has.
However, the density of water is given in cubic centimetres, while the measurements of
the tank are given in metres.

H-13: Consider the work done to lift a horizontal plate from 2 m below the ground to a
height z. You’ll need to know the mass of the plate, which you can calculate from its
volume, since its density is given to you.

dz

H-14: You can find the spring constant k from the information about the hanging
kilogram.

H-15: Follow the method of Example 2.1.6 in the CLP-2 text and Question 11 in this
section.

H-16: Calculating the work done on the rope and the weight separately makes the
computation somewhat easier.

H-17: When you pull the box, the force you’re exerting is exactly the same as the
frictional force, but in the opposite direction. In (a), that force is constant. In (b), it
changes. Check Definition 2.1.1 in the CLP-2 text for how to turn force into work.

H-18: Remember that the work done on an object is equal to the change in its kinetic
energy, which is 1

2 mv2, where m is the mass of the object and v is its velocity. Hooke’s law
will tell you how much work was done stretching the spring.

H-19: As in Question 18 in this section, the change in kinetic energy of the car is equal to
the work done by the compressing struts. The only added step is to calculate the spring
constant, given that a car with mass 2000 kg compresses the spring 2 cm in Earth’s
gravity. You’re not calculating work to find the spring constant: you’re using the fact that
when the car is sitting still, the force exerted upward by the struts is equal to the force
exerted downward by the mass of the car under gravity.

H-20: To find the radius of a horizontal layer of water, use similar triangles. Be careful
with centimetres versus metres.

H-21: See Example 2.1.4 in the CLP-2 text for a basic method for calculating the work
done pumping water.

To find the area of a horizontal layer of water, use some geometry. A horizontal
cross-section of a sphere is a circle, and its radius will depend on the height of the layer
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in the tank.

H-22: The basic ideas you’ve used already with “cable problems” still work, you only
need to take care that the density of the cable is no longer constant. The mass of a tiny
piece of cable, say of length dx, is (density)ˆ(length) = (10´ x)dx, where x is the
distance of our piece from the bottom of the cable.

If you want more work to reference, Question 22 in Section 1.6 finds the mass of an object
of variable density.

H-23: To calculate the force on the entire plunger, first find the force on a horizontal
rectangle with height dy at depth y.

Checking units can be a good way to make sure your calculation makes sense.

H-24: When y metres of rope have been hauled up, what is the mass of the water?

H-25: The work you’re asked for is an improper integral, moving the earth and moon
infinitely far apart.

H-26: You can formulate a guess by considering the work done on the ball versus the
work done on the rope in Question 16, Solution 1. But be careful–the ball in that problem
did not have the same mass as the rope.

H-27: There are two things that vary with height: the density of the liquid, and the area
of the cross-section of the tank. Make a formula M(h) for the mass of a thin layer of
liquid h metres below the top of the tank, using mass=volumeˆdensity. The rest of the
problem is similar to other tank-pumping problems in this section.

H-28: You can model the motion, instead of a rotation, as dividing the sand into thin
horizontal slices and lifting each of them to their new position.

• In order to calculate the work involved lifting a layer of sand, you need to know the
mass of the layer of sand.

• To find the mass of a layer of sand, you need its volume and the density of the sand.

• To find the density of the sand, you need to the volume of the sand: that is, the
volume of half the hourglass.

• The hourglass is a solid of rotation: you can find its volume using an integral, as in
Section 1.6.

H-29: Theorem 1.11.12 in the CLP-2 text gives error bounds for the standard types of
numerical approximations. You won’t need very many intervals to achieve the desired
accuracy.

Hints for Exercises 2.2. — Jump to TABLE OF CONTENTS.

H-1: See Definition 2.2.2 in the CLP-2 text and the discussion following it for the link
between area under the curve and averages.
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H-2: Average velocity is discussed in Example 2.2.5 of the CLP-2 text. You don’t need an
integral for this.

H-3: Much like Problem 2, you don’t need to do any integration here.

H-4: Part (a) is asking the length of the pieces we’ve cut our interval into. Part (c) should
be given in terms of f . Our final answer in (d) will resemble a Riemann sum, but without
some extra manipulation it won’t be in exactly the form of a Riemann sum we’re used to.

H-5: For (b), the value of f (0) could be much, much larger than g(0).

H-6: The answer is something very simple.

H-7: Apply the definition of “average value” in Section 2.2 of the CLP-2 text.

H-8: You can antidifferentiate x2 log x using integration by parts.

H-9: You can antidifferentiate an odd power of cosine with a substitution; for an even
power of cosine, use the identity cos2 x = 1

2

(
1 + cos(2x)

)
.

H-10: If you’re not sure how to antidifferentiate, try the substitution u = kx, du = kdx,
keeping in mind that k is a constant. Interestingly, your final answer won’t depend on k.

H-11: The method of partial fractions can help you antidifferentiate.

H-12: Try the substitution u = log x, du = 1
x dx.

H-13: Remember cos2 x = 1
2

(
1 + cos(2x)

)
.

H-14: Notice the term 50 cos
( t

12 π
)

has a period of 24 hours, while the term
200 cos

( t
4380 π

)
has a period of one year.

If n is an approximation of c, then the relative error of n is |n´c|
c .

H-15: A cross section of S at location x is a circle with radius x2, so area πx4. Part (a) is
asking for the average of this function on [0, 2].

H-16: (a) can be done without calculation

H-17: tan2 x = sec2 x´ 1

H-18: Remember force is the product of the spring constant with the distance it’s
stretched past its natural length. The units given in the question are not exactly standard,
but they are compatible with each other.

You can find part (b) without any calculation. For (c), remember sin2 x = 1
2

(
1´ cos(2x)

)
.

H-19: The trapezoidal rule is found in Section 1.11.2 of the CLP-2 text.

H-20: To find a definite integral of the absolute value of a function, break up the interval
of integration into regions where the function is positive, and intervals where it’s
negative.

H-21: This is an application of the ideas in Question 20.

H-22: Slice the solid into circular disks of radius | f (x)| and thickness dx.
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H-23: The question tells you 1
1´0

ş1
0 f (x)dx = f (0)+ f (1)

2 .

H-24: Set up this question just like Question 23, but with variables for your limits of
integration.

Note (s´ t)2 = s2 ´ 2st + t2.

H-25: What are the graphs of f (x) and f (a + b´ x) like?

H-26: For (b), express A(x) as an integral, then differentiate.

H-27: For (b), consider the cases that f (x) is always bigger or always smaller than 0.
Then, use the intermediate value theorem, Theorem 1.6.12 in the CLP-1 text.

H-28: Try l’Hôpital’s rule.

H-29: Use the result of Question 28.

Hints for Exercises 2.3. — Jump to TABLE OF CONTENTS.

H-1: It might help to know that ´x2 + 2x + 1 = 2´ (x´ 1)2.

H-2: The centroid of a region doesn’t have to be a point in the region.

H-3: Read over the very beginning of Section 2.3 in the CLP-2 text, specifically
Equation 2.3.1.

H-4: Use Equation 2.3.1 in the CLP-2 text.

H-5: Imagine cutting out the shape and setting it on top of a pencil, so that the pencil
lines up with the vertical line x = a. Will the figure balance, or fall to one side? Which
side?

H-6: You can find the heights of the centres of mass using symmetry.

H-7: Think about whether your answers should have repetition.

H-8: The definition of a definite integral (Definition 1.1.9 in the CLP-2 text) will tell you
how to convert your limits of sums into integrals.

H-9: In (a), the slices all have the same width, so the area of the slices is larger (and hence
the density of R is higher) where T(x)´ B(x) is larger.

H-10: Part (a) is a significantly different model from the last question.

H-11: Which method involves more work: horizontal strips or vertical strips?

H-12: This is a straightforward application of Equation 2.3.2 in the CLP-2 text.

H-13: Remember the derivative of arctangent is 1
1+x2

H-14: This is a straightforward application of Equations 2.3.3 and 2.3.4 in the CLP-2 text.
Note that you’re only asked for the y-coordinate of the centroid.

H-15: You can use a trigonometric substitution to find the area, then a partial fraction
decomposition to find the y-coordinate of the centroid. Remember sin(1/2) = π/6.
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H-16: Vertical slices will be easier than horizontal. An integration by parts might be
helpful to find x̄, while trigonometric identities are important to finding ȳ.

H-17: No trigonometric substitution is necessary if you’re clever with your
u-substitutions, and remember the derivative of arctangent.

H-18: In R, the top function is x´ x2, and the bottom function is x2 ´ 3x.

H-19: Remember d
dxtarctan xu = 1

1+x2 .

H-20: You can save quite a bit of work by, firstly, exploiting symmetry and, secondly,
thinking about whether it is more efficient to use vertical strips or horizontal strips.

H-21: Sketch the region, being careful the domain of
?

9´ 4x2. You can save quite a bit of
work by exploiting symmetry.

H-22: Horizontal slices will be easier than vertical.

H-23: Start with a picture: whether you use vertical slices or horizontal, you’ll need to
break your integral into multiple pieces.

H-24: For practice, do the computation twice — once with horizontal strips and once
with vertical strips. Watch for improper integrals.

H-25: Draw a sketch. In part (b) be careful about the equation of the right hand boundary
of A.

H-26: Draw a sketch. Rotating about a horizontal line is similar to rotating about the
x-axis, but for the radius of a slice, you’ll need to know |y´ (´1)|: the distance from the
outer edge of the region (the boundary function’s y-value) to y = ´1.

H-27: Go back to the derivation of Equation 2.3.3 in the CLP-2 text (centroid for a region)
to figure out what to do when your surface does not have uniform density. We will
consider a rod R that reaches from x = 0 to x = 4, and the mass of the section of the rod
along [a, b] is equal to the mass of the strip of our rectangle along [a, b].

H-28: Horizontal slices will help you, where symmetry doesn’t, to set up a rod R whose
centre of mass is the same as one coordinate of the centre of mass of the circle. When
you’re integrating, trigonometric substitutions are sometimes the easiest way, and
sometimes not.

The equation of a circle of radius 3, centred at (0, 3), is x2 + (y´ 3)2 = 9.

H-29: The model in the question gives you the setup to solve this problem. You know
how to find the centre of mass of a rod–that’s Equation 2.3.2 in the CLP-2 text — so all
you need to find is ρ(y), the density of the rod at position y. To find this, consider a thin
slice of the cone at position y with thickness dy. Its volume V(y) is the same as the mass
of the small section of the rod at position y with thickness dy. So, the density of the rod at
position y is ρ(y) = V(y)

dy .

H-30: Use similar triangles to show that the shape of the lower (also upper) half of the
hourglass is a truncated cone, where the untruncated cone would have had a height 10
cm.
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To calculate the centre of mass of the upturned sand using the result of Question 29, you
should find h = 9.8 (not h = 10–think carefully about our model from Question 29) and
k = 8.8. For the centre of mass of the sand before turning, h = 10 and k = 6.

H-31: The techniques of Section 2.1 get pretty complicated here, so it’s easiest to use the
techniques we developed in Questions 6, 29, and 30 in this section. That is, (1) find the
height of the centre of mass of the water in its starting and ending positions, and then (2)
model the work done as the work moving a point mass with the weight of the water
from the first centre of mass to the second.

The height change of the centre of mass is all that matters to calculate the work done
against gravity, so you only have to worry about the height of the centres of mass.

H-32: The area of R is precisely one, so the error in your approximation is the error

involved in approximating
ş

?
π/2

0 2x2 sin(x2)dx.

Hints for Exercises 2.4. — Jump to TABLE OF CONTENTS.

H-1: You don’t need to solve the differential equation from scratch, only verify whether
the given function y = f (x) makes it true. Find dy

dx and plug it into the differential
equation.

H-2: For (d), note the equation given is quadratic in the variable dy
dx .

H-3: The step
ż

1
g(y)

dy =

ż

f (x)dx shows up whether we’re using our mnemonic or

not.

H-4: Note d
dxt f (x)u = d

dxt f (x) + Cu. Plug in y = f (x) + C to the equation dy
dx = xy to see

whether it makes the equation is true.

H-5: If a function is differentiable at a point, it is also continuous at that point.

H-6: Let Q(t) be the quantity of morphine in a patient’s bloodstream at time t, where t is
measured in minutes.

Using the definition of a derivative,

dQ
dt

= lim
hÑ0

Q(t + h)´Q(t)
h

«
Q(t + 1)´Q(t)

1

So, dQ
dt is roughly the change in the amount of morphine in one minute, from t to t + 1.

H-7: If p(t) is the proportion of the new form, then 1´ p(t) is the proportion of the old
form.

When we say two quantities are proportional, we mean that one is a constant multiple of
the other.

H-8: The red marks show the slope y(x) would have at a point if it crosses that point. So,
pick a value of y(0); based on the red marks, you can see how fast y(x) is increasing or
decreasing at that point, which leads you roughly to a value of y(1); again, the red marks
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tell you how fast y(x) is increasing or decreasing, which leads you to a value of y(2), etc
(unless you’re already off the graph).

H-9: To draw the sketch similar to Question 8(d), don’t actually calculate every single
slope; find a few (for instance, where the slope is zero, or where it’s negative), and use a
pattern (for instance, the slope increases as y increases) to approximate most of the
points.

H-10: Start by multiplying both sides of the equation by ey and dx, pretending that dy
dx is

a fraction, according to our mnemonic.

H-11: You need to solve for your function y(x) explicitly. Be careful with absolute values:
if |y| = F, then y = F or y = ´F. However, y = ˘F is not a function. You have to choose
one: y = F or y = ´F.

H-12: If your answer doesn’t quite look like the answer given, try manipulating it with
logarithm rules: log a + log b = log(ab), and a log b = log(ba).

H-13: Simplify the equation.

H-14: Be careful with the arbitrary constant.

H-15: Start by cross-multiplying.

H-16: Be careful about signs. If y2 = F, then possibly y =
?

F, and possibly y = ´
?

F.
However, y = ˘

?
F is not a function.

H-17: Be careful about signs.

H-18: Be careful about signs. If log |y| = F, then |y| = eF. Since you should give your
answer as an explicit function y(x), you need to decide whether y = eF or y = ´eF.

H-19: Move the y from the left hand side to the right hand side, then use partial fractions
to integrate.

Be careful about the signs. Remember that we need y = ´1 when x = 1. This suggests
how to deal with absolute values.

H-20: The unknown function f (x) satisfies an equation that involves the derivative of f .

H-21: Try guessing the partial fractions expansion of
1

x(x + 1)
.

Since x = 1 is in the domain and x = 0 is not, you may assume x ą 0 for all x in the
domain.

H-22:
d
dx
tsec xu = sec x tan x

H-23: The general solution to the differential equation will contain the constant k and one
other constant. They are determined by the data given in the question.

H-24:

• When you’re solving the differential equation, you should have an integral that you
can massage to look something like arctangent.
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• What is the velocity of the object at its highest point?

• Your final answer will depend on the (unspecified) constants v0, m, g and k.

H-25: The general solution to the differential equation will contain the constant k and one
other constant. They are determined by the data given in the question.

H-26: The method of partial fractions will help you integrate.

To solve x´a
x´b = Y for x, move the terms containing x out of the denominator, then gather

them on one side of the equals sign and factor out the x.

x´ a
x´ b

= Y

x´ a = Y(x´ b) = Yx´Yb
x´Yx = a´Yb

x(1´Y) = a´Yb

x =
a´Yb
1´Y

To find the limit, you can avoid l’Hôpital’s rule using some clever algebra–but you can
also just use l’Hôpital’s rule.

H-27: Be careful about signs.

Part (a) has some algebraic similarities to Question 26.

H-28: The general solution to the differential equation will contain a constant of
proportionality and one other constant. They are determined by the data given in the
question.

H-29: You do not need to know anything about investing or continuous compounding to
do this problem. You are given the differential equation explicitly. The whole first
sentence is just window dressing.

H-30: Again, you do not need to know anything about investing to do this problem. You
are given the differential equation explicitly.

H-31: Differentiate the given integral equation. Plugging in x = 0 gives you y(0).

H-32: Suppose that in a very short time interval dt, the height of water in the tank
changes by dh (which is negative). Express in two different ways the volume of water
that has escaped during this time interval. Equating the two gives the needed differential
equation.

As the water escapes, it forms a cylinder of radius 1 cm.

H-33: Sketch the mercury in the tank at time t, when it has height h, and also at time
t + dt, when it has height h + dh (with dh ă 0). The difference between those two
volumes is the volume of (essentially) a disk of thickness ´dh. Figure out the radius and
then the volume of that disk. This volume has to be the same as the volume of mercury
that left through the hole in the bottom of the sphere, which runs out in the shape of a
cylinder. Toricelli’s law tells you what the length of that cylinder is, and from there you
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can find its volume. Setting the two volumes equal to each other gives the differential
equation that determines h(t).

H-34: The fundamental theorem of calculus will be useful in part (b).

H-35: For any p ą 0, determine first y(t) (in terms of p and c) and then the times (also
depending on p and c) at which y = 2, y = 1 and y = 0. The condition that “the top half
takes exactly the same amount of time to drain as the bottom half” then gives an
equation that determines p.

H-36: For (a), think of a very simple function.

The equation in the question statement is equivalent to the equation

1
?

x´ a

ż x

a
f (t)d(t) =

d

ż x

a
f 2(t)dt

which is, in some cases, easier to use.

For (d), you’ll want to let Y(x) =
şx

a f (t)dt, and use the quadratic equation.

H-37: Start by antidifferentiating both sides of the equation with respect to x.

Hints for Exercises 3.1. — Jump to TABLE OF CONTENTS.

H-1: Not every limit exists.

H-2: 100 isn’t all that big when you’re contemplating infinity. (Neither is any other
number.)

H-3: lim
nÑ8

a2n+5 = lim
nÑ8

an

H-4: The sequence might be defined by different functions when n is large than when n
is small.

H-5: Recall (´1)n is positive when n is even, and negative when n is odd.

H-6: Modify your answer from Question 5, but make the terms approach zero.

H-7: (´n)´n =
(´1)n

nn

H-8: What might cause your answers in (a) and (b) to differ? Carefully read
Theorem 3.1.6 in the CLP-2 text about convergent functions and their corresponding
sequences.

H-9: You can use the fact that π is somewhat close to
22
7

, or you can use trial and error.

H-10: You can compare the leading terms, or factor a high power of n from the
numerator and denominator.

H-11: This isn’t a rational expression, but you can treat it in a similar way. Recall e ă 3.

H-12: The techniques of evaluating limits of rational sequences are again useful here.
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H-13: Use the squeeze theorem.

H-14:
1
n
ď nsin n

ď n

H-15: e´1/n =
1

e1/n ; what happens to
1
n

as n grows?

H-16: Use the squeeze theorem.

H-17: L’Hôpital’s rule might help you decide what happens if you are unsure.

H-18: Simplify ak.

H-19: What happens to
1
n

as n gets very big?

H-20: cos 0 = 1

H-21: This is trickier than it looks. Write
1
n
= x and look at the limit as x Ñ 0.

H-22: Multiply and divide by the conjugate.

H-23: Compared to Question 22, there’s an easier path.

H-24: Consider f 1(x), when f (x) = x100.

H-25: Look to Question 24 for inspiration.

H-26: The area of an isosceles triangle with two sides of length 1, meeting at an angle θ, is
1
2 sin θ.

θ

si
n

θ

1

1

H-27: Every term of An is the same, and g(x) is a constant function.

H-28: You’ll need to use a logarithm before you can apply l’Hôpital’s rule.

H-29: (a) Write out the first few terms of the sequence.
(c) Consider how an+1 ´ L relates to an ´ L. What should happen to these numbers if an
converges to L?

H-30: Your answer from (b) will help you a lot with the subsequent parts.

Hints for Exercises 3.2. — Jump to TABLE OF CONTENTS.

H-1: SN is the sum of the terms corresponding to n = 1 through n = N.

H-2: Note Ck is the cumulative number of cookies.
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H-3: How is (a) related to Question 2?

H-4: You’ll have to calculate a1 separately from the other terms.

H-5: When does adding a number decrease the total sum?

H-6: For (b), imagine cutting up the triangle into its black and white parts, then sharing it
equally among a certain number of friends. What is the easiest number of friends to
share with, making sure each has the same area in their pile?

H-7: Compare to Question 6.

H-8: Iteratively divide a shape into thirds.

H-9: Equation 3.2.1 in the CLP-2 text tells us
N
ÿ

n=0

arn = a
1´ rN+1

1´ r
, for r ‰ 1.

H-10: Note Ck is the cumulative number of cookies.

H-11: To adjust the starting index, either factor out the first term in the series, or subtract
two series. For the subtraction option, consider Question 10.

H-12: Express your gains in (a) and (c) as series.

H-13: To find the difference between
8
ÿ

n=1

cn and
8
ÿ

n=1

cn+1, try writing out the first few

terms.

H-14: You might want to first consider a simpler true or false:
8
ÿ

n=1

an

bn

?
=

A
B

.

H-15: What kind of a series is this?

H-16: This is a special kind of series, that you should recognize.

H-17: When you see
ÿ

k

(
¨ ¨ ¨ k ¨ ¨ ¨ ´ ¨ ¨ ¨ k + 1 ¨ ¨ ¨

)
, you should think “telescoping series.”

H-18: When you see
ÿ

n

(
¨ ¨ ¨ n ¨ ¨ ¨ ´ ¨ ¨ ¨ n + 1 ¨ ¨ ¨

)
, you should immediately think

“telescoping series”. But be careful not to jump to conclusions — evaluate the nth partial
sum explicitly.

H-19: Review Definition 3.2.3 in the CLP-2 text.

H-20: This is a special case of a general series whose sum we know.

H-21: Review Example 3.2.5 in the CLP-2 text. To write the number as a geometric series,
the first few terms might not fit the pattern of the rest of the terms.

H-22: Start by writing it as a geometric series.

H-23: Review Example 3.2.5 in the CLP-2 text. Since the pattern repeats every three

decimals, your common ratio r will be
1

103 .
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H-24: Split the series into two parts.

H-25: Split the series into two parts.

H-26: Split the series into two parts.

H-27: Use logarithm rules to turn this into a more obvious telescoping series.

H-28: This is a telescoping series.

H-29: The stone at position x has mass
1
4x kg, and we have to pull it a distance of 2x

metres. From this, you can find the work involved in pulling up a single stone. Then,
add up the work involved in pulling up all the stones.

H-30: The volume of a sphere of radius r is
4
3

πr3.

H-31: Use the properties of a telescoping series to simplify the terms.
Recall sin2 θ + cos2 θ = 1.

H-32: Review Question 3 for using the sequence of partial sums.

H-33: What is the ratio of areas between the outermost (red) ring and the next (blue) ring?

Hints for Exercises 3.3. — Jump to TABLE OF CONTENTS.

H-1: That is, which series have terms whose limit is not zero?

H-2: That is, if f (x) is a function with f (n) = an for all whole numbers n, is f (x)
nonnegative and decreasing?

H-3: This isn’t a trick. It’s meant to give you intuition to the direct comparison test.

H-4: The comparison test is Theorem 3.3.8 in the CLP-2 text. However, rather than trying
to memorize which way the inequalities go in all cases, you can use the same reasoning
as Question 3.

H-5: Think about Question 4 to remind yourself which way the inequalities have to go
for direct comparison.

Note that all the comparison series have positive terms, so we don’t need to worry about
that part of the limit comparison test.

H-6: The divergence test is Theorem 3.3.1 in the CLP-2 text.

H-7: The limit is calculated correctly.

H-8: It is true that f (x) is positive. What else has to be true of f (x) for the integral test to
apply?

H-9: Refer to Question 4.

H-10: The definition of an alternating series is given in the start of Section 3.3.4 in the
CLP-2 text.
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H-11: For the ratio test to be inconclusive, lim
nÑ8

ˇ

ˇ

ˇ

ˇ

an+1

an

ˇ

ˇ

ˇ

ˇ

should be 1 or nonexistent.

H-12: By the divergence test, for a series
ř

an to converge, we need lim
nÑ8

an = 0. That is,
the magnitude (absolute value) of the terms needs to be getting smaller.

H-13: If f (x) is positive and decreasing, then the integral test tells you that the integral
and the series either both increase or both decrease. So, in order to find an example with
the properties required in the question, you need f (x) to not be both positive and
decreasing.

H-14: Review Theorem 3.3.11 and Example 3.3.12 in the CLP-2 text.

H-15: Don’t jump to conclusions about properties of the an’s.

H-16: Always try the divergence test first (in your head).

H-17: Which test should you always try first (in your head)?

H-18: Review the integral test, which is Theorem 3.3.5 in the CLP-2 text.

H-19: A comparison might be helpful–try some algebraic manipulation to find a likely
series to compare it to.

H-20: This is a geometric series.

H-21: Notice that the series is geometric, but it doesn’t start at n = 0.

H-22: Note n only takes integer values: what’s sin(πn) when n is an integer?

H-23: Note n only takes integer values: what’s cos(πn) when n is an integer?

H-24: What’s the test that you should always think of when you see a factorial?

H-25: This is a geometric series, but you’ll need to do a little algebra to figure out r.

H-26: Which test fits most often with factorials?

H-27: Try finding a nice comparison.

H-28: With the substitution u = log x, the function
1

x(log x)3/2 is easily integrable.

H-29: Combine the integral test with the results about p-series, Example 3.3.6 in the
CLP-2 text.

H-30: Try the substitution u =
?

x.

H-31: Review Example 3.3.9 in the CLP-2 text for developing intuition about
comparisons, and Example 3.3.10 for an example where finding an appropriate
comparison series calls for some creativity.

H-32: What does the summand look like when k is very large?

H-33: What does the summand look like when n is very large?

H-34: cos(nπ) is a sneaky way to write (´1)n.

H-35: What is the behaviour for large k?
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H-36: When m is large, 3m + sin
?

m « 3m.

H-37: This is a geometric series, but it doesn’t start at n = 0.

H-38: The series is geometric.

H-39: The first series can be written as
8
ÿ

n=1

1
2n´ 1

.

H-41: What does the summand look like when n is very large?

H-42: Review the alternating series test, which is given in Theorem 3.3.14 in the CLP-2
text.

H-43: Review the alternating series test, which is given in Theorem 3.3.14 in the CLP-2
text.

H-44: Review the alternating series test, which is given in Theorem 3.3.14 in the CLP-2
text.

H-46: For part (a), see Example 1.12.23 in the CLP-2 text.

For part (b), review Theorem 3.3.5 in the CLP-2 text.

For part (c), see Example 3.3.12 in the CLP-2 text.

H-47: The truncation error arising from the approximation
8
ÿ

n=1

e´
?

n
?

n
«

N
ÿ

n=1

e´
?

n
?

n
is

precisely EN =
8
ÿ

n=N+1

e´
?

n
?

n
. You’ll want to find a bound on this sum using the integral

test.

A key observation is that, since f (x) =
e´
?

x
?

x
is decreasing, we can show that

e´
?

n
?

n
ď

ż n

n´1

e´
?

x
?

x
dx

for every n ě 1.

H-48: What does the fact that the series
8
ř

n=0
an converges guarantee about the behavior of

an for large n?

H-49: What does the fact that the series
8
ř

n=0
(1´ an) converges guarantee about the

behavior of an for large n?

H-50: What does the fact that the series
8
ÿ

n=1

nan ´ 2n + 1
n + 1

converges guarantee about the

behavior of an for large n?

H-51: What does the fact that the series
ř8

n=1 an converges guarantee about the behavior
of an for large n? When is x2 ď x?
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H-52: If we add together the frequencies of all the words, they should amount to 100%.
We can approximate this sum using ideas from Example 3.3.4 in the CLP-2 text.

H-53: We are approximating a finite sum — not an infinite series. To get greater accuracy,
use exact values for the first several terms in the sum, and use an integral to approximate
the rest.

Hints for Exercises 3.4. — Jump to TABLE OF CONTENTS.

H-1: What is conditional convergence?

H-2: If
ř

|an| converges, then
ř

an is guaranteed to converge as well.
(That’s Theorem 3.4.2 in the CLP-2 text.) So, one of the blank spaces describes an
impossible sequence.

H-4: Be careful about the signs.

H-5: Does the alternating series test really apply?

H-6: What does the summand look like when n is very large?

H-7: What does the summand look like when n is very large?

H-8: This is a trick question. Be sure to verify all of the hypotheses of any convergence
test you apply.

H-9: Try the substitution u = log x.

H-10: Show that it converges absolutely.

H-11: Use a similar method to Queston 10.

H-12: Show it converges absolutely using a direct comparison test.

H-13: For part (a), replace n by x in the absolute value of the summand. Can you
integrate the resulting function?

H-14: You don’t need to add up very many terms for this level of accuracy.

H-15: Use the direct comparison test to show that the series converges absolutely.

Hints for Exercises 3.5. — Jump to TABLE OF CONTENTS.

H-1: f (1) is the sum of a geometric series.

H-2: Calculate
d
dx

"

(x´ 5)n

n! + 2

*

when n is a constant.

H-3: There is only one.

H-4: Use Theorem 3.5.9 in the CLP-2 text.

H-5: Review the discussion immediately following Definition 3.5.1 in the CLP-2 text.

H-6: Review the discussion immediately following Definition 3.5.1 in the CLP-2 text.

166



H-7: Review the discussion immediately following Definition 3.5.1 in the CLP-2 text.

H-8: See Example 3.5.11 in the CLP-2 text.

H-9: See Example 3.5.11 in the CLP-2 text.

H-15: Start part (b) by computing the partial sums of
8
ÿ

k=1

( ak
ak+1

´
ak+1

ak+2

)

H-16: You should know a power series representation for
1

1´ x
. Use it.

H-17: You can safely ignore one of the given equations, but not the other.

H-18: n ě log n for all n ě 1.

H-19: See Example 3.5.21 in the CLP-2 text. For part (b), review §3.3.4 in the CLP-2 text.

H-20: You know the geometric series expansion of 1
1´x . What (calculus) operation(s) can

you apply to that geometric series to convert it into the given series?

H-21: First show that the fact that the series
ř8

n=0(1´ bn) converges guarantees that
limnÑ8 bn = 1.

H-22: What does an look like for large n?

H-23: Equation 2.3.1 in the CLP-2 text tells us the centre of mass of a rod with weights

tmnu at positions txnu is x̄ =

ř

mnxn
ř

mn
.

H-24: Use the second derivative test.

H-25: What function has
8
ÿ

n=1

nxn´1 as its power series representation?

H-26: The power series representation in Example 3.5.20 is an alternating series when x
is positive.

H-27: The power series representation in Example 3.5.21 is an alternating series when x
is nonzero.

Hints for Exercises 3.6. — Jump to TABLE OF CONTENTS.

H-1: Which of the functions are constant, linear, and quadratic?

H-2: You don’t have to actually calculate the entire series T(x) to answer the question.

H-3: If you don’t have these memorized, it’s good to be able to derive them. For instance,

log(1 + x) is the antiderivative of
1

1 + x
, whose Taylor series can be found by modifying

the geometric series
ř

xn.

H-4: See Example 3.6.16 in the CLP-2 text.

H-5: The series will bear some resemblance to the Maclaurin series for log(1 + x).
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H-6: The terms f (n)(π) are going to be similar to the terms f (n)(0) that we used in the
Maclaurin series for sine.

H-7: The Taylor series will look similar to a geometric series.

H-8: Your answer will depend on a.

H-9: You should know the Maclaurin series for
1

1´ x
. Use it.

H-10: You should know the Maclaurin series for
1

1´ x
. Use it.

H-11: You should know the Maclaurin series for ex. Use it.

H-12: Review Example 3.5.20 in the CLP–2 text.

H-13: You should know the Maclaurin series for sin x. Use it.

H-14: You should know the Maclaurin series for ex. Use it.

H-15: You should know the Maclaurin series for arctan(x). Use it.

H-16: You should know the Maclaurin series for
1

1´ x
. Use it.

H-17: Set (´1)n x2n+1

2n + 1
= C

(´1)n

(2n + 1)3n , for some constant C. What are x and C?

H-18: There is an important Taylor series, one of the series in Theorem 3.6.5 of the CLP-2
text, that looks a lot like the given series.

H-19: There is an important Taylor series, one of the series in Theorem 3.6.5 of the CLP-2
text, that looks a lot like the given series.

H-20: There is an important Taylor series, one of the series in Theorem 3.6.5 of the CLP-2
text, that looks a lot like the given series. Be careful about the limits of summation.

H-21: There is an important Taylor series, one of the series in Theorem 3.6.5 of the CLP-2
text, that looks a lot like the given series.

H-22: Split the series into a sum of two series. There is an important Taylor series, one of
the series in Theorem 3.6.5 of the CLP-2 text, that looks a lot like each of the two series.

H-23: Try the ratio test.

H-24: Write it as the sum of two Taylor series.

H-25: Can you think of a way to eliminate the odd terms from ex =
8
ÿ

n=0

xn

n!
?

H-26: The series you’re adding up are alternating, so it’s simple to bound the error using
a partial sum.

H-27: The Taylor Series is alternating, so bounding the error in a partial-sum
approximation is straightforward.
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H-28: The Taylor Series is not alternating, so use Theorem 3.6.1-b in the CLP-2 text to
bound the error in a partial-sum approximation.

H-29: The Taylor Series is not alternating, so use Theorem 3.6.1-b in the CLP-2 text to
bound the error in a partial-sum approximation.

H-30: Use Theorem 3.6.1-b in the CLP-2 text to bound the error in a partial-sum
approximation. This theorem requires you to consider values of c between x and x = 0;
since x could be anything from ´2 to 1, you should think about values of c between ´2
and 1.

H-31: Use Theorem 3.6.1-b in the CLP-2 text to bound the error in a partial-sum
approximation.

To bound the derivative over the appropriate range, remember how to find absolute
extrema.

H-32: See Example 3.6.21 in the CLP-2 text

H-33: See Example 3.6.21 in the CLP-2 text

H-34: Set f (x) =
(
1 + x + x2)2/x, and find lim

xÑ0
log ( f (x)).

H-35: Use the substitution y =
1
x

, and compare to Question 34.

H-36: Start by differentiating
8
ÿ

n=0

xn.

H-37: The series bears a resemblance to the Taylor series for arctangent.

H-38: For simplification purposes, note (1)(3)(5)(7) ¨ ¨ ¨ (2n´ 1) =
(2n)!
2n n!

.

H-39: You know the Maclaurin series for log(1+ y). Use it! Remember that you are asked
for a series expansion in powers of x´ 2. So you want y to be some constant times x´ 2.

H-40: See Example 3.5.21 in the CLP-2 text. For parts (b) and (c), review §3.3.4 in the
CLP-2 text.

H-41: Look at the signs of successive terms in the series.

H-42: The magic word is “series”.

H-43: See Example 3.6.14 in the CLP-2 text. For parts (b) and (c), review §3.3.4 in the
CLP-2 text.

H-44: See Example 3.6.14 in the CLP-2 text. For part (b), review the fundamental theorem
of calculus in §1.3 of the CLP-2 text. For part (c), review §3.3.4 in the CLP-2 text.

H-45: See Example 3.6.14 in the CLP-2 text. For parts (b) and (c), review §3.3.4 in the
CLP-2 text.

H-46: See Example 3.6.14 in the CLP-2 text. For parts (b) and (c), review §3.3.4 in the
CLP-2 text.
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H-48: Use the Maclaurin series for ex.

H-49: For part (c), compare two power series term-by-term.

H-50: For Newton’s method, recall we approximate a root of the function g(x) in

iterations: given an approximation xn, our next approximation is xn+1 = xn ´
g(xn)

g1(xn)
.

To gauge your error, note that from approximation to approximation, the first digits
stabilize. Keep refining your approximation until the first two digits stop changing.

H-51: First, modify your known Maclaurin series for arctangent into a Maclaurin series
for f (x). This series is not hard to repeatedly differentiate, so use it to find a power series
for f (10)(x).

H-52: Remember ex is never negative for any real number x.

H-53: Since f (x) is odd, f (´x) = ´ f (x) for all x in its domain. Consider the
even-indexed terms and odd-indexed terms of the Taylor series.
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ANSWERS TO PROBLEMS

Part III
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Answers to Exercises 1.1 — Jump to TABLE OF CONTENTS

A-1: The area is between 1.5 and 2.5 square units.

A-2: The shaded area is between 2.75 and 4.25 square units. (Other estimates are
possible, but this is a reasonable estimate, using methods from this chapter.)

A-3: The area under the curve is a number in the interval
(

3
8

[
1
2 +

1?
2

]
, 3

8

[
1 + 1?

2

])
.

A-4: left

A-5: Many answers are possible. One example is f (x) = sin x, [a, b] = [0, π], n = 1.
Another example is f (x) = sin x, [a, b] = [0, 5π], n = 5.

A-6: Some of the possible answers are given, but more exist.

(a)
7
ÿ

i=3

i ;
5
ÿ

i=1

(i + 2)

(b)
7
ÿ

i=3

2i ;
5
ÿ

i=1

(2i + 4)

(c)
7
ÿ

i=3

(2i + 1) ;
5
ÿ

i=1

(2i + 5)

(d)
8
ÿ

i=1

(2i´ 1) ;
7
ÿ

i=0

(2i + 1)

A-7: Some answers are below, but others are possible.

(a)
4
ÿ

i=1

1
3i ;

4
ÿ

i=1

(
1
3

)i

(b)
4
ÿ

i=1

2
3i ;

4
ÿ

i=1

2
(

1
3

)i

(c)
4
ÿ

i=1

(´1)i 2
3i ;

4
ÿ

i=1

2
(´3)i

(d)
4
ÿ

i=1

(´1)i+1 2
3i ;

4
ÿ

i=1

´
2

(´3)i

A-8:

(a)
5
ÿ

i=1

2i´ 1
3i
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(b)
5
ÿ

i=1

1
3i + 2

(c)
7
ÿ

i=1

i ¨ 104´i ;
7
ÿ

i=1

i
10i´4

A-9:

(a)
5
2

[
1´

(
3
5

)101
]

(b)
5
2

(
3
5

)50
[

1´
(

3
5

)51
]

(c) 270

(d)
1´

(
1
e

)b

e´ 1
+

e
4
[b(b + 1)]2

A-10:

(a) 50 ¨ 51 = 2550

(b)
[

1
2(95)(96)

]2
´

[
1
2(4)(5)

]2
= 20, 793, 500

(c) ´1

(d) ´10

A-11:

x

y

ba

y = f (x)

A-12: n = 4, a = 2, and b = 6

A-13: One answer is below, but other interpretations exist.

173



x

y

5 7 9 11

49

81

121

y = x2

A-14: Many interpretations are possible–see the solution to Question 13 for a more
thorough discussion–but the most obvious is given below.

x

y

2π
20

3π
20

4π
20

5π
20

π
20

y = tan x

A-15: Three answers are possible. It is a midpoint Riemann sum for f on the interval
[1, 5] with n = 4. It is also a left Riemann sum for f on the interval [1.5, 5.5] with n = 4. It
is also a right Riemann sum for f on the interval [0.5, 4.5] with n = 4.

A-16:
25
2

A-17:
21
2

A-18:
50
ř

i=1

(
5 +

(
i´ 1/2

)1
5

)8
1
5

174



A-19: 54

A-20:
ż 7

´1
f (x) dx = lim

nÑ8

n
ÿ

i=1

f
(
´1 +

8i
n

)
8
n

A-21: f (x) = sin2(2 + x) and b = 4

A-22: f (x) = x
?

1´ x2

A-23:
ş3

0 e´x/3 cos(x) dx

A-24:
ż 1

0
xex dx

A-25: Possible answers include:
2
ż

0

e´1´x dx,

3
ż

1

e´x dx, 2
ż 3/2

1/2
e´2x dx, and 2

1
ż

0

e´1´2x dx.

A-26:
r3n+3 ´ 1

r3 ´ 1

A-27: r5
(

r96 ´ 1
r´ 1

)

A-28: 5

A-29: 16

A-30:
b2 ´ a2

2

A-31:
b2 ´ a2

2
A-32: 4π

A-33:
ż 3

0
f (x) dx = 2.5

A-34: 53 m

A-35: true

A-36: 3200 km

A-37: (a) There are many possible answers. Two are
ş0
´2

?
4´ x2 dx and

ş2
0

a

4´ (´2 + x)2 dx. (b) π

A-38: (a) 30 (b) 411
4

A-39:
56
3

A-40: 6

A-41: 12
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A-42: f (x) =
3

10

(x
5
+ 8
)2

sin
(

2x
5

+ 2
)

A-43:
1

log 2

A-44: (a)
1

log 10
(
10b ´ 10a)

(b)
1

log c
(
cb ´ ca); yes, it agrees.

A-45: π
4 ´

1
2 arccos(a) + 1

2 a
?

1´ a2

A-46:

(a) [ f (b)´ f (a)] ¨
b´ a

n
(b) Choose n to be an integer that is greater than or equal to 100 [ f (b)´ f (a)] (b´ a).

A-47: true (but note, for a non-linear function, it is possible that the midpoint Riemann
sum is not the average of the other two)

Answers to Exercises 1.2 — Jump to TABLE OF CONTENTS

A-1: Possible drawings:

x

y

a

y = f (x)

x

y

a c b

y = f (x)

x

y

a b

y = f (x)

y = f (x) + g(x)

A-2: sin b´ sin a

A-3: (a) False. For example, the function

f (x) =

#

0 for x ă 0
1 for x ě 0

provides a counterexample.

(b) False. For example, the function f (x) = x provides a counterexample.

(c) False. For example, the functions

f (x) =

#

0 for x ă 1
2

1 for x ě 1
2

and g(x) =

#

0 for x ě 1
2

1 for x ă 1
2
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provide a counterexample.

A-4: (a) ´
1

20
(b) positive (c) negative (d) positive

A-5: ´21

A-6: ´6

A-7: 20

A-8:

(a) π
4 ´

1
2 arccos(´a)´ 1

2 a
?

1´ a2 = ´π
4 + 1

2 arccos(a)´ 1
2 a
?

1´ a2

(b) 1
2 arccos(a)´ 1

2 a
?

1´ a2

A-9: 5

A-10: 0

A-11: 5

A-12: 20 + 2π

A-13: 0

A-14: 0

A-15: 0

A-16: (a) y =
1
b

a

1´ (ax)2 (b)
a
b

ż 1
a

´ 1
a

c

1
a2 ´ x2 dx (c)

π

ab

A-17:

ˆ even odd
even even odd
odd odd even

A-18: f (0) = 0; g(0) can be any real number

A-19: f (x) = 0 for every x

A-20: The derivative of an even function is odd, and the derivative of an odd function is
even.

Answers to Exercises 1.3 — Jump to TABLE OF CONTENTS

A-1: e2 ´ e´2

A-2: F(x) =
x4

4
+

1
2

cos 2x +
1
2

.

A-3: (a) True (b) False (c) False, unless
şb

a f (x)dx =
şb

a x f (x)dx = 0.

A-4: false
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A-5: false

A-6: sin(x2)

A-7: 3
?

e

A-8: For any constant C, F(x) + C is an antiderivative of f (x). So, for example, F(x) and
F(x) + 1 are both antiderivatives of f (x).

A-9:

(a) We differentiate with respect to a. Recall d
dxtarccos xu = ´1?

1´x2
. To differentiate

1
2 a
?

1´ a2, we use the product and chain rules.

d
da

"

π

4
´

1
2

arccos(a) +
1
2

a
a

1´ a2
*

= 0´
1
2
¨

´1
?

1´ a2
+

(
1
2

a
)
¨

´2a
2
?

1´ a2
+

1
2

a

1´ a2

=
1

2
?

1´ a2
´

a2

2
?

1´ a2
+

1´ a2

2
?

1´ a2

=
1´ a2 + 1´ a2

2
?

1´ a2

=
2(1´ a2)

2
?

1´ a2

=
a

1´ a2

(b) F(x) =
5π

4
´

1
2

arccos(x) +
1
2

x
?

1´ x2

A-10: (a) 0 (b),(c) The FTC does not apply, because the integrand is not continuous
over the interval of integration.

A-11:

t

y

a x x + h

y = f (t)

A-12: (a) zero (b) increasing when 0 ă x ă 1 and 3 ă x ă 4; decreasing when
1 ă x ă 3

A-13: (a) zero (b) G(x) is increasing when 1 ă x ă 3, and it is decreasing when
0 ă x ă 1 and when 3 ă x ă 4.
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A-14: Using the definition of the derivative,

F1(x) = lim
hÑ0

F(x + h)´ F(x)
h

= lim
hÑ0

şx+h
a t dt´

şx
a t dt

h

= lim
hÑ0

şx+h
x t dt

h

The numerator describes the area of a trapezoid with base h and heights x and x + h.

= lim
hÑ0

1
2 h(x + x + h)

h

= lim
hÑ0

(
x +

1
2

h
)

= x

t

y

x x + h

x

x + h

y = t

şx+h
x t dt

So, F1(x) = x.

A-15: f (t) = 0

A-16:
ş

log(ax) dx = x log(ax)´ x + C, where a is a given constant, and C is any constant.

A-17:
ş

x3ex dx = ex (x3 ´ 3x2 + 6x´ 6
)
+ C

A-18:
ż

1
?

x2 + a2
dx = log

ˇ

ˇ

ˇ
x +

a

x2 + a2
ˇ

ˇ

ˇ
+ C when a is a given constant. As usual, C is

an arbitrary constant.

A-19:
ż

x
a

x(a + x)
dx =

b

x(a + x)´ a log
(?

x +
?

a + x
)
+ C

A-20: 5´ cos 2

A-21: 2

A-22:
1
5

arctan(5x) + C

A-23: arcsin
(

x
?

2

)
+ C
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A-24: tan x´ x + C

A-25: ´
3
4

cos(2x) + C, or equivalently,
3
2

sin2 x + C

A-26:
1
2

x +
1
4

sin(2x) + C

A-27: F1
(

π
2

)
= log(3) G1

(
π
2

)
= ´ log(3)

A-28: f (x) is increasing when ´8 ă x ă 1 and when 2 ă x ă 8.

A-29: F1(x) = ´
sin x

cos3 x + 6

A-30: 4x3e(1+x4)2

A-31:
(

sin6 x + 8) cos x

A-32: F1(1) = 3e´1

A-33:
sin u

1 + cos3 u

A-34: f (x) = 2x

A-35: f (4) = 4π

A-36: (a) (2x + 1)e´x2
(b) x = ´1/2

A-37: esin x ´ esin(x4´x3)
(
4x3 ´ 3x2)

A-38: ´2x cos
(
e´x2)

´ 5x4 cos
(
ex5)

A-39: ex
a

sin(ex)´
a

sin(x)

A-40: 14

A-41:
5
2

A-42: 45 m

A-43: f 1(x) = (2´ 2x) log
(
1 + e2x´x2)

and f (x) achieves its absolute maximum at x = 1,
because f (x) is increasing for x ă 1 and decreasing for x ą 1.

A-44: The minimum is
ş´1

0
dt

1+t4 . As x runs from ´8 to8, the function f (x) =
şx2´2x

0
dt

1+t4

decreases until x reaches 1 and then increases all x ą 1. So the minimum is achieved for
x = 1. At x = 1, x2 ´ 2x = ´1.

A-45: F achieves its maximum value at x = π.

A-46: 2

A-47: log 2
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A-48: In the sketch below, open dots denote inflection points, and closed dots denote

extrema.

x

y

y = F(x)

y = f (x)

´5 ´3 ´1 1 3 5

A-49: (a) 3x2
ż x3+1

0
et3

dt + 3x5e(x3+1)3
(b) y = ´3(x + 1)

A-50: Both students.

A-51: (a) 27(1´ cos 3) (b) x3 sin(x) + 3x2[1´ cos(x)]

A-52: If f (x) = 0 for all x, then F(x) is even and possibly also odd.

If f (x) ‰ 0 for some x, then F(x) is not even. It might be odd, and it might be neither
even nor odd.

(Perhaps surprisingly, every antiderivative of an odd function is even.)

Answers to Exercises 1.4 — Jump to TABLE OF CONTENTS

A-1: (a) true (b) false

A-2: The reasoning is not sound: when we do a substitution, we need to take care of the
differential (dx). Remember the method of substitution comes from the chain rule: there
should be a function and its derivative. Here’s the way to do it:

Problem: Evaluate
ż

(2x + 1)2dx.

Work: We use the substitution u = 2x + 1. Then du = 2dx, so dx = 1
2du:

ż

(2x + 1)2dx =

ż

u2
¨

1
2

du

=
1
6

u3 + C

=
1
6
(2x + 1)3 + C
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A-3: The problem is with the limits of integration, as in Question 1. Here’s how it ought
to go:

Problem: Evaluate
ż π

1

cos(log t)
t

dt.

Work: We use the substitution u = log t, so du = 1
t dt. When t = 1, we have

u = log 1 = 0 and when t = π, we have u = log(π). Then:

ż π

1

cos(log t)
t

dt =
ż log(π)

log 1
cos(u)du

=

ż log(π)

0
cos(u)du

= sin(log(π))´ sin(0) = sin(log(π)).

A-4: This one is OK.

A-5:
ż 1

0

f (u)
?

1´ u2
du. Because the denominator

?
1´ u2 vanishes when u = 1, this is what

is known as an improper integral. Improper integrals will be discussed in § 1.12 of the
CLP-2 text.

A-6: some constant C

A-7:
1
2
(

sin(e)´ sin(1)
)

A-8:
1
3

A-9: ´
1

300(x3 + 1)100 + C

A-10: log 4

A-11: log 2

A-12:
4
3

A-13: e6 ´ 1

A-14:
1
3
(4´ x2)3/2 + C

A-15: e
?

log x + C

A-16: 0

A-17:
1
2
[cos 1´ cos 2] « 0.478

A-18:
1
2
´

1
2

log 2

A-19: 1
2 tan2 θ ´ log | sec θ|+ C
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A-20: arctan(ex) + C

A-21:
π

4
´

2
3

A-22: ´1
2 (log(cos x))2 + C

A-23: 1
2 sin(1)

A-24:
1
3
[2
?

2´ 1] « 0.609

A-25: Using the definition of a definite integral with right Riemann sums:

ż b

a
2 f (2x)dx = lim

nÑ8

n
ÿ

i=1

∆x ¨ 2 f (2(a + i∆x)) ∆x =
b´ a

n

= lim
nÑ8

n
ÿ

i=1

(
b´ a

n

)
¨ 2 f

(
2
(

a + i
(

b´ a
n

)))

= lim
nÑ8

n
ÿ

i=1

(
2b´ 2a

n

)
¨ f
(

2a + i
(

2b´ 2a
n

))

ż 2b

2a
f (x)dx = lim

nÑ8

n
ÿ

i=1

∆x ¨ f (2a + i∆x) ∆x =
2b´ 2a

n

= lim
nÑ8

n
ÿ

i=1

(
2b´ 2a

n

)
¨ f
(

2a + i
(

2b´ 2a
n

))

Since the Riemann sums are exactly the same,

ż b

a
2 f (2x)dx =

ż 2b

2a
f (x)dx

Answers to Exercises 1.5 — Jump to TABLE OF CONTENTS

A-1: Area between curves « π
4

(
2 +

?
2
)

x

y

ππ
2

π
4

3π
4

y = cos x
y = sin x

A-2: (a) Vertical rectangles:
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x

y

π
10

π
5

3π
10

2π
5

π
2

y = arcsin
(2x

π

)

y =
b

xπ
2

(b) One possible answer:

x

y

π
10

π
5

3π
10

2π
5

π
2

x = π
2 sin y

x = 2
π y2

A-3:
ż

?
2

0

[
2x´ x3] dx

A-4:
ż 4

´3/2

[
4
5
(6´ y2) + 2y

]
dy

A-5:
ż 4a

0

[
?

4ax´
x2

4a

]
dx

A-6:
ż 25

1

[
´

1
12

(x + 5) +
1
2
?

x
]

dx
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A-7:
1
8

A-8:
4
3

A-9:
5
3
´

1
log 2

A-10:
8
π
´ 1

A-11:
20
9

A-12:
1
6

A-13: 2π

A-14: 2
[
π ´ 1

4 π2
]

A-15:
31
6

A-16:
26
3

A-17:
7π

8
´

1
2

A-18: 12
?

2´
13
4

Answers to Exercises 1.6 — Jump to TABLE OF CONTENTS

A-1: The horizontal cross-sections are circles, but the vertical cross-sections are not.

A-2: The columns have the same volume.

A-3:

Washers when 1 ă y ď 6: If y ą 1, then our washer has inner radius 2 + 2
3 y, outer radius

6´ 2
3 y, and height dy.
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y

thickness: dy

R = 6´ 2
3 y

r = 2 + 2
3 y

Washers when 0 ď y ă 1: When 0 ď y ă 1, we have a “double washer,” two concentric
rings. The inner washer has inner radius r1 = y and outer radius R1 = 2´ y. The
outer washer has inner radius r2 = 2 + 2

3 y and outer radius R2 = 6´ 2
3 y. The

thickness of the washers is dy.

y

thickness: dy

R1 = 2´ y

R2 = 6´ 2
3 y

r1 = y

r2 = 2 + 2
3 y
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A-4: (a) π

ż 3

0
xe2x2

dx

(b)
ż 1

0
π
[(

3 +
?

y
)2
´
(
3´

?
y
)2]dy +

ż 4

1
π
[(

5´ y
)2
´
(
3´

?
y
)2]dy

A-5: (a)
ż 1

´1
π
[
(5´ 4x2)

2
´ (2´ x2)

2]
dx (b)

ż 0

´1
π
[(

5 +
a

y + 1
)2
´
(
5´

a

y + 1
)2]dy

A-6: π

ż 2

´2

[
(9´ x2)

2
´ (x2 + 1)

2]
dx

A-7:
?

2
12

`3

A-8:
π

4

(
e2a2

´ 1
)

A-9: π

[
38
3
´

514
34

]
= π

512
81

A-10: (a) 8π
ş1
´1

?
1´ x2 dx (b) 4π2

A-11: (a) The region R is the region between the blue and red curves, with 3 ď x ď 5, in
the figures below.

(3,
√
24)

(5,
√
40)

R

y2 = 8x
y2 = x2 + 15

x

y

(3,
√
24)

(5,
√
40)

R

(b) 4
3 π « 4.19

A-12: (a) The region R is sketched below.

x

y

y = log x
x = 2

(b) π
[
4 log 2´ 3

2

]
« 3.998

A-13: π2 + 8π3 + 8π6

5
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A-14:
8
3

A-15:
256ˆ 8

15
= 136.53̇

A-16:
28
3

πh

A-17: (a)
4π

3b2a
cubic units (b) a =

1
6356.752

and b =
1

6378.137
(c) Approximately 1.08321ˆ 1012 km3, or 1.08321ˆ 1021 m3

(d) Absolute error is about 3.64ˆ 109 km3, and relative error is about 0.00336, or 0.336%.

A-18: (a)
9
2

(b) π

ż 2

´1

[(
4´ x

)2
´
(
1 + (x´ 1)2)2]

dx

A-19: (a)
π

2
´ 1 (b)

π2

2
´ π « 1.793

A-20: (a) V1 =
4
3

πc2 (b) V2 =
π c
3
[
4
?

2´ 2
]

(c) c = 0 or c =
?

2´ 1
2

A-21:
ż π

π/2
π
[
(5 + π sin x)2

´ (5 + 2π ´ 2x)2] dx +

ż 3π/2

π
π
[
(5 + 2π ´ 2x)2

´ (5 + π sin x)2] dx

A-22: (a)
6000cπ

log 2

(
1´

1
210

)
, which is close to

6000cπ

log 2
.

(b) 6km: that is, there is roughly the same mass of air in the lowest 6 km of the column as
there is in the remaining 54 km.

Answers to Exercises 1.7 — Jump to TABLE OF CONTENTS

A-1: chain; product

A-2: The part chosen as u will be differentiated. The part chosen as dv will be
antidifferentiated.

A-3:
ż

f 1(x)
g(x)

dx =
f (x)
g(x)

+

ż

f (x)g1(x)
g2(x)

dx

A-4: All the antiderivatives differ only by a constant, so we can write them all as

188



v(x) + C for some C. Then, using the formula for integration by parts,
ż

u(x) ¨ v1(x)dx = u(x)
loomoon

u

[
v(x) + C

]
looooomooooon

v

´

ż [
v(x) + C

]
looooomooooon

v

u1(x)dx
looomooon

du

= u(x)v(x) + Cu(x)´
ż

v(x)u1(x)dx´
ż

Cu1(x)dx

= u(x)v(x) + Cu(x)´
ż

v(x)u1(x)dx´ Cu(x) + D

= u(x)v(x)´
ż

v(x)u1(x)dx + D

where D is any constant.

Since the terms with C cancel out, it didn’t matter what we chose for C–all choices end
up the same.

A-5: Suppose we choose dv = f (x)dx, u = 1. Then v =

ż

f (x)dx, and du = dx. So, our

integral becomes:
ż

(1)
loomoon

u

f (x)dx
loomoon

dv

= (1)
loomoon

u

ż

f (x)dx
loooomoooon

v

´

ż
(
ż

f (x)dx
)

loooooomoooooon

v

dx
loomoon

du

In order to figure out the first product (and the second integrand), you need to know the
antiderivative of f (x)–but that’s exactly what you’re trying to figure out!

A-6:
x2 log x

2
´

x2

4
+ C

A-7: ´
log x
6x6 ´

1
36x6 + C

A-8: π

A-9:
π

2
´ 1

A-10: ex (x3 ´ 3x2 + 6x´ 6
)
+ C

A-11:
x2

2
log3 x´

3x2

4
log2 x +

3x2

4
log x´

3x2

8
+ C

A-12: (2´ x2) cos x + 2x sin x + C

A-13:
(
t3 ´ 5

2 t2 + 6t
)

log t´ 1
3 t3 + 5

4 t2 ´ 6t + C

A-14: e
?

s (2s´ 4
?

s + 4) + C

A-15: x log2 x´ 2x log x + 2x + C

A-16: ex2+1 + C

A-17: y arccos y´
a

1´ y2 + C
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A-18: 2y2 arctan(2y)´ y + 1
2 arctan(2y) + C

A-19:
x3

3
arctan x´

1
6
(1 + x2) +

1
6

log(1 + x2) + C

A-20:
2

17
ex/2 cos(2x) +

8
17

ex/2 sin(2x) + C

A-21:
x
2
[

sin(log x)´ cos(log x)
]
+ C

A-22:
2x

log 2

(
x´

1
log 2

)
+ C

A-23: 2ecos x[1´ cos x] + C

A-24:
ż

xe´x

(1´ x)2 dx =
xe´x

1´ x
+ e´x + C =

e´x

1´ x
+ C

A-25: (a) We integrate by parts with u = sinn´1 x and dv = sin x dx, so that
du = (n´ 1) sinn´2 x cos x and v = ´ cos x.

ż

sinn x dx = ´ sinn´1 x cos x
looooooooomooooooooon

uv

+ (n´ 1)
ż

cos2 x sinn´2 x dx
looooooooooooooooomooooooooooooooooon

´
ş

vdu

Using the identity sin2 x + cos2 x = 1,

= ´ sinn´1 x cos x + (n´ 1)
ż

(1´ sin2 x) sinn´2 x dx

= ´ sinn´1 x cos x + (n´ 1)
ż

sinn´2 x dx´ (n´ 1)
ż

sinn x dx

Moving the last term on the right hand side to the left hand side gives

n
ż

sinn x dx = ´ sinn´1 x cos x + (n´ 1)
ż

sinn´2 x dx

Dividing across by n gives the desired reduction formula.

(b)
35

256
π « 0.4295

A-26: (a) Area:
π

4
´

log 2
2

x = 1

y = tan−1 x

x

y

(b) Volume:
π2

2
´ π
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A-27: π

(
17e18 ´ 4373

36

)

A-28: 12

A-29:
2
e

Answers to Exercises 1.8 — Jump to TABLE OF CONTENTS

A-1: (e)

A-2:
1
n

secn x + C

A-3: We divide both sides by cos2 x, and simplify.

sin2 x + cos2 x = 1

sin2 x + cos2 x
cos2 x

=
1

cos2 x
sin2 x
cos2 x

+ 1 = sec2 x

tan2 x + 1 = sec2 x

A-4: sin x´
sin3 x

3
+ C

A-5:
π

2

A-6:
sin37 t

37
´

sin39 t
39

+ C

A-7:
1

3 cos3 x
´

1
cos x

+ C

A-8:
π

8
´

9
?

3
64

A-9: ´ cos x +
2
3

cos3 x´
1
5

cos5 x + C

A-10:
1

2.2
sin2.2 x + C

A-11:
1
2

tan2 x + C, or equivalently,
1
2

sec2 +C

A-12:
1
7

sec7 x´
1
5

sec5 x + C

A-13:
tan49 x

49
+

tan47 x
47

+ C

A-14:
1

3.5
sec3.5 x´

1
1.5

sec1.5 x + C
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A-15:
1
4

sec4 x´
1
2

sec2 x + C or
1
4

tan4 x + C

A-16:
1
5

tan5 x + C

A-17:
1

1.3
sec1.3 x +

1
0.7

cos0.7 x + C

A-18: =
1
4

sec4 x´ sec2 x + log | sec x|+ C

A-19:
41

45
?

3
´

π

6

A-20:
1

11
+

1
9

A-21: 2
?

sec x + C

A-22: tane+1 θ

(
tan6 θ

7 + e
+

3 tan4 θ

5 + e
+

3 tan2 θ

3 + e
+

1
1 + e

)
+ C

A-23: (a) Using the trig identity tan2 x = sec2 x´ 1 and the substitution y = tan x,
dy = sec2 x dx,

ż

tann x dx =

ż

tann´2 x tan2 x dx =

ż

tann´2 x sec2 x dx´
ż

tann´2 x dx

=

ż

yn´2 dy´
ż

tann´2 x dx =
yn´1

n´ 1
´

ż

tann´2 x dx

=
tann´1 x

n´ 1
´

ż

tann´2 x dx

(b)
13
15
´

π

4
« 0.0813

A-24:
1

2 cos2 x
+ 2 log | cos x| ´

1
2

cos2 x + C

A-25: tan θ + C

A-26: log | sin x|+ C

A-27:
1
2

sin2(ex) + C

A-28: (sin2 x + 2) cos(cos x) + 2 cos x sin(cos x) + C

A-29:
x
2

sin2 x´
x
4
+

1
4

sin x cos x + C

Answers to Exercises 1.9 — Jump to TABLE OF CONTENTS

A-1: (a) x =
4
3

sec θ (b) x =
1
2

sin θ (c) x = 5 tan θ
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A-2: (a) x´ 2 =
?

3 sec u (b) x´ 1 =
?

5 sin u (c)
(

2x +
3
2

)
=

?
31
2

tan u

(d) x´
1
2
=

1
2

sec u

A-3: (a)
?

399
20

(b)
5
?

2
7

(c)
?

x´ 5
2

A-4: (a)

?
4´ x2

2
(b)

1
2

(c)
1

?
1´ x

A-5:
1
4
¨

x
?

x2 + 4
+ C

A-6:
1

2
?

5

A-7:
π

6

A-8: log

ˇ

ˇ

ˇ

ˇ

ˇ

c

1 +
x2

25
+

x
5

ˇ

ˇ

ˇ

ˇ

ˇ

+ C

A-9:
1
2

?
2x2 + 4x + C

A-10: ´
1

16

?
x2 + 16

x
+ C

A-11:

?
x2 ´ 9
9x

+ C

A-12: (a) We’ll use the trig identity cos 2θ = 2 cos2 θ ´ 1. It implies that

cos2 θ =
cos 2θ + 1

2
ùñ cos4 θ =

1
4
[

cos2 2θ + 2 cos 2θ + 1
]
=

1
4

[cos 4θ + 1
2

+ 2 cos 2θ + 1
]

=
cos 4θ

8
+

cos 2θ

2
+

3
8

So,
ż π/4

0
cos4 θ dθ =

ż π/4

0

(cos 4θ

8
+

cos 2θ

2
+

3
8

)
dθ

=

[
sin 4θ

32
+

sin 2θ

4
+

3
8

θ

]π/4

0

=
1
4
+

3
8
¨

π

4

=
8 + 3π

32

as required.

(b)
8 + 3π

16
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A-13: 0

A-14: 2 arcsin
x
2
+

x
2

a

4´ x2 + C

A-15:
?

25x2 ´ 4´ 2 arcsec 5x
2 + C

A-16:
40
3

A-17: arcsin
x + 1

2
+ C

A-18:
1
4

(
arccos

(
1

2x´ 3

)
+

?
4x2 ´ 12x + 8
(2x´ 3)2

)
+ C, or equivalently,

1
4

(
arcsec (2x´ 3) +

?
4x2 ´ 12x + 8
(2x´ 3)2

)
+ C

A-19: log(1 +
?

2)´
1
?

2

A-20:
1
2

(
arctan x +

x
x2 + 1

)
+ C

A-21:
3 + x

2

?
x2 ´ 2x + 2 +

1
2

log
ˇ

ˇ

ˇ

?
x2 ´ 2x + 2 + x´ 1

ˇ

ˇ

ˇ
+ C

A-22:
1
?

3
log

ˇ

ˇ

ˇ

ˇ

(
6
5

x + 1
)
+

2
5

a

9x2 + 15x
ˇ

ˇ

ˇ

ˇ

+ C

A-23:
1
3

?
1 + x2(4 + x2) + log

ˇ

ˇ

ˇ

ˇ

ˇ

1´
?

1 + x2

x

ˇ

ˇ

ˇ

ˇ

ˇ

+ C

A-24:
8π

3
+ 4
?

3

A-25: Area:
4
3
´

4

c

4
3

Volume:
π2

6
´

?
3π

4

A-26: 2
?

1 + ex + 2 log
ˇ

ˇ1´
?

1 + ex
ˇ

ˇ´ x + C

A-27:

(a)
1

1´ x2

(b) False

(c) The work in the question is not correct. The most salient problem is that when we
make the substitution x = sin θ, we restrict the possible values of x to [´1, 1], since
this is the range of the sine function. However, the original integral had no such
restriction.

How can we be sure we avoid this problem in the future? In the introductory text to
Section 1.9 (before Example 1.9.1), the CLP-2 text tells us that we are allowed to write
our old variable as a function of a new variable (say x = s(u)) as long as that function
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is invertible to recover our original variable x. There is one very obvious reason why
invertibility is necessary: after we antidifferentiate using our new variable u, we
need to get it back in terms of our original variable, so we need to be able to recover
x. Moreover, invertibility reconciles potential problems with domains: if an inverse
function u = s´1(x) exists, then for any x, there exists a u with s(u) = x. (This was
not the case in the work for the question, because we chose x = sin θ, but if x = 2,
there is no corresponding θ. Note, however, that x = sin θ is invertible over [´1, 1], so
the work is correct if we restrict x to those values.)

A-28: (a), (b): None. (c): x ă ´a

Answers to Exercises 1.10 — Jump to TABLE OF CONTENTS

A-1: (a) (iii) (b) (ii) (c) (ii) (d) (i)

A-2:
A

x´ 1
+

B
(x´ 1)2 +

C
x + 1

+
D

(x + 1)2 +
Ex + F
x2 + 1

A-3: 3

A-4: (a)
x3 + 2x + 2

x2 + 1
= x +

x + 2
x2 + 1

(b)
15x4 + 6x3 + 34x2 + 4x + 20

5x2 + 2x + 8
= 3x2 + 2 +

4
5x2 + 2x + 8

(c)
2x5 + 9x3 + 12x2 + 10x + 30

2x2 + 5
= x3 + 2x + 6

A-5: (a) 5x3 ´ 3x2 ´ 10x + 6 = (x +
?

2)(x´
?

2)(5x´ 3)

(b) x4 ´ 3x2 ´ 5 =


x +

d

3 +
?

29
2




x´

d

3 +
?

29
2



(

x2 +

?
29´ 3

2

)

(c) x4 ´ 4x3 ´ 10x2 ´ 11x´ 6 = (x + 1)(x´ 6)(x2 + x + 1)

(d) 2x4 + 12x3 ´ x2 ´ 52x + 15 = (x + 3)(x + 5)
(

x´
(

1 +
?

2
2

)) (
x´

(
1´

?
2

2

))

A-6: The goal of partial fraction decomposition is to write our integrand in a form that is
easy to integrate. The antiderivative of (1) can be easily determined with the substitution
u = (ax + b). It’s less clear how to find the antiderivative of (2).

A-7: log
4
3

A-8: ´
1
x
´ arctan x + C

A-9: 4 log |x´ 3| ´ 2 log(x2 + 1) + C

A-10: F(x) = log |x´ 2|+ log(x2 + 4) + 2 arctan(x/2) + D

A-11: ´2 log |x´ 3|+ 3 log |x + 2|+ C
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A-12: ´9 log |x + 2|+ 14 log |x + 3|+ C

A-13: 5x +
1
2

log |x´ 1| ´
7
2

log |x + 1|+ C

A-14: x´
2
x
+

5
2

arctan(2x) + C

A-15:
1
x
´

2
x´ 1

+ C

A-16: ´
1
2

log |x´ 2|+
1
2

log |x + 2|+
3
2

log |2x´ 1|+ C

A-17: log
(

4 ¨ 63

53

)

A-18:
1
2

log
ˇ

ˇ

ˇ

ˇ

1´ cos x
1 + cos x

ˇ

ˇ

ˇ

ˇ

+ C

A-19:
´ cos x
2 sin2 x

+
1
4

log
ˇ

ˇ

ˇ

ˇ

1´ cos x
1 + cos x

ˇ

ˇ

ˇ

ˇ

+ C

A-20: 3 log 2 +
1
2
+

2
?

15

(
arctan

(
7
?

15

)
´ arctan

(
9
?

15

))

A-21: =
9

4
?

2
arctan

(
x
?

2

)
´

2 + 3x
4(x2 + 2)

+ C

A-22:
3
8

arctan x +
3x3 + 5x

8(1 + x2)2 + C

A-23:
3
2

x2 +
1
?

5
arctan

(
x
?

5

)
+

3
2

log |x2 + 5| ´
3

2x2 + 10
+ C

A-24: log
ˇ

ˇ

ˇ

ˇ

sin θ ´ 1
sin θ ´ 2

ˇ

ˇ

ˇ

ˇ

+ C

A-25: t´
1
2

log |e2t + et + 1| ´
1
?

3
arctan

(
2et + 1
?

3

)
+ C

A-26: 2
?

1 + ex + log
ˇ

ˇ

ˇ

ˇ

?
1 + ex ´ 1

?
1 + ex + 1

ˇ

ˇ

ˇ

ˇ

+ C

A-27: (a)

The region R is

3 4

y = 10√
25−x2

x

y
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(b) 10π log
9
4
= 20π log

3
2

(c) 20π

A-28: 2 log
5
3
+

4
?

3
arctan

1
4
?

3

A-29: (a)
1
6

(
log

ˇ

ˇ

ˇ

ˇ

2 ¨
x´ 3
x + 3

ˇ

ˇ

ˇ

ˇ

)
(b) F1(x) = 1

x2´9

Answers to Exercises 1.11 — Jump to TABLE OF CONTENTS

A-1: Relative error: « 0.08147; absolute error: 0.113; percent error: « 8.147%.

A-2: Midpoint rule:

x

y

2 10

Trapezoidal rule:

x

y

2 10

A-3: M = 6.25, L = 2

A-4: One reasonable answer is M = 3.

A-5: (a)
π5

180 ¨ 8
(b) 0 (c) 0

A-6: Possible answers: f (x) =
3
2

x2 + Cx + D for any constants C, D.

A-7: my mother

A-8: (a) true (b) false
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A-9: True. Because f (x) is positive and concave up, the graph of f (x) is always below the
top edges of the trapezoids used in the trapezoidal rule.

x

y
y = f (x)

A-10: Any polynomial of degree at most 3 will do. For example, f (x) = 5x3 ´ 27, or
f (x) = x2.

A-11:

Midpoint:
ż 30

0

1
x3 + 1

dx «
[

1
(2.5)3+1

+ 1
(7.5)3+1

+ 1
(12.5)3+1

+ 1
(17.5)3+1

+ 1
(22.5)3+1

+ 1
(27.5)3+1

]
5

Trapezoidal:
ż 30

0

1
x3 + 1

dx «
[

1/2
03 + 1

+
1

53 + 1
+

1
103 + 1

+
1

153 + 1
+

1
203 + 1

+
1

253 + 1
+

1/2
303 + 1

]
5

Simpson’s:
ż 30

0

1
x3 + 1

dx «
[ 1

03 + 1
+

4
53 + 1

+
2

103 + 1
+

4
153 + 1

+
2

203 + 1
+

4
253 + 1

+
1

303 + 1

]5
3

A-12:
2π

3

A-13: 1720π « 5403.5 cm3

A-14:
π

12
(16.72) « 4.377 m3

A-15:
12.94

6π
« 0.6865 m3

A-16: (a) 363,500 (b) 367,000

A-17: (a)
49
2

(b)
77
3

A-18: Let f (x) = sin(x2). Then f 1(x) = 2x cos(x2) and

f 2(x) = 2 cos(x2)´ 4x2 sin(x2).

Since |x2| ď 1 when |x| ď 1, and |sin θ| ď 1 and |cos θ| ď 1 for all θ, we have
ˇ

ˇ

ˇ
2 cos(x2)´ 4x2 sin(x2)

ˇ

ˇ

ˇ
ď 2| cos(x2)|+ 4x2

| sin(x2)| ď 2ˆ 1 + 4ˆ 1ˆ 1 = 2 + 4 = 6
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We can therefore choose M = 6, and it follows that the error is at most

M[b´ a]3

24n2 ď
6 ¨ [1´ (´1)]3

24 ¨ 10002 =
2

106 = 2 ¨ 10´6

A-19:
3

100
A-20: (a)
1/3

3

(
(´3)5 + 4

(
1
3 ´ 3

)5
+ 2
(

2
3 ´ 3

)5
+ 4(´2)5 + 2

(
4
3 ´ 3

)5
+ 4
(

5
3 ´ 3

)5
+ (´1)5

)

(b) Simpson’s Rule results in a smaller error bound.

A-21:
8

15

A-22:
1

180ˆ 34 =
1

14580

A-23: (a) T4 =
1
4

[(
1
2
ˆ 1
)
+

4
5
+

2
3
+

4
7
+

(
1
2
ˆ

1
2

)]
,

(b) S4 =
1

12

[
1 +

(
4ˆ

4
5

)
+

(
2ˆ

2
3

)
+

(
4ˆ

4
7

)
+

1
2

]

(c)
ˇ

ˇ

ˇ
I ´ S4

ˇ

ˇ

ˇ
ď

24
180ˆ 44 =

3
5760

A-24: (a) T4 = 8.03515, S4 « 8.03509

(b)
ˇ

ˇ

ˇ

ż b

a
f (x) dx´ Tn

ˇ

ˇ

ˇ
ď

2
1000

83

12(4)2 ď 0.00533,
ˇ

ˇ

ˇ

ż b

a
f (x) dx´ Sn

ˇ

ˇ

ˇ
ď

4
1000

85

180(4)4 ď 0.00284

A-25: Any n ě 68 works.

A-26:
472
3
« 494 ft3

A-27: (a) 0.025635 (b) 1.8ˆ 10´5

A-28: (a) « 0.6931698 (b) n ě 12 with n even

A-29: (a) 0.01345 (b) n ě 28 with n even

A-30: n ě 259

A-31: (a) When 0 ď x ď 1, then x2 ď 1 and x + 1 ě 1, so | f 2(x)| =
x2

|x + 1|
ď

1
1
= 1.

(b)
1
2

(c) n ě 65 (d) n ě 46

A-32:
x´ 1

12

[
1 +

16
x + 3

+
4

x + 1
+

16
3x + 1

+
1
x

]
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A-33: Note: for more detail, see the solutions.

First, we use Simpson’s rule with n = 4 to approximate
ş2

1
1

1+x2 dx. The choice of this
method (what we’re approximating, why n = 4, etc.) is explained in the solutions–here,
we only show that it works.

ż 2

1

1
1 + x2 dx «

1
12

[
1
2
+

64
41

+
8

13
+

64
65

+
1
5

]
« 0.321748

For ease of notation, define A = 0.321748.

Now, we bound the error associated with this approximation. Define
N(x) = 24(5x4 ´ 10x2 + 1) and D(x) = (x2 + 1)5, so N(x)/D(x) gives the fourth
derivative of 1

1+x2 . When 1 ď x ď 2, |N(x)| ď N(2) = 984 (because N(x) is increasing
over that interval) and |D(x)| ě D(1) = 25 (because D(x) is also increasing over that
interval), so

ˇ

ˇ

ˇ

d4

dx4

!

1
1+x2

)
ˇ

ˇ

ˇ
=

ˇ

ˇ

ˇ

N(x)
D(x)

ˇ

ˇ

ˇ
ď 984

25 = 30.75. Now we find the error bound for
Simpson’s rule with L = 30.75, b = 2, a = 1, and n = 4.

ˇ

ˇ

ˇ

ˇ

ˇ

ż 2

1

1
1 + x2 dx´ A

ˇ

ˇ

ˇ

ˇ

ˇ

= |error| ď
L(b´ a)5

180 ¨ n4 =
30.75

180 ¨ 44 ă 0.00067

So,

´0.00067 ă

ż 2

1

1
1 + x2 dx´ A ă 0.00067

A´ 0.0067 ă

ż 2

1

1
1 + x2 dx ă A + 0.00067

A´ 0.00067 ă arctan(2)´ arctan(1) ă A + 0.00067

A´ 0.00067 ă arctan(2)´
π

4
ă A + 0.00067

π

4
+ A´ 0.00067 ă arctan(2) ă

π

4
+ A + 0.00067

π

4
+ 0.321748´ 0.00067 ă arctan(2) ă

π

4
+ 0.321748 + 0.00067

π

4
+ 0.321078 ă arctan(2) ă

π

4
+ 0.322418

π

4
+ 0.321 ă arctan(2) ă

π

4
+ 0.323

This was the desired bound.

Answers to Exercises 1.12 — Jump to TABLE OF CONTENTS

A-1: Any real number in [1,8) or (´8,´1], and b = ˘8.

A-2: b = ˘8

A-3: The red function is f (x), and the blue function is g(x).
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A-4: False. For example, the functions f (x) = e´x and g(x) = 1 provide a
counterexample.

A-5:

(a) Not enough information to decide. For example, consider h(x) = 0 versus h(x) = ´1.

(b) Not enough information to decide. For example, consider h(x) = f (x) versus
h(x) = g(x).

(c)
ż 8

0
h(x) dx converges by the comparison test, since |h(x)| ď 2 f (x) and

ż 8

0
2 f (x) dx

converges.

A-6: The integral diverges.

A-7: The integral diverges.

A-8: The integral does not converge.

A-9: The integral converges.

A-10: The integral diverges.

A-11: The integral diverges.

A-12: The integral diverges.

A-13: The integral diverges.

A-14: The integral diverges.

A-15: The integral converges.

A-16: The integral converges.

A-17: false

A-18: q = 1
5

A-19: p ą 1

A-20:
log 3´ π

4
+

1
2

arctan 2

A-21: The integral converges.

A-22:
1
2

A-23: The integral converges.

A-24: The integral converges.

A-25: t = 10 and n = 2042 will do the job. There are many other correct answers.

A-26: (a) The integral converges. (b) The interval converges.

A-27: false
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Answers to Exercises 1.13 — Jump to TABLE OF CONTENTS

A-1: (A)–(I), (B)–(IV), (C)–(II), (D)–(III)

A-2:
1
5
´

2
7
+

1
9
=

8
315

A-3:
3

2
?

5
arcsin

(
x
c

5
3

)
+

x
2

?
3´ 5x2 + C

A-4: 0

A-5: log
ˇ

ˇ

ˇ

ˇ

x + 1
3x + 1

ˇ

ˇ

ˇ

ˇ

+ C

A-6:
8
3

log 2´
7
9

A-7:
1
2

log
ˇ

ˇx2 ´ 3
ˇ

ˇ+ C

A-8: (a) 2 (b)
2

15
(c)

3e4

16
+

1
16

A-9: (a) 1 (b)
8

15

A-10: (a) e2 + 1 (b) log(
?

2 + 1) (c) log 15
13 « 0.1431

A-11: (a)
9
4

π (b) log 2´ 2 +
π

2
« 0.264 (b) 2 log 2´ 1

2 « 0.886

A-12:
1
3

sin3 θ ´ 2 sin θ + 12 log
ˇ

ˇ

ˇ

ˇ

sin θ ´ 3
sin θ ´ 2

ˇ

ˇ

ˇ

ˇ

+ C

A-13: (a)
1

15
(b)

1
9
¨

x
?

x2 + 9
+ C (c)

1
2

log |x´ 1| ´
1
4

log(x2 + 1)´
1
2

arctan x + C

(d)
1
2
[
x2 arctan x´ x + arctan x

]
+ C

A-14: (a)
1

12
(b) 2 sin´1 x

2
+ x

c

1´
x2

4
+ C

(c) ´2 log |x|+
1
x
+ 2 log |x´ 1|+ C

A-15: (a)
2
5

(b)
1

2
?

2
(c) log 2´

1
2
« 0.193 (d) log 2´

1
2
« 0.193

A-16: (a)
1
2

x2 log x´
1
4

x2 + C (b)
1
2

log[x2 + 4x + 5]´ 3 arctan(x + 2) + C

(c)
1
2

log |x´ 3| ´
1
2

log |x´ 1|+ C (d)
1
3

arctan x3 + C

A-17: (a)
π

4
´

1
2

log 2 (b) log |x2
´ 2x + 5|+

1
2

arctan
x´ 1

2
+ C
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A-18: (a) ´
1

300(x3 + 1)100 + C (b)
sin5x

5
´

sin7x
7

+ C

A-19: -2

A-20: (a) ´
1
4

log |ex + 1|+
1
4

log |ex
´ 3|+ C (b)

4π

3
´ 2
?

3

A-21: (a)
1
2

sec2 x + log | cos x|+ C (b)
1

10
arctan 8 « 0.1446

A-22:
2
5
(x´ 1)5/2 +

2
3
(x´ 1)3/2 + C

A-23: log
ˇ

ˇ

ˇ
x +

?
x2 ´ 2

ˇ

ˇ

ˇ
´

?
x2 ´ 2

x
+ C

A-24:
7
24

A-25: 3 log |x + 1|+
2

x + 1
´

5
2(x + 1)2 + C

A-26:
2
?

3
arctan

(
2
?

3
x +

1
?

3

)
+ C

A-27:
1
2
(x´ sin x cos x) + C

A-28:
1
3

log |x + 1| ´
1
6

log |x2 + x + 1|+
1
?

3
arctan

(
2x´ 1
?

3

)
+ C

A-29: 3x3 arcsin x + 3
?

1´ x2 ´ (1´ x2)3/2 + C

A-30: 2

A-31:
1
4

A-32: log
(

log(cos(0.1))
log(cos(0.2))

)

A-33: (a)
1
2

x
[

sin(log x)´ cos(log x)
]
+ C (b) 2 log 2´ log 3 = log 4

3

A-34: (a)
9
4

π + 9 (b) 2 log |x´ 2| ´ log(x2 + 4) + C (c)
π

2

A-35: ´ arcsin(
?

1´ x)´
?

1´ x
?

x + C

A-36: ee(e´ 1)

A-37:
ex

x + 1
+ C

A-38: x sec x´ log | sec x + tan x|+ C

203



A-39:
ż

x(x + a)n dx =

$

’

&

’

%

(x+a)(n+2)

n+2 ´ a (x+a)n+1

n+1 + C if n ‰ ´1,´2
(x + a)´ a log |x + a|+ C if n = ´1
log |x + a|+ a

x+a + C if n = ´2

A-40: x arctan(x2)´ 1?
2

(
1
2 log

ˇ

ˇ

ˇ

x2´
?

2x+1
x2+

?
2x+1

ˇ

ˇ

ˇ
+ arctan

(?
2x + 1

)
+ arctan

(?
2x´ 1

)
)
+ C

Answers to Exercises 2.1 — Jump to TABLE OF CONTENTS

A-1: 0.00294 J

A-2: The rock has mass
1

9.8
kg (about 102 grams); lifting it one metre takes 1 J of work.

A-3: (a) metres (b) newtons (c) joules

A-4:
smoot ¨ barn
megaFonzie

(smoot-barns per megaFonzie)

A-5: 10 cm below the bottom of the unloaded spring

A-6: x = 2

A-7: a = 3

A-8: (a) joules (b) c log
(

`´ 1
`´ 1.5

)
J

A-9:
1
4

J

A-10: 25 J

A-11: 196 J

A-12: 14700 J

A-13:
ż 3

0
(9.8)(8000)(2 + z)(3´ z)2 dz joules

A-14: 0.2352 J

A-15:
20
49

kg, or about 408 grams

A-16: 294 J

A-17: (a) 117.6 J (b) 3.92
[
30´ 2

?
3
]
« 104 J

A-18:
1

2
?

5
m/sec, or about 22.36 cm/sec

A-19: yes (at least, the car won’t scrape the ground)

A-20: « 0.144 J

A-21: 904,050π J
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A-22: 10205
6 J

A-23: (a) 4900 N (b) 44100
x2 N (c) 29 400 J

A-24: 220.5 J

A-25: About 7ˆ 1028 J

A-26: true

A-27: 92555
9 J

A-28:
7
40

= 0.175 J

A-29: One possible answer:
1
4



d

1´
(

1
8

)4

+

d

1´
(

3
8

)4



Answers to Exercises 2.2 — Jump to TABLE OF CONTENTS

A-1: The most straightforward of many possible answers is shown.

x

y

5

A

A-2: 500 km

A-3:
W

b´ a
N

A-4: (a)
b´ a

n
(b) a + 3

b´ a
n

(c) f
(

a + 3
b´ a

n

)
(d)

1
n

n
ř

i=1
f
(

a + (i´ 1) b´a
n

)

A-5: (a) yes (b) not enough information

A-6: 0

A-7: 1

A-8:
1

e´ 1

[2
9

e3 +
1
9

]

A-9:
4
π
+ 1
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A-10:
2
π

A-11:
10
3

log 7 degrees Celsius

A-12:
1

2(e´ 1)

A-13:
1
2

A-14: (a) 400 ppm (b) « 599.99 ppm (c) 0.125, or 12.5%

A-15: (a)
16π

5
(b)

32π

5
(c)

32π

5

A-16: (a) 0 (b)
?

3

A-17:

c

4
π
´ 1 « 0.52

A-18: (a) F(t) = 3 f (t) = 3 sin (tπ) N (b) 0 (c)
3
?

2
« 2.12

A-19: (a) 130 km (b) 65 km/hr

A-20: (a) A = e´ 1 (b) 0 (c) 4´ 2e + 2(e´ 1) log(e´ 1) « 0.42

A-21: (a) neither–both are zero (b) | f (x)´ A| has the larger average on [0, 4]

A-22: (b´ a)πR2

A-23: 0

A-24: Yes, but if a ‰ 0, then s = t.

A-25: A

A-26: (a)
bA(b)´ aA(a)

b´ a
(b) f (t) = A(t) + tA1(t)

A-27:

(a) One of many possible answers: f (x) =

#

´1 if x ď 0
1 if x ą 0

.

(b) No such function exists.

Note 1: Suppose f (x) ą 0 for all x in [´1, 1]. Then 1
2

ş1
´1 f (x)dx ą 1

2

ş1
´1 0 dx = 0.

That is, the average value of f (x) on the interval [´1, 1] is not zero–it’s
something greater than zero.

Note 2: Suppose f (x) ă 0 for all x in [´1, 1]. Then 1
2

ş1
´1 f (x)dx ă 1

2

ş1
´1 0 dx = 0.

That is, the average value of f (x) on the interval [´1, 1] is not zero–it’s
something less than zero.

So, if the average value of f (x) is zero, then f (x) ě 0 for some x in [´1, 1], and
f (y) ď 0 for some y P [´1, 1]. Since f is a continuous function, and 0 is between f (x)
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and f (y), by the intermediate value theorem (Theorem 1.6.12 in the in the CLP-1 text)
there is some value c between x and y such that f (c) = 0. Since x and y are both in
[´1, 1], then c is as well. Therefore, no function exists as described in the question.

A-28: true

A-29: 0

Answers to Exercises 2.3 — Jump to TABLE OF CONTENTS

A-1: (1, 1)

A-2: (0, 0)

A-3: In general, false.

A-4: 3.5 metres from the left end

A-5: (a) to the left (b) to the left (c) not enough information
(d) along the line x = a (e) to the right

A-6:
39200π

9
(12´ π) « 121, 212 J

A-7: (a), (b)
1
x

dx (c), (d) log 3 (e), (f)
2

log 3

A-8: (a)

n
ř

i=1

[
b´a

n ρ
(

a +
(

i´ 1
2

)
( b´a

n )
)
ˆ

(
a + (i´ 1

2)
(

b´a
n

))]

n
ř

i=1

b´a
n ρ

(
a + (i´ 1

2)
(

b´a
n

)) (b) x̄ =

şb
a xρ(x)dx
şb

a ρ(x)dx

A-9: (a)

x

y T(x)

B(x)

a ba1 b1

R

(b) (T(x)´ B(x))dx (c) T(x)´ B(x) (d) x̄ =

şb
a x(T(x)´ B(x))dx
şb

a(T(x)´ B(x))dx

A-10: (a) The strips between x = a and x = a1 at the left end of the figure all have the
same centre of mass, which is the y-value where T(x) = B(x), x ă 0. So, there should be
multiple weights of different mass piled up at that y-value.
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Similarly, the strips between x = b1 and x = b at the right end of the figure all have the
same centre of mass, which is the y-value where T(x) = B(x), x ą 0. So, there should be
a second pile of weights of different mass, at that (higher) y-value.

Between these two piles, there are a collection of weights with identical mass distributed
fairly evenly. The top and bottom ends of R (above the uppermost pile, and below the
lowermost pile) have no weights.

One possible answer (using twelve slices):

x

y T(x)

B(x)

a b

R

(b) The area of the strip is (T(x)´ B(x))dx, and its centre of mass is at height
T(x) + B(x)

2
.

(c) ȳ =

şb
a
(
T(x)2 ´ B(x)2)dx

2
şb

a
(
T(x)´ B(x)

)
dx

A-11: x̄ = ´
1
3

ż 0

´1
6x2 dx

A-12: x̄ =
14
3

A-13: x̄ =
log 10.1

2(arctan 10 + arctan(3))
« 0.43

A-14: ȳ =
3
4e
´

e
4

A-15: (a)
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x = 2

y = 1√
16−x2

x

y

(b)
3 log 3

8π

A-16: x̄ =
π
4

?
2´ 1

?
2´ 1

and ȳ =
1

4(
?

2´ 1)

A-17: (a) x̄ =
k
A
[?

2´ 1
]
, ȳ =

k2π

8A
(b) k =

8
π

[?
2´ 1

]

A-18: (a)

y=x−x2

y=x2−3x

x
y

(2,−2)

(b)
8
3

(c) 1

A-19:
2
π

log 2 « 0.44127

A-20: x̄ = 0 and ȳ =
12

24 + 9π

A-21: (a)
9
4

π (b) x̄ = 0 and ȳ =
4
π

A-22: (x̄, ȳ) =
(

1,´
2
π

)

A-23:
(

e2 ´ 3/2
e2 ´ 5/2

,
e4 ´ 7

4e2 ´ 10

)
« (1.2, 2.4)

A-24: ȳ =
8
5

A-25: (a) x̄ =
8

11
, ȳ =

166
55

(b) π

ż 4

0
y dy + π

ż 6

4
(6´ y)2 dy

A-26: (a) ȳ =
e
4
´

3
4e

(b) π

(
e2

2
+ 2e´

3
2

)

A-27: (3, 1.5)
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A-28: (0, 3.45)

A-29: (a)
h
4

(b)
1
2 h2k´ 2

3 hk2 + 1
4 k3

h2 ´ hk + 1
3 k2

A-30: about 0.833 N

A-31: (a) 17,150π J (b)
2450

9
π (8π ´ 9) « 13, 797 J (c) about 74%

A-32: x̄ =
π

162

c

π

2

[
sin
( π

72

)
+ 2 sin

( π

18

)
+ 9 sin

(π

8

)
+ 8 sin

(
2π

9

)
+ 25 sin

(
25π

72

)
+ 9
]
« 0.976

Answers to Exercises 2.4 — Jump to TABLE OF CONTENTS

A-1: (a) yes (b) yes (c) no

A-2:

(a) One possible answer: f (x) = x, g(y) =
sin y
3y

.

(b) One possible answer: f (x) = ex, g(y) = ey.

(c) One possible answer: f (x) = x´ 1, g(y) = 1.

(d) The given equation is equivalent to the equation dy
dx = x, which fits the form of a

separable equation with f (x) = x, g(y) = 1.

A-3: The mnemonic allows us to skip from the separable differential equation we want to
solve (very first line) to the equation

ż

1
g(y)

dy =

ż

f (x)dx

A-4: false

A-5: (a) [0,8)
(b) No such function exists. If | f (x)| = Cx and f (x) switches from f (x) = Cx to
f (x) = ´Cx at some point, then that point is a jump discontinuity. Where f (x) contains a
discontinuity, dy

dx does not exist.

A-6:
dQ
dt

= ´0.003Q(t)

A-7: dp
dt = αp(t)

(
1´ p(t)

)
, for some constant α.

A-8: (a) ´1 (b) 0 (c) 0.5
(d) Two possible answers are shown below:
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x

y

1

1

x

y

1

1

Another possible answer is the constant function y = 2.

A-9: (a) ´
1
2

(b)
3
2

(c) ´
5
2

(d) Your sketch should look something like this:

x

y

1

1

(e) There are lots of possible answers. Several are shown below.
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x

y

1

1

x

y

1

1

x

y

1

1

x

y

1

1

A-10: y = log(x2 + 2)

A-11: y(x) = 3
?

1 + x2

A-12: y(t) = 3 log
(

´3
C + sin t

)

A-13: y = 3
b

3
2 ex2 + C.

A-14: y = ´ log
(

C´
x2

2

)

The solution only exists for C´ x2

2 ą 0, i.e. C ą 0 and the function has domain
 

x : |x| ă
?

2C
(

.

A-15: y = (3ex ´ 3x2 + 24)1/3
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A-16: y = f (x) = ´
1

?
x2 + 16

A-17: y =
?

10x3 + 4x2 + 6x´ 4

A-18: y(x) = ex4/4

A-19: y = 1
1´2x

A-20: f (x) = e ¨ ex2/2

A-21: y(x) =
b

4 + 2 log 2x
x+1 . Note that, to satisfy y(1) = 2, we need the positive square

root.

A-22: y2 +
2
3
(y2

´ 4)3/2 = 2 sec x + 2

A-23: 12 weeks

A-24: t =
c

m
kg

arctan

(d
k

mg
v0

)

A-25: (a) k = 1
400 (b) t = 70sec

A-26: (a) x(t) =
3´ 4ekt

1´ 2ekt (b) As t Ñ 8, x Ñ 2.

A-27: (a) P =
4

1 + e´4t (b) At t =
1
2

, P « 3.523. As t Ñ 8, P Ñ 4.

A-28: (a)
dv
dt

= ´kv2 (b) v =
400

t + 1
(c) t = 7

A-29: (a) B(t) = C e0.06t´0.02 cos t with the arbitrary constant C ě 0. (b) $1159.89

A-30: (a) B(t) = t30000´ 50mu et/50 + 50m (b) $600

A-31: y(x) =
4´ e1´cos x

2´ e1´cos x . The largest allowed interval is

´ arccos(1´ log 2) ă x ă arccos(1´ log 2)

or, roughly, ´1.259 ă x ă 1.259.

A-32: 180, 000
b

3
g « 99, 591 sec « 27.66 hr

A-33: t =
4ˆ 144

15

d

125

2g
« 2, 394 sec « 0.665 hr

A-34: (a) 3 (b) y1 = (y´ 1)(y´ 2) (c) f (x) =
4´ ex

2´ ex

A-35: p = 1
4

A-36:
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(a) One possible answer: f (t) = 0

(b)
1

?
x´ a

[
f (x)´

1
2(x´ a)

ż x

a
f (t)dt

]
=

f 2(x)

2
b

şx
a f 2(t)dt

(c)
2

x´ a

ż x

a
f (t)dt

[
f (x)´

1
2(x´ a)

ż x

a
f (t)dt

]
= f 2(x)

(d) Y(x) = D(x´ a), where D is any constant

(e) f (t) = D, for any nonnegative constant D

A-37: x =
1
4

(
y´ 1 +

1
4

log
ˇ

ˇ

ˇ

ˇ

2y´ 1
2y + 1

ˇ

ˇ

ˇ

ˇ

)

Answers to Exercises 3.1 — Jump to TABLE OF CONTENTS

A-1: (a) ´2 (b) 0 (c) the limit does not exist

A-2: true

A-3: (a)
A´ B

C
(b) 0 (c)

A
B

A-4: Two possible answers, of many:

• an =

#

3000´ n if n ď 1000
´2 + 1

n if n ą 1000

• an =
1, 002, 001

n
´ 2

A-5: One possible answer is an = (´1)n = t´1, 1,´1, 1,´1, 1,´1, . . .u.
Another is an = n(´1)n = t´1, 2,´3, 4,´5, 6,´7, . . .u.

A-6: One sequence of many possible is an =
(´1)n

n
=

"

´1,
1
2

, ´
1
3

,
1
4

, ´
1
5

,
1
6

, . . .
*

.

A-7: Some possible answers:

(a)
´1
n
ď

sin n
n

ď
1
n

(b)
n2

13en ď
n2

en(7 + sin n´ 5 cos n)
ď

n2

en or 0 ď
n2

en(7 + sin n´ 5 cos n)
ď

n2

en

(c)
´1
nn ď (´n)´n ď

1
nn

A-8: (a) an = bn = h(n) = i(n), cn = j(n), dn = f (n), en = g(n)
(b) lim

nÑ8
an = lim

nÑ8
bn = lim

xÑ8
h(x) = 1, lim

nÑ8
cn = lim

nÑ8
en = lim

xÑ8
g(x) = lim

xÑ8
j(x) = 0,

lim
nÑ8

dn, lim
xÑ8

f (x) and lim
xÑ8

i(x) do not exist.

A-9: (a) Some possible answers: a22 « ´0.99996, a66 « ´0.99965, and a110 « ´0.99902.
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(b) Some possible answers: a11 « 0.0044, a33 « ´0.0133, and a55 « 0.0221.

The integers 11, 33, and 55 were found by approximating π by
22
7

and finding when an

odd multiple of
11
7

(which is the corresponding approximation of
π

2
) is an integer.

(c) Some possible answers: a44 « 0.9998, a132 « 0.9986 and a220 « 0.09961.
See the solution for how we found them.

A-10: (a)8 (b)
3
4

(c) 0

A-11: 8

A-12: 0

A-13: 0

A-14: 0

A-15: 1

A-16: 0

A-17: 8

A-18: lim
kÑ8

ak = 0.

A-19: The sequence converges to 0.

A-20: 9

A-21: log 2

A-22: 5

A-23: ´8

A-24: 100 ¨ 299.

A-25: Possible answers are tanu =

"

n
[

f
(

a +
1
n

)
´ f (a)

]*

or tanu =

"

n
[

f (a)´ f
(

a´
1
n

)]*
.

A-26: (a) An =
n
2

sin
(

2π

n

)
(b) π

A-27:

(a)

x

y

1

2 3
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(b)

x

y

1

43

(c) An = 1 for all n

(d) lim
nÑ8

An = 1.

(e) g(x) = 0

(f)
ż 8

0
g(x)dx = 0.

A-28: e3

A-29: (a) 4 (b) x = 4 (c) see solution

A-30: (a) decreasing (b) fn = 1
n f1 (c) 2% (d) 0.18%

(e) “be”: 11,019,308; “and”: 7,346,205

Answers to Exercises 3.2 — Jump to TABLE OF CONTENTS

A-1:

N SN
1 1

2 1 + 1
2

3 1 + 1
2 +

1
3

4 1 + 1
2 +

1
3 +

1
4

5 1 + 1
2 +

1
3 +

1
4 +

1
5

A-2: 3

A-3: (a) an =

$

&

%

1
2 if n = 1

1
n(n + 1)

else
(b) 0 (c) 1

A-4: an =

#

0 if n = 1
2(´1)n ´ 1

n(n´1) else

A-5: an ă 0 for all n ě 2

A-6: (a)
8
ÿ

n=1

2
4n (b)

2
3
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A-7: (a)
8
ÿ

n=1

1
9n (b)

1
8

A-8: Two possible pictures:

A-9:
5101 ´ 1
4 ¨ 5100

A-10: All together, there were 36 cookies brought by Student 11 through Student 20.

A-11:
551 ´ 1
4 ¨ 5100

A-12: (a) As time passes, your gains increase, approaching $1. (b) 1
(c) As time passes, you lose more and more money, without bound. (d) ´8

A-13: A + B + C´ c1

A-14: in general, false

A-15:
3
2

A-16:
1

7ˆ 86

A-17: 6
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A-18: cos
(π

3

)
´ cos(0) = ´

1
2

A-19: (a) an =
11

16n2 + 24n + 5
(b)

3
4

A-20:
24
5

A-21:
7
30

A-22:
263
99

A-23:
321
999

=
107
333

A-24: 3

A-25:
1
2
+

5
7
=

17
14

A-26:
40
3

A-27: The series diverges to ´8.

A-28: ´
1
2

A-29: 9.8 J

A-30:
4π

3 (π3 ´ 1)

A-31:
sin2 3

8
+ 32 « 32.0025

A-32: an =

$

’

&

’

%

2
n(n´1)(n´2) if n ě 3,

´5
2 if n = 2,

2 if n = 1

A-33:
5
8

Answers to Exercises 3.3 — Jump to TABLE OF CONTENTS

A-1: (B), (C)

A-2: (A)

A-3: (a) I am old (b) not enough information to tell
(c) not enough information to tell (d) I am young

A-4:
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if
ř

an converges if
ř

an diverges

and if tanu is the red series then
ř

bn CONVERGES inconclusive

and if tanu is the blue series inconclusive then
ř

bn DIVERGES

A-5: (a) both direct comparison and limit comparison (b) direct comparison
(c) limit comparison (d) neither

A-6: It diverges by the divergence test, because lim
nÑ8

an ‰ 0.

A-7: We cannot use the divergence test to show that a series converges. It is inconclusive
in this case.

A-8: The integral test does not apply because f (x) is not decreasing.

A-9: The inequality goes the wrong way, so the direct comparison test (with this
comparison series) is inconclusive.

A-10: (B), (D)

A-11: One possible answer:
8
ÿ

n=1

1
n2 .

A-12: By the divergence test, for a series
ř

an to converge, we need lim
nÑ8

an = 0. That is,

the magnitude (absolute value) of the terms needs to be getting smaller. If lim
nÑ8

ˇ

ˇ

ˇ

ˇ

an

an+1

ˇ

ˇ

ˇ

ˇ

ă 1

or (equivalently) lim
nÑ8

ˇ

ˇ

ˇ

ˇ

an+1

an

ˇ

ˇ

ˇ

ˇ

ą 1, then |an+1| ą |an| for sufficiently large n, so the terms

are actually growing in magnitude. That means the series diverges, by the divergence test.

A-13: One possible answer: f (x) = sin(πx), an = 0 for every n.

By the integral test, any answer will use a function f (x) that is not both positive and
decreasing.

A-14: One possible answer: bn =
2n

3n

A-15: (a) In general false. The harmonic series
8
ř

n=1

1
n provides a counterexample.

(b) In general false. If an = (´1)n 1
n , then

8
ř

n=1
(´1)nan is again the harmonic series

8
ř

n=1

1
n ,

which diverges.

(c) In general false. Take, for example, an = 0 and bn = 1.

A-16: No. It diverges.

A-17: It diverges.
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A-18: The series diverges.

A-19: It diverges.

A-20: This is a geometric series with r = 1.001. Since |r| ą 1, it is divergent.

A-21: The series converges to ´
1

150
.

A-22: The series converges.

A-23: It diverges.

A-24: The series converges.

A-25: The series converges to
1
3

.

A-26: The series converges.

A-27: It converges.

A-28: Let f (x) =
5

x(log x)3/2 . Then f (x) is positive and decreases as x increases. So the

sum
8
ÿ

3

f (n) and the integral
ż 8

3
f (x)dx either both converge or both diverge, by the

integral test, which is Theorem 3.3.5 in the CLP-2 text. For the integral, we use the
substitution u = log x, du = dx

x to get
ż 8

3

5 dx
x(log x)3/2 =

ż 8

log 3

5 du
u3/2

which converges by the p–test (which is Example 1.12.8 in the CLP-2 text) with p = 3
2 ą 1.

A-29: p ą 1

A-30: It converges.

A-31: The series
8
ÿ

n=2

?
3

n2 converges by the p–test with p = 2.

Note that

0 ă an =

?
3n2 ´ 7

n3 ă

?
3n2

n3 =

?
3

n2

for all n ě 2. As the series
8
ř

n=2

?
3

n2 converges, the comparison test says that
8
ř

n=2

?
3n2´7
n3

converges too.

A-32: The series converges.

A-33: It diverges.

A-34: (a) diverges (b) converges

A-35: The series diverges.
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A-36: (a) converges (b) diverges

A-37:
1

e5 ´ e4

A-38: 1
7

A-39: (a) diverges by limit comparison with the harmonic series

(b) converges by the ratio test

A-40: (a) Converges by the limit comparison test with b = 1
k5/3 .

(b) Diverges by the ratio test.

(c) Diverges by the integral test.

A-41: It converges.

A-42: N = 5

A-43: N ě 999

A-44: We need N = 4 and then S4 = 1
32 ´

1
52 +

1
72 ´

1
92

A-45: (a) converges (b) converges

A-46: (a) See the solution.

(b) f (x) =
x + sin x

1 + x2 is not a decreasing function.

(c) See the solution.

A-47: The sum is between 0.9035 and 0.9535.

A-48: Since lim
nÑ8

an = 0, there must be some integer N such that 1
2 ą an ě 0 for all n ą N.

Then, for n ą N,

an

1´ an
ď

an

1´ 1/2
= 2an

From the information in the problem statement, we know

8
ÿ

n=N+1

2an = 2
8
ÿ

n=N+1

an converges.

So, by the direct comparison test,

8
ÿ

n=N+1

an

1´ an
converges as well.

Since the convergence of a series is not affected by its first N terms, as long as N is finite,
we conclude

8
ÿ

n=1

an

1´ an
converges.
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A-49: It diverges.

A-50: It converges to ´ log 2 = log 1
2 ,

A-51: See the solution.

A-52: About 9% to 10%

A-53: The total population is between 29,820,091 and 30,631,021 people.

Answers to Exercises 3.4 — Jump to TABLE OF CONTENTS

A-1: False. For example, bn = 1
n provides a counterexample.

A-2:
ř

an converges
ř

an diverges

ř

|an| converges converges absolutely not possible

ř

|an| diverges converges conditionally diverges

A-3: conditionally convergent

A-4: The series diverges.

A-5: It diverges.

A-6: It converges absolutely.

A-7: It converges absolutely.

A-8: It diverges.

A-9: It converges absolutely.

A-10: See solution.

A-11: See solution.

A-12: See solution.

A-13: (a) See the solution. (b) |S´ S5| ď 24ˆ 36e´63

A-14: cos 1 « 389
720 ; the actual associated error (using a calculator) is about 0.000025.

A-15: See solution.

Answers to Exercises 3.5 — Jump to TABLE OF CONTENTS

A-1: 2

A-2: f (x) =
8
ÿ

n=1

n(x´ 5)n´1

n! + 2
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A-3: only x = c

A-4: R = 6

A-5: (a) R =
1
2

(b)
2

1 + 2x
for all |x| ă

1
2

A-6: R = 8

A-7: 1

A-8: The interval of convergence is ´1 ă x + 2 ď 1 or (´3,´1].

A-9: The interval of convergence is ´4 ă x ď 2, or simply (´4, 2].

A-10: ´3 ď x ă 7 or [´3, 7)

A-11: The given series converges if and only if ´3 ď x ď ´1. Equivalently, the series has
interval of convergence [´3,´1].

A-12: The interval of convergence is 3
4 ď x ă 5

4 , or
[3

4 , 5
4

)
.

A-13: The radius of convergence is 2. The interval of convergence is ´1 ă x ď 3, or(
´ 1, 3

]
.

A-14: The interval of convergence is a´ 1 ă x ă a + 1, or
(
a´ 1, a + 1

)
.

A-15: (a) |x + 1| ď 9 or ´10 ď x ď 8 or [´10, 8] (b) This series converges only for
x = 1.

A-16:
8
ÿ

n=0

xn+3 =
8
ÿ

n=3

xn

A-17: f (x) = 3 +
8
ÿ

n=1

(x´ 1)n

n(n + 1)

A-18: The series converges absolutely for |x| ă 9, converges conditionally for x = ´9 and
diverges otherwise.

A-19: (a)
8
ÿ

n=0

(´1)n x3n+1

3n + 1
+ C (b) We need to keep two terms (the n = 0 and n = 1

terms).

A-20: (a) See the solution.

(b)
8
ÿ

n=0

n2xn =
x(1 + x)
(1´ x)3 . The series converges for ´1 ă x ă 1.

A-21: See the solution.

A-22: (a) 1. (b) The series converges for ´1 ď x ă 1, i.e. for the interval [´1, 1)

A-23:
5
6

A-24: The point x = c corresponds to a local maximum if A2 ă 0 and a local minimum if
A2 ą 0.
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A-25:
13
80

A-26: x´
x2

2
+

x3

3
´

x4

4

A-27: x´
x3

3
+

x5

5

Answers to Exercises 3.6 — Jump to TABLE OF CONTENTS

A-1: A: linear B: constant C: quadratic

A-2: T(5) = arctan3 (e5 + 7
)

A-3:

A - V, radius= 1 B - I, radius= 1 C - IV, radius= 1
D - VI, radius= +8 E - II, radius= +8 F - III, radius= +8

A-4: (a) f (20)(3) = 202
(

20!
20! + 1

)
(b) g(20)(3) = 102

(
20!

10! + 1

)

(c) h(20)(0) = 0; h(22)(0) =
22! ¨ 513

13

A-5:
8
ÿ

n=1

(´1)n´1

n
(x´ 1)n

A-6:
8
ÿ

n=0

(´1)n+1

(2n + 1)!
(x´ π)2n+1

A-7:
1

10

8
ÿ

n=0

(
10´ x

10

)n
with interval of convergence (0, 20).

A-8:
8
ÿ

n=0

3ne3a

n!
(x´ a)n, with infinite radius of convergence

A-9: ´
8
ÿ

n=0

2nxn

A-10: bn = 3(´1)n + 2n

A-11: c5 =
35

5!

A-12:
8
ÿ

n=0

(´1)n 2n+1xn+1

n + 1
for all |x| ă 1

2

A-13: a = 1, b = ´
1
3!

= ´
1
6

.
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A-14:
ż

e´x2
´ 1

x
dx = C´

x2

2
+

x4

8
+ ¨ ¨ ¨ .

It is not clear from the wording of the question whether or not the arbitrary constant C is
to be counted as one of the “first two nonzero terms”.

A-15:
8
ÿ

n=0

(´1)n 22n+1x2n+6

(2n + 1)(2n + 6)
+ C =

8
ÿ

n=0

(´1)n 22nx2n+6

(2n + 1)(n + 3)
+ C

A-16: f (x) = 1 +
8
ÿ

n=0

(´1)n 3n

3n + 2
x3n+2

A-17:
π

2
?

3

A-18:
1
e

A-19: e1/e

A-20: e1/π ´ 1

A-21: log(3/2)

A-22: (e + 2)ee ´ 2

A-23: The sum diverges–see the solution.

A-24:
1 +

?
2

?
2

A-25: (a) See the solution. (b)
1
2

(
e +

1
e

)

A-26: (a) 50,000 (b) three terms (n = 0 to n = 2) (c) six terms (n = 0 to n = 5)

A-27: 29

A-28: S13 or higher

A-29: S9 or higher

A-30: S18 or higher

A-31: The error is in the interval
(
´57

14 ¨ 37

[
1 +

1
37

]
,

´57

7 ¨ 67

)
« (´0.199,´0.040)

A-32: ´1

A-33:
1
5!

=
1

120

A-34: e2

A-35:
?

e

A-36:
2

(6/7)3 =
343
108
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A-37:
8
ÿ

n=0

(´1)n x2n+4

(2n + 1)(2n + 2)
= x3 arctan x´

x2

2
log(1 + x2)

A-38: (a) the Maclaurin series for f (x) is
8
ÿ

n=0

(2n)!
22n (n!)2 xn, and its radius of convergence is

R = 1.

(b) the Maclaurin series for arcsin x is
8
ÿ

n=0

(2n)!
22n (n!)2(2n + 1)

x2n+1, and its radius of

convergence is R = 1.

A-39: log(x) = log 2 +
8
ÿ

n=1

(´1)n´1

n 2n (x´ 2)n. It converges when 0 ă x ď 4.

A-40: (a)
8
ÿ

n=0

(´1)n x4n+1

4n + 1
(b) 0.493967

(c) The approximate value of part (b) is larger than the true value of I(1/2)

A-41:
1

66
A-42: Any interval of length 0.0002 that contains 0.03592 and 0.03600 is fine.

A-43: (a)
8
ÿ

n=1

(´1)n xn

n n!
(b) ´0.80 (c) See the solution.

A-44: (a) Σ(x) =
8
ÿ

n=0

(´1)n x2n+1

(2n + 1)(2n + 1)!
(b) x = π (c) 1.8525

A-45: (a) I(x) =
8
ÿ

n=1

(´1)n x2n´1

(2n)!(2n´ 1)
(b) I(1) = ´

1
2
+

1
4!3

˘
1

6!5
= ´0.486˘ 0.001

(c) I(1) ă ´
1
2
+

1
4!3

A-46: (a) I(x) =
8
ÿ

n=1

(´1)n+1 x2n´1

(2n)!
=

1
2!

x´
1
4!

x3 +
1
6!

x5
´

1
8!

x8 + ¨ ¨ ¨

(b) 0.460 (c) I(1) ă
1
2!
´

1
4!

+
1
6!
ă 0.460

A-47: (a) See the solution. (b) The series converges for all x.

A-48: See the solution.

A-49: (a) cosh(x) =
8
ÿ

n=0
n even

xn

n!
=

8
ÿ

n=0

x2n

(2n)!
for all x.

A-50: (a) 3
?

3 « 1.26 (b) 12 terms (S11)

A-51:
15!

5! ¨ 56 ´
21!

7! ¨ 11! ¨ 511 +
27!

9! ¨ 17! ¨ 517 ´
33!

11! ¨ 23! ¨ 523
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A-52: (a)

x

y

1

´
?

2/3
?

2/3

y = f (x)

(b) the constant function 0 (c) everywhere (d) only at x = 0

A-53: 0
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SOLUTIONS TO PROBLEMS

Part IV
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Solutions to Exercises 1.1 — Jump to TABLE OF CONTENTS

S-1:

x

y

1 3

0.75
1.25

x

y

1 3

0.75
1.25

The diagram on the left shows a rectangle with area 2ˆ 1.25 = 2.5 square units. Since the
blue-shaded region is entirely inside this rectangle, the area of the blue-shaded region is
no more than 2.5 square units.

The diagram on the right shows a rectangle with area 2ˆ 0.75 = 1.5 square units. Since
the blue-shaded region contains this entire rectangle, the area of the blue region is no less
than 1.5 square units.

So, the area of the blue-shaded region is between 1.5 and 2.5 square units.

Remark: we could also give an obvious range, like “the shaded area is between zero and
one million square units.” This would be true, but not very useful or interesting.

S-2:

Solution 1: One naive way to solve this is to simply use the same method as Question 1.

x

y

1 2 3 4

0.75
1.25

0.25

2.25
1.75

x

y

1 2 3 4

0.75
1.25

0.25

2.25
1.75

The rectangle on the left has area 3ˆ 2.25 = 6.75 square units, and encompasses the
entire shaded region. The rectangle on the right has area 3ˆ 0.25 = 0.75 square
units, and is entirely contained inside the blue-shaded region. So, the area of the
blue-shaded region is between 0.75 and 6.75 square units.

This is a legitimate approximation, but we can easily do much better. The shape of
this graph suggests that using the areas of three rectangles would be a natural way
to improve our estimate.

Solution 2: Let’s use these rectangles instead:
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x

y

1 2 3 4

0.75
1.25

0.25

2.25
1.75

x

y

1 2 3 4

0.75
1.25

0.25

2.25
1.75

In the left picture, the red area is (1ˆ 1.25) + (1ˆ 2.25) + (1ˆ 0.75) = 4.25 square
units. In the right picture, the red area is (1ˆ 0.75) + (1ˆ 1.75) + (1ˆ 0.25) = 2.75
square units. So, the blue shaded area is between 2.75 and 4.25 square units.

S-3: Remark: in the solution below, we find the appropriate approximation using trial
and error. In Question 46, we take a more systematic approach.

Try 1: First, we can try by using a single rectangle as an overestimate, and a single
rectangle as an underestimate.

x

y

y = 1
2x

1 3

1/2

1/8

x

y

y = 1
2x

1 3

1/2

1/8

The area under the curve is less than the area of the rectangle on the left (2ˆ 1
2 = 1)

and greater than the area of the rectangle on the right (2ˆ 1
8 = 1

4 ). So, the area is in

the range
(

1
4 , 1
)

. Unfortunately, this range is too big–we need our range to have
length at most 0.2. So, we refine our approximation by using more rectangles.

Try 2: Let’s try using two rectangles each for the upper and lower bounds.
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x

y

y = 1
2x

1 2 3

1/2

1/4

1/8

x

y

y = 1
2x

1 32

1/2

1/4

1/8

The rectangles in the left picture have area
(

1ˆ 1
2

)
+
(

1ˆ 1
4

)
= 3

4 , and the

rectangles in the right picture have area
(

1ˆ 1
4

)
+
(

1ˆ 1
8

)
= 3

8 . So, the area under

the curve is in the interval
(3

8 , 3
4

)
. The length of this interval is 3

8 , and
3
8 ą

3
15 = 1

5 = 0.2. (Indeed, 3
8 = 0.375 ą 0.2.) Since the length of our interval is still

bigger than 0.2, we need even more rectangles.

Try 3: Let’s go ahead and try four rectangles each for the upper and lower estimates.

x

y

y = 1
2x

1 2 3

1/2

1/4
1/(4

?
2)

1/(2
?

2)

1/8
x

y

y = 1
2x

1 2 3

1/2

1/4
1/(4

?
2)

1/(2
?

2)

1/8

The area of the rectangles on the left is:
(

1
2
ˆ

1
2

)
+

(
1
2
ˆ

1
2
?

2

)
+

(
1
2
ˆ

1
4

)
+

(
1
2
ˆ

1
4
?

2

)
=

3
8

[
1 +

1
?

2

]
,

and the area of the rectangles on the right is:
(

1
2
ˆ

1
2
?

2

)
+

(
1
2
ˆ

1
4

)
+

(
1
2
ˆ

1
4
?

2

)
+

(
1
2
ˆ

1
8

)
=

3
8

[
1
2
+

1
?

2

]
.

So, the area under the curve is in the interval
(

3
8

[
1
2 +

1?
2

]
, 3

8

[
1 + 1?

2

])
. The length

of this interval is 3
16 , and 3

16 ă
3
15 = 1

5 = 0.2, as desired. (Indeed, 3
16 = 0.1875 ă 0.2.)

Note, if we choose any value in the interval
(

3
8

[
1
2 +

1?
2

]
, 3

8

[
1 + 1?

2

])
as an

approximation for the area under the curve, our error is no more than 0.2.

231



S-4: Since f (x) is decreasing, it is larger on the left endpoint of an interval than on the
right endpoint of an interval. So, a left Riemann sum gives a larger approximation.
Notice this does not depend on n.

Furthermore, the actual area
ż 5

0
f (x)dx is larger than its right Riemann sum, and smaller

than its left Riemann sum.

x

y

left Riemann sum

x

y

right Riemann sum

S-5: If f (x) is always increasing or always decreasing, then the midpoint Riemann sum
will be between the left and right Riemann sums. So, we need a function that goes up
and down. Many examples are possible, but let’s work with a familiar one: sin x.

If our intervals have endpoints that are integer multiples of π, then the left and right
Riemann sums will be 0, since sin(0) = sin(π) = sin(2π) = ¨ ¨ ¨ = 0. The midpoints of
these intervals will give y-values of 1 and -1. So, for example, we can let f (x) = sin x,
[a, b] = [0, π], and n = 1. Then the right and left Riemann sums are 0, while the midpoint
Riemann sum is π.

We can extend the example of f (x) = sin x to have more intervals. As long as we have
more positive terms than negative, the midpoint approximation will be a positive
number, and so it will be larger than both the left and right Riemann sums. So, for
example, we can let f (x) = sin x, [a, b] = [0, 5π], and n = 5. Then the midpoint Riemann
sum is π ´ π + π ´ π + π = π, which is strictly larger than 0 and so it is larger than both
the left and right Riemann sums.

x

y

5π
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S-6:

(a) Two possible answers are
7
ÿ

i=3

i and
5
ÿ

i=1

(i + 2). The first has simpler terms (i versus

i + 2), while the second has simpler indices (we often like to start at i = 1). Neither is
objectively better than the other, but depending on your purposes you might find
one more useful.

(b) The terms of this sum are each double the terms of the sum from part (a), so two

possible answers are
7
ÿ

i=3

2i and
5
ÿ

i=1

(2i + 4).

We often want to write a sum that involves even numbers: it will be useful for you to
remember that the term 2i (with index i) generates evens.

(c) The terms of this sum are each one more than the terms of the sum from part (b), so

two possible answers are
7
ÿ

i=3

(2i + 1) and
5
ÿ

i=1

(2i + 5).

In the last part, we used the expression 2i to generate even numbers; 2i + 1 will
generate odds. So will the index 2i + 5, and indeed, 2i + k for any odd number k. The
choice of what you add will depend on the bounds of i.

(d) This sum adds up the odd numbers from 1 to 15. From Part (c), we know that the
formula 2i + 1 is a simple way of generating odd numbers. Since our first term
should be 1 and our last term should be 15, if we use

ř

(2i + 1), then i should run

from 0 to 7. So, one way of expressing our sum in sigma notation is
7
ÿ

i=0

(2i + 1).

Sometimes we like our sum to start at i = 1 instead of i = 0. If this is our desire, we
can use 2i´ 1 as our terms, and let i run from 1 to 8. This gives us another way of

expressing our sum:
8
ÿ

i=1

(2i´ 1).

S-7:

(a) The denominators are successive powers of three, so one way of writing this is
4
ÿ

i=1

1
3i .

Equivalently, the terms we’re adding are powers of 1/3, so we can also write
4
ÿ

i=1

(
1
3

)i
.

(b) This sum is obtained from the sum in (a) by multiplying each term by two, so we can

write
4
ÿ

i=1

2
3i or

4
ÿ

i=1

2
(

1
3

)i
.
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(c) The difference between this sum and the previous sum is its alternating sign,
minus-plus-minus-plus. This behaviour appears when we raise a negative number to
successive powers. We can multiply each term by (´1)i, or we can slip a negative

into the number that is already raised to the power i:
4
ÿ

i=1

(´1)i 2
3i , or

4
ÿ

i=1

2
(´3)i .

(d) This sum is the negative of the sum in part (c), so we can simply multiply each term

by negative one:
4
ÿ

i=1

(´1)i+1 2
3i , or

4
ÿ

i=1

´
2

(´3)i .

Be careful with the second form: a common mistake is to think that ´
2

(´3)i =
2
3i , but

these are not the same.

S-8:

(a) If we re-write the second term as 3
9 instead of 1

3 , our sum becomes:

1
3
+

3
9
+

5
27

+
7

81
+

9
243

The numerators are the first five odd numbers, and the denominators are the first
five positive powers of 3. We learned how to generate odd numbers in Question 6,
and we learned how to generate powers of three in Question 7. Combining these, we

can write our sum as
5
ÿ

i=1

2i´ 1
3i .

(b) The denominators of these terms differ from the denominators of part (a) by
precisely two, while the numerators are simply 1. So, we can modify our previous

answer:
5
ÿ

i=1

1
3i + 2

.

(c) Let’s re-write the sum to make the pattern clearer.

1000 + 200 + 30 + 4 + 1
2 + 3

50 + 7
1000

= 1 ¨ 1000 + 2 ¨ 100 + 3 ¨ 10 + 4
1 + 5

10 + 6
100 + 7

1000

= 1 ¨ 103 + 2 ¨ 102 + 3 ¨ 101 + 4 ¨ 100 + 5 ¨ 10´1 + 6 ¨ 10´2 + 7 ¨ 10´3

= 1 ¨ 104´1 + 2 ¨ 104´2 + 3 ¨ 104´3 + 4 ¨ 104´4 + 5 ¨ 104´5 + 6 ¨ 104´6 + 7 ¨ 104´7

If we let the red numbers be our index i, this gives us the expression
7
ÿ

i=1

i ¨ 104´i .

Equivalently, we can write
7
ÿ

i=1

i
10i´4 .

S-9:
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(a) Using Theorem 1.1.6.a in the CLP-2 text, with a = 1, r = 3
5 and n = 100:

100
ÿ

i=0

(
3
5

)i
=

1´
(3

5

)101

1´ 3
5

=
5
2

[
1´

(
3
5

)101
]

(b) We want to use Theorem 1.1.6, part (a) again, but our sum doesn’t start at
(3

5

)0
= 1.

We have two options: factor out the leading term, or use the difference of two sums
that start where we want them to.

Solution 1: In this solution, we’ll make our sum start at 1 by factoring out the
leading term. We wrote our work out the long way (expanding the sigma into
“dot-dot-dot” notation) for clarity, but it’s faster to do the algebra in sigma
notation all the way through.

100
ÿ

i=50

(
3
5

)i
=

(
3
5

)50

+

(
3
5

)51

+

(
3
5

)52

+ ¨ ¨ ¨+

(
3
5

)100

=

(
3
5

)50
[

1 +
(

3
5

)
+

(
3
5

)2

+ ¨ ¨ ¨+

(
3
5

)50
]

=

(
3
5

)50 1´
(3

5

)51

1´ 3
5

=
5
2

(
3
5

)50
[

1´
(

3
5

)51
]

.

Solution 2: In this solution, we write our given expression as the difference of two
sums, both starting at i = 0.

100
ÿ

i=50

(
3
5

)i
=

100
ÿ

i=0

(
3
5

)i
´

49
ÿ

i=0

(
3
5

)i

=
1´

(3
5

)101

1´ 3
5

´
1´

(3
5

)50

1´ 3
5

=
5
2

[(
3
5

)50

´

(
3
5

)101
]

=
5
2

(
3
5

)50
[

1´
(

3
5

)51
]

.

(c) Before we can use the equations in Theorem 1.1.6, we’ll need to do a little
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simplification.

10
ÿ

i=1

(
i2
´ 3i + 5

)
=

10
ÿ

i=1

i2 +
10
ÿ

i=1

´3i +
10
ÿ

i=1

5

=
10
ÿ

i=1

i2
´ 3

10
ÿ

i=1

i + 5
10
ÿ

i=1

1

=
1
6
(10)(11)(21)´ 3

(
1
2
(10 ¨ 11)

)
+ 5 ¨ 10

= 270

(d) As in part (c), we’ll simplify first. The first part (shown here in red) is a geometric

sum, but it does not start at 1 =
(

1
e

)0
.

b
ÿ

n=1

[(
1
e

)n
+ en3

]
=

b
ÿ

n=1

(
1
e

)n
+

b
ÿ

n=1

en3

=
b
ÿ

n=0

(
1
e

)n
´ 1 + e

b
ÿ

n=1

n3

=
1´

(
1
e

)b+1

1´ 1
e

´ 1 + e
[

1
2

b(b + 1)
]2

=

1
e ´

(
1
e

)b+1

1´ 1
e

+ e
[

1
2

b(b + 1)
]2

=
1´

(
1
e

)b

e´ 1
+

e
4
[b(b + 1)]2

S-10:

(a) The two pieces are very similar, which we can see by changing the index, or
expanding them out:

100
ÿ

i=50

(i´ 50) +
50
ÿ

i=0

i = (0 + 1 + 2 + ¨ ¨ ¨+ 50) + (0 + 1 + 2 + ¨ ¨ ¨+ 50)

= (1 + 2 + ¨ ¨ ¨+ 50) + (1 + 2 + ¨ ¨ ¨+ 50)
= 2 (1 + 2 + ¨ ¨ ¨+ 50)

= 2
50
ÿ

i=1

i

= 2
(

50 ¨ 51
2

)
= 50 ¨ 51 = 2550
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(b) If we expand (i´ 5)3 = i3 ´ 15i2 + 75i´ 125, we can break the sum into four parts,
and evaluate each separately. However, it is much simpler to change the index and
make the term (i´ 5)3 into i3.

100
ÿ

i=10

(i´ 5)3 = 53 + 63 + 73 + ¨ ¨ ¨+ 953

We have a formula to evaluate the sum of cubes if they start at 1, so we turn our
expression into the difference of two sums starting at 1:

=
[
13 + 23 + 33 + 43 + 53 + 63 + 73 + ¨ ¨ ¨+ 953

]
´

[
13 + 23 + 33 + 43

]

=
95
ÿ

i=1

i3
´

4
ÿ

i=1

i3

=

[
1
2
(95)(96)

]2

´

[
1
2
(4)(5)

]2

= 20, 793, 500 .

(c) Notice every two terms cancel with each other, since the sum is (´1) + (+1), etc.
Then the terms n = 1 through n = 10 cancel, and we’re left only with the final term,
(´1)11 = ´1.

Written out more explicitly:

11
ÿ

n=1

(´1)n = ´1 + 1´ 1 + 1´ 1 + 1´ 1 + 1´ 1 + 1´ 1

= [´1 + 1] + [´1 + 1] + [´1 + 1] + [´1 + 1] + [´1 + 1]´ 1
= 0 + 0 + 0 + 0 + 0´ 1 = ´1.

(d) For every integer n, 2n + 1 is odd, so (´1)2n+1 = ´1. Then
11
ÿ

n=2

(´1)2n+1 =
11
ÿ

n=2

´1 = ´10.

S-11: The index of the sum runs from 1 to 4: the first, second, third, and fourth rectangles.
So, we have four rectangles in our Riemann sum. Let’s start by drawing in the intervals

along the x-axis taken up by these four rectangles. Note each has the same width:
b´ a

4
.
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x

y

ba

y = f (x)

Since this is a midpoint Riemann sum, the height of each rectangle is given by the
y-value of the function in the midpoint of the interval. So, now let’s find the height of the
function at the midpoints of each of the four intervals.

x

y

ba

y = f (x)

The left-most interval has a height of about 0, so it gives a “trivial” rectangle with no
height and no area. The middle two intervals have rectangles of about the same height,
and the right-most interval has the highest rectangle.
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x

y

ba

y = f (x)

S-12: In general, the left Riemann sum for the integral
şb

a f (x) dx is of the form

n
ÿ

k=1

f
(

a + (k´ 1)
b´ a

n

)
b´ a

n

• To get the limits of summation to match the given sum, we need n = 4.

• Then to get the factor multiplying f to match that in the given sum, we need
b´a

n = 1, so b´ a = 4.

• Finally, to get the argument of f to match that in the given sum, we need

a + (k´ 1)
b´ a

n
= a´

b´ a
n

+ k
b´ a

n
= 1 + k

Subbing in n = 4 and b´ a = 4 gives a´ 1 + k = 1 + k, so a = 2 and b = 6.

S-13: The general form of a Riemann sum is
n
ÿ

i=1

∆x ¨ f (x˚i ), where ∆x = b´a
n is the width

of each rectangle, and f (x˚i ) is the height.

There are different ways to interpret the given sum as a Riemann sum. The most obvious
is given in Solution 1. You may notice that we make some convenient assumptions in this
solution about values for ∆x and a, and we assume the sum is a right Riemann sum.
Other visualizations of the sum arise from making more exotic choices. Some of these are
explored in Solutions 2-4.

All cases have three rectangles, and the three rectangles will have the same areas: 98, 162,
and 242 square units, respectively. This is because the terms of the given sum simplify to
98 + 162 + 242.

Solution 1:

• Because the index runs from 1 to 3, there are three intervals: n = 3.
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• Looking at our sum, it seems reasonable to interpret ∆x = 2. Then, since
n = 3, we conclude b´a

3 = 2, hence b´ a = 6.

• If ∆x = 2, then f (x˚i ) = (5 + 2i)2. Recall that x˚i is the x-coordinate we use to
decide the height of the ith rectangle. In a right Riemann sum, x˚i = a + i ¨ ∆x.
So, using 2 = ∆x, we can let f (x˚i ) = f (a + 2i) = (5 + 2i)2. This fits with the
function f (x) = x2, and a = 5.

• Since b´ a = 6, and a = 5, this tells us b = 11

To sum up, we can interpret the Riemann sum as a right Riemann sum, with three
intervals, of the function f (x) = x2 from x = 5 to x = 11.

x

y

5 7 9 11

49

81

121

y = x2

Solution 2: We could have chosen a different value for ∆x.

• The index of the sum runs from 1 to 3, so we have n = 3.

• We didn’t have to interpret ∆x as 2–that was just the path of least resistance.
We could have chosen it to be any other number–for the sake of argument,
let’s say ∆x = 10. (Positive numbers are easiest to interpret, but negatives are
technically allowed as well.)

• Then 10 = b´a
n = b´a

3 , so b´ a = 30.

• Let’s use the paradigm of a right Riemann sum, and match up the terms of the
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sum given in the problem to the terms in the definition:

∆x ¨ f (a + i ¨ ∆x) = 2 ¨ (5 + 2i)2

10 ¨ f (a + 10i) = 2 ¨ (5 + 2i)2

f (a + 10i) =
1
5
¨ (5 + 2i)2

f (a + 10i) =
1
5
¨

(
5 +

1
5
¨ 10i

)2

• The easiest value of a in this case is a = 0. Then f (10i) = 1
5 ¨
(

5 + 1
5 ¨ 10i

)2
, so

f (x) = 1
5 ¨
(

5 + 1
5 ¨ x

)2
.

• If a = 0 and b´ a = 30, then b = 30.

• To sum up: n = 3, a = 0, b = 30, ∆x = 10, and f (x) = 1
5 ¨
(
5 + x

5

)2.

x

y

10 20 30

49
5

81
5

121
5

y = 1
5

(
5 + x

5

)2

By changing ∆x, we changed the widths of the rectangles. The rectangles in this
picture are wider and shorter than the rectangles in Solution 1. Their areas are
the same: 98, 162, and 242.

Solution 3: We could have chosen a different value of a.

• Suppose ∆x = 2, and we interpret our sum as a right Riemann sum, but we
didn’t assume a = 5. We could have chosen a to be any number–say, a = 1.

• Let’s match up what we’re given in the problem to what we’re given as a
definition:

∆x ¨ f (a + i ¨ ∆x) = 2 ¨ (5 + 2i)2

2 ¨ f (1 + 2i) = 2 ¨ (5 + 2i)2

f (1 + 2i) = (5 + 2i)2

f (1 + 2i) = (4 + 1 + 2i)2

• Since f (1 + 2i) = (4 + 1 + 2i)2, we have f (x) = (4 + x)2
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• Since a = 1 and b´a
3 = 2, in this case b = 7.

• To sum up: n = 3, a = 1, b = 7, ∆x = 2, and f (x) = (4 + x)2.

x

y

1 3 5 7

49

81

121

y = (4 + x)2

This picture is a lot like the picture in Solution 1, but shifted to the left. By
changing a, we changed the left endpoint of our region.

Solution 4: We could have chosen a different kind of Riemann sum.

• We didn’t have to assume that we were dealing with a right Riemann sum.
Suppose ∆x = 2, and we have a midpoint Riemann sum.

• Let’s match up what we’re given in the problem with what we’re given in the
definition:

∆x ¨ f
(

a +
(

i´ 1
2

)
∆x
)
= 2 ¨ (5 + 2i)2

2 ¨ f
(

a +
(

i´ 1
2

)
2
)
= 2 ¨ (5 + 2i)2

f
(

a +
(

i´ 1
2

)
2
)
= (5 + 2i)2

f (a + 2i´ 1) = (5 + 2i)2

f ((a´ 1) + 2i) = (5 + 2i)2

• It is now convenient to set a´ 1 = 5, hence a = 6.

• Then f (5 + 2i) = (5 + 2i)2, so f (x) = x2

• Since 2 = b´a
3 and a = 6, we see b = 12.

242



• To sum up: n = 3, a = 6, b = 12, ∆x = 2, and f (x) = x2.

x

y

6 8 10 12

49

81

121
y = x2

By choosing to interpret our sum as a midpoint Riemann sum instead of a
right Riemann sum, we changed where our rectangles intersect the graph
y = f (x): instead of the graph hitting the right corner of the rectangle, it hits in
the middle.

S-14: Many interpretations are possible–see the solution to Question 13 for a more
thorough discussion–but the most obvious is given below. Recall the definition of a left
Riemann sum:

n
ÿ

i=1

∆x ¨ f (a + (i´ 1)∆x)

We chose a left Riemann sum instead of right or midpoint because our given sum has
(i´ 1) in it, rather than (i´ 1

2) or simply i.

• Since the sum has five terms (i runs from 1 to 5), there are 5 rectangles. That is,
n = 5.

• In the definition of the Riemann sum, note that the term ∆x appears twice: once
multiplied by the entire term, and once multiplied by i´ 1. So, a convenient choice
for ∆x is π

20 , because this is the constant that is both multiplied at the start of the
term, and multiplied by i´ 1.

• Since
π

20
= ∆x =

b´ a
n

=
b´ a

5
, we see b´ a =

5π

20
=

π

4
.

• We match the terms in the definition with the terms in the problem:

f (a + (i´ 1)∆x) = tan
(

π(i´ 1)
20

)

f
(

a + (i´ 1)
π

20

)
= tan

(
(i´ 1)

π

20

)
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So, we choose a = 0 and f (x) = tan x.

• Since a = 0 and b´ a = π
4 , we see b = π

4 .

x

y

2π
20

3π
20

4π
20

5π
20

π
20

y = tan x

We note that the first rectangle of the five is a “trivial” rectangle, with height (and area) 0.

S-15: Since there are four terms in the sum, n = 4. (Note the sum starts at k = 0, instead

of k = 1.) Since the function is multiplied by 1, 1 = ∆x =
b´ a

n
=

b´ a
4

, hence b´ a = 4.

We can choose to view the given sum as a left, right, or midpoint Riemann sum. The
choice we make determines the interval. Note that the heights of the rectangles are
determined when x = 1.5, 2.5, 3.5, and 4.5.

x

y

f (1.5)

f (2.5)

f (3.5)

f (4.5)

Option 1: right Riemann sum If our sum is a right Riemann sum, then we take the
heights of the rectangles from the right endpoint of each interval.
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x

y

f (1.5)

1.5

f (2.5)

2.5

f (3.5)

3.5

f (4.5)

4.5

Then a = 0.5 and b = 4.5. Therefore:
3
ř

k=0
f (1.5 + k) ¨ 1 is a right Riemann sum on the

interval [0.5, 4.5] with n = 4.

Option 2: left Riemann sum If our sum is a left Riemann sum, then we take the heights
of the rectangles from the left endpoint of each interval.

x

y

f (1.5)

1.5

f (2.5)

2.5

f (3.5)

3.5

f (4.5)

4.5

Then a = 1.5 and b = 5.5. Therefore:
3
ř

k=0
f (1.5 + k) ¨ 1 is a left Riemann sum on the

interval [1.5, 5.5] with n = 4.

Option 3: midpoint Riemann sum If our sum is a midpoint Riemann sum, then we take
the heights of the rectangles from the midpoint of each interval.
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x

y

f (1.5)

1.5

f (2.5)

2.5

f (3.5)

3.5

f (4.5)

4.5

Then a = 1 and b = 5. Therefore:
3
ř

k=0
f (1.5 + k) ¨ 1 is a midpoint Riemann sum on

the interval [1, 5] with n = 4.

S-16: The area in question is a triangle with base 5 and height 5, so its area is
25
2

.

x

y

y = x
5

5

5

S-17:

There is a positive and a negative portion of this area. The positive area is a triangle with

base 5 and height 5, so area
25
2

square units. The negative area is a triangle with base 2

and height 2, so negative area
4
2
= 2 square units. So, the net area is

25
2
´

4
2
=

21
2

square
units.
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x

y

y = x
5

5

5

2

2

S-18: In general, the midpoint Riemann sum is given by

n
ÿ

i=1

f
(

a +
(
i´ 1/2

)
∆x
)

∆x , where ∆x =
b´ a

n
.

In this problem we are told that f (x) = x8, a = 5, b = 15 and n = 50, so that
∆x = b´a

n = 1
5 and the desired Riemann sum is:

50
ÿ

i=1

(
5 +

(
i´ 1/2

)1
5

)8 1
5

S-19: The given integral has interval of integration going from a = ´1 to b = 5. So when
we use three approximating rectangles, all of the same width, the common width is
∆x = b´a

n = 2. The first rectangle has left endpoint x0 = a = ´1, the second has left hand
endpoint x1 = a + ∆x = 1, and the third has left hand end point x2 = a + 2∆x = 3. So

ż 5

´1
x3 dx «

[
f (x0) + f (x1) + f (x2)

]
∆x =

[
(´1)3 + 13 + 33]

ˆ 2 = 54

S-20: In the given integral, the domain of integration runs from a = ´1 to b = 7. So, we
have ∆x = (b´a)

n = (7´(´1))
n = 8

n . The left-hand end of the first subinterval is at
x0 = a = ´1. So, the right-hand end of the ith interval is at x˚i = ´1 + 8i

n . So:

ż 7

´1
f (x) dx = lim

nÑ8

n
ÿ

i=1

f
(
´1 +

8i
n

)
8
n
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S-21: We identify the given sum as the right Riemann sum
n
ř

i=1
f (a + i∆x)∆x, with a = 0

(that’s specified in the statement of the question). Since 4
n is multiplied in every term, and

is also multiplied by i, we let ∆x = 4
n . Then x˚i = a + i∆x = 4i

n and f (x) = sin2(2 + x). So,
b = a + n∆x = 0 + n ¨ 4

n = 4.

S-22: The given sum is of the form

lim
nÑ8

n
ÿ

k=1

k
n2

c

1´
k2

n2 = lim
nÑ8

n
ÿ

k=1

(
1
n

)
k
n

d

1´
(

k
n

)2

= lim
nÑ8

n
ÿ

k=1

∆x f (x˚k )

with ∆x = 1
n , a = 0, x˚k = k

n = a + k∆x and f (x) = x
?

1´ x2. Since x˚0 = 0 and x˚n = 1, the
right hand side is the definition (using the right Riemann sum) of

ş1
0 f (x) dx.

S-23: As i ranges from 1 to n, 3i/n range from 3/n to 3 with jumps of ∆x = 3/n, so this is

lim
nÑ8

n
ÿ

i=1

3
n

e´i/n cos(3i/n) = lim
nÑ8

n
ÿ

i=1

f (x˚i )∆x =

ż b

a
f (x) dx

where x˚i = 3i/n, f (x) = e´x/3 cos(x), a = x0 = 0 and b = xn = 3. Thus

lim
nÑ8

n
ÿ

i=1

3
n

e´i/n cos(3i/n) =
ż 3

0
e´x/3 cos(x) dx

S-24: As i ranges from 1 to n, the exponent i
n ranges from 1

n to 1 with jumps of ∆x = 1
n . So

let’s try x˚i = i
n , ∆x = 1

n . Then:

Rn =
n
ÿ

i=1

iei/n

n2 =
n
ÿ

i=1

i
n

ei/n 1
n
=

n
ÿ

i=1

x˚i ex˚i ∆x =
n
ÿ

i=1

f (x˚i )∆x

with f (x) = xex, and the limit

lim
nÑ8

Rn = lim
nÑ8

n
ÿ

i=1

f (x˚i )∆x =

ż b

a
f (x) dx

Since we chose x˚i = i
n = 0 + i∆x, we let a = 0. Then 1

n = ∆x = b´a
n = b

n tells us b = 1.
Thus,

lim
nÑ8

Rn =

ż 1

0
xex dx .

S-25:
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Choice #1: If we set ∆x = 2
n and x˚i = 2i

n , i.e. x˚i = a + i∆x with a = 0, then

lim
nÑ8

( n
ÿ

i=1

e´1´2i/n
¨

2
n

)
= lim

nÑ8

( n
ÿ

i=1

e´1´x˚i ∆x
)

= lim
nÑ8

( n
ÿ

i=1

f (x˚i )∆x
)

with f (x) = e´1´x

=

ż b

a
f (x) dx with a = x0 = 0 and b = xn = 2

=

ż 2

0
e´1´x dx

Choice #2: If we set ∆x = 2
n and x˚i = 1 + 2i

n , i.e. x˚i = a + i∆x with a = 1, then

lim
nÑ8

( n
ÿ

i=1

e´1´2i/n
¨

2
n

)
= lim

nÑ8

( n
ÿ

i=1

e´x˚i ∆x
)

= lim
nÑ8

( n
ÿ

i=1

f (x˚i )∆x
)

with f (x) = e´x

=

ż b

a
f (x) dx with a = x0 = 1 and b = xn = 3

=

ż 3

1
e´x dx

Choice #3: If we set ∆x = 1
n and x˚i = i

n , i.e. x˚i = a + i∆x with a = 0, then

lim
nÑ8

( n
ÿ

i=1

e´1´2i/n
¨

2
n

)
= lim

nÑ8

( n
ÿ

i=1

e´1´2x˚i 2∆x
)

= lim
nÑ8

( n
ÿ

i=1

f (x˚i )∆x
)

with f (x) = 2e´1´2x

=

ż b

a
f (x) dx with a = x0 = 0 and b = xn = 1

= 2
ż 1

0
e´1´2x dx
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Choice #4: If we set ∆x = 1
n and x˚i = 1

2 +
i
n , i.e. xi = a + i∆x with a = 1

2 , then

lim
nÑ8

( n
ÿ

i=1

e´1´2i/n
¨

2
n

)
= lim

nÑ8

( n
ÿ

i=1

e´2xi 2∆x
)

= lim
nÑ8

( n
ÿ

i=1

f (x˚i )∆x
)

with f (x) = 2e´2x

=

ż b

a
f (x) dx with a = x0 =

1
2

and b = xn =
3
2

= 2
ż 3/2

1/2
e´2x dx

S-26: This is similar to the familiar form of a geometric sum, but the powers go up by
threes. So, we make a subsitution. If x = r3, then:

1 + r3 + r6 + r9 + ¨ ¨ ¨+ r3n = 1 + x + x2 + x3 + ¨ ¨ ¨+ xn

Now, using Equation 1.1.3 in the CLP-2 text,

1 + x + x2 + x3 + ¨ ¨ ¨+ xn =
xn+1 ´ 1

x´ 1

Substituting back in x = r3, we find our sum is equal to
(r3)n+1 ´ 1

r3 ´ 1
, or

r3n+3 ´ 1
r3 ´ 1

.

S-27: The sum does not start at 1, so we need to do some algebra. We can either factor out
the first term, or subtract off the initial terms that are missing.

Solution 1: If we factor out r5, then what’s left fits the form of Equation 1.1.3 in the
CLP-2 text:

r5 + r6 + r7 + ¨ ¨ ¨+ r100 = r5
[
1 + r + r2 + ¨ ¨ ¨+ r95

]
= r5

(
r96 ´ 1
r´ 1

)
.

Solution 2: We know how to evaluate sums of this form if they start at 1, so we re-write
our sum as follows:

r5 + r6 + r7 + ¨ ¨ ¨+ r100 =
(

1 + r + r2 + r3 + r4 + r5 + ¨ ¨ ¨+ r100
)
´

(
1 + r + r2 + r3 + r4

)

=
r101 ´ 1

r´ 1
´

r5 ´ 1
r´ 1

=
r101 ´ 1´ r5 + 1

r´ 1
=

r101 ´ r5

r´ 1
= r5

(
r96 ´ 1
r´ 1

)
.
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S-28: Recall that

|x| =

#

´x if x ď 0
x if x ě 0

so that

|2x| =

#

´2x if x ď 0
2x if x ě 0

To picture the geometric figure whose area the integral represents observe that

• at the left hand end of the domain of integration x = ´1 and the integrand
|2x| = | ´ 2| = 2 and

• as x increases from ´1 towards 0, the integrand |2x| = ´2x decreases linearly, until
• when x hits 0 the integrand hits |2x| = |0| = 0 and then
• as x increases from 0, the integrand |2x| = 2x increases linearly, until
• when x hits +2, the right hand end of the domain of integration, the integrand hits
|2x| = |4| = 4.

So the integral
ş2
´1 |2x| dx is the area of the union of the two shaded triangles (one of base

1 and of height 2 and the other of base 2 and height 4) in the figure on the right below and

ż 2

´1
|2x| dx =

1
2
ˆ 1ˆ 2 +

1
2
ˆ 2ˆ 4 = 5

x

y

−1 2

2

4

S-29: The area we want is two triangles, both above the x-axis. Each triangle has base 4

and height 4, so the total area is 2 ¨
(

4 ¨ 4
2

)
= 16.

x

y

y = |t´ 1|

51´3

4
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If you had a hard time sketching the function, recall that the absolute value of a number
leaves it unchanged if it is positive or zero, and flips the sign if it is negative. So, when
t´ 1 ě 0 (that is, when t ě 1), our function is simply f (t) = |t´ 1| = t´ 1. On the other
hand, when t = 1 is negative (that is, when t ă 1), the absolute value changes the sign, so
f (t) = |t´ 1| = ´(t´ 1) = ´t + 1.

S-30: The area we want is a trapezoid with base (b´ a) and heights a and b, so its area is
(b´ a)(b + a)

2
=

b2 ´ a2

2
.

x

y

y = x

b

b

a

a

Instead of using a formula for the area of a trapezoid, you can find the blue area as the
area of a triangle with base and height b, minus the area of a triangle with base and
height a.

S-31: The area is negative. The shape is a trapezoid with base length (b´ a) and heights
0´ a = ´a and 0´ b = ´b (note: those are nonnegative numbers), so its area is
(b´ a)(´b´ a)

2
=
´b2 + a2

2
. Since the shape is below the x-axis, we change its sign.

Thus, the integral evaluates to
b2 ´ a2

2
.

x

y

y = xa

a

b

b

The signs can be a little hard to keep track of. The base of our trapezoid is |a´ b|; since
b ą a, this is b´ a. The heights of the trapezoid are |a| and |b|; since these are both
negative, |a| = ´a and |b| = ´b.
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We note that this is the same result as in Question 30.

S-32: If y =
?

16´ x2, then y is nonnegative, and y2 + x2 = 16. So, the graph
y =

?
16´ x2 is the upper half of a circle of radius 4. Since x only runs from 0 to 4, we

have a quarter of a circle of radius 4. Then the area under the curve is
1
4
[
π ¨ 42] = 4π.

x

y

y =
?

16´ x2

S-33: Here is a sketch the graph of f (x).

x

y

1 3

1 y = f(x)

There is a linear increase from x = 0 to x = 1, followed by a constant. Using the
interpretation of

ş3
0 f (x) dx as the area between y = f (x) and the x–axis with x between 0

and 3, we can break this area into:

•
ş1

0 f (x) dx: a right-angled triangle of height 1 and base 1 and hence area 0.5.

•
ş3

1 f (x) dx: a rectangle of height 1 and base 2 and hence area 2.

Summing up:
ş3

0 f (x) dx = 2.5.

S-34: The car’s speed increases with time. So its highest speed on any time interval
occurs at the right hand end of the interval and the best possible upper estimate for the
distance traveled is given by the right Riemann sum with ∆x = 0.5, which is

[
v(0.5) + v(1.0) + v(1.5) + v(2.0)

]
ˆ 0.5 =

[
14 + 22 + 30 + 40

]
ˆ 0.5 = 53 m

S-35: There is a key detail in the statement of Question 34: namely, that the car is
continuously accelerating. So, although we don’t know exactly what’s going on in
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between our brief snippets of information, we know that the car is not going any faster
during an interval than at the end of that interval. Therefore, the car certainly travelled
no farther than our estimation.

We ask this question in order to point out an important detail. If we did not have the
information that the car was continuously accelerating, we would not be able to give a
certain upper bound on its distance travelled. It would be possible that, when the car is
not being observed (for example, when t = 0.25), it is going much faster than when it is
being observed.

S-36: First, note that the distance travelled by the plane is equal to the area under the
graph of its speed.

We need to know the speed of the plane at the midpoints of our intervals. So (for
example) noon to 1pm is not one of your intervals–we don’t know the speed at 12:30. (A
common idea is to average the two end values, 700 and 800. This is a fine approximation,
but it is not a Riemann sum.) So, we use the two intervals 12:00 to 2:00, and 2:00 to 4:00.
Then our intervals have length 2 hours, and at the midpoints of the intervals the speed of
the plane is 700 kph and 900 kph, respectively. So, our midpoint Riemann sum gives us:

700(2) + 900(2) = 3200

an approximation of 3200 km travelled by the plane from noon to 4:00 pm.

Remark: if we had been asked to approximate the distance travelled from 11:30 am to
4:30 pm, then we could have used the midpoint rule with five intervals and made use of
every entry in the data table. With the question as stated, however, we ignore three out of
five entries in the table because they are not the midpoints of our intervals.

S-37:

Solution #1: Set x˚i = ´2 + 2i
n . Then a = x0 = ´2 and b = xn = 0 and ∆x = 2

n . So

lim
nÑ8

n
ÿ

i=1

2
n

d

4´
(
´2 +

2i
n

)2

= lim
nÑ8

n
ÿ

i=1

f (x˚i )∆x with f (x) =
a

4´ x2 and ∆x =
2
n

=

ż 0

´2

a

4´ x2 dx

For the integral
ş0
´2

?
4´ x2 dx, y =

?
4´ x2 is equivalent to x2 + y2 = 4, y ě 0. So

the integral represents the area between the upper half of the circle x2 + y2 = 4
(which has radius 2) and the x-axis with ´2 ď x ď 0, which is a quarter circle with
area 1

4 ¨ π 22 = π.
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x

y

y =
?

4´ x2

´2

Solution #2: Set x˚i = 2i
n . Then a = x0 = 0 and b = xn = 2 and ∆x = 2

n . So

lim
nÑ8

n
ÿ

i=1

2
n

d

4´
(
´2 +

2i
n

)2

= lim
nÑ8

n
ÿ

i=1

f (x˚i )∆x with f (x) =
b

4´ (´2 + x)2, ∆x =
2
n

=

ż 2

0

b

4´ (´2 + x)2 dx

For the integral
ş2

0

a

4´ (´2 + x)2 dx , y =
a

4´ (x´ 2)2 is equivalent to
(x´ 2)2 + y2 = 4, y ě 0. So the integral represents the area between the upper half
of the circle (x´ 2)2 + y2 = 4 (which is centered at (2, 0) and has radius 2) and the
x-axis with 0 ď x ď 2, which is a quarter circle with area 1

4 ¨ π 22 = π.

x

y

y =
a

4´ (x´ 2)2

2

S-38: (a) The left Riemann sum is defined as

Ln =
n
ÿ

i=1

f (xi´1)∆x with xi = a + i∆x

We subdivide into n = 3 intervals, so that ∆x = b´a
n = 3´0

3 = 1, x0 = 0, x1 = 1 and
x2 = 2. The function f (x) = 7 + x3 has the values f (x0) = 7 + 03 = 7,
f (x1) = 7 + 13 = 8, and f (x2) = 7 + 23 = 15, from which we evaluate

L3 =
[

f (x0) + f (x1) + f (x2)
]
∆x =

[
7 + 8 + 15

]
ˆ 1 = 30
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(b) We divide into n intervals so that ∆x = b´a
n = 3

n and xi = a + i∆x = 3i
n . The right

Riemann sum is therefore:

Rn =
n
ÿ

i=1

f (xi)∆x =
n
ÿ

i=1

[
7 +

(3i)3

n3

]
3
n
=

n
ÿ

i=1

[
21
n

+
81 i3

n4

]

To calculate the sum:

Rn =

(
21
n

n
ÿ

i=1

1

)
+

(
81
n4

n
ÿ

i=1

i3

)

=

(
21
n
ˆ n
)
+

(
81
n4 ˆ

n4 + 2n3 + n2

4

)

= 21 +
81
4
(1 + 2/n + 1/n2)

To evaluate the limit exactly, we take n Ñ 8. The expressions involving 1/n vanish
leaving:

ż 3

0
(7 + x3) dx = lim

nÑ8
Rn = 21 +

81
4

= 41
1
4

S-39: In general, the right–endpoint Riemann sum approximation to the integral
şb

a f (x) dx using n rectangles is
n
ÿ

i=1

f (a + i∆x)∆x

where ∆x = b´a
n . In this problem, a = 2, b = 4, and f (x) = x2, so that ∆x = 2

n and the
right–endpoint Riemann sum approximation becomes

n
ÿ

i=1

f
(

2 +
2i
n

) 2
n
=

n
ÿ

i=1

(
2 +

2i
n

)2 2
n

=
n
ÿ

i=1

(
4 +

8i
n
+

4i2

n2

)
2
n

=
n
ÿ

i=1

(
8
n
+

16i
n2 +

8i2

n3

)

=
n
ÿ

i=1

8
n
+

n
ÿ

i=1

16i
n2 +

n
ÿ

i=1

8i2

n3

=
8
n

n
ÿ

i=1

1 +
16
n2

n
ÿ

i=1

i +
8
n3

n
ÿ

i=1

i2

=
8
n

n +
16
n2 ¨

n(n + 1)
2

+
8
n3 ¨

n(n + 1)(2n + 1)
6

= 8 + 8
(

1 +
1
n

)
+

4
3

(
1 +

1
n

)(
2 +

1
n

)
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So
ż 4

2
x2 dx = lim

nÑ8

[
8 + 8

(
1 +

1
n

)
+

4
3

(
1 +

1
n

)(
2 +

1
n

)]
= 8 + 8 +

4
3
ˆ 2 =

56
3

S-40: We’ll use right Riemann sums with a = 0 and b = 2. When there are n rectangles,
∆x = b´a

n = 2
n and xi = a + i∆x = 2i/n. So we need to evaluate

lim
nÑ8

n
ÿ

i=1

f (xi)∆x = lim
nÑ8

n
ÿ

i=1

(
(xi)

3 + xi

)
∆x

= lim
nÑ8

n
ÿ

i=1

((
2i
n

)3

+
2i
n

)
2
n

= lim
nÑ8

2
n

n
ÿ

i=1

(
8i3

n3 +
2i
n

)

= lim
nÑ8

(
16
n4

n
ÿ

i=1

i3 +
4
n2

n
ÿ

i=1

i

)

= lim
nÑ8

(
16(n4 + 2n3 + n2)

n4 ¨ 4
+

4(n2 + n)
n2 ¨ 2

)

= lim
nÑ8

(
16
4

(
1 +

2
n
+

1
n2

)
+

4
2

(
1 +

1
n

))

=
16
4

+
4
2
= 6.

S-41: We’ll use right Riemann sums with a = 1, b = 4 and f (x) = 2x´ 1. When there are
n rectangles, ∆x = b´a

n = 3
n and xi = a + i∆x = 1 + 3i/n. So we need to evaluate

lim
nÑ8

n
ÿ

i=1

f (xi)∆x = lim
nÑ8

n
ÿ

i=1

(2xi ´ 1)∆x

= lim
nÑ8

n
ÿ

i=1

(
2 +

6i
n
´ 1
)

3
n

= lim
nÑ8

3
n

n
ÿ

i=1

(
6i
n
+ 1
)

= lim
nÑ8

(
18
n2

n
ÿ

i=1

i +
3
n

n
ÿ

i=1

1

)

= lim
nÑ8

(
18 ¨ n(n + 1)

n2 ¨ 2
+

3
n

n
)

= lim
nÑ8

(
9
(

1 +
1
n

)
+ 3
)

= 9 + 3 = 12.
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S-42: Using the definition of a right Riemann sum,

10
ÿ

i=1

3(7 + 2i)2 sin(4i) =
10
ÿ

i=1

∆x f (a + i∆x)

Since ∆x = 10 and a = ´5,

10
ÿ

i=1

3(7 + 2i)2 sin(4i) =
10
ÿ

i=1

10 f (´5 + 10i)

Dividing both expressions by 10,

10
ÿ

i=1

3
10

(7 + 2i)2 sin(4i) =
10
ÿ

i=1

f (´5 + 10i)

So, we have an expression for f (´5 + 10i):

f (´5 + 10i) =
3
10

(7 + 2i)2 sin(4i)

In order to find f (x), let x = ´5 + 10i. Then i = x
10 +

1
2 .

f (x) =
3
10

(
7 + 2

(
x

10
+

1
2

))2

sin
(

4
(

x
10

+
1
2

))

=
3
10

(x
5
+ 8
)2

sin
(

2x
5

+ 2
)

.

S-43: As in the text, we’ll set up a Riemann sum for the given integral. Right Riemann
sums have the simplest form, so we use a right Riemann sum, but we could equally well
use left or midpoint.

ż 1

0
2xdx = lim

nÑ8

n
ÿ

i=1

∆x f (a + i∆x)

= lim
nÑ8

n
ÿ

i=1

1
n

f
(

i
n

)

= lim
nÑ8

n
ÿ

i=1

1
n
¨ 2i/n

= lim
nÑ8

1
n

(
21/n + 22/n + 23/n + ¨ ¨ ¨+ 2n/n

)

= lim
nÑ8

21/n

n

(
1 + 21/n + 22/n + ¨ ¨ ¨+ 2

n´1
n

)

= lim
nÑ8

21/n

n

(
1 + 21/n +

(
21/n

)2
+ ¨ ¨ ¨+

(
21/n

)n´1
)
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The sum in parenthesis has the form of a geometric sum, with r = 21/n:

= lim
nÑ8

21/n

n

((
21/n)n

´ 1
21/n ´ 1

)

= lim
nÑ8

21/n

n

(
2´ 1

21/n ´ 1

)

= lim
nÑ8

21/n

n(21/n ´ 1)

Note as n Ñ 8, 1/n Ñ 0, so the numerator has limit 1, while the denominator has
indeterminate form8 ¨ 0. So, we’ll do a little algebra to get this into a l’Hôpital-style
indeterminate form:

= lim
nÑ8

1
n ¨ 2

1/n

21/n ´ 1

= lim
nÑ8

1
n

1´ 2´1/n
loooomoooon

numÑ0
denÑ0

Now we can use l’Hôpital’s rule. Recall d
dx t2

xu = 2x log x, where log x is the natural
logarithm of x, also sometimes written ln x. We’ll need to use the chain rule when we
differentiate the denominator.

= lim
nÑ8

´1
n2

´2´1/n log 2 ¨ 1
n2

= lim
nÑ8

21/n

log 2

=
1

log 2

Using a calculator, we see this is about 1.44 square units.

S-44: As in the text, we’ll set up a Riemann sum for the given integral. Right Riemann
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sums have the simplest form:

ż b

a
10xdx = lim

nÑ8

n
ÿ

i=1

∆x f (a + i∆x)

= lim
nÑ8

n
ÿ

i=1

b´ a
n

f
(

a + i
b´ a

n

)

= lim
nÑ8

n
ÿ

i=1

b´ a
n

¨ 10a+i b´a
n

= lim
nÑ8

n
ÿ

i=1

b´ a
n

¨ 10a
¨

(
10

b´a
n

)i

= lim
nÑ8

b´ a
n

¨ 10a
((

10
b´a

n

)1
+
(

10
b´a

n

)2
+
(

10
b´a

n

)3
+ ¨ ¨ ¨+

(
10

b´a
n

)n
)

= lim
nÑ8

b´ a
n

¨ 10a
¨ 10

b´a
n

(
1 +

(
10

b´a
n

)
+
(

10
b´a

n

)2
+ ¨ ¨ ¨+

(
10

b´a
n

)n´1
)

Now the sum in parentheses has the form of a geometric sum, with r = 10
b´a

n :

= lim
nÑ8

b´ a
n

¨ 10a
¨ 10

b´a
n




(
10

b´a
n

)n
´ 1

10
b´a

n ´ 1




= lim
nÑ8

b´ a
n

¨ 10a
¨ 10

b´a
n

(
10b´a ´ 1

10
b´a

n ´ 1

)

The coloured parts do not depend on n, so for simplicity we can move them outside the
limit.

= (b´ a) ¨ 10a
(

10b´a
´ 1
)

lim
nÑ8

1
n
¨

(
10

b´a
n

10
b´a

n ´ 1

)

= (b´ a) ¨
(

10b
´ 10a

)
lim

nÑ8

(
1/n

1´ 10´
b´a

n

)

loooooooomoooooooon

numÑ0
denÑ0
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Now we can use l’Hôpital’s rule. Recall d
dx t10xu = 10x log x, where log x is the natural

logarithm of x, also sometimes written ln x. For the denominator, we will have to use the
chain rule.

= (b´ a) ¨
(

10b
´ 10a

)
lim

nÑ8


 ´1/n2

´10´
b´a

n ¨ log 10 ¨ b´a
n2




= (b´ a) ¨
(

10b
´ 10a

)
lim

nÑ8

(
1

10´
b´a

n ¨ log 10 ¨ (b´ a)

)

= (b´ a) ¨
(

10b
´ 10a

)( 1
log 10 ¨ (b´ a)

)

=
1

log 10

(
10b

´ 10a
)

For part (b), we can guess that if 10 were changed to c, our answer would be

ż b

a
cx dx =

1
log c

(
cb
´ ca

)

In Question 43, we had a = 0, b = 1, and c = 2. In this case, the formula we guessed
above gives

ż 1

0
2x dx =

1
log 2

(
21
´ 20

)
=

1
log 2

This does indeed match the answer we calculated.

(In fact, we can directly show
ż b

a
cx dx =

1
log c

(
cb
´ ca

)
using the method of this

problem.)

S-45: First, we note y =
?

1´ x2 is the upper half of a circle of radius 1, centred at the
origin. We’re taking the area under the curve from 0 to a, so the area in question is as
shown in the picture below.

x

y

´1 1a

In order to use geometry to find this area, we break it up into two pieces: a sector of a
circle, and a triangle, shown below.
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x

y

´1 1a

θ

Area of sector: The sector is a portion of a circle with radius 1, with inner angle θ. So, its
area is θ

2π (area of circle) = θ
2π (π) = θ

2 .

Our job now is to find θ in terms of a. Note π
2 ´ θ is the inner angle of the red

triangle, which lies in the unit circle. So, cos
(

π
2 ´ θ

)
= a. Then π

2 ´ θ = arccos(a),
and so θ = π

2 ´ arccos(a).

Then the area of the sector is π
4 ´

1
2 arccos(a) square units.

Area of triangle: The triangle has base a. Its height is the y-value of the function when
x = a, so its height is

?
1´ a2. Then the area of the triangle is 1

2 a
?

1´ a2.

We conclude
ż a

0

a

1´ x2 dx =
π

4
´

1
2

arccos(a) +
1
2

a
a

1´ a2.

S-46:

(a) The difference between our upper and lower bounds is the difference in areas
between the larger set of rectangles and the smaller set of rectangles. Drawing them
on a single picture makes this a little clearer.

x

y

y = f (x)

a b

Each of the rectangles has width b´a
n , since we took a segment of the x-axis with

length b´ a and chopped it into n pieces. We could calculate the height of each
rectangle, but it would be a little complicated, since it differs for each of them. An
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easier method is to notice that the area we want to calculate can be imagined as a
single rectangle:

x

y

y = f (x)

a b

f (a)

f (b)

The rectangle has base b´a
n . Its highest coordinate is f (a), and its lowest is f (b), so its

height is f (b)´ f (a). Therefore, the difference in area between our lower bound and
our upper bound is:

[ f (b)´ f (a)] ¨
b´ a

n

(b) We want to give a range with length at most 0.01, and guarantee that the area under
the curve y = f (x) is inside that range. In the previous part, we figured out that
when we use n rectangles, the length of our range is [ f (b)´ f (a)] ¨ b´a

n . So, all we
have to do is set this to be less than or equal to 0.01, and solve for n:

[ f (b)´ f (a)] ¨
b´ a

n
ď 0.01

100 [ f (b)´ f (a)] ¨ (b´ a) ď n

We can choose n to be an integer that is greater than or equal to
100 [ f (b)´ f (a)] ¨ (b´ a). Using that many rectangles, we find an upper and lower
bound for the area under the curve. If we choose any number between our upper
and lower bound as an approximation for the area under the curve, our error is no
more than 0.01.

Remark: this question depends on the fact that f is decreasing and positive from a to b.
In general, bounding errors on approximations like this is not so straightforward.

S-47: Since f (x) is linear, there exist real numbers m and c such that f (x) = mx + c. Now
we can do some calculations. Suppose we have a rectangle in our Riemann sum that
takes up the interval [x, x + w].

• If we are using a left Riemann sum, our rectangle has height f (x) = mx + c. Then it
has area w(mx + c).

• If we are using a right Riemann sum, our rectangle has height
f (x + w) = m(x + w) + c = mx + c + mw. Then it has area w(mx + c + mw).

263



• If we are using a midpoint Riemann sum, our rectangle has height
f (x + 1

2 w) = m(x + 1
2 w) + c = mx + c + 1

2 mw. Then it has area w
(

mx + c + 1
2 w
)

.

So, for each rectangle in our sums, the midpoint rectangle has the same area as the
average of the left and right rectangles:

w
(

mx + c +
1
2

mw
)
=

w(mx + c) + w(mx + c + mw)

2

It follows that the midpoint Riemann sum has a value equal to the average of the values
of the left and right Riemann sums. To see this, let the rectangles in the midpoint
Riemann sum have areas M1, M2, . . . , Mn, let the rectangles in the left Riemann sum have
areas L1, L2, . . . , Ln, and let the rectangles in the right Riemann sum have areas
R1, R2, . . . , Rn. Then the midpoint Riemann sum evaluates to M1 + M2 + ¨ ¨ ¨+ Mn, and:

[L1 + L2 + . . . + Ln] + [R1 + R2 + . . . + Rn]

2
=

L1 + R1

2
+

L2 + R2

2
+ ¨ ¨ ¨+

Ln + Rn

2
= M1 + M2 + ¨ ¨ ¨+ Mn

So, the statement is true.

(Note, however, it is false for many non-linear functions f (x).)

Solutions to Exercises 1.2 — Jump to TABLE OF CONTENTS

S-1:

(a)
ż a

a
f (x)dx = 0

x

y

a

y = f (x)

The area under the curve is zero, because it’s a region with no width.

(b)
ż b

a
f (x)dx =

ż c

a
f (x)dx +

ż b

c
f (x)dx

x

y

a c b

y = f (x)
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If we assume a ď c ď b, then this identity simply tells us that if we add up the area
under the curve from a to c, and from c to b, then we get the whole area under the
curve from a to b.

(The situation is slightly more complicated when c is not between a and b, but it still
works out.)

(c)
ż b

a
( f (x) + g(x)) dx =

ż b

a
f (x)dx +

ż b

a
g(x)dx

x

y

a b

y = f (x)

y = f (x) + g(x)

The blue-shaded area in the picture above is
ż b

a
f (x) dx. The area under the curve

f (x) + g(x) but above the curve f (x) (shown in red) is
ż b

a
g(x) dx.

S-2: Using the identity

b
ż

a

f (x) dx =

c
ż

a

f (x) dx +

b
ż

c

f (x) dx ,

we see
b
ż

a

cos x dx =

0
ż

a

cos x dx +

b
ż

0

cos x dx

= ´

a
ż

0

cos x dx +

b
ż

0

cos x dx

= ´ sin a + sin b
= sin b´ sin a

S-3: (a) False. For example if

f (x) =

#

0 for x ă 0
1 for x ě 0

then
ş´2
´3 f (x)dx = 0 and ´

ş2
3 f (x)dx = ´1.
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x

y

´3 ´2 32

(b) False. For example, if f (x) = x, then
ş´2
´3 f (x)dx is negative while

ş3
2 f (x)dx is

positive, so they cannot be the same.

x

y

´3 ´2

32

(c) False. For example, consider the functions

f (x) =

#

0 for x ă 1
2

1 for x ě 1
2

and g(x) =

#

0 for x ě 1
2

1 for x ă 1
2

Then f (x) ¨ g(x) = 0 for all x, so
ş1

0 f (x) ¨ g(x)dx = 0. However,
ş1

0 f (x)dx = 1
2 and

ş1
0 g(x)dx = 1

2 , so
ş1

0 f (x)dx ¨
ş1

0 g(x)dx = 1
4 .

1
2

1

1

x

y
f (x)

1
2

1

1

x

y

g(x)

S-4:

(a) ∆x =
b´ a

n
=

0´ 5
100

= ´
1

20
Note: if we were to use the Riemann-sum definition of a definite integral, this is how

we would justify the identity
b
ş

a
f (x)dx = ´

a
ş

b
f (x)dx.

(b) The heights of the rectangles are given by f (xi), where xi = a + i∆x = 5´ i
20 . Since

f (x) only gives positive values, f (xi) ą 0, so the heights of the rectangles are
positive.
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(c) Our Riemann sum is the sum of the signed areas of individual rectangles. Each
rectangle has a negative base (∆x) and a positive height ( f (xi)). So, each term of our
sum is negative. If we add up negative numbers, the sum is negative. So, the
Riemann sum is negative.

(d) Since f (x) is always above the x-axis,
5
ş

0
f (x)dx is positive.

S-5: The operation of integration is linear (that’s part (d) of the “arithmetic of
integration” Theorem 1.2.1 in the CLP-2 text), so that:

ż 3

2
[6 f (x)´ 3g(x)]dx =

ż 3

2
6 f (x)dx´

ż 3

2
3g(x)dx

= 6
ż 3

2
f (x)dx´ 3

ż 3

2
g(x)dx = (6ˆ (´1))´ (3ˆ 5) = ´21

S-6: The operation of integration is linear (that’s part (d) of the “arithmetic of
integration” Theorem 1.2.1 in the CLP-2 text), so that:

ż 2

0
[2 f (x) + 3g(x)]dx =

ż 2

0
2 f (x)dx +

ż 2

0
3g(x)dx

= 2
ż 2

0
f (x)dx + 3

ż 2

0
g(x)dx = (2ˆ 3) + (3ˆ (´4)) = ´6

S-7: Using part (d) of the “arithmetic of integration” Theorem 1.2.1, followed by parts (c)
and (b) of the “arithmetic for the domain of integration” Theorem 1.2.3 in the in the
CLP-2 text,

ż 2

´1

[
3g(x)´ f (x)

]
dx = 3

ż 2

´1
g(x)dx´

ż 2

´1
f (x)dx

= 3
ż 0

´1
g(x)dx + 3

ż 2

0
g(x)dx´

ż 0

´1
f (x)dx´

ż 2

0
f (x)dx

= 3
ż 0

´1
g(x)dx + 3

ż 2

0
g(x)dx +

ż ´1

0
f (x)dx´

ż 2

0
f (x)dx

= 3ˆ 3 + 3ˆ 4 + 1´ 2 = 20

S-8:

(a) Since
?

1´ x2 is an even function,
ż 0

a

a

1´ x2 dx =

ż |a|

0

a

1´ x2 dx =
π

4
´

1
2

arccos(|a|) +
1
2
|a|
b

1´ |a|2

=
π

4
´

1
2

arccos(´a)´
1
2

a
a

1´ a2
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Alternatively, since arccos(´a) = π ´ arccos(a) we also have

ż 0

a

a

1´ x2 dx = ´
π

4
+

1
2

arccos(a)´
1
2

a
a

1´ a2

(b) Note
ż 1

0

a

1´ x2 dx =
π

4
, since the area under the curve represents one-quarter of

the unit circle. Then,
ż 1

a

a

1´ x2 dx =

ż 1

0

a

1´ x2 dx´
ż a

0

a

1´ x2 dx

=
π

4
´

(
π

4
´

1
2

arccos(a) +
1
2

a
a

1´ a2
)

=
1
2

arccos(a)´
1
2

a
a

1´ a2

S-9: Recall that

|x| =

#

´x if x ď 0
x if x ě 0

so that

|2x| =

#

´2x if x ď 0
2x if x ě 0

Also recall, from Example 1.2.5 in the CLP-2 text that

ż b

a
x dx =

b2 ´ a2

2

So
ż 2

´1
|2x| dx =

ż 0

´1
|2x| dx +

ż 2

0
|2x| dx =

ż 0

´1
(´2x) dx +

ż 2

0
2x dx

= ´2
ż 0

´1
x dx + 2

ż 2

0
x dx = ´2 ¨

02 ´ (´1)2

2
+ 2 ¨

22 ´ 02

2
= 1 + 4 = 5

S-10: We note that the integrand f (x) = x|x| is an odd function, because
f (´x) = ´x| ´ x| = ´x|x| = ´ f (x). Then, by Theorem 1.2.11.b in the CLP-2 text,
ż 5

´5
x|x| dx = 0.
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S-11: Using Theorem 1.2.11.a in the CLP-2 text,

10 =

ż 2

´2
f (x)dx = 2

ż 2

0
f (x)dx

5 =

ż 2

0
f (x)dx

Also,
ż 2

´2
f (x)dx =

ż 0

´2
f (x)dx +

ż 2

0
f (x)dx

So,
ż 0

´2
f (x)dx =

ż 2

´2
f (x)dx´

ż 2

0
f (x)dx

= 10´ 5 = 5

Indeed, for any even function f (x),
0
ş

´a
f (x)dx =

a
ş

0
f (x)dx.

S-12: We first use additivity:
ż 2

´2

(
5 +

a

4´ x2
)

dx =

ż 2

´2
5 dx +

ż 2

´2

a

4´ x2 dx

The first integral represents the area of a rectangle of height 5 and width 4 and so equals
20. The second integral represents the area above the x–axis and below the curve
y =

?
4´ x2 or x2 + y2 = 4. That is a semicircle of radius 2, which has area 1

2 π22. So
ż 2

´2

(
5 +

a

4´ x2
)

dx = 20 + 2π

x

y

2´2

y = 5

2
ş

´2
5dx = 5

x

y

2´2

y =
?

4´ x2

2
ş

´2

?
4´ x2dx = 2π
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S-13: Note that the integrand f (x) = sin x
log(3+x2)

is an odd function, because:

f (´x) =
sin(´x)

log(3 + (´x)2)
=

´ sin x
log(3 + x2)

= ´ f (x)

The domain of integration ´2012 ď x ď 2012 is symmetric about x = 0. So, by Theorem
1.2.11 of the CLP-2 text,

ż +2012

´2012

sin x
log(3 + x2)

dx = 0

S-14: Note that the integrand f (x) = x1/3 cos x is an odd function, because:

f (´x) = (´x)1/3 cos(´x) = ´x1/3 cos x = ´ f (x)

The domain of integration ´2012 ď x ď 2012 is symmetric about x = 0. So, by Theorem
1.2.11 of the CLP-2 text,

ż +2012

´2012
x1/3 cos x dx = 0

S-15: Our integrand f (x) = (x´ 3)3 is neither even nor odd. However, it does have a
similar symmetry. Namely, f (3 + x) = ´ f (3´ x). So, f is “negatively symmetric” across
the line x = 3. This suggests that the integral should be 0: the positive area to the right of
x = 3 will be the same as the negative area to the left of x = 3.

Another way to see this is to notice that the graph of f (x) = (x´ 3)3 is equivalent to the
graph of g(x) = x3 shifted three units to the right, and g(x) is an odd function. So,

ż 6

0
(x´ 3)3 dx =

ż 3

´3
x3 dx = 0

x

y

´3 3 6

y = x3 y = (x´ 3)3
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S-16:

(a)

(ax)2 + (by)2 = 1

by =
b

1´ (ax)2

y =
1
b

b

1´ (ax)2

(b) The values of x in the domain of the function above are those that satisfy
1´ (ax)2 ě 0. That is, ´1

a ď x ď 1
a . Therefore, the upper half of the ellipse has area

1
b

ż 1
a

´ 1
a

b

1´ (ax)2 dx

The upper half of a circle has equation y =
?

r2 ´ x2.

=
1
b

ż 1
a

´ 1
a

d

a2
(

1
a2 ´ x2

)
dx

=
1
b

ż 1
a

´ 1
a

a

c

1
a2 ´ x2 dx

=
a
b

ż 1
a

´ 1
a

c

1
a2 ´ x2 dx

(c) The function y =

c

1
a2 ´ x2 is the upper-half of the circle centred at the origin with

radius
1
a

. So, the expression from (b) evaluates to
( a

b

) π

2a2 =
π

2ab
.

The expression from (b) was half of the ellipse, so the area of the ellipse is
π

ab
.

Remark: this was a slightly long-winded way of getting the result. The reasoning is
basically this:

• The area of the unit circle x2 + y2 = 1 is π .

• The ellipse (ax)2 + y2 = 1 is obtained by shrinking the unit circle horizontally by a

factor of a. So, its area is
π

a
.

• Further, the ellipse (ax)2 + (by)2 = 1 is obtained from the previous ellipse by

shrinking it vertically by a factor of b. So, its area is
π

ab
.
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S-17: Let’s recall the definitions of even and odd functions: f (x) is even if f (´x) = f (x)
for every x in its domain, and f (x) is odd if f (´x) = ´ f (x) for every x in its domain.

Let h(x) = f (x) ¨ g(x).

even ˆ even: If f and g are both even, then
h(´x) = f (´x) ¨ g(´x) = f (x) ¨ g(x) = h(x), so their product is even.

odd ˆ odd: If f and g are both odd, then
h(´x) = f (´x) ¨ g(´x) = [´ f (x)] ¨ [´g(x)] = f (x) ¨ g(x) = h(x), so their product is
even.

even ˆ odd: If f is even and g is odd, then
h(´x) = f (´x) ¨ g(´x) = f (x) ¨ [´g(x)] = ´[ f (x) ¨ g(x)] = ´h(x), so their product
is odd. Because multiplication is commutative, the order we multiply the functions
in doesn’t matter.

We note that the table would be the same as if we were adding (not multiplying) even and
odd numbers (not functions).

S-18: Since f (x) is odd, f (0) = ´ f (´0) = ´ f (0). So, f (0) = 0.

However, this restriction does not apply to g(x). For example, for any constant c, let
g(x) = c. Then g(x) is even and g(0) = c. So, g(0) can be any real number.

S-19: Let x be any real number.

• f (x) = f (´x) (since f (x) is even), and

• f (x) = ´ f (´x) (since f (x) is odd).

• So, f (x) = ´ f (x).

• Then (adding f (x) to both sides) we see 2 f (x) = 0, so f (x) = 0.

So, f (x) = 0 for every x.

S-20:

Solution 1: Suppose f (x) is an odd function. We investigate f 1(x) using the chain rule:

f (´x) = ´ f (x) (odd function)
d
dx
t f (´x)u =

d
dx
t´ f (x)u

´ f 1(´x) = ´ f 1(x) (chain rule)
f 1(´x) = f 1(x)

So, when f (x) is odd, f 1(x) is even.

Similarly, suppose f (x) is even.

272



f (´x) = f (x) (even function)
d
dx
t f (´x)u =

d
dx
t f (x)u

´ f 1(´x) = f 1(x) (chain rule)
f 1(´x) = ´ f 1(x)

So, when f (x) is even, f 1(x) is odd.

Solution 2: Another way to think about this problem is to notice that “mirroring” a
function changes the sign of its derivative. Then since an even function is
“mirrored once” (across the y-axis), it should have f 1(x) = ´ f 1(´x), and so the
derivative of an even function should be an odd function. Since an odd function is
“mirrored twice” (across the y-axis and across the x-axis), it should have
f 1(x) = ´(´ f 1(´x)) = f 1(´x). So the derivative of an odd function should be
even. These ideas are presented in more detail below.

First, we consider the case where f (x) is even, and investigate f 1(x).

x

y

y = f (x)

a1´a1 a2´a2 a3´a3

The whole function has a mirror-like symmetry across the y-axis. So, at x and ´x,
the function will have the same “steepness,” but if one is increasing then the other
is decreasing. That is, f 1(´x) = ´ f 1(x). (In the picture above, compare the slope at
some point ai with its corresponding point ´ai.) So, f 1(x) is odd when f (x) is even.

Second, let’s consider the case where f (x) is odd, and investigate f 1(x). Suppose
the blue graph below is y = f (x). If f (x) were even, then to the left of the y-axis, it
would look like the orange graph, which we’ll call y = g(x).
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x

y

y = g(x) y = f (x)

From our work above, we know that, for every x ą 0, ´ f 1(x) = g1(´x). When
x ă 0, f (x) = ´g(x). So, if x ą 0, then ´ f 1(x) = g1(´x) = ´ f 1(´x). In other words,
f 1(x) = f 1(´x). Similarly, if x ă 0, then f 1(x) = ´g1(x) = f 1(´x). Therefore f 1(x) is
even. (In the graph below, you can anecdotally verify that f 1(ai) = f 1(´ai).)

x

y

y = g(x) y = f (x)

a1´a1 a2´a2 a3´a3

Solutions to Exercises 1.3 — Jump to TABLE OF CONTENTS

S-1: The Fundamental Theorem of Calculus Part 2 (Theorem 1.3.1 in the CLP-2 text) tells
us that

ż

?
5

1
f (x)dx = F(

?
5)´ F(1)

=
(
e(
?

52
´3) + 1

)
´
(
e(1

2´3) + 1
)

= e5´3
´ e1´3 = e2

´ e´2

S-2: First, let’s find a general antiderivative of x3 ´ sin(2x).
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• One function with derivative x3 is
x4

4
.

• To find an antiderivative of sin(2x), we might first guess cos(2x); checking, we see
d
dxtcos(2x)u = ´2 sin(2x). So, we only need to multiply by ´

1
2

:

d
dx

"

´
1
2

cos 2x
*

= sin(2x).

So, the general antiderivative of f (x) is
x4

4
+

1
2

cos 2x + C. To satisfy F(0) = 1, we need2

[x4

4
+

1
2

cos 2x + C
]

x=0
= 1 ðñ

1
2
+ C = 1 ðñ C =

1
2

So F(x) =
x4

4
+

1
2

cos 2x +
1
2

.

S-3: (a) This is true, by part 2 of the Fundamental Theorem of Calculus, Thereom 1.3.1 in
the CLP-2 text with G(x) = f (x) and f (x) replaced by f 1(x).

(b) This is not only false, but it makes no sense at all. The integrand is strictly positive so
the integral has to be strictly positive. In fact it’s +8. The Fundamental Theorem of
Calculus does not apply because the integrand has an infinite discontinuity at x = 0.

x

y

´1 1

y = 1
x2

(c) This is not only false, but it makes no sense at all, unless
şb

a f (x)dx =
şb

a x f (x)dx = 0.
The left hand side is a number. The right hand side is a number times x.

ż b

a
x f (x) dx

loooooomoooooon

area

vs x
loomoon

variable

¨

ż b

a
f (x) dx

looooomooooon

area

For example, if a = 0, b = 1 and f (x) = 1, then the left hand side is
ş1

0 x dx = 1
2 and the

2 The symbol ðñ is read “if and only if”. This is used in mathematics to express the logical equivalence
of two statements. To be more precise, the statement P ðñ Q tells us that P is true whenever Q is
true and Q is true whenever P is true.
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right hand side is x
ş1

0 dx = x.

S-4: This is a tempting thought:
ż

1
x

dx = log |x|+ C

so perhaps similarly
ż

1
x2 dx ?

= log |x2
|+ C = log(x2) + C

We check by differentiating:

d
dx
tlog(x2)u =

d
dx
t2 log xu =

2
x
‰

1
x2

So, it wasn’t so easy: false.

When we’re guessing antiderivatives, we often need to adjust our original guesses a
little. Changing constants works well; changing functions usually does not.

S-5: This is tempting:

d
dx
tsin(ex)u = ex cos(ex)

so perhaps

d
dx

"

sin(ex)

ex

*

?
= cos(ex)

We check by differentiating:

d
dx

"

sin(ex)

ex

*

=
ex (cos(ex) ¨ ex)´ sin(ex)ex

e2x (quotient rule)

= cos(ex)´
sin(ex)

ex

‰ cos(ex)

So, the statement is false.

When we’re guessing antiderivatives, we often need to adjust our original guesses a
little. Dividing by constants works well; dividing by functions usually does not.

S-6: “The instantaneous rate of change of F(x) with respect to x” is another way of saying
“F1(x)”. From the Fundamental Theorem of Calculus Part 1, we know this is sin(x2).

S-7: The slope of the tangent line to y = F(x) when x = 3 is exactly F1(3). By the
Fundamental Theorem of Calculus Part 1, F1(x) = e1/x. Then F1(3) = e1/3 = 3

?
e.
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S-8: For any constant C, F(x) + C is an antiderivative of f (x), because
d
dxtF(x) + Cu = d

dxtF(x)u = f (x). So, for example, F(x) and F(x) + 1 are both
antiderivatives of f (x).

S-9:

(a) We differentiate with respect to a. Recall d
dxtarccos xu = ´1?

1´x2
. To differentiate

1
2 a
?

1´ a2, we use the product and chain rules.

d
da

"

π

4
´

1
2

arccos(a) +
1
2

a
a

1´ a2
*

= 0´
1
2
¨

´1
?

1´ a2
+

(
1
2

a
)
¨

´2a
2
?

1´ a2
+

1
2

a

1´ a2

=
1

2
?

1´ a2
´

a2

2
?

1´ a2
+

1´ a2

2
?

1´ a2

=
1´ a2 + 1´ a2

2
?

1´ a2

=
2(1´ a2)

2
?

1´ a2

=
a

1´ a2

(b) Let G(x) = π
4 ´

1
2 arccos(x) + 1

2 x
?

1´ x2. We showed in part (a) that G(x) is an
antiderivative of

?
1´ x2. Since F(x) is also an antiderivative of

?
1´ x2,

F(x) = G(x) + C for some constant C (this is Lemma 1.3.8 in the CLP-2 text).

Note G(0) =
ż 0

0

a

1´ x2 dx = 0, so if F(0) = π, then F(x) = G(x) + π. That is,

F(x) =
5π

4
´

1
2

arccos(x) +
1
2

x
a

1´ x2 .

S-10:

(a) The antiderivative of cos x is sin x, and cos x is continuous everywhere, so
ż π

´π
cos x dx = sin(π)´ sin(´π) = 0.

(b) Since sec2 x is discontinuous at x = ˘π
2 , the Fundamental Theorem of Calculus Part 2

does not apply to
ż π

´π
sec2 x dx.

(c) Since 1
x+1 is discontinuous at x = ´1, the Fundamental Theorem of Calculus Part 2

does not apply to
ż 0

´2

1
x + 1

dx.

S-11:

Using the definition of F, F(x) is the area under the curve from a to x, and F(x + h) is the
area under the curve from a to x + h. These are shown on the same diagram, below.
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t

y

a x x + h

y = f (t)

Then the area represented by F(x + h)´ F(x) is the area that is outside the red, but inside

the blue. Equivalently, it is
x+h
ş

x
f (t) dt.

t

y

a x x + h

y = f (t)

S-12: We evaluate F(0) using the definition: F(0) =
ş0

0 f (t) dt = 0. Although f (0) ą 0,
the area from t = 0 to t = 0 is zero.
As x moves along, F(x) adds bits of signed area. If it’s adding positive area, it’s
increasing, and if it’s adding negative area, it’s decreasing. So, F(x) is increasing when
0 ă x ă 1 and 3 ă x ă 4, and F(x) is decreasing when 1 ă x ă 3.

S-13: This question is nearly identical to Question 12, with

G(x) =
ż 0

x
f (t) dt = ´

ż x

0
f (t) dt = ´F(x).

So, G(x) increases when F(x) decreases, and vice-versa. Therefore: G(0) = 0, G(x) is
increasing when 1 ă x ă 3, and G(x) is decreasing when 0 ă x ă 1 and when 3 ă x ă 4.

S-14: Using the definition of the derivative,

F1(x) = lim
hÑ0

F(x + h)´ F(x)
h

= lim
hÑ0

şx+h
a t dt´

şx
a t dt

h

= lim
hÑ0

şx+h
x t dt

h
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The numerator describes the area of a trapezoid with base h and heights x and x + h.

= lim
hÑ0

1
2 h(x + x + h)

h

= lim
hÑ0

(
x +

1
2

h
)

= x

t

y

x x + h

x

x + h

y = t

şx+h
x t dt

So, F1(x) = x.

S-15: If F(x) is constant, then F1(x) = 0. By the Fundamental Theorem of Calculus Part 1,
F1(x) = f (x). So, the only possible continuous function fitting the question is f (x) = 0.

This makes intuitive sense: if moving x doesn’t add or subtract area under the curve,
then there must not be any area under the curve–the curve should be the same as the
x-axis.

As an aside, we mention that there are other, non-continuous functions f (t) such that
şx

0 f (t) dt = 0 for all x. For example, f (t) =
"

0 x ‰ 0
1 x = 0 . These kinds of removable

discontinuities will not factor heavily in our discussion of integrals.

S-16:

d
dx
tx log(ax)´ xu = x

( a
ax

)
+ log(ax)´ 1 (product rule, chain rule)

= log(ax)

So, we know

ż

log(ax) dx = x log(ax)´ x + C where a is a given constant, and C is any constant.

Remark:
ş

log(ax) dx can be calculated using the method of Integration by Parts, which
you will learn in Section 1.7 of the CLP-2 text.
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S-17:

d
dx

!

ex
(

x3
´ 3x2 + 6x´ 6

))
= ex

(
3x2

´ 6x + 6
)
+ ex

(
x3
´ 3x2 + 6x´ 6

)
(product rule)

= ex
(

3x2
´ 6x + 6 + x3

´ 3x2 + 6x´ 6
)

= x3ex

So,
ż

x3ex dx = ex
(

x3
´ 3x2 + 6x´ 6

)
+ C

Remark:
ş

x3ex dx can be calculated using the method of Integration by Parts, which you
will learn in Section 1.7 of the CLP-2 text.

S-18:

d
dx

!

log
ˇ

ˇ

ˇ
x +

a

x2 + a2
ˇ

ˇ

ˇ

)

=
1

x +
?

x2 + a2
¨

(
1 +

1
2
?

x2 + a2
¨ 2x
)

(chain rule)

=
1 + x?

x2+a2

x +
?

x2 + a2
=

?
x2+a2+x?

x2+a2

x +
?

x2 + a2

=
1

?
x2 + a2

So,
ż

1
?

x2 + a2
dx = log

ˇ

ˇ

ˇ
x +

a

x2 + a2
ˇ

ˇ

ˇ
+ C

Remark:
ş 1?

x2+a2 dx can be calculated using the method of Trigonometric Substitution,
which you will learn in Section 1.9 of the CLP-2 text.

S-19: Using the chain rule:

d
dx

"

b

x(a + x)´ a log
(?

x +
?

a + x
)*

=
x + (a + x)
2
a

x(a + x)
´ a

(
1

?
x +

?
a + x

¨

(
1

2
?

x
+

1
2
?

a + x

))

=
2x + a

2
a

x(a + x)
´ a

(
1

?
x +

?
a + x

¨

(?
a + x +

?
x

2
a

x(a + x)

))

=
2x + a

2
a

x(a + x)
´ a

(
1

2
a

x(a + x)

)

=
2x

2
a

x(a + x)
=

x
a

x(a + x)
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So,
ż

x
a

x(a + x)
dx =

b

x(a + x)´ a log
(?

x +
?

a + x
)
+ C

Remark:
ş x?

x(a+x)
dx can be calculated using the method of Trigonometric Substitution,

which you will learn in Section 1.9 of the CLP-2 text.

S-20: By the Fundamental Theorem of Calculus,
ż 2

0

(
x3 + sin x)dx =

[
x4

4
´ cos x

]2

0

=

(
24

4
´ cos 2

)
´ (0´ cos 0)

= 4´ cos 2 + 1 = 5´ cos 2.

S-21: By part (d) of our “Arithmetic of Integration” theorem, Theorem 1.2.1 in the CLP-2
text,

ż 2

1

x2 + 2
x2 dx =

ż 2

1

[
1 +

2
x2

]
dx =

ż 2

1
dx + 2

ż 2

1

1
x2 dx

Then by the Fundamental Theorem of Calculus Part 2,
ż 2

1
dx + 2

ż 2

1

1
x2 dx =

[
x
]2

1
+ 2
[
´

1
x

]2

1
=
[
2´ 1

]
+ 2
[
´

1
2
+ 1
]
= 2

S-22: The integrand is similar to
1

1 + x2 , which is the derivative of arctangent. Indeed, we

have
ż

1
1 + 25x2 dx =

ż

1
1 + (5x)2 dx.

So, a reasonable first guess for the antiderivative might be

F(x) ?
= arctan(5x).

However, because of the chain rule,

F1(x) =
5

1 + (5x)2 .

In order to “fix” the numerator, we make a second guess:

F(x) =
1
5

arctan(5x)

F1(x) =
1
5

(
5

1 + (5x)2

)
=

1
1 + 25x2

So,
ż

1
1 + 25x2 dx =

1
5

arctan(5x) + C.
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S-23: The integrand is similar to
1

?
1´ x2

. In order to formulate a guess for the

antiderivative, let’s factor out
?

2 from the denominator:
ż

1
?

2´ x2
dx =

ż

1
c

2
(

1´ x2

2

)dx

=

ż

1
?

2
b

1´ x2

2

dx

=

ż

1
?

2
¨

1
d

1´
(

x
?

2

)2
dx

At this point, we might guess that our antiderivative is something like

F(x) = arcsin
(

x
?

2

)
. To explore this possibility, we can differentiate, and see what we

get.

d
dx

"

arcsin
(

x
?

2

)*
=

1
?

2
¨

1
d

1´
(

x
?

2

)2

This is exactly what we want! So,
ż

1
?

2´ x2
dx = arcsin

(
x
?

2

)
+ C

S-24: We know that
ş

sec2 x dx = tan x + C, and sec2 x = tan2 x + 1, so
ż

tan2 x dx =

ż

sec2 x´ 1 dx

=

ż

sec2 x dx´
ż

1 dx

= tan x´ x + C

S-25:

Solution 1: This might not obviously look like the derivative of anything familiar, but it
does look like half of a familiar trig identity: 2 sin x cos x = sin(2x).

ż

3 sin x cos x dx =

ż

3
2
¨ 2 sin x cos x dx

=

ż

3
2

sin(2x) dx
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So, we might guess that the antiderivative is something like ´ cos(2x). We only
need to figure out the constants.

d
dx
t´ cos(2x)u = 2 sin(2x)

So,
d
dx

"

´
3
4

cos(2x)
*

=
3
2

sin(2x)

Therefore,
ż

3 sin x cos x dx = ´
3
4

cos(2x) + C

Solution 2: You might notice that the integrand looks like it came from the chain rule,
since cos x is the derivative of sin x. Using this observation, we can work out the
antideriative:

d
dx

!

sin2 x
)

= 2 sin x cos x

d
dx

"

3
2

sin2 x
*

= 3 sin x cos x

So,
ż

3 sin x cos x dx =
3
2

sin2 x + C

These two answers look different. Using the identity cos(2x) = 1´ 2 sin2(x), we
reconcile them:

´
3
4

cos(2x) + C = ´
3
4

(
1´ 2 sin2 x

)
+ C

=
3
2

sin2 x +

(
C´

3
4

)

The 3
4 here is not significant. Remember that C is used to designate a constant that can

take any value between ´8 and +8. So C´ 3
4 is also just a constant that can take any

value between ´8 and +8. As the two answers we found differ by a constant, they are
equivalent.

S-26: It’s not immediately obvious which function has cos2 x as its derivative, but we can

make the situation a little clearer by using the identity cos2 x =
1 + cos(2x)

2
:

ż

cos2 x dx =

ż

1
2
¨ (1 + cos(2x)) dx

=

ż

1
2

dx +

ż

1
2

cos(2x) dx

=
1
2

x + C +

ż

1
2

cos(2x) dx
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For the remaining integral, we might guess something like F(x) = sin(2x). Let’s figure
out the appropriate constant:

d
dx
tsin(2x)u = 2 cos(2x)

d
dx

"

1
4

sin(2x)
*

=
1
2

cos(2x)

So,
ż

1
2

cos(2x) dx =
1
4

sin(2x) + C

Therefore,
ż

cos2 x dx =
1
2

x +
1
4

sin(2x) + C

S-27: By the Fundamental Theorem of Calculus Part 1,

F1(x) =
d
dx

ż x

0
log(2 + sin t)dt = log(2 + sin x)

G1(y) =
d
dy

[
´

ż y

0
log(2 + sin t)dt

]
= ´ log(2 + sin y)

So,
F1
(π

2

)
= log 3 G1

(π

2

)
= ´ log(3)

S-28: By the Fundamental Theorem of Calculus Part 1,

f 1(x) = 100(x2
´ 3x + 2)e´x2

= 100(x´ 1)(x´ 2)e´x2

As f (x) is increasing whenever f 1(x) ą 0 and 100e´x2
is always strictly bigger than 0, we

have f (x) increasing if and only if (x´ 1)(x´ 2) ą 0, which is the case if and only if
(x´ 1) and (x´ 2) are of the same sign. Both are positive when x ą 2 and both are
negative when x ă 1. So f (x) is increasing when ´8 ă x ă 1 and when 2 ă x ă 8.

Remark: even without the Fundamental Theorem of Calculus, since f (x) is the area
under a curve from 1 to x, f (x) is increasing when the curve is above the x-axis (because
we’re adding positive area), and it’s decreasing when the curve is below the x-axis
(because we’re adding negative area).

S-29: Write G(x) =
ż x

0

1
t3 + 6

dt. By the Fundamental Theorem of Calculus Part 1,

G1(x) =
1

x3 + 6
. Since F(x) = G(cos x), the chain rule gives us

F1(x) = G1(cos x) ¨ (´ sin x) = ´
sin x

cos3 x + 6
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S-30: Define g(x) =
ż x

0
et2

dt. By the Fundamental Theorem of Calculus Part 1,

g1(x) = ex2
. As f (x) = g(1 + x4) the chain rule gives us

f 1(x) = 4x3g1(1 + x4) = 4x3e(1+x4)2

S-31: Define g(x) =
şx

0(t
6 + 8)dt. By the fundamental theorem of calculus, g1(x) = x6 + 8.

We are to compute the derivative of f (x) = g(sin x). The chain rule gives

d
dx

#

ż sin x

0
(t6 + 8)dt

+

= g1(sin x) ¨ cos x =
(

sin6 x + 8
)

cos x

S-32: Let G(x) =
ż x

0
e´t sin

(
πt
2

)
dt. By the Fundamental Theorem of Calculus Part 1,

G1(x) = e´x sin
(

πx
2

)
and, since F(x) = G(x3), F1(x) = 3x2G1(x3) = 3x2e´x3

sin
(

πx3

2

)
.

Then F1(1) = 3e´1 sin
(

π
2

)
= 3e´1.

S-33: Define G(x) =
ż 0

x

dt
1 + t3 = ´

ż x

0

1
1 + t3 dt, so that G1(x) = ´

1
1 + x3 by the

Fundamental Theorem of Calculus Part 1. Then by the chain rule,

d
du

#

ż 0

cos u

dt
1 + t3

+

=
d
du

G(cos u) = G1(cos u) ¨
d
du

cos u = ´
1

1 + cos3 u
¨ (´ sin u).

S-34: Applying d
dx to both sides of x2 = 1 +

şx
1 f (t) dt gives, by the Fundamental

Theorem of Calculus Part 1, 2x = f (x).

S-35: Apply d
dx to both sides of x sin(πx) =

şx
0 f (t)dt. Then, by the Fundamental

Theorem of Calculus Part 1,

f (x) =
d
dx

ż x

0
f (t)dt =

d
dx

 

x sin(πx)
(

ùñ f (x) =
d
dx

 

x sin(πx)
(

= sin(πx) + πx cos(πx)

ùñ f (4) = sin(4π) + 4π cos(4π) = 4π

S-36: (a) Write

F(x) = G(x2)´ H(´x) with G(y) =
ż y

0
e´t dt, H(y) =

ż y

0
e´t2

dt
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By the Fundamental Theorem of Calculus Part 1,

G1(y) = e´y , H1(y) = e´y2

Hence, by the chain rule,

F1(x) = 2xG1(x2)´ (´1)H1(´x) = 2xe´(x2) + e´(´x)2
= (2x + 1)e´x2

(b) Observe that F1(x) ă 0 for x ă ´1/2 and F1(x) ą 0 for x ą ´1/2. Hence F(x) is
decreasing for x ă ´1/2 and increasing for x ą ´1/2, and F(x) must take its minimum
value when x = ´1/2.

S-37: Define G(y) =
ż y

0
esin t dt. Then:

F(x) =
ż x

0
esin t dt +

ż 0

x4´x3
esin t dt =

ż x

0
esin t dt´

ż x4´x3

0
esin t dt

= G(x)´ G(x4
´ x3)

By the Fundamental Theorem of Calculus Part 1,

G1(y) = esin y

Hence, by the chain rule,

F1(x) = G1(x)´ G1(x4
´ x3)

d
dx

 

x4
´ x3(

= G1(x)´ G1(x4
´ x3) (4x3

´ 3x2)

= esin x
´ esin(x4´x3)

(
4x3

´ 3x2)

S-38: Define with G(y) =
ż y

0
cos

(
et)dt. Then:

F(x) =
ż ´x2

x5
cos

(
et)dt =

ż ´x2

0
cos

(
et)dt +

ż 0

x5
cos

(
et)dt

=

ż ´x2

0
cos

(
et)dt´

ż x5

0
cos

(
et)dt

= G(´x2)´ G(x5)

By the Fundamental Theorem of Calculus,

G1(y) = cos
(
ey)

286



Hence, by the chain rule,

F1(x) = G1(´x2)
d
dx

 

´ x2(
´ G1(x5)

d
dx

 

x5(

= G1(´x2) (´2x)´ G1(x5) (5x4)

= ´2x cos
(
e´x2)

´ 5x4 cos
(
ex5)

S-39: Define with G(y) =
ż y

0

?
sin t dt. Then:

F(x) =
ż ex

x

?
sin t dt

=

ż ex

0

?
sin t dt +

ż 0

x

?
sin t dt =

ż ex

0

?
sin t dt´

ż x

0

?
sin t dt

= G(ex)´ G(x)

By the Fundamental Theorem of Calculus Part 1,

G1(y) =
a

sin y

Hence, by the chain rule,

F1(x) = G1(ex)
d
dx

 

ex(
´ G1(x)

= exG1(ex)´ G1(x)

= ex
b

sin(ex)´
b

sin(x)

S-40: Splitting up the domain of integration,
ż 5

1
f (x) dx =

ż 3

1
f (x)dx +

ż 5

3
f (x)dx

=

ż 3

1
3 dx +

ż 5

3
x dx

= 3x
ˇ

ˇ

ˇ

ˇ

x=3

x=1
+

x2

2

ˇ

ˇ

ˇ

ˇ

x=5

x=3

= 14

x

y

1 3 5

3

y = f (x)
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S-41: By the chain rule,

d
dx

 

( f 1(x))2 (
= 2 f 1(x) f 2(x)

so 1
2 f 1(x)2 is an antiderivative for f 1(x) f 2(x) and, by the Fundamental Theorem of

Calculus Part 2,
ż 2

1
f 1(x) f 2(x)dx =

[
1
2
( f 1(x))2

]x=2

x=1
=

1
2

f 1(2)2
´

1
2

f 1(1)2 =
5
2

Remark: evaluating antiderivatives of this type will occupy the next section, Section 1.4
of the CLP-2 text.

S-42: The car stops when v(t) = 30´ 10t = 0, which occurs at time t = 3. The distance
covered up to that time is

ż 3

0
v(t)dt = (30t´ 5t2)

ˇ

ˇ

ˇ

3

0
= (90´ 45)´ 0 = 45 m.

S-43: Define g(x) =
ż x

0
log
(
1 + et)dt. By the Fundamental Theorem of Calculus Part 1,

g1(x) = log
(
1 + ex). But f (x) = g(2x´ x2), so by the chain rule,

f 1(x) = g1(2x´ x2) ¨
d
dx
t2x´ x2

u = (2´ 2x) ¨ log
(
1 + e2x´x2)

Observe that e2x´x2
ą 0 for all x so that 1 + e2x´x2

ą 1 for all x and log
(
1 + e2x´x2)

ą 0
for all x. Since 2´ 2x is positive for x ă 1 and negative for x ą 1, f 1(x) is also positive for
x ă 1 and negative for x ą 1. That is, f (x) is increasing for x ă 1 and decreasing for
x ą 1. So f (x) achieves its absolute maximum at x = 1.

S-44: Let f (x) =
şx2´2x

0
dt

1+t4 and g(x) =
şx

0
dt

1+t4 . Then g1(x) = 1
1+x4 and, since

f (x) = g(x2 ´ 2x), f 1(x) = (2x´ 2)g1(x2 ´ 2x) = 2 x´1
1+(x2´2x)4 . This is zero for x = 1,

negative for x ă 1 and positive for x ą 1. Thus as x runs from ´8 to8, f (x) decreases
until x reaches 1 and then increases all x ą 1. So the minimum of f (x) is achieved for
x = 1. At x = 1, x2 ´ 2x = ´1 and f (1) =

ş´1
0

dt
1+t4 .

S-45: Define G(x) =
ż x

0
sin(

?
t)dt. By the Fundamental Theorem of Calculus Part 1,

G1(x) = sin(
?

x). Since F(x) = G(x2), and since x ą 0, we have

F1(x) = 2xG1(x2) = 2x sin |x| = 2x sin x.
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Thus F increases as x runs from to 0 to π (since F1(x) ą 0 there) and decreases as x runs
from π to 4 (since F1(x) ă 0 there). Thus F achieves its maximum value at x = π.

S-46: The given sum is of the form

lim
nÑ8

n
ÿ

j=1

π

n
sin
( jπ

n

)
= lim

nÑ8

n
ÿ

j=1

f (x˚j )∆x

with ∆x = π
n , x˚j = jπ

n and f (x) = sin(x). Since x˚0 = 0 and x˚n = π, the right hand side is
the definition (using the right Riemann sum) of

ż π

0
f (x)dx =

ż π

0
sin(x)dx = [´ cos(x)]π0 = 2

where we evaluate the definite integral using the Fundamental Theorem of Calculus Part
2.

S-47: The given sum is of the form

lim
nÑ8

1
n

n
ÿ

j=1

1

1 + j
n

= lim
nÑ8

n
ÿ

j=1

f (xj)∆x

with ∆x = 1
n , xj =

j
n and f (x) = 1

1+x . The right hand side is the definition (using the
right Riemann sum) of

ż 1

0
f (x)dx =

ż 1

0

1
1 + x

dx = log |1 + x|
ˇ

ˇ

ˇ

1

0
= log 2

S-48:

F(x), x ě 0 We learned quite a lot last semester about curve sketching. We can use those
techniques here. We have to be quite careful about the sign of x, though. We can
only directly apply the Fundamental Theorem of Calculus Part 1 (as it’s written in
your text) when x ě 0. So first, let’s graph the right-hand portion. Notice f (x) has
even symmetry–so, if we know one half of F(x), we should be able to figure out the
other half with relative ease.

• F(0) =
ż 0

0
f (t) dt = 0 (so, F(x) passes through the origin)

• Using the Fundamental Theorem of Calculus Part 1, F1(x) ą 0 when 0 ă x ă 1
and when 3 ă x ă 5; F1(x) ă 0 when 1 ă x ă 3. So, F(x) is decreasing from 1
to 3, and increasing from 0 to 1 and also from 3 to 5. That gives us a skeleton to
work with.
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x

y

1 3 5

We get the relative sizes of the maxes and mins by eyeballing the area under
y = f (t). The first lobe (from x = 0 to x = 1 has a small positive area, so F(1)
is a small positive number. The next lobe (from x = 1 to x = 3) has a larger
absolute area than the first, so F(3) is negative. Indeed, the second lobe seems
to have more than twice the area of the first, so |F(3)| should be larger than
F(1). The third lobe is larger still, and even after subtracting the area of the
second lobe it looks much larger than the first or second lobe, so |F(3)| ă F(5).

• We can use F2(x) to get the concavity of F(x). Note F2(x) = f 1(x). We observe
f (x) is decreasing on (roughly) (0, 2.5) and (4, 5), so F(x) is concave down on
those intervals. Further, f (x) is increasing on (roughly) (2.5, 4), so F(x) is
concave up there, and has inflection points at about x = 2.5 and x = 4.

x

y

y = F(x)

y = f (x)

´5 ´3 ´1 1 3 5

In the sketch above, closed dots are extrema, and open dots are inflection
points.

F(x), x ă 0 Now we can consider the left half of the graph. If you stare at it long enough,
you might convince yourself that F(x) is an odd function. We can also show this
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with the following calculation:

F(´x) =
ż ´x

0
f (t) dt As in Example 1.2.9 of the CLP-2 text, since f (t) is even,

=

ż 0

x
f (t) dt = ´

ż x

0
f (t) dt

= ´F(x)

Knowing that F(x) is odd allows us to finish our sketch.

x

y

y = F(x)

y = f (x)

´5 ´3 ´1 1 3 5

S-49: (a) Using the product rule, followed by the chain rule, followed by the
Fundamental Theorem of Calculus Part 1,

f 1(x) = 3x2
ż x3+1

0
et3

dt + x3 d
dx

ż x3+1

0
et3

dt

= 3x2
ż x3+1

0
et3

dt + x3 [3x2]
[

d
dy

ż y

0
et3

dt

]

y=x3+1

= 3x2
ż x3+1

0
et3

dt + x3 [3x2][ey3
]

y=x3+1

= 3x2
ż x3+1

0
et3

dt + x3 [3x2]e(x3+1)3

= 3x2
ż x3+1

0
et3

dt + 3x5e(x3+1)3

(b) In general, the equation of the tangent line to the graph of y = f (x) at x = a is

y = f (a) + f 1(a) (x´ a)
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Substituting in the given f (x) and a = ´1:

f (a) = f (´1) = (´1)3
ż 0

0
et3

dt = 0

f 1(a) = f 1(´1) = 3(´1)2
ż 0

0
et3

dt + 3(´1)5e0

= 0´ 3 = ´3
(x´ a) = x´ (´1) = x + 1

So, the equation of the tangent line is

y = ´3(x + 1) .

S-50: Recall that “+C” means that we can add any constant to the function. Since
tan2 x = sec2 x´ 1, Students A and B have equivalent answers: they only differ by a
constant.

So, if one is right, both are right; if one is wrong, both are wrong. We check Student A’s
work:

d
dx
ttan2 x + x + Cu =

d
dx
ttan2 xu+ 1 + 0 = f (x)´ 1 + 1 = f (x)

So, Student A’s answer is indeed an anditerivative of f (x). Therefore, both students ended
up with the correct answer.

Remark: it is a frequent occurrence that equivalent answers might look quite different.
As you are comparing your work to others’, this is a good thing to keep in mind!

S-51:

(a) When x = 3,

F(3) =
ż 3

0
33 sin(t) dt = 27

ż 3

0
sin t dt

Using the Fundamental Theorem of Calculus Part 2,

= 27 [´ cos t]t=3
t=0 = 27 [´ cos 3´ (´ cos 0)]

= 27(1´ cos 3)

(b) Since the integration is with respect to t, the x3 term can be moved outside the
integral. That is: for the purposes of the integral, x3 is a constant (although for the
purposes of the derivative, it certainly is not).

F(x) =
ż x

0
x3 sin(t) dt = x3

ż x

0
sin(t) dt
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Using the product rule and the Fundamental Theorem of Calculus Part 1,

F1(x) = x3
¨ sin(x) + 3x2

ż x

0
sin(t) dt

= x3 sin(x) + 3x2 [´ cos(t)]t=x
t=0

= x3 sin(x) + 3x2[´ cos(x)´ (´ cos(0))]

= x3 sin(x) + 3x2[1´ cos(x)]

Remark: Since x and t play different roles in our problem, it’s crucial that they have
different names. This is one reason why we should avoid the common mistake of writing
şx

a f (x)dx when we mean
şx

a f (t)dt.

S-52: If F(x) is even, then f (x) is odd (by the result of Question 20 in Section 1.2). So,
F(x) can only be even if f (x) is both even and odd. By the result in Question 19, Section
1.2, this means F(x) is only even if f (x) = 0 for all x. Note if f (x) = 0, then F(x) is a
constant function. So, it is certainly even, and it might be odd as well if F(x) = f (x) = 0.

Therefore, if f (x) ‰ 0 for some x, then F(x) is not even. It could be odd, or it could be
neither even nor odd. We can come up with examples of both types: if f (x) = 1, then
F(x) = x is an odd antiderivative, and F(x) = x + 1 is an antiderivative that is neither
even nor odd.

Interestingly, the antiderivative of an odd function is always even. The proof is a little
beyond what we might ask you, but is given below for completeness. The proof goes like
this: First, we’ll show that if g(x) is odd, then there is some antiderivative of g(x) that is
even. Then, we’ll show that every antiderivative of g(x) is even.

So, suppose g(x) is odd and define G(x) =
ż x

0
g(t)dt. By the Fundamental Theorem of

Calculus Part 1, G1(x) = g(x), so G(x) is an antiderivative of g(x). Since g(x) is odd, for
any x ě 0, the net signed area under the curve along [0, x] is the negative of the net signed
area under the curve along [´x, 0]. So,

ż x

0
g(t) dt = ´

ż 0

´x
g(t) dt (See Example 1.2.10 in the CLP-2 text)

=

ż ´x

0
g(t) dt

By the definition of G(x),

G(x) = G(´x)

That is, G(x) is even. We’ve shown that there exists some antiderivative of g(x) that is
even; it remains to show that all of them are even.

Recall that every antiderivative of g(x) differs from G(x) by some constant. So, any
antiderivative of g(x) can be written as G(x) + C, and G(´x) + C = G(x) + C. So, every
antiderivative of an odd function is even.
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Solutions to Exercises 1.4 — Jump to TABLE OF CONTENTS

S-1: (a) This is true: it is an application of Theorem 1.4.2 in the CLP-2 text with
f (x) = sin x and u(x) = ex.

(b) This is false: the upper limit of integration is incorrect. Using Theorem 1.4.6 in the
CLP-2 text, the correct form is

ż 1

0
sin(ex) ¨ ex dx =

ż e

1
sin(u) du = ´ cos(e) + cos(1) = cos(1)´ cos(e).

Alternately, we can use the Fundamental Theorem of Calculus Part 2, and our answer
from (a):

ż 1

0
sin(ex) ¨ ex dx = [´ cos(ex) + C]10 = cos(1)´ cos(e) .

S-2: The reasoning is not sound: when we do a substitution, we need to take care of the
differential (dx). Remember the method of substitution comes from the chain rule: there
should be a function and its derivative. Here’s the way to do it:

Problem: Evaluate
ż

(2x + 1)2dx.

Work: We use the substitution u = 2x + 1. Then du = 2dx, so dx = 1
2du:

ż

(2x + 1)2dx =

ż

u2
¨

1
2

du

=
1
6

u3 + C

=
1
6
(2x + 1)3 + C

S-3: The problem is with the limits of integration, as in Question 1. Here’s how it ought
to go:

Problem: Evaluate
ż π

1

cos(log t)
t

dt.

Work: We use the substitution u = log t, so du = 1
t dt. When t = 1, we have

u = log 1 = 0 and when t = π, we have u = log(π). Then:
ż π

1

cos(log t)
t

dt =
ż log(π)

log 1
cos(u)du

=

ż log(π)

0
cos(u)du

= sin(log(π))´ sin(0) = sin(log(π)).
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S-4: Perhaps shorter ways exist, but the reasoning here is valid.

Problem: Evaluate
ż π/4

0
x tan(x2) dx.

Work: We begin with the substitution u = x2, du = 2xdx:
If u = x2, then du

dx = 2x, so indeed du = 2xdx.

ż π/4

0
x tan(x2) dx =

ż π/4

0

1
2

tan(x2) ¨ 2xdx algebra

=

ż π2/16

0

1
2

tan u du

Every piece is changed from x to u: integrand, differential, limits.

=
1
2

ż π2/16

0

sin u
cos u

du tan u =
sin u
cos u

Now we use the substitution v = cos u, dv = ´ sin u du:

=
1
2

ż cos(π2/16)

cos 0
´

1
v

dv

Every piece is changed from u to v: integrand, differential, limits.

= ´
1
2

ż cos(π2/16)

1

1
v

dv cos(0) = 1

= ´
1
2

[
log |v|

]cos(π2/16)

1
FTC Part 2

= ´
1
2

(
log
(

cos(π2/16)
)
´ log(1)

)

= ´
1
2

log
(

cos(π2/16)
)

log(1) = 0

S-5: We substitute:

u = sin x,
du = cos x dx,

cos x =
a

1´ sin2 x =
a

1´ u2,

dx =
du

cos x
=

du
?

1´ u2

u(0) = sin 0 = 0

u
(π

2

)
= sin

(π

2

)
= 1
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So,
ż x=π/2

x=0
f (sin x)dx =

ż u=1

u=0
f (u)

du
?

1´ u2

Because the denominator
?

1´ u2 vanishes when u = 1, this is what is known as an
improper integral. Improper integrals will be discussed in § 1.12 of the CLP-2 text.

S-6: Using the chain rule, we see that

d
dx
t f (g(x))u = f 1(g(x))g1(x)

So, f (g(x)) is an antiderivative of f 1(g(x))g1(x). All antiderivatives of f 1(g(x))g1(x)
differ by only a constant, so:

ż

f 1(g(x))g1(x) dx´ f (g(x)) = f (g(x)) + C´ f (g(x))

= C

That is, our expression simplifies to some constant C.

Remark: since
ż

f 1(g(x))g1(x) dt´ f (g(x)) = C

we conclude
ż

f 1(g(x))g1(x) dt = f (g(x)) + C

which is precisely how we perform substitution on integrals.

S-7: We write u(x) = ex2
and find du = u1(x)dx = 2xex2

dx. Note that u(1) = e12
= e

when x = 1, and u(0) = e02
= 1 when x = 0. Therefore:

ż 1

0
xex2

cos(ex2
)dx =

1
2

ż x=1

x=0
cos(u(x))u1(x)dx

=
1
2

ż u=e

u=1
cos(u)du

=
1
2

[
sin(u)

]e

1
=

1
2
(

sin(e)´ sin(1)
)
.

S-8: Substituting y = x3, dy = 3x2 dx :

ż 2

1
x2 f (x3)dx =

1
3

ż 8

1
f (y)dy =

1
3
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S-9: Setting u = x3 + 1, we have du = 3x2 dx and so
ż

x2 dx

(x3 + 1)101 =

ż

du/3
u101

=
1
3

ż

u´101 du

=
1
3
¨

u´100

´100

= ´
1

3ˆ 100u100 + C

= ´
1

300(x3 + 1)100 + C

S-10: Setting u = log x, we have du = 1
x dx and so

ż e4

e

dx
x ¨ log x

=

ż x=e4

x=e

1
log x

¨
1
x

dx =

ż u=4

u=1

1
u

du,

since u = log(e) = 1 when x = e and u = log(e4) = 4 when x = e4. Then, by the
Fundamental Theorem of Calculus Part 2,

ż 4

1

1
u

du =
[

log |u|
]4

1
= log 4´ log 1 = log 4.

S-11: Setting u = 1 + sin x, we have du = cos x dx and so
ż π/2

0

cos x
1 + sin x

dx =

ż x=π/2

x=0

1
1 + sin x

cos x dx =

ż u=2

u=1

du
u

since u = 1 + sin 0 = 1 when x = 0 and u = 1 + sin(π/2) = 2 when x = π/2. Then, by
the Fundamental Theorem of Calculus Part 2,

ż u=2

u=1

du
u

=
[

log |u|
]2

1
= log 2

S-12: Setting u = sin x, we have du = cos x dx and so
ż π/2

0
cos x ¨ (1 + sin2x)dx =

ż x=π/2

x=0
(1 + sin2x) ¨ cos x dx =

ż u=1

u=0
(1 + u2)du,

since u = sin 0 = 0 when x = 0 and u = sin(π/2) = 1 when x = π/2. Then, by the
Fundamental Theorem of Calculus Part 2,

ż 1

0
(1 + u2)du =

[
u +

u3

3

]1

0
=

(
1 +

1
3

)
´ 0 =

4
3

.
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S-13: Substituting t = x2 ´ x, dt = (2x´ 1)dx and noting that t = 0 when x = 1 and
t = 6 when x = 3,

ż 3

1
(2x´ 1)ex2´xdx =

ż 6

0
et dt =

[
et]6

0 = e6
´ 1

S-14: We use the substitution u = 4´ x2, for which du = ´2x dx :
ż

x2 ´ 4
?

4´ x2
x dx =

ż

1
2
¨

4´ x2
?

4´ x2
(´2x)dx

=
1
2

ż

u
?

u
du

=
1
2

ż

?
u du

=
1
2

u3/2

3/2
+ C

=
1
3
(4´ x2)3/2 + C

S-15:

Solution 1: If we let u =
a

log x, then du =
1

2x
a

log x
dx, and:

ż

e
?

log x

2x
a

log x
dx =

ż

eu du = eu + C = e
?

log x + C

Solution 2: In Solution 1, we made a pretty slick choice. We might have tried to work
with something a little less convenient. For example, it’s not unnatural to think that

u = log x, du =
1
x

dx would be a good choice. In that case:

ż

e
?

log x

2x
a

log x
dx =

ż

e
?

u

2
?

u
du

Now, we should be able to see that w =
?

u, dw =
1

2
?

u
du is a good choice:

ż

e
?

u

2
?

u
du =

ż

ew dw

= e
?

u + C

= e
?

log x + C
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S-16:

The straightforward method: We use the substitution u = x2, for which du = 2x dx, and
note that u = 4 for both x = 2 and x = ´2:

ż 2

´2
xex2

dx =

ż 2

´2

1
2

ex2
2xdx =

ż 4

4

1
2

eu du = 0

The slightly sneaky method: We note that
d
dx

!

ex2
)

= 2x ex2
, so that

1
2

ex2
is a

antiderivative for the integrand xex2
. So

ż 2

´2
xex2

dx =

[
1
2

ex2
]2

´2
=

1
2

e4
´

1
2

e4 = 0

The really sneaky method: The integrand f (x) = xex2
is an odd function (meaning that

f (´x) = ´ f (x)). So by Theorem 1.2.11 in the CLP-2 text every integral of the form
şa
´a xex2

dx is zero.

S-17: The given sum is of the form

lim
nÑ8

n
ÿ

j=1

j
n2 sin

(
1 +

j2

n2

)
= lim

nÑ8

n
ÿ

j=1

f (x˚j )∆x

with ∆x = 1
n , x˚j = j

n and f (x) = x sin(1 + x2). Since x˚0 = 0 and x˚n = 1, the right hand
side is the definition (using the right Riemann sum) of

ż 1

0
f (x)dx =

ż 1

0
x sin(1 + x2)dx

=
1
2

ż 2

1
sin(y)dy with y = 1 + x2, dy = 2x dx

=
1
2

[
´ cos(y)

]y=2

y=1

=
1
2
[cos 1´ cos 2]

Using a calculator, we see this is close to 0.478.

S-18: Often, the denominator of a function is a good guess for the substitution. So, let’s
try setting w = u2 + 1. Then dw = 2u du:

ż 1

0

u3

u2 + 1
du =

1
2

ż 1

0

u2

u2 + 1
2u du
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The numerator now is u2, and looking at our substitution, we see u2 = w´ 1:

=
1
2

ż 2

1

w´ 1
w

dw

=
1
2

ż 2

1

(
1´

1
w

)
dw

=
1
2
[w´ log |w|]w=2

w=1

=
1
2
(2´ log 2´ 1) =

1
2
´

1
2

log 2

S-19: The only thing we really have to work with is a tangent, so it’s worth considering
what would happen if we substituted u = tan θ. Then du = sec2 θ dθ. This doesn’t show
up in the integrand as it’s written, but we can try and bring it out by using the identity
tan2 = sec2 θ ´ 1:

ż

tan3 θ dθ =

ż

tan θ ¨ tan2 θdθ

=

ż

tan θ ¨
(

sec2 θ ´ 1
)

dθ

=

ż

tan θ ¨ sec2 θdθ ´

ż

tan θ dθ

In Example 1.4.17 of the CLP-2 text, we learned
ş

tan θ dθ = log | sec θ|+ C

=

ż

u du´ log | sec θ|+ C

=
1
2

u2
´ log | sec θ|+ C

=
1
2

tan2 θ ´ log | sec θ|+ C

S-20: At first glance, it’s not clear what substitution to use. If we try the denominator,
u = ex + e´x, then du = (ex ´ e´x) dx, but it’s not clear how to make this work with our
integral. So, we can try something else.

If we want to tidy things up, we might think to take u = ex as a substitution. Then
du = ex dx, so we need an ex in the numerator. That can be arranged.

ż

1
ex + e´x ¨

(
ex

ex

)
dx =

ż

ex

(ex)2 + 1
dx

=

ż

1
u2 + 1

du

= arctan(u) + C
= arctan(ex) + C

300



S-21: We often like to take the “inside” function as our substitution, in this case
u = 1´ x2, so du = ´2x dx. This takes care of part of the integral:

ż 1

0
(1´ 2x)

a

1´ x2 dx =

ż 1

0

a

1´ x2 dx +

ż 1

0
(´2x)

a

1´ x2 dx

The left integral is tough to solve with substitution, but luckily we don’t have to–it’s the
area of a quarter of a circle of radius 1.

=
π

4
+

ż 0

1

?
u du

=
π

4
+

[
2
3

u3/2
]u=0

u=1

=
π

4
+ 0´

2
3
=

π

4
´

2
3

S-22:

Solution 1: We often find it useful to take “inside” functions as our substitutions, so let’s
try u = cos x, du = ´ sin x dx. In order to dig up a sine, we use the identity

tan x =
sin x
cos x

:

ż

tan x ¨ log (cos x)dx = ´

ż

´ sin x
cos x

¨ log (cos x)dx

= ´

ż

1
u

log(u) du

Now, it is convenient to let w = log u, dw = 1
u du :

´

ż

1
u

log(u) du = ´

ż

w dw

= ´
1
2

w2 + C

= ´
1
2
(log u)2 + C

= ´
1
2
(log(cos x))2 + C

Solution 2: We might guess that it’s useful to have u = log(cos x),
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du =
´ sin x
cos x

dx = ´ tan x dx:
ż

tan x ¨ log (cos x)dx = ´

ż

´ tan x ¨ log (cos x)dx

= ´

ż

u du

= ´
1
2

u2 + C

= ´
1
2
(log(cos x))2 + C

S-23: The given sum is of the form

lim
nÑ8

n
ÿ

j=1

j
n2 cos

( j2

n2

)
= lim

nÑ8

n
ÿ

j=1

f (x˚j )∆x

with ∆x = 1
n , x˚j = j

n and f (x) = x cos(x2). Since x˚0 = 0 and x˚n = 1, the right hand side
is the definition (using the right Riemann sum) of

ż 1

0
f (x)dx =

ż 1

0
x cos(x2)dx

=
1
2

ż 1

0
cos(y)dy with y = x2, dy = 2x dx

=
1
2

[
sin(y)

]1

0

=
1
2

sin 1

S-24: The given sum is of the form

lim
nÑ8

n
ÿ

j=1

j
n2

c

1 +
j2

n2 = lim
nÑ8

n
ÿ

j=1

f (x˚j )∆x

with ∆x = 1
n , x˚j = j

n and f (x) = x
?

1 + x2. Since x˚0 = 0 and x˚n = 1, the right hand side
is the definition (using the right Riemann sum) of

ż 1

0
f (x)dx =

ż 1

0
x
a

1 + x2 dx

=
1
2

ż 2

1

?
y dy with y = 1 + x2, dy = 2x dx

=
1
2

[
2
3

y3/2
]y=2

y=1

=
1
3
[2
?

2´ 1]
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Using a calculator, we see this is approximately 0.609.

S-25: Using the definition of a definite integral with right Riemann sums:
ż b

a
2 f (2x)dx = lim

nÑ8

n
ÿ

i=1

∆x ¨ 2 f (2(a + i∆x)) ∆x =
b´ a

n

= lim
nÑ8

n
ÿ

i=1

(
b´ a

n

)
¨ 2 f

(
2
(

a + i
(

b´ a
n

)))

= lim
nÑ8

n
ÿ

i=1

(
2b´ 2a

n

)
¨ f
(

2a + i
(

2b´ 2a
n

))

ż 2b

2a
f (x)dx = lim

nÑ8

n
ÿ

i=1

∆x ¨ f (2a + i∆x) ∆x =
2b´ 2a

n

= lim
nÑ8

n
ÿ

i=1

(
2b´ 2a

n

)
¨ f
(

2a + i
(

2b´ 2a
n

))

Since the Riemann sums are exactly the same,
ż b

a
2 f (2x)dx =

ż 2b

2a
f (x)dx

Looking at the Riemann sum in this way is instructive, because it is very clear why the
two integrals should be equal (without using substitution). The rectangles in the first
Riemann sum are half as wide, but twice as tall, as the rectangles in the second Riemann
sum. So, the two Riemann sums have rectangles of the same area.

b´a
n

2 f (2x˚i )

2 b´a
n

f (x˚i )

In the integral on the left, the variable is red x and in the integral on the right, the
variable is blue x. Red x and blue x are not the same. In fact 2x˚i = x˚i . (Not every
substitution corresponds to such a simple picture.)

Solutions to Exercises 1.5 — Jump to TABLE OF CONTENTS
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S-1:

x

y

ππ
2

π
4

3π
4

y = cos x
y = sin x

The intervals of our rectangles are [0, π
4 ], [

π
4 , π

2 ], [
π
2 , 3π

4 ], and [3π
4 , π]. Since we’re taking a

left Riemann sum, we find the height of the rectangles at the left endpoints of the
intervals.

x = 0: The distance from cos 0 to sin 0 is 1, so our first rectangle has height 1.

x = π
4 : The distance from cos π

4 to sin π
4 is 0, so our second rectangle has height 0.

x = π
2 : The distance from cos π

2 to sin π
2 is 1, so our third rectangle has height 1.

x = 3π
4 : The distance from cos 3π

4 to sin 3π
4 is

sin(3π/4)´ cos(3π/4) = 1?
2
´

(
´ 1?

2

)
=
?

2, so our fourth rectangle has height
?

2.

So, our approximation for the area between the two curves is

π

4

(
1 + 0 + 1 +

?
2
)
=

π

4

(
2 +

?
2
)

S-2:

(a) We are finding the area in the interval from x = 0 to x = π
2 . Since we’re taking n = 5

rectangles, our rectangles cover the following intervals:

[
0,

π

10

]
,
[ π

10
,

π

5

]
,
[

π

5
,

3π

10

]
,
[

3π

10
,

2π

5

]
,
[

2π

5
,

π

2

]
.
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x

y

π
10

π
5

3π
10

2π
5

π
2

y = arcsin
(2x

π

)

y =
b

xπ
2

(b) We are finding the area in the interval from y = 0 to y = π
2 . (In general, when we

switch from horizontal rectangles to vertical, the limits of integration will change–it’s
only coincidence that they are the same in this example.) Since we’re taking n = 5
rectangles, these rectangles cover the following intervals of the y-axis:

[
0,

π

10

]
,
[ π

10
,

π

5

]
,
[

π

5
,

3π

10

]
,
[

3π

10
,

2π

5

]
,
[

2π

5
,

π

2

]
.

The question doesn’t specify which endpoints we’re using. Let’s use upper
endpoints, to match part (a).

x

y

π
10

π
5

3π
10

2π
5

π
2

x = π
2 sin y

x = 2
π y2
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S-3: The curves intersect when y = x and y = x3 ´ x. To find these points, we set:

x = x3
´ x

0 = x3
´ 2x

0 = x(x2
´ 2)

0 = x or 0 = x2
´ 2

For x ě 0, the curves intersect at (0, 0) and (
?

2,
?

2).

A handy observation is that, since both curves are continuous and they do not meet each
other between x = 0 and x =

?
2, we don’t have to worry about dividing our area into

two regions: one of the functions is always on the top, and the other is always on the
bottom.

Using vertical strips:

x

y

y = x3 − x

y = x

(
√
2,
√
2)

The top and bottom boundaries of the specified region are y = T(x) = x and
y = B(x) = x3 ´ x, respectively. So,

Area =

ż

?
2

0

[
T(x)´ B(x)

]
dx =

ż

?
2

0

[
x´ (x3

´ x)
]

dx =

ż

?
2

0
2x´ x3 dx

S-4: We need to find where the curves intersect.

x2

4
= y2 = 6´

5x
4

1
4

x2 +
5
4

x´ 6 = 0

x2 + 5x´ 24 = 0
(x + 8)(x´ 3) = 0

x = ´8, x = 3

The curves intersect at (´8, 4) and (3,´3
2). Using horizontal strips:
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x

y

y = −x/2 or x = −2y y2 = 6− 5
4
x or x = 4

5
(6− y2)

(−8, 4)

(3,−3/2)

we have

Area =

ż 4

´3/2

[4
5
(6´ y2) + 2y

]
dy

S-5: If the curves intersect at (x, y), then

(
x2
)2

= (4a)2 y2 = (4a)24ax

x4 = (4a)3x

x4
´ (4a)3x = 0

x(x3
´ (4a)3) = 0

x = 0 or x3 = (4a)3

The curves intersect at (0, 0) and (4a, 4a). (It is also possible to find these points by
inspection.) Using vertical strips:

x

y

x2 = 4ay

y2 = 4ax
(4a, 4a)

We want the y-values of the functions. We write the top function as y =
?

4ax (we care
about the positive square root, not the negative one) and we write the bottom function as
y = x2

4a . Then we have

Area =

ż 4a

0

[
?

4ax´
x2

4a

]
dx

S-6: The curves intersect when x = 4y2 and 0 = 4y2 + 12y + 5 = (2y + 5)(2y + 1). So, the
curves intersect at (1,´1

2) and (25,´5
2). Using vertical strips:

307



x

y
x+ 12y + 5 = 0 or y = − 1

12
(x+ 5)

x = 4y2 or y = ±√
x/2

(25,−5
2
)

(1,−1
2
)

we have

Area =

ż 25

1

[
´

1
12

(x + 5) +
1
2
?

x
]

dx

S-7:

x

y

1

y = 1
(2x´4)2

The area between the curve y = 1
(2x´4)2 and the x-axis, with x running from a = 0 to

b = 1, is exactly the definite integral of 1
(2x´4)2 with limits 0 and 1.

Area =

ż 1

0

dx
(2x´ 4)2 u = 2x´ 4, du = 2 dx

=
1
2

ż ´2

´4

1
u2 du =

1
2

[
´1
u

]u=´2

u=´4

=
1
2

[1
2
´

1
4

]
=

1
8

S-8: If the curves y = f (x) = x and y = g(x) = 3x´ x2 intersect at (x, y), then

3x´ x2 = y = x

x2
´ 2x = 0

x(x´ 2) = 0
x = 0 or x = 2

Furthermore, g(x)´ f (x) = 2x´ x2 = x(2´ x) is positive for all 0 ď x ď 2. That is, the
curve y = 3x´ x2 lies above the line y = x for all 0 ď x ď 2.
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x

y y = x

y = 3x´ x2

2

We therefore evaluate the integral:
ż 2

0

[
(3x´ x2)´ x

]
dx =

ż 2

0
[2x´ x2]dx =

[
x2
´

x3

3

]2

0
=

[
4´

8
3

]
´ 0 =

4
3

S-9: The following sketch contains the graphs of y = 2x and y =
?

x + 1.

x

y
y =

?
x + 1

y = 2x

1

From the sketch, it looks like the two curves cross when x = 0 and when x = 1 and
nowhere3 else. Indeed, when x = 0 we have 2x =

?
x + 1 = 1 and when x = 1 we have

2x =
?

x + 1 = 2.

To antidifferentiate 2x, we write 2x = (elog 2)
x
= ex log 2.

Area =

ż 1

0

[
(
?

x + 1)´ ex log 2]dx =

[
2
3

x3/2 + x´
1

log 2
2x
]1

0

=
2
3
+ 1´

1
log 2

[2´ 1] =
5
3
´

1
log 2

S-10: Here is a sketch of the specified region.

3 To verify analytically that the curves have no other crossings, write f (x) =
?

x + 1´ 2x and compute
f 1(x) = 1

2
?

x ´ (log 2)2x. Notice that f 1(x) decreases as x increases and so can take the value 0 for at
most a single value of x. Then, by the mean value theorem (or Rolle’s theorem, which is Theorem 2.13.1
in the CLP-1 text), f (x) can take the value 0 for at most two distinct values of x.
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y =
√
2 cos(πx/4)

y = |x|y = |x|

(1, 1)(−1, 1)

x

y

Both functions are even, so the region is symmetric about the y–axis. So, we will compute
the area of the part with x ě 0 and multiply by 2. The curves y =

?
2 cos(πx/4) and

y = x intersect when x =
?

2 cos(πx/4) or cos(πx/4) = x?
2
, which is the case4 when

x = 1. So, using vertical strips as in the figure above, the area (including the
multiplication by 2) is

2
ż 1

0

[?
2 cos(πx/4)´ x

]
dx = 2

[
?

2
4
π

sin(πx/4)´
x2

2

]1

0
= 2

[
4
π
´

1
2

]
=

8
π
´ 1

S-11: For our computation, we will need an antiderivative of x2
?

x3 + 1, which can be
found using the substitution u = x3 + 1, du = 3x2 dx:

ż

x2
a

x3 + 1 dx =

ż

?
u ¨

1
3

du =
1
3

ż

u1/2 du =
1
3
¨

u3/2

3/2
+ C =

2
9
(x3 + 1)3/2 + C.

The two functions f (x) and g(x) are clearly equal at x = 0. If x ‰ 0, then the functions
are equal when

3x2 = x2
a

x3 + 1

3 =
a

x3 + 1

9 = x3 + 1

8 = x3

2 = x.

The function g(x) = 3x2 is the larger of the two on the interval [0, 2], as can be seen by
plugging in x = 1, say, or by observing that when x is very small f (x) = x2

?
x3 + 1 « x2

and g(x) = 3x2.

4 The solution x = 1 was found by guessing. To guess a solution to cos(πx/4) = x?
2

just ask yourself

what simple angle has a cosine that involves
?

2. This guessing strategy is essentially useless in the real
world, but works great on problem sets and exams.
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x

y

y = 3x2

y = x2
√
x3 + 1

(2, 12)

The area in question is therefore:

ż 2

0

(
3x2

´ x2
a

x3 + 1
)

dx =

(
x3
´

2
9
(x3 + 1)3/2

)ˇ
ˇ

ˇ

ˇ

2

0

=

(
23
´

2
9
(23 + 1)3/2

)
´

(
03
´

2
9
(03 + 1)3/2

)

=

(
8´ 6

)
´

(
0´

2
9

)
=

20
9

.

S-12: First, let’s figure out what our curve x = y2 + y = y(y + 1) looks like.

• The curve intercepts the y-axis when y = 0 and y = ´1.

• The x-values of the curve are negative when ´1 ă y ă 0, and positive elsewhere.

This leads to the figure below. We’re evaluating the area from y = ´1 to y = 0. Since
y2 + y is negative there, the length of our (horizontal) slices are 0´ (y2 + y).

Area =

ż 0

´1

(
0´ (y2 + y)

)
dy = ´

[
y3

3
+

y2

2

]0

´1
= ´

1
3
+

1
2
=

1
6

(0, 0)

(0,−1)

x

y

x = y + y2

S-13: Let’s begin by sketching our region. Note that y =
?

1´ x2 and y =
?

9´ x2 are the
top halves of circles centred at the origin with radii 1 and 3, respectively.
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x

y

y =
?

9´ x2

y = |x|

Our region is the difference of two quarter-circles, so we find its area using geometry:

Area =
1
4

(
π ¨ 32

)
´

1
4

(
π ¨ 12

)
= 2π

S-14: We will compute the area by using thin vertical strips, as in the sketch below:
y

x
π
2

π 3π
2

2π

2

4

6

8

y = 4 + π sin(x)

y = 4 + 2π − 2x

By looking at the sketch above, we guess the line y = 4 + 2π ´ 2x intersects the curve
y = 4 + π sin x when x = π

2 , x = π, and x = 3π
2 . Let’s make sure these are correct by

plugging them into the two equations, and making sure the y-values match:

x 4 + 2π ´ 2x 4 + π sin(x) match?
π
2 4 + π 4 + π X

π 4 4 X
3π
2 4´ π 4´ π X

Also from the sketch, we see that:

• When π
2 ď x ď π, the top of the strip is at y = 4 + π sin x and the bottom of the

strip is at y = 4 + 2π ´ 2x. So the strip has height
[
(4 + π sin x)´ (4 + 2π ´ 2x)

]

and width dx, and hence area
[
(4 + π sin x)´ (4 + 2π ´ 2x)

]
dx.

• When π ď x ď 3π
2 , the top of the strip is at y = 4 + 2π ´ 2x and the bottom of the

strip is at y = 4 + π sin x. So the strip has height
[
(4 + 2π´ 2x)´ (4 + π sin x)

]
and

width dx, and hence area
[
(4 + 2π ´ 2x)´ (4 + π sin x)

]
dx.
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Now we can calculate:

Area =

ż π

π/2

[
(4 + π sin x)´ (4 + 2π ´ 2x)

]
dx +

ż 3π/2

π

[
(4 + 2π ´ 2x)´ (4 + π sin x)

]
dx

=

ż π

π/2

[
π sin x´ 2π + 2x

]
dx +

ż 3π/2

π

[
2π ´ 2x´ π sin x

]
dx

=
[
´ π cos x´ 2πx + x2

]π

π/2
+
[
2πx´ x2 + π cos x

]3π/2

π

=

[
π ´ π2 +

3
4

π2
]
+

[
π2
´

5
4

π2 + π

]

= 2
[
π ´

1
4

π2
]

S-15: First, here is a sketch of the region. We are not asked for it, but it is crucial for
understanding the question.

2 3
x

y

y = x+ 2

y = x2

The two curves y = x + 2 and y = x2 cross at (2, 4). The area of the part between them
with 0 ď x ď 2 is:

ż 2

0

[
x + 2´ x2]dx =

[1
2

x2 + 2x´
1
3

x3
]2

0
= 2 + 4´

8
3
=

10
3

The area of the part between the two curves with 2 ď x ď 3 is:

ż 3

2

[
x2
´ (x + 2)

]
dx =

[1
3

x3
´

1
2

x2
´ 2x

]3

2
= 9´

9
2
´ 6´

8
3
+ 2 + 4 =

11
6

The total area is
10
3

+
11
6

=
31
6

.

S-16: We need to figure out which curve is on top, when. To do this, set
h(x) = 3x´ x

?
25´ x2. If h(x) ą 0, then y = 3x is the top curve; if h(x) ă 0, then

y = x
?

25´ x2 is the top curve.

h(x) = 3x´ x
a

25´ x2 = x
[
3´

a

25´ x2
]
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We only care about values of x in [0, 4], so x is nonnegative. Then h(x) is positive when:

3 ą
a

25´ x2

9 ą 25´ x2

x2
ą 16

x ą 4

That is, h(x) is never positive over the interval [0, 4]. So, y = x
?

25´ x2 lies above y = 3x
for all 0 ď x ď 4.

The area we need to calculate is therefore:

A =

ż 4

0

[
x
a

25´ x2 ´ 3x
]

dx

=

ż 4

0
x
a

25´ x2 dx´
ż 4

0
3x dx

= A1 ´ A2.

To evaluate A1, we use the substitution u(x) = 25´ x2, for which
du = u1(x)dx = ´2x dx; and u(4) = 25´ 42 = 9 when x = 4, while u(0) = 25´ 02 = 25
when x = 0. Therefore

A1 =

ż x=4

x=0
x
a

25´ x2 dx = ´
1
2

ż u=9

u=25

?
u du =

[
´

1
3

u3/2
]9

25
=

125´ 27
3

=
98
3

For A2 we use the antiderivative directly:

A2 =

ż 4

0
3x dx =

[
3x2

2

]4

0
= 24

Therefore the total area is:

A =
98
3
´ 24 =

26
3

S-17: Let’s begin by sketching our region. Note that y =
?

9´ x2 is the top half of a circle
centred at the origin with radius 3, while y =

a

1´ (x´ 1)2 is the top half of a circle of
radius 1 centred at (1, 0).

x

y
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Note y = x intersects y =
a

1´ (x´ 1)2 at (1, 1), the highest part of the smaller
half-circle.

We can easily take the area of triangles and sectors of circles. With that in mind, we cut
up our region the following way:

x

y

A1 A2

A3

• The desired area is A3 ´ (A1 + A2).

• A1 is the area of right a triangle with base 1 and height 1, so A1 = 1
2 .

• A2 is the area of a quarter circle of radius 1, so A2 = π
4 .

• A3 is the area of an eighth of a circle of radius 3, so A2 = 9π
8

So, the area of our region is
9π

8
´

1
2
´

π

4
=

7π

8
´

1
2

.

S-18: The first function is a cubic, with intercepts at x = 0,˘2. The second is a straight
line with a positive slope.

We need to figure out what these functions look like in relation to one another, so let’s
find their points of intersection.

x(x2
´ 4) = x´ 2

x(x + 2)(x´ 2) = x´ 2

x´ 2 = 0 or x(x + 2) = 1

x2 + 2x´ 1 = 0

x =
´2˘

a

4´ 4(1)(´1)
2

x = ´1˘
?

2

So, our three points of intersection are when x = 2 and when x = ´1˘
?

2. We note

´1´
?

2 ă ´1 +
?

2 ă ´1 +
?

4 ă 2 .

So, we need to see which function is on top over the two intervals
[
´1´

?
2,´1 +

?
2
]

and
[
´1 +

?
2, 2
]
. It suffices to check points in these intervals.
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x x(x2 ´ 4) x´ 2 top function:
0 0 ´2 x(x2 ´ 4)
1 -3 ´1 x´ 2

Since 0 is in the interval
[
´1´

?
2,´1 +

?
2
]
, x(x2 ´ 4) is the top function in that interval.

Since 1 is in the interval
[
´1 +

?
2, 2
]
, x´ 2 is the top function in that interval. Now we

can set up the integral to evaluate the area:

Area =

ż ´1+
?

2

´1´
?

2

[
x(x2

´ 4)´ (x´ 2)
]

dx +

ż 2

´1+
?

2

[
(x´ 2)´ x(x2

´ 4)
]

dx

=

ż ´1+
?

2

´1´
?

2

[
x3
´ 5x + 2

]
dx +

ż 2

´1+
?

2

[
´x3 + 5x´ 2

]
dx

=

[
1
4

x4
´

5
2

x2 + 2x
]´1+

?
2

´1´
?

2
+

[
´

1
4

x4 +
5
2

x2
´ 2x

]2

´1+
?

2

After some taxing but rudimentary algebra:

=
(

8
?

2
)
+

(
4
?

2´
13
4

)
= 12

?
2´

13
4

Solutions to Exercises 1.6 — Jump to TABLE OF CONTENTS

S-1: If we take a horizontal slice of a cone, we get a circle. If we take a vertical
cross-section, the base is flat (it’s a chord on the circular base of the cone), so we know
right away it isn’t a circle. Indeed, if we slice down through the very centre, we get a
triangle. (Other vertical slices have a curvy top, corresponding to a class of curves known
as hyperbolas.)

S-2: The columns have the same volume. We can see this by chopping up the columns
into horizontal cross-sections. Each cross-section has the same area as the cookie cutter,
A, and height dy. Then in both cases, the volume of the column is

ż h

0
A dy = hA cubic units

S-3: Notice f (x) is a piecewise linear function, so we can find explicit equations for each
of its pieces from the graph. The radii will be determined by the x-values, so below we
give the x-values as functions of y.
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x

y

y = f (x)

21 4 6

1

3

x
=

y

x
=

2
´

y

x
=

2
+

2 3
y

x
=

6
´

2 3
y

If we imagine rotating the region from the picture about the y-axis, there will be two
kinds of washers formed: when y ă 1, we have a “double washer,” two concentric rings.
When y ą 1, we have a single ring.

Washers when 1 ă y ď 6: If y ą 1, then our washer has inner radius 2 + 2
3 y, outer radius

6´ 2
3 y, and height dy.

y

thickness: dy

R = 6´ 2
3 y

r = 2 + 2
3 y

Washers when 0 ď y ă 1: When 0 ď y ă 1, we have a “double washer,” two concentric
rings corresponding to the two “humps” in the function. The inner washer has
inner radius r1 = y and outer radius R1 = 2´ y. The outer washer has inner radius
r2 = 2 + 2

3 y and outer radius R2 = 6´ 2
3 y. The thickness of the washers is dy.
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y

thickness: dy

R1 = 2´ y

R2 = 6´ 2
3 y

r1 = y

r2 = 2 + 2
3 y

S-4: (a) When the strip shown in the figure

x3

y y =
√
x ex

2

is rotated about the x–axis, it forms a thin disk of radius
?

xex2
and thickness dx and

hence of cross sectional area πxe2x2
and volume πxe2x2

dx So the volume of the solid is

π

ż 3

0
xe2x2

dx

(b) The curves intersect at (´1, 1) and (2, 4).
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x

y

y = x2 or x = ±√
y

y = x+ 2 or x = y − 2

x = 3

y = 1
(−1, 1)

(2, 4)

We’ll use horizontal washers as in Example 1.6.5 of the CLP-2 text.

• We use thin horizontal strips of width dy as in the figure above.

• When we rotate about the line x = 3, each strip sweeps out a thin washer

– whose inner radius is rin = 3´
?y, and

– whose outer radius is rout = 3´ (y´ 2) = 5´ y when y ě 1 (see the red strip
in the figure on the right above), and whose outer radius is
rout = 3´ (´

?y) = 3 +
?y when y ď 1 (see the blue strip in the figure on the

right above) and

– whose thickness is dy and hence

– whose volume is π(r2
out ´ r2

in)dy = π
[(

5´ y
)2
´
(
3´

?y
)2]dy when y ě 1 and

whose volume is π(r2
out ´ r2

in)dy = π
[(

3 +
?y
)2
´
(
3´

?y
)2]dy when y ď 1

and

• As our bottommost strip is at y = 0 and our topmost strip is at y = 4, the total
volume is

ż 1

0
π
[(

3 +
?

y
)2
´
(
3´

?
y
)2]dy +

ż 4

1
π
[(

5´ y
)2
´
(
3´

?
y
)2]dy

S-5: (a) The curves intersect at (1, 0) and (´1, 0). When the strip shown in the figure

x
y = −1

y

y = 4− 4x2

y = 1− x2

(−1, 0) (1, 0)

is rotated about the line y = ´1, it forms a thin washer with:

• inner radius (1´ x2)´ (´1) = 2´ x2,
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• outer radius (4´ 4x2)´ (´1) = 5´ 4x2 and

• thickness dx ; so, it has

• cross sectional area π
[
(5´ 4x2)

2
´ (2´ x2)

2] and

• volume π
[
(5´ 4x2)

2
´ (2´ x2)

2]dx.

So the volume of the solid is
ż 1

´1
π
[
(5´ 4x2)

2
´ (2´ x2)

2]
dx

(b) The curve y = x2 ´ 1 intersects y = 0 at (1, 0) and (´1, 0).

x

y

y = x2 − 1 or x = ±√
y + 1

x = 5

(−1, 0) (1, 0)

(0,−1)

We’ll use horizontal washers.

• We use thin horizontal strips of height dy as in the figure above.

• When we rotate about the line x = 5, each strip sweeps out a thin washer

– whose inner radius is rin = 5´
a

y + 1, and

– whose outer radius is rout = 5´ (´
a

y + 1) = 5 +
a

y + 1 and

– whose thickness is dy and hence

– whose volume is π(r2
out ´ r2

in)dy = π
[(

5 +
a

y + 1
)2
´
(
5´

a

y + 1
)2]dy

• As our topmost strip is at y = 0 and our bottommost strip is at y = ´1 (when
x = 0), the total volume is

ż 0

´1
π
[(

5 +
a

y + 1
)2
´
(
5´

a

y + 1
)2
]

dy

S-6: The curves intersect at (´2, 4) and (2, 4). When the strip shown in the figure

x

yy = x2

y = 8− x2
y = −1

(−2, 4) (2, 4)
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is rotated about the line y = ´1, it forms a thin washer (punctured disc) of

• inner radius x2 + 1,

• outer radius 9´ x2 and

• thickness dx and hence of

• cross sectional area π
[
(9´ x2)

2
´ (x2 + 1)2] and

• volume π
[
(9´ x2)

2
´ (x2 + 1)2]dx.

So the volume of the solid is

π

ż 2

´2

[
(9´ x2)

2
´ (x2 + 1)

2]
dx

S-7: We’ll make horizontal slices, parallel to one of the faces of the tetrahedron. Then our
slices will be equilateral triangles, of varying sizes.

`

For the sake of ease, as in Example 1.6.1 of the CLP-2 text, we picture the tetrahedron
perched on a tip, one base horizontal on top.

x

y

y

b

2
3`

`
2´ `

2

Notice our slice forms the horizontal top of a smaller tetrahedron. The horizontal top of

the full tetrahedron has side length `, which is
b

3
2 times the height of the full

tetrahedron. Our slice is the horizontal top of a tetrahedron of height y and so has side

length
b

3
2 y. An equilateral triangle with side length L has base L and height

?
3

2 L, and
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hence area
?

3
4 L2. So, the area of our slice with side length

b

3
2 y is

A =

?
3

4

(
c

3
2

y

)2

=
3
?

3
8

y2

So, the volume of a tetrahedron with side length ` is:

Volume =

ż

b

2
3 `

0

3
?

3
8

y2 dy

=

?
3

8
¨

(
c

2
3
`

)3

=

?
2

12
`3

You were given the height of a tetrahedron, but for completeness we calculate it here.

Draw a line starting at one tip, and dropping straight down to the middle of the opposite
face. It forms a right triangle with one edge of the tetrahedron, and a line from the
middle of the face to the corner.

`

c

A C

We know the length of the hypotenuse of this right triangle (it’s `), so if we know the
length of its base (labeled Ac in the diagram), we can figure out its third side, the height
of our tetrahedron. Note by using the Pythagorean theorem, we see that the height of an

equilateral triangle with edge length ` is
b

3
2`.

Here is a sketch of the base of the pyramid:

A C

B

b

c

`
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The triangles ABC and Abc are similar (since b and B are right angles, and also A has the
same angle in both). Therefore,

Ac
Ab

=
AC
AB

Ac
`/2

=
`

?
3`/2

Ac =
1
?

3
`

With this in our pocket, we can find the height of the tetrahedron:

c

`2 ´
(

1?
3
`
)2

=
b

2
3`.

S-8: Let f (x) = 1 +
?

xex2
. On the vertical slice a distance x from the y-axis, sketched in

the figure below, y runs from 1 to f (x). Upon rotation about the line y = 1, this thin slice
sweeps out a thin disk of thickness dx and radius f (x)´ 1 and hence of volume
π[ f (x)´ 1]2 dx. The full volume generated (for any fixed a ą 0) is

ż a

0
π[ f (x)´ 1]2 dx = π

ż a

0
xe2x2

dx.

Using the substitution u = 2x2, so that du = 4x dx:

Volume = π

ż 2a2

0
eu du

4
=

π

4
eu
ˇ

ˇ

ˇ

2a2

0
=

π

4

(
e2a2

´ 1
)

xx = a

y y = 1 +
√
xex

2

y = 1

Remark: we spent a good deal of time last semester developing highly accurate but
time-consuming methods for sketching common functions. For the purposes of
questions like this, we don’t need a detailed picture of a function–broad outlines suffice.
Notice that

?
x ą 0 whenever x ą 0, and ex2

ą 0 for all x. Therefore,
?

xex2
is nonnegative

over its entire domain, and so the graph y = 1 +
?

xex2
is always the top function, above

the bottom function y = 1. That is the only information we needed to perform our
calculation.

S-9:

The curves y = 1/x and 3x + 3y = 10, i.e. y = 10
3 ´ x intersect when

1
x
=

10
3
´ x ðñ 3 = 10x´ 3x2

ðñ 3x2
´ 10x + 3 = 0

ðñ (3x´ 1)(x´ 3) = 0

ðñ x = 3 ,
1
3
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y = 0

y

(3, 1/3)

(1/3, 3)

y = T (x)

y = B(x)

When the region is rotated about the x–axis, the vertical strip in the figure above sweeps
out a washer with thickness dx, outer radius T(x) = 10

3 ´ x and inner radius B(x) = 1
x .

This washer has volume

π
(
T(x)2

´ B(x)2)dx = π
(100

9
´

20
3

x + x2
´

1
x2

)
dx

Hence the volume of the solid is

π

ż 3

1/3

(100
9
´

20
3

x + x2
´

1
x2

)
dx = π

[100x
9

´
10
3

x2 +
1
3

x3 +
1
x

]3

1/3

= π
[38

3
´

514
34

]
= π

512
81

S-10: (a) The top and the bottom of the circle have equations y = T(x) = 2 +
?

1´ x2 and
y = B(x) = 2´

?
1´ x2, respectively.

y = 0

x = −1 x = 1

y = T (x)

y = B(x)

When R is rotated about the x–axis, the vertical strip of R in the figure above sweeps out
a washer with thickness dx, outer radius T(x) and inner radius B(x). This washer has
volume

π
(
T(x)2

´ B(x)2)dx = π
(
T(x) + B(x)

)(
T(x)´ B(x)

)
dx = π ˆ 4ˆ 2

a

1´ x2 dx

Hence the volume of the solid is

8π

ż 1

´1

a

1´ x2 dx

324



(b) Since y =
?

1´ x2 is equivalent to x2 + y2 = 1, y ě 0, the integral is 8π times the area
of the upper half of the circle x2 + y2 = 1 and hence is 8π ˆ 1

2 π12 = 4π2.

S-11: (a) The two curves intersect when x obeys 8x = x2 + 15 or
x2 ´ 8x + 15 = (x´ 5)(x´ 3) = 0. The points of intersection, in the first quadrant, are
(3,
?

24) and (5,
?

40). The region R is the region between the blue and red curves, with
3 ď x ď 5, in the figures below.

(3,
√
24)

(5,
√
40)

R

y2 = 8x
y2 = x2 + 15

x

y

(3,
√
24)

(5,
√
40)

R

(b) The part of the solid with x coordinate between x and x + dx is a “washer” shaped
region with inner radius

?
x2 + 15, outer radius

?
8x and thickness dx. The surface area

of the washer is π(
?

8x)2 ´ π(
?

x2 + 15)2 = π(8x´ x2 ´ 15) and its volume is
π(8x´ x2 ´ 15)dx. The total volume is

ż 5

3
π(8x´ x2

´ 15)dx = π
[
4x2

´
1
3

x3
´ 15x

]5

3
= π

[
100´

125
3
´ 75´ 36 + 9 + 45

]

=
4
3

π « 4.19

S-12: (a) The region R is sketched in the figure on the left below. (The bound y = 0
renders the bound x = 1 unnecessary, since the graph y = log x hits the x-axis when
x = 1.)

x

y

y = log x
x = 2

x

y

x = ey x = 2

(b) We’ll use horizontal washers as in Example 1.6.5 of the CLP-2 text.

• We cut R into thin horizontal strips of height dy as in the figure on the right above.

• When we rotate R about the y–axis, i.e. about the line x = 0, each strip sweeps out a
thin washer

– whose inner radius is rin = ey and outer radius is rout = 2, and

– whose thickness is dy and hence
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– whose volume π(r2
out ´ r2

in)dy = π
(
4´ e2y)dy.

• As our bottommost strip is at y = 0 and our topmost strip is at y = log 2 (since at
the top x = 2 and x = ey), the total

Volume =

ż log 2

0
π
(
4´ e2y) dy = π

[
4y´ e2y/2

]log 2
0 = π

[
4 log 2´ 2 +

1
2

]

= π
[
4 log 2´

3
2

]

Using a calculator, we see this is approximately 3.998.

S-13: Here is a sketch of the curves y = cos( x
2 ) and y = x2 ´ π2.

y

y = −π2

(−π, 0) (π, 0)

y = cos(x
2
)

y = x2 − π2

By inspection, the curves meet at x = ˘π where both cos( x
2 ) and x2 ´ π2 take the value

zero. We’ll use vertical washers as specified in the question.

• We cut the specified region into thin vertical strips of width dx as in the figure
above.

• When we rotate about the line y = ´π2, each strip sweeps out a thin washer

– whose inner radius is rin = (x2 ´ π2)´ (´π2) = x2 and outer radius is
rout = cos( x

2 )´ (´π2) = cos( x
2 ) + π2, and

– whose thickness is dx and hence

– whose volume π(r2
out ´ r2

in)dx = π
(
(cos( x

2 ) + π2)
2
´ (x2)

2)dx.

• As our leftmost strip is at x = ´π and our rightmost strip is at x = π,

the total volume is

π

ż π

´π

(
cos2( x

2 ) + 2π2 cos( x
2 ) + π4

´ x4
)

dx

= π

ż π

´π

(
1 + cos(x)

2
+ 2π2 cos( x

2 ) + π4
´ x4

)
dx
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Because the integrand is even,

= 2π

ż π

0

(
1 + cos(x)

2
+ 2π2 cos( x

2 ) + π4
´ x4

)
dx

= 2π

[
1
2

x +
1
2

sin(x) + 4π2 sin( x
2 ) + π4x´

1
5

x5
]π

0

= 2π

[
π

2
+ 0 + 4π2 + π5

´
π5

5

]

= π2 + 8π3 +
8π6

5

We used the fact that the integrand is an even function and the interval of integration
[´π, π] is symmetric, but one can also compute directly.

S-14: As in Example 1.6.6 of the CLP-2 text notes, we slice V into thin horizontal “square
pancakes”.

• We are told that the pancake at height x is a square of side 2
1+x and so

• has cross-sectional area
( 2

1+x
)2 and thickness dx and hence

• has volume
( 2

1+x
)2dx.

Hence the volume of V is
ż 2

0

[ 2
1 + x

]2
dx =

ż 3

1

4
u2 du = 4

u´1

´1

ˇ

ˇ

ˇ

ˇ

3

1
= ´4

[1
3
´ 1
]
=

8
3

We made the change of variables u = 1 + x, du = dx.

S-15: Here is a sketch of the base region.

x

y

y = 8− x2

y = x2

Consider the thin vertical cross–section resting on the heavy red line in the figure above.
It has thickness dx. Its face is a square whose side runs from y = x2 to y = 8´ x2, a
distance of 8´ 2x2. So the face has area (8´ 2x2)

2 and the slice has volume (8´ 2x2)
2 dx.

The two curves cross when x2 = 8´ x2, i.e. when x2 = 4 or x = ˘2. So x runs from ´2 to
2 and the total volume is

ż 2

´2
(8´ 2x2)

2
dx = 2

ż 2

0
4(4´ x2)

2
dx = 8

ż 2

0

[
16´ 8x2 + x4]dx

= 8
[
16ˆ 2´

8
3

23 +
1
5

25
]
=

256ˆ 8
15

= 136.53̇
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In the first simplification step, we used the fact that our integrand was even, but we also
could have finished our computation without this step.

S-16: Slice the frustrum into horizontal discs. When the disc is a distance t from the top of
the frustrum it has radius 2 + 2t/h. Note that as t runs from 0 (the top of the frustrum) to
t = h (the bottom of the frustrum) the radius 2 + 2t/h increases linearly from 2 to 4.

h

2

4

t

Thus the disk has volume π
(
2 + 2t/h

)2dt. The total volume of the frustrum is

π

ż h

0

(
2 + 2t/h

)2dt = 4π

ż h

0

(
1 + t/h

)2dt = 4π

[
(1 + t/h)3

3/h

]h

0
=

4
3

πhˆ 7 =
28
3

πh

Remark: we could also solve this problem using the formula for the volume of a cone.
Using similar triangles, the frustrum in question is shaped like a right circular cone of

height 2h and base radius 4 (and hence of volume
1
3

π(42)(2h)), but missing its top,

which is a right circular cone of height h and base radius 2 (and hence volume
1
3

π(22)h).

So, the volume of the frustrum is
1
3

π(42)(2h)´
1
3

π(22)h =
28
3

πh.

S-17: (a)

We’ll want to start by graphing the upper half of the ellipse (ax)2 + (by)2 = 1. Its
intercepts will be enough to get us an idea: (0, 1

b ) and (˘1
a , 0):

x

y

1
a´1

a

1
b

y = 1
b

a

1´ (ax)2
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We note a few things at the outset: first, since a ě b, then 1
a ď

1
b , so indeed the x-axis is

the minor axis. That is, we’re rotating about the proper axis to create an oblate spheroid.

Second, if we solve our equation for y, we get y = 1
b

a

1´ (ax)2. (Since we only want the
upper half of the ellipse, we only need to consider the positive square root.)

Now, we have a standard volume-of-revolution problem. We make vertical slices, of
width dx and height y = 1

b

a

1´ (ax)2. When we rotate these slices about the x-axis, they

form thin disks of volume π
[

1
b

a

1´ (ax)2
]2

dx . Since x runs from ´1
a to 1

a , the volume
of our oblate spheroid is:

Volume =

ż 1
a

´ 1
a

π

[
1
b

b

1´ (ax)2
]2

dx

=
π

b2

ż 1
a

´ 1
a

1´ (ax)2 dx

=
2π

b2

ż 1
a

0
1´ (ax)2 dx (even function)

=
2π

b2

[
x´

a2x3

3

] 1
a

0

=
2π

b2

[
1
a
´

1
3a

]
=

4π

3b2a

(b) As we saw in the sketch from part (a), the shortest radius of the ellipse is 1
a , while the

largest is 1
b . So, 1

a = 6356.752, and 1
b = 6378.137. That is, a =

1
6356.752

and b =
1

6378.137
.

Note a ě b, as specified in part (a).

(c) Combining our answers from (a) and (b), the volume of an oblate spheroid with
approximately the same dimensions as the earth is:

4π

3b2a
=

4π

3

(
1
b

)2(1
a

)

=
4π

3
(6378.137)2 (6356.752)

« 1.08321ˆ 1012 km3

« 1.08321ˆ 1021 m3

(d) A sphere of radius 6378.137 has volume

4
3

π (6378.137)3
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So, our absolute error is:
ˇ

ˇ

ˇ

ˇ

4π

3
(6378.137)2 (6356.752)´

4
3

π (6378.137)3
ˇ

ˇ

ˇ

ˇ

=
4π

3
(6378.137)2 ˇ

ˇ6356.752´ 6378.137
ˇ

ˇ

=
4π

3
(6378.137)2 (21.385)

« 3.64ˆ 109 km3

And our relative error is:

abs error
actual value

=
4π
3 (6378.137)2 ˇ

ˇ6356.752´ 6378.137
ˇ

ˇ

4π
3 (6378.137)2 (6356.752)

=

ˇ

ˇ6356.752´ 6378.137
ˇ

ˇ

6356.752

=
6378.137
6356.752

´ 1

« 0.00336

That is, about 0.336%, or about one-third of one percent.

S-18: (a) The curve y = 4´ (x´ 1)2 is an “upside down parabola” and line y = x + 1 has
slope 1. They intersect at points (x, y) which satisfy both y = x + 1 and y = 4´ (x´ 1)2.
That is, when x obeys

x + 1 = 4´ (x´ 1)2

x + 1 = 4´ x2 + 2x´ 1

x2
´ x´ 2 = 0

(x´ 2)(x + 1) = 0
x = ´1 or x = 2

Thus the intersection points are (´1, 0) and (2, 3). Here is a sketch of R:

y

x
(−1, 0)

(2, 3)

y = 4− (x− 1)2

y = x+ 1

The red strip in the sketch above runs from y = x + 1 to y = 4´ (x´ 1)2 and so has area
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[4´ (x´ 1)2 ´ (x + 1)]dx = [2 + x´ x2]dx. All together R has

Area =

ż 2

´1

[
2 + x´ x2] dx

=

[
2x +

x2

2
´

x3

3

]2

´1

= 6 +
3
2
´

9
3
=

9
2

(b) We’ll use vertical washers as in Example 1.6.3 of the CLP-2 text. Note that the highest
point achieved by y = 4´ (x´ 1)2 is y = 4, so rotating around the line y = 5 causes no
unexpected problems.

y

x

y = 5

(−1, 0)

(2, 3)

y = 4− (x− 1)2

y = x+ 1

• We cut R into thin vertical strips of width dx like the red strip in the figure above.

• When we rotate R about the horizontal line y = 5, each strip sweeps out a thin
washer

– whose inner radius is rin = 5´ [4´ (x´ 1)2] = 1 + (x´ 1)2, and

– whose outer radius is rout = 5´ [x + 1] = 4´ x and

– whose thickness is dx and hence

– whose volume is π
[
r2

out ´ r2
in
]

dx = π
[(

4´ x
)2
´
(
1 + (x´ 1)2)2]dx

• As our leftmost strip is at x = ´1 and our rightmost strip is at x = 2, the total

Volume = π

ż 2

´1

[(
4´ x

)2
´
(
1 + (x´ 1)2)2]

dx

S-19: (a) The curves (x´ 1)2 + y2 = 1 and x2 + (y´ 1)2 = 1 are circles of radius 1
centered on (1, 0) and (0, 1) respectively. Both circles pass through (0, 0) and (1, 1). They
are sketched below.
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x

y

y = x

(1, 1)
x2 + (y − 1)2 = 1

(x− 1)2 + y2 = 1

The region R is symmetric about the line y = x, so the area of R is twice the area of the
part of R to the left of the line y = x. The red strip in the sketch above runs from the edge
of the lower circle to x = y. So, given a value of y in [0, 1], we need to find the
corresponding value of x along the circle. We solve (x´ 1)2 + y2 = 1 for x, keeping in
mind that 0 ď x ď 1:

(x´ 1)2 + y2 = 1

(x´ 1)2 = 1´ y2

|x´ 1| =
b

1´ y2

1´ x =
b

1´ y2

x = 1´
b

1´ y2

Now, we calculate:

Area = 2
ż 1

0

[
y´

(
1´

b

1´ y2
)]

dy

= 2

#

ż 1

0
y´ 1 dy +

ż 1

0

b

1´ y2 dy

+

= 2
![y2

2
´ y
]1

0
+

ż 1

0

b

1´ y2 dy
)

=
π

2
´ 1

Here the integral
ş1

0

a

1´ y2 dy was evaluated simply as the area of one quarter of a
cicular disk of radius 1. It can also be evaluated by substituting y = sin θ, a technique
we’ll learn more about in Section 1.9 of the CLP-2 text.

(b) We’ll use horizontal washers as in Example 1.6.5 of the in the CLP-2 text.

• We cut R into thin horizontal strips of width dy like the blue strip in the figure
above.

• When we rotate R about the y–axis, each strip sweeps out a thin washer

– whose inner radius is rin = 1´
a

1´ y2, and
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– whose outer radius is rout =
a

1´ (y´ 1)2 and

– whose thickness is dy and hence

– whose volume is

π
[(b

1´ (y´ 1)2
)2
´
(
1´

b

1´ y2
)2]

dy

=π
[
1´ (y´ 1)2

´ 1 + 2
b

1´ y2 ´ (1´ y2)
]

=2π
[b

1´ y2 + y´ 1
]

dy

• As our bottommost strip is at y = 0 and our topmost strip is at y = 1, the total

Volume = 2π

ż 1

0

[b
1´ y2 + y´ 1

]
dy = 2π

[π

4
+

1
2
´ 1
]

=
π2

2
´ π « 1.793

Here, we again used that
ş1

0

a

1´ y2 dy is the area of a quarter circle of radius one,
and we used a calculator to approximate the final answer.

S-20: Before we start, it will be useful to have a reasonable sketch of the graph
y = c

?
1 + x2 over the interval [0, 1]. Its endpoints are (0, c) and (1, c

?
2). The function is

entirely above the x-axis, which we need to know for part (a). For part (b), we need to
know whether it is always increasing or not: when we’re drawing horizontal strips, we
need to know their endpoints, and if the function has “humps,” the right endpoint will
not be simply the line x = 1.

If you’re comfortable noticing that 1 + x2 increases as x increases because we only
consider nonnegative values of x, then you can also be confident that

?
1 + x2 is simply

increasing. Alternately, we can consider the derivative:

d
dx

!

c
a

1 + x2
)

= c ¨
1

2
?

1 + x2
¨ 2x =

cx
?

1 + x2

Since we only consider positive values of x, this derivative is never negative, so the
function is never decreasing. This gives us the following basic sketch:

x

y

1

c
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The figures in the solution below use a slightly more detailed rendering of our function,
but so much accuracy is not necessary.

(a) Let V1 be the solid obtained by revolving R about the x–axis. The portion of V1 with
x–coordinate between x and x + dx is obtained by rotating the red vertical strip in the
figure on the left below about the x–axis. That portion is a disk of radius c

?
1 + x2 and

thickness dx. The volume of this disk is π(c
?

1 + x2)2dx = πc2(1 + x2)dx. So the total
volume of V1 is

V1 =

ż 1

0
πc2(1 + x2)dx = πc2

[
x +

x3

3

]1

0
=

4
3

πc2

x = 1

y = c
√
1 + x2

x

y

c

x = 1

x =
√

y2

c2
− 1

x

y

c

(b) We’ll use horizontal washers as in Example 1.6.5 of the in the CLP-2 text.

• We cut R into thin horizontal strips of width dy as in the figure on the right above.

• When we rotate R about the y–axis, i.e. about the line x = 0, each strip sweeps out
a thin washer

– whose outer radius is rout = 1, and

– whose inner radius is rin =
b

y2

c2 ´ 1 when y ě c
?

1 + 02 = c (see the red strip
in the figure on the right above), and whose inner radius is rin = 0 when y ď c
(see the blue strip in the figure on the right above) and

– whose thickness is dy and hence

– whose volume is π(r2
out ´ r2

in)dy = π
(
2´ y2

c2

)
dy when y ě c and whose

volume is π(r2
out ´ r2

in)dy = π dy when y ď c and

• As our bottommost strip is at y = 0 and our topmost strip is at y =
?

2 c (since at
the top x = 1 and y = c

?
1 + x2), the total

V2 =

ż

?
2 c

c
π
(

2´
y2

c2

)
dy +

ż c

0
π dy

= π
[
2y´

y3

3c2

]
?

2 c

c
+ πc

= π c
[4
?

2
3
´

5
3

]
+ πc

=
π c
3
[
4
?

2´ 2
]
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(c) We have V1 = V2 if and only if

4
3

πc2 =
π c
3
[
4
?

2´ 2
]

4c2 = c
(

4
?

2´ 2
)

4c2
´ c
(

4
?

2´ 2
)
= 0

4c
(

c´
(
?

2´
1
2

))
= 0

c = 0 or c =
?

2´
1
2

S-21: We will compute the volume by rotating thin vertical strips as in the sketch
y

x
π
2

π 3π
2

2π

2

4

6

8

y = 4 + π sin(x)

y = 4 + 2π − 2x

about the line y = ´1 to generate thin washers. We need to know when the line
y = 4 + 2π ´ 2x intersects the curve y = 4 + π sin x. Looking at the graph, it appears to
be at π

2 , π, and 3π
2 . By plugging in these values of x to both functions, we see they are

indeed the points of intersection.

• When π
2 ď x ď π, the top of the strip is at y = 4 + π sin x and the bottom of the

strip is at y = 4 + 2π ´ 2x. When the strip is rotated, we get a thin washer with
outer radius R1(x) = 1 + 4 + π sin x = 5 + π sin x and inner radius
r1(x) = 1 + 4 + 2π ´ 2x = 5 + 2π ´ 2x.

• When π ď x ď 3π
2 , the top of the strip is at y = 4 + 2π ´ 2x and the bottom of the

strip is at y = 4 + π sin x. When the strip is rotated, we get a thin washer with outer
radius R2(x) = 1 + 4 + 2π ´ 2x = 5 + 2π ´ 2x and inner radius
r2(x) = 1 + 4 + π sin x = 5 + π sin x.

So, the total

Volume =

ż π

π/2
π
[
R1(x)2

´ r1(x)2] dx +

ż 3π/2

π
π
[
R2(x)2

´ r2(x)2] dx

=

ż π

π/2
π
[
(5 + π sin x)2

´ (5 + 2π ´ 2x)2] dx

+

ż 3π/2

π
π
[
(5 + 2π ´ 2x)2

´ (5 + π sin x)2] dx
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S-22: (a)

We use the same ideas for volume, and apply them to mass. We want to take slices of the
column, approximate their mass, then add them up. To reconcile our units, let k = 1000h,
so k is the height in metres. Then the density of air at height k is c2´k/6000 kg

m3 .

A horizontal slice of the column is a circular disk with height dk and radius 1 m. So, its
volume is π dk m3. What we’re interested in, though, is its mass. At height k, its mass is

(volume)ˆ (density) =
(

π dk m3
)
ˆ

(
c2´k/6000 kg

m3

)

= cπ2´k/6000 dk kg

Since k runs from 0 to 60, 000, the total mass is given by
ż 60000

0
cπ2´k/6000 dk = cπ

ż 60000

0
2´k/6000 dk

To facilitate integration, we can write our exponential function in terms of e, then use the
substitution u = ´ k

6000 log 2, du = ´ 1
6000 log 2 dk.

= cπ

ż 60000

0

(
elog 2

)´k/6000
dk

= cπ

ż 60000

0
e´

k
6000 log 2dk

= ´
6000cπ

log 2

ż ´10 log 2

0
eudu

=
6000cπ

log 2

ż 0

´10 log 2
eudu

=
6000cπ

log 2

(
1´

1
210

)

We note this is fairly close to
6000cπ

log 2
.

We also remark that this is a demonstration of the usefulness of integrals. We wanted to
know how much of something there was, but the amount of that something was different
everywhere: more in some places, less in others. Integration allowed us to account for
this gradient. You’ve seen this behaviour exploited to find distances travelled, areas,
volumes, and now mass. In your studies, you will doubtless learn to use it to find still
more quantities, and we will discuss other applications in Chapter 2 of the CLP-2 text.

(b) We want to find the value of k that gives a mass of
3000cπ

log 2
. By following our

reasoning above, the mass of air in the column from the ground to height k is

6000cπ

log 2

(
1´

1
2k/6000

)
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So, we set this equal to the mass we want, and solve for k.

6000cπ

log 2

(
1´

1
2k/6000

)
=

3000cπ

log 2

2
(

1´
1

2k/6000

)
= 1

1 =
2

2k/6000

2k/6000 = 21

k = 6000
h = 6

This means that there is roughly the same mass of air in the lowest 6 km of the column as
there is in the remaining 54 km.

Solutions to Exercises 1.7 — Jump to TABLE OF CONTENTS

S-1: Integration by substitution is just using the chain rule, backwards:

d
dx
t f (g(x))u = f 1(g(x))g1(x)

ô

ż

d
dx
t f (g(x))udx =

ż

f 1(g(x))g1(x)dx

ô f (g(x))
looomooon

f (u)

+C =

ż

f 1(g(x))
looomooon

f 1(u)

g1(x)dx
looomooon

du

Similarly, integration by parts comes from the product rule:

d
dx
t f (x)g(x)u = f 1(x)g(x) + f (x)g1(x)

ô

ż

d
dx
t f (x)g(x)udx =

ż

f 1(x)g(x) + f (x)g1(x)dx

ô f (x)g(x) + C =

ż

f 1(x)g(x)dx +

ż

f (x)g1(x)dx

ô

ż

f (x)
loomoon

u

g1(x)dx
looomooon

dv

= f (x)
loomoon

u

g(x)
loomoon

v

´

ż

g(x)
loomoon

v

f 1(x)dx
looomooon

du

In the last line, the “+C” has been absorbed into the indefinite integral on the right hand
side.

S-2: Remember our rule:
ş

udv = uv´
ş

vdu. So, we take u and use it to make du–that is,
we differentiate it. We take dv and use it to make v–that is, we antidifferentiate it.
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S-3: We’ll use the same ideas that led to the method of integration by parts. (You can
review this in your text, or see the solution to Question 1 in this section.) According to
the quotient rule,

d
dx

"

f (x)
g(x)

*

=
g(x) f 1(x)´ f (x)g1(x)

g2(x)
.

Antidifferentiating both sides gives us:
ż

d
dx

"

f (x)
g(x)

*

dx =

ż

g(x) f 1(x)´ f (x)g1(x)
g2(x)

dx

f (x)
g(x)

+ C =

ż

f 1(x)
g(x)

dx´
ż

f (x)g1(x)
g2(x)

dx
ż

f 1(x)
g(x)

dx =
f (x)
g(x)

+

ż

f (x)g1(x)
g2(x)

dx

In the last line, the “+C” has been absorbed into the indefinite integral on the right hand
side.

This is exactly the integration by parts formula for the functions u = 1/g and v = f .

S-4: All the antiderivatives differ only by a constant, so we can write them all as v(x) + C
for some C. Then, using the formula for integration by parts,

ż

u(x) ¨ v1(x)dx = u(x)
loomoon

u

[
v(x) + C

]
looooomooooon

v

´

ż [
v(x) + C

]
looooomooooon

v

u1(x)dx
looomooon

du

= u(x)v(x) + Cu(x)´
ż

v(x)u1(x)dx´
ż

Cu1(x)dx

= u(x)v(x) + Cu(x)´
ż

v(x)u1(x)dx´ Cu(x) + D

= u(x)v(x)´
ż

v(x)u1(x)dx + D

where D is any constant.

Since the terms with C cancel out, it didn’t matter what we chose for C–all choices end
up the same.

S-5: Suppose we choose dv = f (x)dx, u = 1. Then v =

ż

f (x)dx, and du = dx. So, our

integral becomes:
ż

(1)
loomoon

u

f (x)dx
loomoon

dv

= (1)
loomoon

u

ż

f (x)dx
loooomoooon

v

´

ż
(
ż

f (x)dx
)

loooooomoooooon

v

dx
loomoon

du

In order to figure out the first product (and the second integrand), you need to know the
antiderivative of f (x)–but that’s exactly what you’re trying to figure out! So, using
integration by parts has not eased your pain.
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We note here that in certain cases, such as
ş

log x dx (Example 1.7.8 in the CLP-2 text), it is
useful to choose dv = 1dx. This is similar to, but crucially different from, the do-nothing
method in this problem.

S-6: For integration by parts, we want to break the integrand into two pieces, multiplied
together. There is an obvious choice for how to do this: one piece is x, and the other is
log x. Remember that one piece will be integrated, while the other is differentiated. The
question is, which choice will be more helpful. After some practice, you’ll get the hang of
making the choice. For now, we’ll present both choices–but when you’re writing a
solution, you don’t have to write this part down. It’s enough to present your choice, and
then a successful computation is justification enough.

Option 1: u = x du = 1 dx

dv = log x dx v =??

Option 2: u = log x du =
1
x

dx

dv = x dx v =
1
2

x2

In Example 1.7.8 of the CLP-2 text, we found the antiderivative of logarithm, but it
wasn’t trivial. We might reasonably want to avoid using this complicated antiderivative.
Indeed, Option 2 (differentiating logarithm, antidifferentiating x) looks promising–when
we multiply the blue equations, we get something easily integrable– so let’s not even
bother going deeper into Option 1.

That is, we perform integration by parts with u = log x and dv = x dx, so that du = dx
x

and v = x2

2 .

ż

x
loomoon

u

log x dx
looomooon

dv

=
x2 log x

2
looomooon

uv

´

ż

x2

2
loomoon

v

dx
x

loomoon

du

=
x2 log x

2
´

1
2

ż

x dx

=
x2 log x

2
´

x2

4
+ C

S-7: Our integrand is the product of two functions, and there’s no clear substitution. So,
we might reasonably want to try integration by parts. Again, we have two obvious
pieces: log x, and x´7. We’ll consider our options for assigning these to u and dv:
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Option 1: u = log x du =
1
x

dx

dv = x´7 dx v =
1
´6

x´6

Option 2: u = x´7 du = ´7x´8 dx

dv = log x dx v =??

Again, we remember that logarithm has some antiderivative we found in Example 1.7.8
of the CLP-2 text, but it was something complicated. Luckily, we don’t need to bother
with it: when we multiply the red equations in Option 1, we get a perfectly workable
integral.

We perform integration by parts with u = log x and dv = x´7 dx, so that du = dx
x and

v = ´ x´6

6 .

ż

log x
x7 dx = ´ log x

x´6

6
looooomooooon

uv

+

ż

x´6

6
loomoon

´v

dx
x

loomoon

du

= ´
log x
6x6 +

1
6

ż

x´7 dx

= ´
log x
6x6 ´

1
36x6 + C

S-8: To integrate by parts, we need to decide what to use as u, and what to use as dv. The
salient parts of this integrand are x and sin x, so we only need to decide which is u and
which dv. Again, this process will soon become familiar, but to help you along we show
you both options below.

Option 1: u = x du = 1 dx

dv = sin x dx v = ´ cos x

Option 2: u = sin x du = cos x dx

dv = x dx v =
1
2

x2

The derivative and antiderivative of sine are almost the same, but x turns into something
simpler when we differentiate it. So, we choose Option 1.
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We integrate by parts, using u = x, dv = sin x dx so that v = ´ cos x and du = dx:
ż π

0
x sin x dx = ´x cos x

looomooon

uv

ˇ

ˇ

ˇ

π

0
´

ż π

0
(´ cos x)
loooomoooon

v

dx
loomoon

du

=
[
´ x cos x + sin x

]π

0
= ´π(´1) = π

S-9: When we have two functions multiplied like this, and there’s no obvious
substitution, our minds turn to integration by parts. We hope that our integral will be
improved by differentiating one part and antidifferentiating the other. Let’s see what our
choices are:

Option 1: u = x du = 1 dx

dv = cos x dx v = sin x

Option 2: u = cos x du = ´ sin x dx

dv = x dx v =
1
2

x2

Option 1 seems preferable. We integrate by parts, using u = x, dv = cos x dx so that
v = sin x and du = dx:

ż π
2

0
x cos x dx = x

loomoon

u

sin x
loomoon

v

ˇ

ˇ

ˇ

π
2

0
´

ż π
2

0
sin x
loomoon

v

dx
loomoon

du

=
[

x sin x + cos x
] π

2

0
=

π

2
´ 1

S-10: This integrand is the product of two functions, with no obvious substitution. So,
let’s try integration by parts, with one part ex and one part x3.

Option 1: u = ex du = ex dx

dv = x3 dx v = 1
4 x4

Option 2: u = x3 du = 3x2 dx

dv = ex dx v = ex

At first glance, multiplying the red functions and multiplying the blue functions give
largely equivalent integrands to what we started with–none of them with obvious
antiderivatives. In previous questions, we were able to choose u = x, and then du = dx,
so the “x” in the integrand effectively went away. Here, we see that choosing u = x3 will

341



lead to du = 3x2dx, which has a lower power. If we repeatedly perform integration by
parts, choosing u to be the power of x each time, then after a few iterations it should go
away, because the third derivative of x3 is a constant.

So, we start with Option 2: u = x3, dv = exdx, du = 3x2dx, and v = ex.

ż

x3exdx = x3
loomoon

u

ex
loomoon

v

´

ż

ex
loomoon

v

¨ 3x2dx
loomoon

du

= x3ex
´ 3

ż

ex
¨ x2dx

Now, we take u = x2 and dv = exdx, so du = 2xdx and v = ex. We’re only using
integration by parts on the actual integral–the rest of the function stays the way it is.

= x3ex
´ 3


 x2ex
loomoon

uv

´

ż

ex
loomoon

v

¨ 2xdx
loomoon

du




= x3ex
´ 3x2ex + 6

ż

xexdx

Continuing, we take u = x and dv = exdx, so du = dx and v = ex. This is the step where
the polynomial part of the integrand finally disappears.

= x3ex
´ 3x2ex + 6


 xex
loomoon

uv

´

ż

ex
loomoon

v

dx
loomoon

du




= x3ex
´ 3x2ex + 6xex

´ 6ex + C

= ex
(

x3
´ 3x2 + 6x´ 6

)
+ C

Let’s check that this makes sense: the derivative of ex (x3 ´ 3x2 + 6x´ 6
)
+ C should be

x3ex. We differentiate using the product rule.

d
dx

!

ex
(

x3
´ 3x2 + 6x´ 6

)
+ C

)

= ex
(

x3
´ 3x2 + 6x´ 6

)
+ ex

(
3x2

´ 6x + 6
)

= ex
(

x3
´ 3x2 + 3x2 + 6x´ 6x´ 6 + 6

)
= x3ex

Remark: In order to be technically correct in our antidifferentiation, we should add the
+C as soon as we do the first integration by parts. However, when we are using
integration by parts, we usually end up evaluating an integral at the end, and we add the
+C at that point. Since the +C comes up eventually, it is common practice to not clutter
our calculations with it until the end.

S-11: Since our integrand is two functions multiplied together, and there isn’t an obvious
substitution, let’s try integration by parts. Here are our salient options.
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Option 1: u = x du = 1 dx

dv = log3 x dx v =??

Option 2: u = log3 x du = 3 log2 x ¨ 1
x dx

dv = x dx v =
1
2

x2

This calls for some strategizing. Using the template of Example 1.7.8 in the CLP-2 text,
we could probably figure out the antiderivative of log3 x. Option 1 is tempting, because
our x-term goes away. So, there might be a benefit there, but on the other hand, the
antiderivative of log3 x is probably pretty complicated.

Now let’s consider Option 2. When we multiply the blue functions together, we get
something similar to our original integrand, but the power of logarithm is smaller. If we
were to iterate this method (using integration by parts a few times, always choosing u to
be the part with a logarithm) then eventually we would end up differentiating logarithm.
This seems like a safer plan: let’s do Option 2.

We use integration by parts with u = log3 x, dv = xdx, du = 3
x log2 xdx, and v = 1

2 x2.

ż

x log3 x dx =
1
2

x2 log3 x
loooomoooon

uv

´

ż

3
2

x log2 xdx
loooooomoooooon

vdu

=
1
2

x2 log3 x´
3
2

ż

x log2 xdx

Continuing our quest to differentiate away the logarithm, we use integration by parts

with u = log2 x, dv = xdx, du =
2
x

log xdx, and v =
1
2

x2.

=
1
2

x2 log3 x´
3
2




1
2

x2 log2 x
loooomoooon

uv

´

ż

x log xdx
loooomoooon

vdu




=
1
2

x2 log3 x´
3
4

x2 log2 x +
3
2

ż

x log xdx
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One last integration by parts: u = log x, dv = xdx, du =
1
x

dx, and v =
1
2

x2.

=
1
2

x2 log3 x´
3
4

x2 log2 x +
3
2




1
2

x2 log x
loooomoooon

uv

´

ż

1
2

xdx
loomoon

vdu




=
1
2

x2 log3 x´
3
4

x2 log2 x +
3
4

x2 log x´
3
4

ż

xdx

=
1
2

x2 log3 x´
3
4

x2 log2 x +
3
4

x2 log x´
3
8

x2 + C

Once again, technically there is a +C in the work after the first integration by parts, but
we follow convention by conveniently suppressing it until the final integration.

S-12: The integrand is the product of two functions, without an obvious substitution, so
let’s see what integration by parts can do for us.

Option 1: u = x2 du = 2x dx

dv = sin x dx v = ´ cos x

Option 2: u = sin x du = cos x dx

dv = x2 dx v = 1
3 x3

Neither option gives us something immediately integrable, but Option 1 replaces our x2

term with a lower power of x. If we repeatedly apply integration by parts, we can reduce
this power to zero. So, we start by choosing u = x2 and dv = sin xdx, so du = 2xdx and
v = ´ cos x.

ż

x2 sin x dx = ´x2 cos x
loooomoooon

uv

+

ż

2x cos xdx
loooooomoooooon

´vdu

= ´x2 cos x + 2
ż

x cos xdx

Using integration by parts again, we want to be differentiating (not antidifferentiating) x,
so we choose u = x, dv = cos xdx, and then du = dx (x went away!), v = sin x.

= ´x2 cos x + 2


x sin x
loomoon

uv

´

ż

sin xdx
loomoon

vdu




= ´x2 cos x + 2x sin x + 2 cos x + C

= (2´ x2) cos x + 2x sin x + C
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S-13: This problem is similar to Questions 6 and 7: integrating a polynomial multiplied
by a logarithm. Just as in these questions, if we use integration by parts with u = log t,

then du =
1
t

dt, and our new integrand will consist of powers of t–which are easy to
antidifferentiate.

So, we use u = log t, dv = 3t2 ´ 5t + 6, du = 1
t dt, and v = t3 ´ 5

2 t2 + 6t.

ż

(3t2
´ 5t + 6) log t dt = log t

loomoon

u


t3

´
5
2

t2 + 6t
loooooomoooooon

v


´

ż

1
t

(
t3
´

5
2

t2 + 6t
)

dt
loooooooooooomoooooooooooon

vdu

=

(
t3
´

5
2

t2 + 6t
)

log t´
ż
(

t2
´

5
2

t + 6
)

dt

=

(
t3
´

5
2

t2 + 6t
)

log t´
1
3

t3 +
5
4

t2
´ 6t + C

S-14: Before we jump to integration by parts, we notice that the square roots lend

themselves to substitution. Let’s take w =
?

s. Then dw =
1

2
?

s
ds, so 2w dw = ds.

ż

?
se
?

sds =
ż

w ¨ ew
¨ 2wdw = 2

ż

w2ewdw

Now we have nearly the situation of Question 10. We can repeatedly use integration by
parts, with u as the power of w, to get rid of the polynomial part. We’ll start with u = w2,
dv = ewdw, du = 2wdw, and v = ew.

= 2


 w2ew
loomoon

uv

´

ż

2wewdw
looomooon

vdu




= 2w2ew
´ 4

ż

wewdw

We use integration by parts again, this time with u = w, dv = ewdw, du = dw, and
v = ew.

= 2w2ew
´ 4


 wew
loomoon

uv

´

ż

ewdw
loomoon

vdu




= 2w2ew
´ 4wew + 4ew + C

= ew
(

2w2
´ 4w + 4

)
+ C

= e
?

s (2s´ 4
?

s + 4
)
+ C
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S-15: Let’s use integration by parts. What are our parts? We have a few options.

Solution 1: Following Example 1.7.8 in the CLP-2 text, we choose u = log2 x and
dv = dx, so that du = 2

x log x dx and v = x.

ż

log2 xdx = x log2 x
loomoon

uv

´

ż

2 log xdx
loooomoooon

vdu

Here we can either use the antiderivative of logarithm from memory, or re-derive it.
We do the latter, using integration by parts with u = log x, dv = 2dx, du = 1

x dx,
and v = 2x.

= x log2 x´


2x log x
looomooon

uv

´

ż

2dx
loomoon

vdu




= x log2 x´ 2x log x + 2x + C

Solution 2: Our integrand is two functions multiplied together: log x and log x. So, we
will use integration by parts with u = log x, dv = log x, du = 1

x dx, and (using the
antiderivative of logarithm, found in Example 1.7.8 in the CLP-2 text)
v = x log x´ x.

ż

log2 x dx = ( log x
loomoon

u

)(x log x´ x
looooomooooon

v

)´

ż

(x log x´ x
looooomooooon

v

)
1
x

dx
loomoon

du

= x log2 x´ x log x´
ż

(log x´ 1)dx

= x log2 x´ x log x´ [(x log x´ x)´ x] + C

= x log2 x´ 2x log x + 2x + C

S-16: This is your friendly reminder that to a person with a hammer, everything looks
like a nail. The integral in the problem is a classic example of an integral to solve using
substitution. We have an “inside function,” x2 + 1, whose derivative shows up
multiplied to the rest of the integrand. We take u = x2 + 1, then du = 2xdx, so

ż

2xex2+1dx =

ż

eudu = eu + C = ex2+1 + C

S-17: In Example 1.7.9 of the CLP-2 text, we saw that integration by parts was useful
when the integrand has a derivative that works nicely when multiplied by x. We use the
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same idea here. Let u = arccos y and dv = dy, so that v = y and du = ´
dy?
1´y2 .

ż

arccos y dy = y arccos y
loooomoooon

uv

+

ż

y
a

1´ y2
dy

looooomooooon

´vdu

Using the substitution u = 1´ y2, du = ´2ydy,

= y arccos y´
1
2

ż

u´1/2du

= y arccos y´ u1/2 + C

= y arccos y´
b

1´ y2 + C

S-18: We integrate by parts, using u = arctan(2y), dv = 4y dy, so that v = 2y2 and
du = 2 dy

1+(2y)2 :

ż

4y arctan(2y)dy = 2y2 arctan(2y)
looooooomooooooon

uv

´

ż

4y2

(2y)2 + 1
dy

loooooomoooooon

vdu

The integrand 4y2

(2y)2+1 is a rational function. So the remaining integral can be evaluated
using the method of partial fractions, starting with long division. But it is easier to just

notice that 4y2

4y2+1 = 4y2+1
4y2+1 ´

1
4y2+1 . We therefore have:

ż

4y2

4y2 + 1
dy =

ż
(

1´
1

4y2 + 1

)
dy = y´

1
2

arctan(2y) + C

The final answer is then

ż

4y arctan(2y)dy = 2y2 arctan(2y)´ y +
1
2

arctan(2y) + C

S-19: We’ve got an integrand that consists of two functions multiplied together, and no
obvious substitution. So, we think about integration by parts. Let’s consider our options.
Note in Example 1.7.9 of the CLP-2 text, we found that the antiderivative of arctangent is
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x arctan x´ 1
2 log(1 + x2) + C.

Option 1: u = arctan x du =
1

1 + x2 dx

dv = x2 dx v =
1
3

x3

Option 2: u = x2 du = 2x dx

dv = arctan x dx v = x arctan x´
1
2

log(1 + x2)

Option 1 Option 1 seems likelier. Let’s see how it plays out. We use integration by parts
with u = arctan x, dv = x2dx, du = dx

1+x2 , and v = 1
3 x3.

ż

x2 arctan x dx =
x3

3
arctan x

looooomooooon

uv

´

ż

x3

3(1 + x2)
dx

loooooomoooooon

vdu

=
x3

3
arctan x´

1
3

ż

x3

1 + x2 dx

This is starting to look like a candidate for a substitution! Let’s try the denominator,
s = 1 + x2. Then ds = 2xdx, and x2 = s´ 1.

=
x3

3
arctan x´

1
6

ż

x2

1 + x2 ¨ 2xdx

=
x3

3
arctan x´

1
6

ż

s´ 1
s

ds

=
x3

3
arctan x´

1
6

ż

1´
1
s

ds

=
x3

3
arctan x´

1
6

s +
1
6

log |s|+ C

=
x3

3
arctan x´

1
6
(1 + x2) +

1
6

log(1 + x2) + C

Option 2: What if we had tried the other option? That is, u = x2, du = 2xdx,
dv = arctan x, and v = x arctan x´ 1

2 log(1 + x2). It’s not always the case that both
options work, but sometimes they do. (They are almost never of equal difficulty.)
This solution takes advantage of two previously hard-won results: the
antiderivatives of logarithm and arctangent.
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ż

x2 arctan xdx = x2
loomoon

u

(
x arctan x´

1
2

log(1 + x2)

)

loooooooooooooooooomoooooooooooooooooon

v

´

ż
(

x arctan x´
1
2

log(1 + x2)

)

loooooooooooooooooomoooooooooooooooooon

v

¨ 2xdx
loomoon

du

= x3 arctan x´
x2

2
log(1 + x2)´ 2

ż

x2 arctan xdx +

ż

x log(1 + x2)dx

Adding 2
ż

x2 arctan xdx to both sides:

3
ż

x2 arctan xdx = x3 arctan x´
x2

2
log(1 + x2) +

ż

x log(1 + x2)dx
ż

x2 arctan xdx =
x3

3
arctan x´

x2

6
log(1 + x2) +

1
3

ż

x log(1 + x2)dx

Using the substitution s = 1 + x2, ds = 2xdx:

=
x3

3
arctan x´

x2

6
log(1 + x2) +

1
6

ż

log sds

Using the antiderivative of logarithm found in Example 1.7.8 of the CLP-2 text,

=
x3

3
arctan x´

x2

6
log(1 + x2) +

1
6
(s log s´ s) + C

=
x3

3
arctan x´

x2

6
log(1 + x2) +

1
6

(
(1 + x2) log(1 + x2)´ (1 + x2)

)
+ C

=
x3

3
arctan x +

[
´

x2

6
+

1 + x2

6

]
log(1 + x2)´

1
6
(1 + x2) + C

=
x3

3
arctan x +

1
6

log(1 + x2)´
1
6
(1 + x2) + C

S-20: This example is similar to Example 1.7.10 in the CLP-2 text. The functions ex/2 and
cos(2x) both do not substantially alter when we differentiate or antidifferentiate them. If
we use integration by parts twice, we’ll end up with an expression that includes our
original integral. Then we can just solve for the original integral in the equation, without
actually antidifferentiating.

Let’s use u = cos(2x) and dv = ex/2dx, so du = ´2 sin(2x)dx and v = 2ex/2.

ż

ex/2 cos(2x)dx = 2ex/2 cos(2x)
looooooomooooooon

uv

´

ż

´4ex/2 sin(2x)dx
loooooooooomoooooooooon

vdu

= 2ex/2 cos(2x) + 4
ż

ex/2 sin(2x)dx
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Similarly to our first integration by parts, we use u = sin(2x), dv = ex/2dx,
du = 2 cos(2x)dx, and v = 2ex/2.

= 2ex/2 cos(2x) + 4


2ex/2 sin(2x)
loooooomoooooon

uv

´

ż

4ex/2 cos(2x)dx
looooooooomooooooooon

vdu




So, we’ve found the equation
ż

ex/2 cos(2x)dx = 2ex/2 cos(2x) + 8ex/2 sin(2x)´ 16
ż

ex/2 cos(2x)dx + C

We add 16
ż

ex/2 cos(2x)dx to both sides.

17
ż

ex/2 cos(2x)dx = 2ex/2 cos(2x) + 8ex/2 sin(2x) + C
ż

ex/2 cos(2x)dx =
2
17

ex/2 cos(2x) +
8

17
ex/2 sin(2x) + C

Remark: remember that C is a stand-in for “we can add any real constant”. Since C can
be any number in (´8,8), also C

17 can be any number in (´8,8). So, rather than write
C
17 in the last line, we re-named C

17 to C.

S-21:

Solution 1: This question looks like a substitution, since we have an “inside function.”

So, let’s see where that leads: let u = log x. Then du =
1
x

dx. We don’t see this right
away in our function, but we can bring it into the function by multiplying and
dividing by x, and noting from our substitution that eu = x.

ż

sin(log x)dx =

ż

x sin(log x)
x

dx

=

ż

eu sin u du

Using the result of Example 1.7.11 in the CLP-2 text:

=
1
2

eu (sin u´ cos u) + C

=
1
2

elog x (sin(log x)´ cos(log x)) + C

=
1
2

x (sin(log x)´ cos(log x)) + C

Solution 2: It’s not clear how to antidifferentiate the integrand, but we can certainly
differentiate it. So, keeping in mind the method of Example 1.7.11 in the CLP-2 text,
we take u = sin(log x) and dv = dx, so du = 1

x cos(log x)dx and v = x.
ż

sin(log x)dx = x sin(log x)
looooomooooon

uv

´

ż

cos(log x)dx
loooooomoooooon

vdu
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Continuing on, we again use integration by parts, with u = cos(log x), dv = dx,
du = ´ 1

x sin(log x)dx, and v = x.

= x sin(log x)´
[

x cos(log x)
loooooomoooooon

uv

+

ż

sin(log x)
loooomoooon

´vdu

dx
]

That is, we have
ż

sin(log x)dx = x [sin(log x)´ cos(log x)]´
ż

sin(log x)dx + C

Adding
ş

sin(log x)dx to both sides,

2
ż

sin(log x)dx = x [sin(log x)´ cos(log x)] + C
ż

sin(log x)dx =
x
2
[sin(log x)´ cos(log x)] + C

Remark: remember that C is a stand-in for “we can add any real constant”. Since C
can be any number in (´8,8), also C

2 can be any number in (´8,8). So, rather
than write C

2 in the last line, we re-named C
2 to C.

S-22: We begin by simplifying the integrand.
ż

2x+log2 xdx =

ż

2x
¨ 2log2 xdx =

ż

2x
¨ x dx

This is similar to the integral
ż

xexdx, which we saw in Example 1.7.1 of the CLP-2 text.

Let’s write 2 = elog 2 to take advantage of the easy integrability of ex.

=

ż

x ¨ ex log 2dx

We use integration by parts with u = x, dv = ex log 2dx; du = dx, v = 1
log 2 ex log 2.

(Remember log 2 is a constant. If you’d prefer, you can do a substitution with s = x log 2
first, to have a simpler exponent of e.)

=
x

log 2
ex log 2

looooomooooon

uv

´

ż

1
log 2

ex log 2dx
looooooomooooooon

vdu

=
x

log 2
ex log 2

´
1

(log 2)2 ex log 2 + C

=
x

log 2
2x
´

1
(log 2)2 2x + C
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S-23: It’s not obvious where to start, but in general it’s nice to have the arguments of our
trig functions the same. So, we use the identity sin(2x) = 2 sin x cos x.

ż

ecos x sin(2x)dx = 2
ż

ecos x cos x sin x dx

Now we can use the substitution w = cos x, dw = ´ sin xdx.

= ´2
ż

wewdw

From here the integral should look more familiar. We can use integration by parts with
u = w, dv = ewdw, du = dw, and v = ew.

= ´2


 wew
loomoon

uv

´

ż

ewdw
loomoon

vdu




= 2ew [1´w] + C
= 2ecos x[1´ cos x] + C

S-24: We’ve got an integrand that consists of several functions multiplied together, and
no obvious substitution. So, we think about integration by parts. We know an
antiderivative for 1

(1´x)2 , because we know d
dx

1
1´x = 1

(1´x)2 . So let’s try dv = dx
(1´x)2 and

u = xe´x. Then v = 1
1´x and du = (1´ x)e´x dx. So, by integration by parts,

ż

xe´x
loomoon

u

dx
(1´ x)2
looomooon

dv

=
xe´x

1´ x
loomoon

uv

´

ż

1
1´ x
loomoon

v

(1´ x)e´x dx
looooooomooooooon

du

=
xe´x

1´ x
´

ż

e´x dx

=
xe´x

1´ x
+ e´x + C =

e´x

1´ x
+ C

S-25: (a) The “parts” in the integrand are powers of sine. Looking at the right hand side
of the reduction formula, we see that it looks a little like the derivative of sinn´1 x,
although not exactly. So, let’s integrate by parts with u = sinn´1 x and dv = sin x dx, so
that du = (n´ 1) sinn´2 x cos x and v = ´ cos x.

ż

sinn x dx = ´ sinn´1 x cos x
looooooooomooooooooon

uv

+ (n´ 1)
ż

cos2 x sinn´2 x dx
looooooooooooooooomooooooooooooooooon

´
ş

vdu
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Using the identity sin2 x + cos2 x = 1,

= ´ sinn´1 x cos x + (n´ 1)
ż

(1´ sin2 x) sinn´2 x dx

= ´ sinn´1 x cos x + (n´ 1)
ż

sinn´2 x dx´ (n´ 1)
ż

sinn x dx

Moving the last term on the right hand side to the left hand side gives

n
ż

sinn x dx = ´ sinn´1 x cos x + (n´ 1)
ż

sinn´2 x dx

Dividing across by n gives the desired reduction formula.

(b) By the reduction formula of part (a), if n ě 2,

ż π/2

0
sinn(x)dx =

n´ 1
n

ż π/2

0
sinn´2(x)dx

since sin 0 = cos π
2 = 0. Applying this reduction formula, with n = 8, 6, 4, 2:

ż π/2

0
sin8(x)dx =

7
8

ż π/2

0
sin6(x)dx =

7
8
¨

5
6

ż π/2

0
sin4(x)dx =

7
8
¨

5
6
¨

3
4

ż π/2

0
sin2(x)dx

=
7
8
¨

5
6
¨

3
4
¨

1
2

ż π/2

0
dx =

7
8
¨

5
6
¨

3
4
¨

1
2
¨

π

2
=

35
256

π

Using a calculator, we see this is approximately 0.4295.

S-26: (a) The sketch is the figure on the left below. By integration by parts with
u = arctan x, dv = dx, v = x and du = 1

1+x2 dx, and then the substitution s = 1 + x2,

A =

ż 1

0
arctan x dx = x arctan x

loooomoooon

uv

ˇ

ˇ

ˇ

1

0
´

ż 1

0

x
1 + x2 dx
loooomoooon

vdu

= arctan 1´ 1
2 log(1 + x2)

ˇ

ˇ

ˇ

1

0

=
π

4
´

log 2
2

x = 1

y = tan−1 x

x

y

x = 1

x = tan y

x

y

(b) We’ll use horizontal washers as in Example 1.6.5 of the CLP-2 text.

• We cut R into thin horizontal strips of width dy as in the figure on the right above.

• When we rotate R about the y–axis, each strip sweeps out a thin washer
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– whose inner radius is rin = tan y and outer radius is rout = 1, and

– whose thickness is dy and hence

– whose volume π(r2
out ´ r2

in)dy = π(1´ tan2 y)dy.

• As our bottommost strip is at y = 0 and our topmost strip is at y = π
4 (since at the

top x = 1 and x = tan y), the total

Volume =

ż π/4

0
π(1´ tan2 y) dy =

ż π/4

0
π(2´ sec2 y) dy = π

[
2y´ tan y

]π/4

0

=
π2

2
´ π

S-27: For a fixed value of x, if we rotate about the x-axis, we form a washer of inner
radius B(x) and outer radius T(x) and hence of area π[T(x)2 ´ B(x)2]. We integrate this
function from x = 0 to x = 3 to find the total volume V:

V =

ż 3

0
π[T(x)2

´ B(x)2]dx

= π

ż 3

0
(
?

xe3x)2
´ (
?

x(1 + 2x))2 dx

= π

ż 3

0

(
xe6x

´ (x + 4x2 + 4x3)
)

dx

= π

ż 3

0
xe6x dx´ π

[x2

2
+

4x3

3
+ x4

]3

0

= π

ż 3

0
xe6x dx´ π

[32

2
+

4 ¨ 33

3
+ 34

]

For the first integral, we use integration by parts with u(x) = x, dv = e6xdx, so that
du = dx and v(x) = 1

6 e6x:

ż 3

0
xe6x dx =

xe6x

6
loomoon

uv

ˇ

ˇ

ˇ

ˇ

3

0
´

ż 3

0

1
6

e6x dx
looomooon

vdu

=
3e18

6
´ 0´

1
36

e6x
ˇ

ˇ

ˇ

ˇ

3

0
=

e18

2
´

(
e18

36
´

1
36

)
.

Therefore, the total volume is

V = π

[
e18

2
´

(
e18

36
´

1
36

)]
´ π

[
32

2
+

4 ¨ 33

3
+ 34

]
= π

(
17e18 ´ 4373

36

)
.
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S-28: To get rid of the square root in the argument of f 2, we make the change of variables
(also called “substitution”) x = t2, dx = 2t dt.

ż 4

0
f 2
(?

x
)

dx = 2
ż 2

0
t f 2(t)dt

Then, to convert f 2 into f 1, we integrate by parts with u = t, dv = f 2(t)dt, v = f 1(t).
ż 4

0
f 2
(?

x
)

dx = 2
"[

t f 1(t)
loomoon

uv

]2

0
´

ż 2

0
f 1(t)dt
loomoon

vdu

*

= 2
[
t f 1(t)´ f (t)

]2

0

= 2
[
2 f 1(2)´ f (2) + f (0)

]
= 2

[
2ˆ 4´ 3 + 1

]

= 12

S-29: As we saw in Section 1.1 of the CLP-2 text, there are many different ways to
interpret a limit as a Riemann sum. In the absence of instructions that restrain our
choices, we go with the most convenient interpretations.

With that in mind, we choose:

• that our Riemann sum is a right Riemann sum (because we see i, not i´ 1 or i´ 1
2 )

• ∆x = 2
n (because it is multiplied by the rest of the integrand, and also shows up

multiplied by i),

• then xi = a + i∆x = 2
n i´ 1, which leads us to a = ´1 and

• f (x) = xex.

• Finally, since ∆x = b´a
n = 2

n and a = ´1, we have b = 1.

So, the limit is equal to the definite integral

lim
nÑ8

n
ÿ

i=1

2
n

(
2
n

i´ 1
)

e
2
n i´1 =

ż 1

´1
xex dx

which we evaluate using integration by parts with u = x, dv = exdx, du = dx, and
v = ex.

=
[

xex
loomoon

uv

]1

´1
´

ż 1

´1
exdx
loomoon

vdu

=

(
e +

1
e

)
´

(
e´

1
e

)
=

2
e

Solutions to Exercises 1.8 — Jump to TABLE OF CONTENTS
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S-1: If u = cos x, then du = ´ sin x dx. If n ‰ ´1, then

ż π/4

0
sin x cosn x dx = ´

ż 1/
?

2

1
undu =

[
´

1
n + 1

un+1
]1/

?
2

1
=

1
n + 1

(
1´

1
?

2n+1

)

If n = ´1, then

ż π/4

0
sin x cosn x dx = ´

ż 1/
?

2

1
undu = ´

ż 1/
?

2

1

1
u

du =

[
´ log |u|

]1/
?

2

1

= ´ log
(

1
?

2

)
=

1
2

log 2

So, (e) n can be any real number.

S-2: We use the substitution u = sec x, du = sec x tan x dx.
ż

secn x tan xdx =

ż

secn´1 x ¨ sec x tan x dx =

ż

un´1du

Since n is positive, n´ 1 ‰ ´1, so we antidifferentiate using the power rule.

=
un

n
+ C =

1
n

secn x + C

S-3: We divide both sides by cos2 x, and simplify.

sin2 x + cos2 x = 1

sin2 x + cos2 x
cos2 x

=
1

cos2 x
sin2 x
cos2 x

+ 1 = sec2 x

tan2 x + 1 = sec2 x

S-4: The power of cosine is odd, and the power of sine is even (zero). Following the
strategy in the text, we make the substitution u = sin x, so that du = cos x dx and
cos2 x = 1´ sin2 x = 1´ u2:

ż

cos3 x dx =

ż

(1´ sin2 x) cos x dx =

ż

(1´ u2)du

= u´
u3

3
+ C = sin x´

sin3 x
3

+ C
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S-5: Using the trig identity cos2 x =
1 + cos(2x)

2
, we have

ż

cos2 xdx =
1
2

ż π

0

[
1 + cos(2x)

]
dx=

1
2

[
x +

1
2

sin(2x)
]π

0
=

π

2

S-6: Since the power of cosine is odd, following the strategies in the text, we make the
substitution u = sin t, so that du = cos t dt and cos2 t = 1´ sin2 t = 1´ u2.

ż

sin36 t cos3 t dt =
ż

sin36 t (1´ sin2 t) cos t dt =
ż

u36(1´ u2)du

=
u37

37
´

u39

39
+ C =

sin37 t
37

´
sin39 t

39
+ C

S-7: Since the power of sine is odd (and positive), we can reserve one sine for du, and
turn the rest into cosines using the identity sin2 + cos2 x = 1. This allows us to use the
substitution u = cos x, du = ´ sin x dx, and sin2 x = 1´ cos2 x = 1´ u2.

ż

sin3 x
cos4 x

dx =

ż

sin2 x
cos4 x

sin x dx =

ż

´
1´ u2

u4 du

=

ż
(
´

1
u4 +

1
u2

)
du =

1
3u3 ´

1
u
+ C

=
1

3 cos3 x
´

1
cos x

+ C

S-8: Both sine and cosine have even powers (four and zero, respectively), so we don’t
have the option of using a substitution like u = sin x or u = cos x. Instead, we use the

identity sin2 θ =
1´ cos(2θ)

2
.

ż π/3

0
sin4 x dx =

ż π/3

0

(
sin2 x

)2
dx =

ż π/3

0

(
1´ cos(2x)

2

)2

dx

=
1
4

ż π/3

0

(
1´ 2 cos(2x) + cos2(2x)

)
dx

=
1
4

ż π/3

0
(1´ 2 cos(2x)) dx +

1
4

ż π/3

0
cos2(2x) dx
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We can antidifferentiate the first integral right away. For the second integral, we use the

identity cos2 θ =
1 + cos(2θ)

2
, with θ = 2x.

=
1
4

[
x´ sin(2x)

]π/3

0
+

1
8

ż π/3

0
(1 + cos(4x)) dx

=
1
4

[
π

3
´

?
3

2

]
+

1
8

[
x +

1
4

sin(4x)
]π/3

0

=
1
4

[
π

3
´

?
3

2

]
+

1
8

[
π

3
´

?
3

8

]

=
π

8
´

9
?

3
64

S-9: Since the power of sine is odd, we can reserve one sine for du, and change the
remaining four into cosines. This sets us up to use the substitution u = cos x,
du = ´ sin x dx.

ż

sin5 x dx =

ż

sin4 x ¨ sin x dx =

ż

(1´ cos2 x)2 sin x dx

= ´

ż

(1´ u2)2 du = ´

ż

(1´ 2u2 + u4)du

= ´u +
2
3

u3
´

1
5

u5 + C

= ´ cos x +
2
3

cos3 x´
1
5

cos5 x + C

S-10: If we use the substitution u = sin x, then du = cos x dx, which very conveniently
shows up in the integrand.

ż

sin1.2 x cos x dx =

ż

u1.2du =
u2.2

2.2
+ C =

1
2.2

sin2.2 x + C

Note this is exactly the strategy described in the text when the power of cosine is odd.
The non-integer power of sine doesn’t cause a problem.

S-11:

Solution 1: Let’s use the substitution u = tan x, du = sec2 x dx:
ż

tan x sec2 xdx =

ż

u du =
1
2

u2 + C =
1
2

tan2 x + C

Solution 2: We can also use the substitution u = sec x, du = sec x tan x dx:
ż

tan x sec2 xdx =

ż

u du =
1
2

u2 + C =
1
2

sec2 x + C
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We note that because tan2 x and sec2 x only differ by a constant, the two answers are
equivalent.

S-12:

Solution 1: Substituting u = cos x, du = ´ sin x dx, sin2 x = 1´ cos2 x = 1´ u2, gives

ż

tan3 x sec5 x dx =

ż

sin3 x
cos8 x

dx =

ż

(1´ cos2 x) sin x
cos8 x

dx = ´

ż

1´ u2

u8 du

= ´

[u´7

´7
´

u´5

´5

]
+ C =

1
7

sec7 x´
1
5

sec5 x + C

Solution 2: Alternatively, substituting u = sec x, du = sec x tan x dx,
tan2 x = sec2 x´ 1 = u2 ´ 1, gives

ż

tan3 x sec5 x dx =

ż

tan2 x sec4 x (tan x sec x)dx =

ż

(u2
´ 1)u4 du

=
[u7

7
´

u5

5

]
+ C =

1
7

sec7 x´
1
5

sec5 x + C

S-13: Use the substitution u = tan x, so that du = sec2 x dx:
ż

sec4 x tan46 x dx =

ż

(tan2 x + 1) tan46 x sec2 x dx =

ż

(u2 + 1)u46 du

=
u49

49
+

u47

47
+ C =

tan49 x
49

+
tan47 x

47
+ C

S-14: We use the substitution u = sec x, du = sec x tan x dx. Then
tan2 x = sec2 x´ 1 = u2 ´ 1.

ż

tan3 x sec1.5 x dx =

ż

tan2 x ¨ sec0.5 x ¨ sec x tan xdx

=

ż

(u2
´ 1)u0.5 du =

ż (
u2.5

´ u0.5
)

du

=
u3.5

3.5
´

u1.5

1.5
+ C

=
1

3.5
sec3.5 x´

1
1.5

sec1.5 x + C

Note this solution used the same method as Example 1.8.13 in the CLP-2 text for the case
that the power of tangent is odd and there is at least one secant.

S-15: We’ll give two solutions.
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Solution 1: As in Question 14, we have an odd power of tangent and at least one secant.
So, as in strategy (2) of Section 1.8.2 in the CLP-2 text, we can use the substitution
u = sec x, du = sec x tan x dx, and tan2 x = sec2 x´ 1 = u2 ´ 1.

ż

tan3 x sec2 x dx =

ż

tan2 x sec x ¨ sec x tan x dx

=

ż

(u2
´ 1)u du =

ż (
u3
´ u
)

du

=
1
4

u4
´

1
2

u2 + C

=
1
4

sec4 x´
1
2

sec2 x + C

Solution 2: We have an even, strictly positve, power of sec x. So, as in strategy (3) of
Section 1.8.2 in the CLP-2 text, we can use the substitution u = tan x,
du = sec2 x dx.

ż

tan3 x sec2 x dx =

ż

tan3 x ¨ sec2 x dx

=

ż

u3 du

=
1
4

u4 + C

=
1
4

tan4 x + C

It looks like we have two different answers. But, because tan2 x = sec2 x´ 1,

1
4

tan4 =
1
4
(sec2 x´ 1)

2
=

1
4

sec4 x´
1
2

sec2 x +
1
4

and the two answers are really the same, except that the arbitrary constant C of
Solution 1 is 1

4 plus the arbitrary constant C of Solution 2.

S-16: In contrast to Questions 14 and 15, we do not have an odd power of tangent, so we
should consider a different substitution. Luckily, if we choose u = tan x, then
du = sec2 x dx, and this fits our integrand nicely.

ż

tan4 x sec2 x dx =

ż

u4 du =
1
5

u5 + C =
1
5

tan5 x + C

S-17:

Solution 1: Since the power of tangent is odd, let’s try to use the substitution u = sec x,
du = sec x tan x dx, and tan2 x = sec2 x´ 1 = u2 ´ 1, as in Questions 14 and 15. In
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order to make this work, we need to see sec x tan x dx in the integrand, so we do a
little algebraic manipulation.

ż

tan3 x sec´0.7 x dx =

ż

tan3 x
sec0.7x dx =

ż

tan3 x
sec1.7x sec x dx

=

ż

tan2 x
sec1.7 x

¨ sec x tan x dx

=

ż

u2 ´ 1
u1.7 du =

ż (
u0.3

´ u´1.7
)

du

=
u1.3

1.3
+

1
0.7u0.7 + C

=
1

1.3
sec1.3 x +

1
0.7 sec0.7 x

+ C

=
1

1.3
sec1.3 x +

1
0.7

cos0.7 x + C

Solution 2: Let’s convert the secants and tangents to sines and cosines.
ż

tan3 x sec´0.7 x dx =

ż

sin3 x
cos3 x

¨ cos0.7 x dx

=

ż

sin3 x
cos2.3 x

dx =

ż

sin2 x
cos2.3 x

¨ sin x dx

Using the substitution u = cos x, du = ´ sin dx, and sin2 x = 1´ cos2 x = 1´ u2:

= ´

ż

1´ u2

u2.3 du =

ż (
´u´2.3 + u´0.3

)
du

=
1

1.3
u´1.3 +

1
0.7

u0.7 + C

=
1

1.3
sec1.3 x +

1
0.7

cos0.7 x + C

S-18: We replace tan x with
sin x
cos x

.

ż

tan5 x dx =

ż
(

sin x
cos x

)5

dx =

ż

sin4 x
cos5 x

¨ sin x dx

Now we use the substitution u = cos x, du = ´ sin x dx, and sin2 x = 1´ cos2 x = 1´ u2.

= ´

ż

(1´ u2)2

u5 du =

ż (
´u´5 + 2u´3

´ u´1
)

du

=
1
4

u´4
´ u´2

´ log |u|+ C

=
1
4

sec4 x´ sec2 x´ log | cos x|+ C

=
1
4

sec4 x´ sec2 x + log | sec x|+ C
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where in the last line, we used the logarithm rule log(ba) = a log b, with
ba = cos x = (sec x)´1.

S-19: Integrating even powers of tangent is surprisingly different from integrating odd
powers of tangent. For even powers, we use the identity tan2 x = sec2 x´ 1, then use the
substitution u = tan x, du = sec2 x dx on (perhaps only a part of) the resulting integral.

ż π/6

0
tan6 x dx =

ż π/6

0
tan4 x(sec2 x´ 1) dx

=

ż π/6

0

(
tan4 x sec2 x
loooooomoooooon

u4 du

´ tan4 x
)

dx

=

ż π/6

0

(
tan4 x sec2 x´ tan2 x(sec2 x´ 1)

)
dx

=

ż π/6

0

(
tan4 x sec2 x´ tan2 x sec2 x

loooooomoooooon

u2 du

+ tan2 x
)

dx

=

ż π/6

0

(
tan4 x sec2 x´ tan2 x sec2 x + (sec2 x

loomoon

du

´1)
)

dx

=

ż π/6

0

(
tan4 x´ tan2 x + 1

)
sec2 x dx´

ż π/6

0
1dx

Note tan(0) = 0, and tan(π/6) = 1/
?

3.

=

ż 1/
?

3

0
(u4

´ u2 + 1) du´
[
x
]π/6

0

=

[
1
5

u5
´

1
3

u3 + u
]1/

?
3

0
´

π

6

=
1

5
?

35 ´
1

3
?

33 +
1
?

3
´

π

6

=
41

45
?

3
´

π

6

S-20: Since there is an even power of secant in the integrand, we can reserve two secants
for du and change the rest to tangents. That sets us up nicely to use the substitution
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u = tan x, du = sec2 x dx. Note tan(0) = 0 and tan(π/4) = 1.

ż π/4

0
tan8 x sec4 x dx =

ż π/4

0
tan8 x (tan2 x + 1) sec2 x dx

=

ż 1

0
u8 (u2 + 1) du

=

ż 1

0
u10 + u8 du

=
1

11
+

1
9

S-21:

Solution 1: Let’s use the substitution u = sec x, du = sec x tan x dx. In order to make this
work, we need to see sec x tan x in the integrand, so we start with some algebraic
manipulation.

ż

tan x
?

sec x
(?

sec x
?

sec x

)
dx =

ż

1
?

sec x
sec x tan x dx

=

ż

1
?

u
du = 2

?
u + C

= 2
?

sec x + C

Solution 2: Let’s turn our secants and tangents into sines and cosines.

ż

tan x
?

sec x dx =

ż

sin x
cos x ¨

?
cos x

dx =

ż

sin x
cos1.5 x

dx

We use the substitution u = cos x, du = ´ sin x dx.

=

ż

´u´1.5 du =
2
?

u
+ C

= 2
?

sec x + C

S-22: Since the power of secant is even and positive, we can reserve two secants for du,
and change the rest into tangents, setting the stage for the substitution u = tan θ,
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du = sec2 θ dθ.
ż

sec8 θ tane θ dθ =

ż

sec6 θ tane θ sec2 θ dθ

=

ż

(tan2 θ + 1)3 tane θ sec2 θ dθ

=

ż

(u2 + 1)3
¨ ue du

=

ż

(u6 + 3u4 + 3u2 + 1) ¨ ue du

=

ż

(u6+e + 3u4+e + 3u2+e + ue) du

=
1

7 + e
u7+e +

3
5 + e

u5+e +
3

3 + e
u3+e +

1
1 + e

u1+e + C

=
1

7 + e
tan7+e θ +

3
5 + e

tan5+e θ +
3

3 + e
tan3+e θ +

1
1 + e

tan1+e θ + C

= tan1+e θ

(
tan6 θ

7 + e
+

3 tan4 θ

5 + e
+

3 tan2 θ

3 + e
+

1
1 + e

)
+ C

S-23: (a) Using the trig identity tan2 x = sec2 x´ 1 and the substitution y = tan x,
dy = sec2 x dx,

ż

tann x dx =

ż

tann´2 x tan2 x dx =

ż

tann´2 x sec2 x dx´
ż

tann´2 x dx

=

ż

yn´2 dy´
ż

tann´2 x dx =
yn´1

n´ 1
´

ż

tann´2 x dx

=
tann´1 x

n´ 1
´

ż

tann´2 x dx

(b) By the reduction formula of part (a),
ż π/4

0
tann(x)dx =

[
tann´1 x

n´ 1

]π/4

0
´

ż π/4

0
tann´2(x)dx

=
1

n´ 1
´

ż π/4

0
tann´2(x)dx

for all integers n ě 2, since tan 0 = 0 and tan π
4 = 1. We apply this reduction formula,

with n = 6, 4, 2.
ż π/4

0
tan6(x)dx =

1
5
´

ż π/4

0
tan4(x)dx =

1
5
´

1
3
+

ż π/4

0
tan2(x)dx =

1
5
´

1
3
+ 1´

ż π/4

0
dx

=
1
5
´

1
3
+ 1´

π

4
=

13
15
´

π

4
Using a calculator, we see this is approximately 0.0813.

Notice how much faster this was than the method of Question 19.
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S-24: Recall tan x =
sin x
cos x

.

ż

tan5 x cos2 x dx =

ż

sin5 x
cos5 x

cos2 x dx =

ż

sin5 x
cos3 x

dx

Substitute u = cos x, so du = ´ sin x dx and sin2 x = 1´ cos2 x = 1´ u2.

=

ż

sin4 x
cos3 x

sin x dx = ´

ż

(1´ u2)2

u3 du

= ´

ż

1´ 2u2 + u4

u3 du =

ż
(
´

1
u3 +

2
u
´ u
)

du

=
1

2u2 + 2 log |u| ´
1
2

u2 + C

=
1

2 cos2 x
+ 2 log | cos x| ´

1
2

cos2 x + C

S-25: We can use the definition of secant to make this integral look more familiar.
ż

1
cos2 θ

dθ =

ż

sec2 θ dθ = tan θ + C

S-26: We re-write cot x =
cos x
sin x

, and use the substitution u = sin x, du = cos x dx.
ż

cot x dx =

ż

cos x
sin x

dx =

ż

1
u

du

= log |u|+ C = log | sin x|+ C

S-27:

Solution 1: We begin with the obvious substitution, w = ex, dw = exdw.
ż

ex sin(ex) cos(ex) dx =

ż

sin w cos w dw

Now we see another substitution, u = sin w, du = cos w dw.

=

ż

u du =
1
2

u2 + C =
1
2

sin2 w + C

=
1
2

sin2(ex) + C

Solution 2: Notice that d
dxtsin(ex)u = ex cos(ex). This suggests to us the substitution

u = sin(ex), du = ex cos(ex) dx.
ż

ex sin(ex) cos(ex) dx =

ż

u du =
1
2

u2 + C =
1
2

sin2(ex) + C
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S-28: Since we have an “inside function,” we start with the substitution s = cos x, so
´ds = sin x dx and sin2 x = 1´ cos2 x = 1´ s2.

ż

sin(cos x) sin3 x dx =

ż

sin(cos x) ¨ sin2 x ¨ sin xdx

= ´

ż

sin(s) ¨ (1´ s2) ds

We use integration by parts with u = (1´ s2), dv = sin s ds; du = ´2s ds, and
v = ´ cos s.

= ´

[
´(1´ s2) cos s´

ż

2s cos s ds
]

= (1´ s2) cos s +
ż

2s cos s ds

We integrate by parts again, with u = 2s, dv = cos s ds; du = 2 ds, and v = sin s.

= (1´ s2) cos s + 2s sin s´
ż

2 sin s ds

= (1´ s2) cos s + 2s sin s + 2 cos s + C

= sin2 x ¨ cos(cos x) + 2 cos x ¨ sin(cos x) + 2 cos(cos x) + C

= (sin2 x + 2) cos(cos x) + 2 cos x ¨ sin(cos x) + C

S-29:

Since the integrand is the product of polynomial and trigonometric functions, we suspect
it might yield to integration by parts. There are a number of ways this can be
accomplished.

Solution 1: Before we choose parts, let’s use the identity sin(2x) = 2 sin x cos x.
ż

x sin x cos xdx =
1
2

ż

x sin(2x)dx

Now let u = x, dv = sin(2x)dx; du = dx, and v = ´1
2 cos(2x). Using integration by

parts:

=
1
2

[
´

x
2

cos(2x) +
1
2

ż

cos(2x)dx
]

= ´
x
4

cos(2x) +
1
8

sin(2x) + C

= ´
x
4
(1´ 2 sin2 x) +

1
4

sin x cos x + C

= ´
x
4
+

x
2

sin2 x +
1
4

sin x cos x + C
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Solution 2: If we let u = x, then du = dx, and this seems desirable for integration by
parts. If u = x, then dv = sin x cos xdx. To find v we can use the substitution
u = sin x, du = cos xdx.

v =

ż

sin x cos xdx =

ż

udu =
1
2

u2 + C =
1
2

sin2 x + C

So, we take v = 1
2 sin2 x. Now we can apply integration by parts to our original

integral.
ż

x sin x cos x dx =
x
2

sin2 x´
ż

1
2

sin2 xdx

Apply the identity sin2 x =
1´ cos(2x)

2
.

=
x
2

sin2 x´
1
4

ż

1´ cos(2x)dx

=
x
2

sin2 x´
x
4
+

1
8

sin(2x) + C

=
x
2

sin2 x´
x
4
+

1
4

sin x cos x + C

Solution 3: Let u = x sin x and dv = cos xdx; then du = (x cos x + sin x)dx and
v = sin x.

ż

x sin x cos xdx = x sin2 x´
ż

sin x(x cos x + sin x)dx

= x sin2 x´
ż

x sin x cos xdx´
ż

sin2 xdx

Apply the identity sin2 x =
1´ cos(2x)

2
to the second integral.

= x sin2 x´
ż

x sin x cos xdx´
ż

1´ cos(2x)
2

dx

= x sin2 x´
ż

x sin x cos xdx´
x
2
+

1
4

sin(2x) + C

So, we have the equation
ż

x sin x cos xdx = x sin2 x´
ż

x sin x cos xdx´
x
2
+

1
4

sin(2x) + C

2
ż

x sin x cos xdx = x sin2 x´
x
2
+

1
4

sin(2x) + C
ż

x sin x cos xdx =
x
2

sin2 x´
x
4
+

1
8

sin(2x) +
C
2

=
x
2

sin2 x´
x
4
+

1
4

sin x cos x +
C
2

Since C is an arbitrary constant that can take any number in (´8,8), also C
2 is an

arbitrary constant that can take any number in (´8,8), so we’re free to rename C
2

to C.
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Solutions to Exercises 1.9 — Jump to TABLE OF CONTENTS

S-1: In the text, there is a template for choosing an appropriate substitution, but for this
problem we will explain the logic of the choices.

The trig identities that we can use are:

1´ sin2 θ = cos2 θ tan2 θ + 1 = sec2 θ sec2 θ ´ 1 = tan2 θ

They have the following forms:

constant ´ function function + constant function ´ constant

In order to cancel out the square root, we should choose a substitution that will match
the argument under the square root with the trig identity of the corresponding form.

(a) There’s not an obvious non-trig substitution for evaluating this problem, so we want a
trigonometric substitution to get rid of the square root in the denominator. Under the
square root is the function 9x2´ 16, which has the form (function) ´ (constant). This form
matches the trig identity sec2 θ ´ 1 = tan2 θ. We can set x to be whatever we need it to be,
but we don’t have the same control over the constant, 16. So, to make the substitution
work, we use a different form of the trig identity: multiplying both sides by 16, we get

16 sec2 θ ´ 16 = 16 tan2 θ

What we want is a substitution that gives us

9x2
´ 16 = 16 sec2 θ ´ 16

So, 9x2 = 16 sec2 θ

x =
4
3

sec θ

Using this substitution,
a

9x2 ´ 16 =
a

16 sec2 θ ´ 16

=
a

16 tan2 θ

= 4| tan θ|

So, we eliminated the square root.

(b) There’s not an obvious non-trig substitution for evaluating this problem, so we want
a trigonometric substitution to get rid of the square root in the denominator. Under the
square root is the function 1´ 4x2, which has the form (constant) ´ (function). This form
matches the trig identity 1´ sin2 θ = cos2 θ. What we want is a substitution that gives us

1´ 4x2 = 1´ sin2 θ

So, 4x2 = sin2 θ

x =
1
2

sin θ
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Using this substitution,
a

1´ 4x2 =
a

1´ sin2 θ

=
a

cos2 θ

= | cos θ|

So, we eliminated the square root. We remark that the absolute value signs are not
needed in | cos θ|, because, for ´1

2 ď x ď 1
2 , we have θ = arcsin(2x) between ´π

2 and π
2 ,

and cos(θ) ě 0 for those θ’s.

(c) There’s not an obvious non-trig substitution for evaluating this problem, so we want a
trigonometric substitution to get rid of the fractional power. (That is, we want to
eliminate the square root.) The function under the power is 25 + x2, which has the form
(constant) + (function). This form matches the trig identity tan2 θ + 1 = sec2 θ. We can
set x to be whatever we need it to be, but we don’t have the same control over the
constant, 25. So, to make the substitution work, we use a different form of the trig
identity: multiplying both sides by 25, we get

25 tan2 θ + 25 = 25 sec2 θ

What we want is a substitution that gives us

25 + x2 = 25 tan2 θ + 25

So, x2 = 25 tan2 θ

x = 5 tan θ

Using this substitution,

(25 + x2)´5/2 = (25 + 25 tan2 θ)´5/2

= (25 sec2 θ)´5/2

= (5| sec θ|)´5

So, we eliminated the square root. We remark that the absolute value signs are not
needed in | sec θ|, because, for ´8 ă x ă 8, we have θ = arctan(x/5) between ´π

2 and
π
2 , and sec(θ) ě 0 for those θ’s.

S-2: Just as in Question 1, we want to choose a trigonometric substitution that will allow
us to eliminate the square roots. Before we can make that choice, though, we need to
complete the square. In subsequent problems, we won’t show the algebra behind
completing the square, but for this problem we’ll work it out explicitly. After some
practice, you’ll be able to do this step in your head for many cases.

After the squares are completed, the choice of trig substitution follows the logic outlined
in the solutions to Question 1, or (equivalently) the template in the text.

(a) The quadratic function under the square root is x2 ´ 4x + 1. To complete the square,
we match the non-constant terms to those of a perfect square.

(ax + b)2 = a2x2 + 2abx + b2

x2
´ 4x + 1 = a2x2 + 2abx + b2 + c for some constant c
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• Looking at the leading term tells us a = 1.

• Then the second term tells us ´4 = 2ab = 2b, so b = ´2.

• Finally, the constant terms give us 1 = b2 + c = 4 + c, so c = ´3.

ż

1
?

x2 ´ 4x + 1
dx =

ż

1
a

(x´ 2)2 ´ 3
dx =

ż

1
b(

x´ 2
)2
´
?

32
dx

So we use the substitution (x´ 2) =
?

3 sec u, which eliminates the square root:
b

(x´ 2)2
´ 3 =

a

3 sec2 u´ 3 =
a

3 tan2 u =
?

3| tan u|

(b) The quadratic function under the square root is ´x2 + 2x + 4 = ´[x2 ´ 2x´ 4]. To
complete the square, we match the non-constant terms to those of a perfect square.
We factored out the negative to make things a little easier–don’t forget to put it back
in before choosing a substitution!

(ax + b)2 = a2x2 + 2abx + b2

x2
´ 2x´ 4 = a2x2 + 2abx + b2 + c for some constant c

• Looking at the leading term tells us a = 1.

• Then the second term tells us ´2 = 2ab = 2b, so b = ´1.

• Finally, the constant terms give us ´4 = b2 + c = 1 + c, so c = ´5.

• Then ´x2 + 2x + 4 = ´[x2 ´ 2x´ 4] = ´[(x´ 1)2 ´ 5] = 5´ (x´ 1)2.

ż

(x´ 1)6

(´x2 + 2x + 4)3/2 dx =

ż

(x´ 1)6

(5´ (x´ 1)2)3/2 dx =

ż

(x´ 1)6

(?
52
´
(
x´ 1

)2
)3/2 dx

So we use the substitution (x´ 1) =
?

5 sin u, which eliminates the square root
(fractional power):

(5´ (x´ 1)2)3/2 =
(

5´ 5 sin2 u
)3/2

=
(

5 cos2 u
)3/2

= 5
?

5| cos3 u|

(c) The quadratic function under the square root is 4x2 + 6x + 10. To complete the
square, we match the non-constant terms to those of a perfect square.

(ax + b)2 = a2x2 + 2abx + b2

4x2 + 6x + 10 = a2x2 + 2abx + b2 + c for some constant c

• Looking at the leading term tells us a = 2.

• Then the second term tells us 6 = 2ab = 4b, so b = 3
2 .
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• Finally, the constant terms give us 10 = b2 + c = 9
4 + c, so c = 31

4 .
ż

1
?

4x2 + 6x + 10
dx =

ż

1
b(

2x + 3
2

)2
+ 31

4

dx =

ż

1
c(

2x + 3
2

)2
+
(?

31
2

)2
dx

So we use the substitution
(
2x + 3

2

)
=

?
31
2 tan u, which eliminates the square root:

d(
2x +

3
2

)2

+
31
4

=

c

31
4

tan2 u +
31
4

=

c

31
4

sec2 u =

?
31
2
| sec u|

(d) The quadratic function under the square root is x2 ´ x. To complete the square, we
match the non-constant terms to those of a perfect square.

(ax + b)2 = a2x2 + 2abx + b2

x2
´ x = a2x2 + 2abx + b2 + c for some constant c

• Looking at the leading term tells us a = 1.

• Then the second term tells us ´1 = 2ab = 2b, so b = ´1
2 .

• Finally, the constant terms give us 0 = b2 + c = 1
4 + c, so c = ´1

4 .

ż

a

x2 ´ x dx =

ż

d(
x´

1
2

)2

´
1
4

dx =

ż

d(
x´

1
2

)2

´

(
1
2

)2

dx

So we use the substitution (x´ 1/2) = 1
2 sec u, which eliminates the square root:

d(
x´

1
2

)2

´
1
4
=

c

1
4

sec 2u´
1
4
=

c

1
4

tan2 u =
1
2
| tan u|

S-3:

(a) If sin θ =
1

20
and θ is between 0 and π/2, then we can draw a right triangle with

angle θ that has opposite side length 1, and hypotenuse length 20. By the
Pythagorean Theorem, the adjacent side has length

?
202 ´ 12 =

?
399. So,

cos θ =
adj
hyp

=

?
399
20

.

θ
?

399

1
20
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We can do a quick “reasonableness” check here: 1
20 is pretty close to 0, so we might

expect θ to be pretty close to 0, and so cos θ should be pretty close to 1. Indeed it is:
?

399
20

«

?
400
20

=
20
20

= 1.

Alternately, we can solve this problem using identities.

sin2 θ + cos2 θ = 1
(

1
20

)2

+ cos2 θ = 1

cos θ = ˘

c

1´
1

400
= ˘

?
399
20

Since 0 ď θ ď π
2 , cos θ ě 0, so

cos θ =

?
399
20

(b) If tan θ = 7 and θ is between 0 and π/2, then we can draw a right triangle with angle
θ that has opposite side length 7 and adjacent side length 1. By the Pythagorean

Theorem, the hypotenuse has length
?

72 + 12 =
?

50 = 5
?

2. So, csc θ =
hyp
opp

=
5
?

2
7

.

θ

1

75
? 2

Again, we can do a quick reasonableness check. Since 7 is much larger than 1, the
triangle we’re thinking of doesn’t look much like the triangle in our standardized
picture above: it’s really quite tall, with a small base. So, the opposite side and

hypotenuse are pretty close in length. Indeed,
5
?

2
7

« 7.071, so this dimension seems
reasonable.

(c) If sec θ =

?
x´ 1
2

and θ is between 0 and π/2, then we can draw a right triangle with

angle θ that has hypotenuse length
?

x´ 1 and adjacent side length 2. By the
Pythagorean Theorem, the opposite side has length
b

?
x´ 12

´ 22 =
?

x´ 1´ 4 =
?

x´ 5. So, tan θ =
opp
adj

=

?
x´ 5
2

.

θ

2

?
x´ 5

? x´
1
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We can also solve this using identities. Note that since sec θ exists, θ ‰ π
2 .

tan2 θ + 1 = sec2 θ

tan2 θ + 1 =

(?
x´ 1
2

)2

=
x´ 1

4

tan θ = ˘

c

x´ 1
4

´ 1 = ˘

?
x´ 5
2

Since 0 ď θ ă π
2 , tan θ ě 0, so

tan θ =

?
x´ 5
2

S-4:

(a) Let θ = arccos
( x

2

)
. That is, cos(θ) = x

2 , and 0 ď θ ď π. Then we can draw the
corresponding right triangle with angle θ with adjacent side of signed length x (we
note that if θ ą π

2 , then x is negative) and hypotenuse of length 2. By the Pythagorean
Theorem, the opposite side of the triangle has length

?
4´ x2.

θ

x

?
4´ x2

2

So,

sin
(

arccos
(x

2

))
= sin θ =

opp
hyp

=

?
4´ x2

2

(b) Let θ = arctan
(

1?
3

)
. That is, tan(θ) = 1?

3
, and ´π

2 ď θ ď π
2 .

Solution 1: Then θ =
π

6
, so sin θ =

1
2

.

Solution 2: Then we can draw the corresponding right triangle with angle θ with
opposite side of length 1 and adjacent side of length

?
3. By the Pythagorean

Theorem, the hypotenuse of the triangle has length
b

?
32

+ 12 = 2.

θ
?

3

1
2

So,
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sin
(

arctan
(

1
?

3

))
= sin θ =

opp
hyp

=
1
2

(c) Let θ = arcsin (
?

x). That is, sin(θ) =
?

x, and ´π
2 ď θ ď π

2 . Then we can draw the
corresponding right triangle with angle θ with opposite side of length

?
x and

hypotenuse of length 1. By the Pythagorean Theorem, the adjacent side of the
triangle has length

?
1´ x.

θ
?

1´ x

?
x

1

So,

sec
(
arcsin

(?
x
))

= sec θ =
hyp
adj

=
1

?
1´ x

S-5: Let x = 2 tan θ, so that x2 + 4 = 4 tan2 θ + 4 = 4 sec2 θ and dx = 2 sec2 θ dθ. Then
ż

1
(x2 + 4)3/2 dx =

ż

1
(4 sec2 θ)3/2 ¨ 2 sec2 θ dθ

=

ż

2 sec2 θ

8 sec3 θ
dθ

=
1
4

ż

cos θ dθ

=
1
4

sin θ + C =
1
4

x
?

x2 + 4
+ C

θ

2

x? x2 +
4

To find sin θ in terms of x, we construct the right triangle above. Since tan θ =
x
2
=

opp
adj

,

we label the opposite side x and the adjacent side 2. By the Pythagorean Theorem, the
hypotenuse has length

?
x2 + 4. Then sin θ =

opp
hyp

=
x

?
x2 + 4

.

To see why we could write (sec2 θ)3/2 = sec3 θ, as opposed to (sec2 θ)3/2 =
ˇ

ˇ sec3 θ
ˇ

ˇ, in the
second line above, see Example 1.9.5 in the CLP-2 text.

As a check, we observe that the derivative of the answer

d
dx

(
1
4

x
?

x2 + 4
+ C

)
=

1
4

1
?

x2 + 4
´

1
2ˆ 4

x(2x)
(
x2 + 4

)3/2 =
x2

4 + 1´ x2

4(
x2 + 4

)3/2

=
1

(
x2 + 4

)3/2

is exactly the integrand.
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S-6:

Solution 1: As in Question 5, substitute x = 2 tan u, dx = 2 sec2 u du. Note that when
x = 4 we have 4 = 2 tan u, so that tan u = 2.

ż 4

0

1

(4 + x2)3/2 dx =

ż arctan 2

0

1

(4 + 4 tan2 u)3/2 2 sec2 u du

=

ż arctan 2

0

2 sec2 u

(2 sec u)3 du

=
1
4

ż arctan 2

0

sec2 u
sec3 u

du

=
1
4

ż arctan 2

0
cos u du

u

1

2
? 5

=

[
1
4

sin u
]arctan 2

0

=
1
4
(

sin(arctan 2)´ 0
)
=

1
2
?

5

To find sin(arctan 2), we use the right triangle above, with angle u = arctan 2. Since
tan u = 2 =

opp
adj

, we label the opposite side as 2, and the adjacent side as 1. The

Pythagorean Theorem tells us the hypotenuse has length
?

5, so sin u =
opp
hyp

=
2
?

5
.

Solution 2: Using our result from Question 5,

ż 4

0

1

(4 + x2)3/2 dx =
1
4

[
x

?
x2 + 4

]4

0

=
1
4
¨

4
?

42 + 4
=

1
2
?

5

S-7: Make the change of variables x = 5 sin θ, dx = 5 cos θ dθ. Since x = 0 corresponds to
θ = 0 and x = 5

2 correponds to sin θ = 1
2 or θ = π

6 ,

ż 5/2

0

dx
?

25´ x2
=

ż π/6

0

5 cos θ dθ
a

25´ 25 sin2 θ
=

ż π/6

0
dθ =

π

6
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S-8: Substitute x = 5 tan u, so that dx = 5 sec2 u du.
ż

1
?

x2 + 25
dx =

ż

1
a

25 tan2 u + 25
5 sec2 u du

=

ż

5 sec2 u
5 sec u

du =

ż

sec u du

= log
ˇ

ˇ sec u + tan u
ˇ

ˇ+ C

u

5

x? x2 +
25

= log
ˇ

ˇ

ˇ

c

1 +
x2

25
+

x
5

ˇ

ˇ

ˇ
+ C

To find sec u and tan u, we have two options. One is to set up a right triangle with angle
u and tan u = x

5 . Then we can label the opposite side x and the adjacent side 5, and use
Pythagoras to find that the hypotenuse is

?
x2 + 25.

Another option is to look back at our work a little more closely–in fact, we’ve already
found what we’re looking for. Since we used the substitution x = 5 tan u, this gives us
tan u = x

5 . In the denominator of the integrand, we simplified
?

x2 + 25 = 5 sec u, so

sec u = 1
5

?
x2 + 25 =

b

1 + x2

25 .

To see why we could write
?

x2 + 25 = 5 sec u, as opposed to
?

x2 + 25 = 5| sec u|, see
Example 1.9.5 in the CLP-2 text.

S-9: The quadratic formula underneath the square root makes us think of a trig
substitution, but in the interest of developing good habits, let’s check for an easier way
first. If we let u = 2x2 + 4x, then du = (4x + 4) dx, so 1

4 du = (x + 1)dx. This
substitution looks easier than a trig substitution (which would start with completing the
square).

ż

x + 1
?

2x2 + 4x
dx =

1
4

ż

1
?

u
du =

1
2
?

u + C =
1
2

a

2x2 + 4x + C

S-10: Substitute x = 4 tan u, dx = 4 sec2 u du.
ż

1
x2
?

x2 + 16
dx =

ż

1

16 tan2 u
a

16 tan2 u + 16
4 sec2 u du

=

ż

sec2 u
16 tan2 u sec u

du =
1

16

ż

sec u
tan2 u

du

=
1

16

ż

cos u
sin2 u

du

To finish off the integral, we’ll substitute v = sin u, dv = cos u du.
ż

1
x2
?

x2 + 16
dx =

1
16

ż

cos u
sin2 u

du =
1

16

ż

dv
v2 = ´

1
16v

+ C

= ´
1

16 sin u
+ C = ´

1
16

?
x2 + 16

x
+ C

u

4

x? x2 +
16
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To find sin u, we draw a right triangle with angle u and tan u = x
4 . We label the opposite

side x and the adjacent side 4, and then from Pythagoras we find that the hypotenuse has

length
?

x2 + 16. So, sin u =

?
x2 + 16

x
.

As a check, we observe that the derivative of the answer

d
dx

(
´

1
16

?
x2 + 16

x
+ C

)
=

1
16

?
x2 + 16

x2 ´
1

16
x

x
?

x2 + 16
=

1
16

(x2 + 16)´ x2

x2
?

x2 + 16

=
1

x2
?

x2 + 16

is exactly the integrand.

S-11: Substitute x = 3 sec u with 0 ď u ă π
2 . Then dx = 3 sec u tan u du and

?
x2 ´ 9 =

?
9 sec2 u´ 9 =

?
9 tan2 u = 3 tan u, so that

ż

dx
x2
?

x2 ´ 9
=

ż

3 sec u tan u du
9 sec2 u

?
9 tan2 u

=
1
9

ż

du
sec u

=
1
9

ż

cos u du =
1
9

sin u + C.

u

3

?
x2 ´ 9

x

To evaluate sin u, we make a right triangle with angle u. Since sec u =
x
3
=

hyp
adj

, we label

the hypotenuse x and the adjacent side 3. Using the Pythagorean Theorem, the opposite

side has length
?

x2 ´ 9. So, sin u =

?
x2 ´ 9

x
and

ż

dx
x2
?

x2 ´ 9
=

?
x2 ´ 9
9x

+ C.

As a check, we observe that the derivative of the answer

d
dx

(?
x2 ´ 9
9x

+ C

)
= ´

?
x2 ´ 9
9x2 +

x
9x
?

x2 ´ 9
=

1
9
´(x2 ´ 9) + x2

x2
?

x2 ´ 9

=
1

x2
?

x2 ´ 9

is exactly the integrand. (We remark that this is the case even for x ď ´3.)

S-12: (a) We’ll use the trig identity cos 2θ = 2 cos2 θ ´ 1. It implies that

cos2 θ =
cos 2θ + 1

2
ùñ cos4 θ =

1
4
[

cos2 2θ + 2 cos 2θ + 1
]
=

1
4

[cos 4θ + 1
2

+ 2 cos 2θ + 1
]

=
cos 4θ

8
+

cos 2θ

2
+

3
8
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So,
ż π/4

0
cos4 θ dθ =

ż π/4

0

(cos 4θ

8
+

cos 2θ

2
+

3
8

)
dθ

=

[
sin 4θ

32
+

sin 2θ

4
+

3
8

θ

]π/4

0

=
1
4
+

3
8
¨

π

4

=
8 + 3π

32
as required.

(b) We’ll use the trig substitution x = tan θ, dx = sec2 θ dθ. Note that when θ = ˘π
4 , we

have x = ˘1. Also note that dividing the trig identity sin2 θ + cos2 θ = 1 by cos2 θ gives
the trig identity tan2 θ + 1 = sec2 θ. So

ż 1

´1

dx

(x2 + 1)3 = 2
ż 1

0

dx

(x2 + 1)3 (even integrand)

= 2
ż π/4

0

sec2 θ dθ

(tan2 θ + 1)3

= 2
ż π/4

0

sec2 θ dθ

(sec2 θ)3

= 2
ż π/4

0
cos4 θ dθ

=
8 + 3π

16
by part (a).

S-13: The integrand is an odd function, and the limits of integration are symmetric, so
ż π/12

´π/12

15x3

(x2 + 1)
?

9´ x25 dx = 0.

S-14: Substitute x = 2 sin u, so that dx = 2 cos u du.
ż

a

4´ x2 dx =

ż

a

4´ 4 sin2 u 2 cos u du

=

ż

a

4 cos2 u 2 cos u du

=

ż

4 cos2 u du = 2
ż (

1 + cos(2u)
)

du

= 2u + sin(2u) + C
= 2u + 2 sin u cos u + C

= 2 arcsin
x
2
+

x
2

a

4´ x2 + C

u
?

4´ x2

x
2
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To see why we could write
?

4 cos2 u = 2 cos u, as opposed to
?

4 cos2 u = 2| cos u|, in the
third line above, see Example 1.9.2 in the CLP-2 text.

We used the substitution x = 2 sin u, so we know sin u = x
2 and u = arcsin( x

2 ). We have
three options for finding cos u.

First, we can draw a right triangle with angle u. Since sin u = x
2 , we label the opposite

side x and the hypotenuse 2, then by the Pythagorean Theorem the adjacent side has

length
?

4´ x2. So, cos u =
adj
hyp

=

?
4´ x2

2
.

Second, we can look back carefully at our work. We simplified
?

4´ x2 = 2 cos u, so

cos u =

?
4´ x2

2
.

Third, we could use the identity sin2 u + cos2 u = 1. Then

cos u = ˘

a

1´ sin2 u = ˘

b

1´ x2

4 . Since u = arcsin(x/2), u is in the range of arcsine,

which means ´π
2 ď u ď π

2 . Therefore, cos u ě 0, so cos u =
b

1´ x2

4 =
?

4´x2

2 .

So,
ż

a

4´ x2 dx = 2u + 2 sin u cos u + C = 2 arcsin
x
2
+ x ¨

?
4´ x2

2
+ C

S-15: Substitute x = 2
5 sec u with 0 ă u ă π

2 , so that dx = 2
5 sec u tan u du and

?
25x2 ´ 4 =

a

4(sec2 u´ 1) =
?

4 tan2 u = 2 tan u. Then

ż

?
25x2 ´ 4

x
dx =

ż

2 tan u
2
5 sec u

¨
2
5

sec u tan u du

= 2
ż

tan2 u du = 2
ż (

sec2 u´ 1
)

du

= 2 tan u´ 2u + C

=
a

25x2 ´ 4´ 2 arcsec 5x
2 + C

u

2

?
25x2 ´ 4

5x

To find tan u, we draw a right triangle with angle u. Since sec u =
5x
2

, we label the
hypotenuse 5x and the adjacent side 2. Then the Pythagorean Theorem gives us the

opposite side as length
?

25x2 ´ 4. Then tan u =
opp
adj

=

?
25x2 ´ 4

2
.

Alternately, we can notice that in our work, we already showed 2 tan u =
?

25x2 ´ 4, so
tan u = 1

2

?
25x2 ´ 4.
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As a check, we observe that the derivative of the answer

d
dx

(
a

25x2 ´ 4´ 2 arcsec
5x
2

+ C
)
=

25x
?

25x2 ´ 4
´ 2

5
2

ˇ

ˇ

5x
2

ˇ

ˇ

b

25x2

4 ´ 1

=
25x

?
25x2 ´ 4

´
4

x
?

25x2 ´ 4
since x ą 0

=
25x2 ´ 4

x
?

25x2 ´ 4

=

?
25x2 ´ 4

x

is exactly the integrand (provided x ą 2
5 ).

S-16: The integrand has a quadratic polynomial under a square root, which makes us
think of trig substitutions. However, it’s good practice to look for simpler methods
before we jump into more complicated ones, and in this case we find something nicer
than a trig substitution: the substitution u = x2 ´ 1, du = 2x dx. Then xdx = 1

2du, and
x2 = u + 1. When x =

?
10, u = 9, and when x =

?
17, u = 16.

ż

?
17

?
10

x3
?

x2 ´ 1
dx =

ż

?
17

?
10

x2
?

x2 ´ 1
¨ xdx

=
1
2

ż 16

9

u + 1
?

u
du

=
1
2

ż 16

9

(
u1/2 + u´1/2

)
du

=
1
2

[
2
3

u3/2 + 2u1/2
]16

9

=
1
2

[
2
3
¨ 43 + 2 ¨ 4´

2
3
¨ 33

´ 2 ¨ 3
]

=
40
3

S-17: This integrand looks very different from those above. But it is only slightly
disguised. If we complete the square

ż

dx
?

3´ 2x´ x2
=

ż

dx
a

4´ (x + 1)2

and make the substitution y = x + 1, dy = dx
ż

dx
?

3´ 2x´ x2
=

ż

dx
a

4´ (x + 1)2
=

ż

dy
a

4´ y2
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we get a typical trig substitution integral. So, we substitute y = 2 sin θ, dy = 2 cos θ dθ to
get

ż

dx
?

3´ 2x´ x2
=

ż

dy
a

4´ y2
=

ż

2 cos θ dθ
a

4´ 4 sin2 θ
=

ż

2 cos θ dθ
?

4 cos2 θ

=

ż

dθ = θ + C = arcsin
y
2
+ C

= arcsin
x + 1

2
+ C

An experienced integrator would probably substitute x + 1 = 2 sin θ directly, without
going through y.

S-18: Completing the square, we see 4x2 ´ 12x + 8 = (2x´ 3)2 ´ 1.

ż

1
(2x´ 3)3

?
4x2 ´ 12x + 8

dx =

ż

1
(2x´ 3)3

a

(2x´ 3)2 ´ 1
dx

As x ą 2, we have 2x´ 3 ą 1. We use the substitution 2x´ 3 = sec θ with 0 ď θ ă π
2 . So

2 dx = sec θ tan θ dθ and
a

(2x´ 3)2 ´ 1 =
?

sec2 θ ´ 1 =
?

tan2 θ = tan θ.

=
1
2

ż

1
sec3 θ

?
sec2 θ ´ 1

sec θ tan θ dθ

=
1
2

ż

1
sec3 θ tan θ

sec θ tan θ dθ

=
1
2

ż

1
sec2 θ

dθ

=
1
2

ż

cos2 θ dθ

=
1
4

ż

(1 + cos(2θ)) dθ

=
1
4

(
θ +

1
2

sin(2θ)

)
+ C

=
1
4
(θ + sin θ cos θ) + C

θ

1

?
4x2 ´ 12x + 82x´

3

=
1
4

(
arccos

(
1

2x´ 3

)
+

?
4x2 ´ 12x + 8
(2x´ 3)2

)
+ C

Since 2x´ 3 = sec θ, we know cos θ = 1
2x´3 and θ = arccos

(
1

2x´3

)
. (Equivalently,

θ = arcsec(2x´ 3).) To find sin θ, we draw a right triangle with adjacent side of length 1,
and hypotenuse of length 2x´ 3. By the Pythagorean Theorem, the opposite side has
length

?
4x2 ´ 12x + 8.
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S-19: We use the substitution x = tan u, dx = sec2 u du. Note tan 0 = 0 and tan π
4 = 1.

ż 1

0

x2

?
x2 + 1

3 dx =

ż π/4

0

tan2 u
a

tan2 u + 1
3 sec2 u du

=

ż π/4

0

tan2 u
?

sec2 u
3 sec2 u du

=

ż π/4

0

tan2 u
sec u

du

=

ż π/4

0

sec2 u´ 1
sec u

du

=

ż π/4

0

(
sec u´ cos u

)
du

=
[

log |sec u + tan u| ´ sin u
]π/4

0

=

(
log

ˇ

ˇ

ˇ

?
2 + 1

ˇ

ˇ

ˇ
´

1
?

2

)
´ (log |1 + 0| ´ 0)

= log(1 +
?

2)´
1
?

2

S-20: There’s no square root, but we can still make use of the substitution x = tan θ,
dx = sec2 θ dθ.

ż

1
(x2 + 1)2 dx =

ż

1
(tan2 θ + 1)2 sec2 θ dθ

=

ż

1
sec4 θ

sec2 θ dθ =

ż

cos2 θ dθ

=
1
2

ż (
1 + cos(2θ)

)
dθ

=
1
2

(
θ +

1
2

sin(2θ)

)
+ C

=
1
2
(θ + sin θ cos θ) + Cθ

1

x? x2 +
1

=
1
2

(
arctan x +

x
x2 + 1

)
+ C

Since x = tan θ, we can draw a right triangle with angle θ, opposite side x, and adjacent
side 1. Then by the Pythagorean Theorem, its hypotenuse has length

?
x2 + 1, which

allows us to find sin θ and cos θ.

S-21: We complete the square to find x2 ´ 2x + 2 = (x´ 1)2 + 1.
ż

x2
?

x2 ´ 2x + 2
dx =

ż

x2
a

(x´ 1)2 + 1
dx
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We use the substitution x´ 1 = tan θ, which implies dx = sec2 θ dθ and x = tan θ + 1

=

ż

(tan θ + 1)2
a

(tan θ)2 + 1
sec2 θ dθ

=

ż

tan2 θ + 2 tan θ + 1
sec θ

sec2 θ dθ

=

ż

(sec2 θ + 2 tan θ) sec θ dθ

=

ż (
sec3 θ + 2 tan θ sec θ

)
dθ

θ

1

x´ 1? x2 ´
2x +

2

=
1
2

sec θ tan θ +
1
2

log | sec θ + tan θ|+ 2 sec θ + C

=
1
2

a

x2 ´ 2x + 2(x´ 1) +
1
2

log
ˇ

ˇ

ˇ

a

x2 ´ 2x + 2 + x´ 1
ˇ

ˇ

ˇ

+ 2
a

x2 ´ 2x + 2 + C

=
3 + x

2

a

x2 ´ 2x + 2 +
1
2

log
ˇ

ˇ

ˇ

a

x2 ´ 2x + 2 + x´ 1
ˇ

ˇ

ˇ
+ C

To see why we could write
a

(tan θ)2 + 25 = sec θ, as opposed to
a

(tan θ)2 + 25 = | sec θ|, see Example 1.9.5 in the CLP-2 text.

From our substitution, we know tan θ = x´ 1. To find sec θ, we can notice that in our
work we already simplified

?
x2 ´ 2x + 1 = sec θ. Alternately, we can draw a right

triangle with angle θ, opposite side x´ 1, adjacent side 1, and use the Pythagorean
Theorem to find the hypotenuse.

S-22: First, we complete the square. The constants aren’t integers, but we can still use the
same method as in Question 2. The quadratic function under the square root is 3x2 + 5x.
We match the non-constant terms to those of a perfect square.

(ax + b)2 = a2x2 + 2abx + b2

3x2 + 5x = a2x2 + 2abx + b2 + c for some constant c

• Looking at the leading term tells us a =
?

3.

• Then the second term tells us 5 = 2ab = 2
?

3b, so b = 5
2
?

3
.

• Finally, the constant terms give us 0 = b2 + c = 25
12 + c, so c = ´25

12 .

So, 3x2 + 5x =
(?

3x + 5
2
?

3

)2
´ 25

12 .

ż

1
?

3x2 + 5x
dx =

ż

1
c(?

3x + 5
2
?

3

)2
´ 25

12

dx
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We use the substitution
?

3x + 5
2
?

3
= 5

2
?

3
sec θ, which leads to

?
3dx = 5

2
?

3
sec θ tan θ dθ,

i.e. dx = 5
6 sec θ tan θ dθ.

=

ż

1
c(

5
2
?

3
sec θ

)2
´ 25

12

¨
5
6

sec θ tan θ dθ

=

ż

1
b

25
12 sec2 θ ´ 25

12

¨
5
6

sec θ tan θ dθ

=

ż

1
b

25
12 tan2 θ

¨
5
6

sec θ tan θ dθ

=

ż

1
5

2
?

3
tan θ

¨
5
6

sec θ tan θ dθ

=
1
?

3

ż

sec θ dθ

=
1
?

3
log |sec θ + tan θ|+ C

θ

5

2
?

9x2 + 15x6x +
5

=
1
?

3
log

ˇ

ˇ

ˇ

ˇ

(
6
5

x + 1
)
+

2
5

a

9x2 + 15x
ˇ

ˇ

ˇ

ˇ

+ C

Since we used the substitution
?

3x + 5
2
?

3
= 5

2
?

3
sec θ, we have sec θ = 6

5 x + 1 = 6x+5
5 . To

find tan θ in terms of x, we have two options. We can make a right triangle with angle θ,
hypotenuse 6x + 5, and adjacent side 5, then use the Pythagorean Theorem to find the
opposite side. Or, we can look through our work and see that

?
3x2 + 5 = 5

2
?

3
tan θ, so

tan θ = 2
?

3
5

?
3x2 + 5 = 2

5

?
9x2 + 15.

As a check, we observe that the derivative of the answer

d
dx

(
1
?

3
log

ˇ

ˇ

ˇ

ˇ

(
6
5

x + 1
)
+

2
5

a

9x2 + 15x
ˇ

ˇ

ˇ

ˇ

+ C
)
=

1
?

3

6
5 +

1
5

18x+15?
9x2+15x(6

5 x + 1
)
+ 2

5

?
9x2 + 15x

=
1
?

3

6 + 3 6x+5?
9x2+15x

(6x + 5) + 2
?

9x2 + 15x
=
?

3
2 + 6x+5?

9x2+15x

(6x + 5) + 2
?

9x2 + 15x
=

?
3

?
9x2 + 15x

=
1

?
3x2 + 5x

is exactly the integrand.

Remark: in applications, often the numbers involved are messier than they are in
textbooks. The ideas of this problem are similar to other problems in this section, but it’s
good practice to apply them in a slightly messy context.
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S-23: We use the substitution x = tan u, dx = sec2 u du.

ż

?
1 + x23

x
dx =

ż

a

1 + tan2 u
3

tan u
sec2 u du

=

ż

sec3 u
tan u

sec2 u du

=

ż

(sec2 u)2

tan u
sec u du

=

ż

(tan2 u + 1)2

tan u
sec u du

=

ż

tan4 u + 2 tan2 u + 1
tan u

sec u du

=

ż

tan3 u sec u du +

ż

2 sec u tan u du +

ż

sec u
tan u

du

For the first integral, we use the substitution w = sec u. The second is the antiderivative
of 2 sec u. The third we simplify as sec u

tan u = 1
cos u ¨

cos u
sin u = csc u .

=

ż
(
(sec2 u´ 1) sec u tan u

)
du + 2 sec u + log | cot u´ csc u|+ C

=

ż

(w2
´ 1) dw + 2 sec u + log | cot u´ csc u|+ C

=
1
3

w3
´w + 2 sec u + log | cot u´ csc u|+ C

=
1
3

sec3 u´ sec u + 2 sec u + log | cot u´ csc u|+ Cu

1

x? 1+
x2

=
1
3

sec3 u + sec u + log | cot u´ csc u|+ C

We began with the substitution x = tan u. Then cot u = 1
x . To find csc u and sec u, we

draw a right triangle with angle u, opposite side x, and adjacent side 1. The Pythagorean
Theorem gives us the hypotenuse.

=
1
3

a

1 + x2
3
+
a

1 + x2 + log

ˇ

ˇ

ˇ

ˇ

ˇ

1
x
´

?
1 + x2

x

ˇ

ˇ

ˇ

ˇ

ˇ

+ C

=
1
3

a

1 + x2(4 + x2) + log

ˇ

ˇ

ˇ

ˇ

ˇ

1´
?

1 + x2

x

ˇ

ˇ

ˇ

ˇ

ˇ

+ C

S-24: The half of the ellipse to the right of the y-axis is given by the equation

x = f (y) = 4

c

1´
(y

2

)2
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The area we want is twice the area between the right-hand side of the curve and the
y-axis, from y = ´1 to y = 1. In other words,

Area = 2
ż 1

´1
4

c

1´
(y

2

)2
dy = 8

ż 1

´1

c

1´
(y

2

)2
dy

Since the integrand
b

1´
( y

2

)2 is an even function of y,

ż 1

´1

c

1´
(y

2

)2
dy = 2

ż 1

0

c

1´
(y

2

)2
dy ùñ Area = 16

ż 1

0

c

1´
(y

2

)2
dy

We use the substitution y
2 = sin θ, 1

2dy = cos θ dθ. When y = 0, sin θ = 0 so that θ = 0,
and when y = 1, sin θ = 1

2 so that θ = π
6 . Hence

Area = 16
ż π/6

0

b

1´ (sin θ)2 2 cos θ dθ

= 32
ż π/6

0

a

cos2 θ cos θ dθ

= 32
ż π/6

0
cos2 θ dθ

= 16
ż π/6

0

(
1 + cos(2θ)

)
dθ

= 16
[

θ +
1
2

sin(2θ)

]π/6

0

= 16
(

π

6
+

1
2
¨

?
3

2

)

=
8π

3
+ 4
?

3

Remark: we also investigated areas of ellipses in Question 16, Section 1.2.

S-25: Note that f (x) is an even function, nonnegative over its entire domain.
(a) To find the area of R, we evaluate

Area =

ż 1/2

´1/2

|x|
4
?

1´ x2
dx = 2

ż 1/2

0

x
4
?

1´ x2
dx

We use the substitution u = 1´ x2, du = ´2x dx.

= ´

ż 3/4

1

1
u1/4 du

= ´

[
4
3

u3/4
]3/4

1
= ´

4
3

((
3
4

)3/4

´ 1

)

=
4
3
´

4

c

4
3
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(b) We slice the solid of rotation into circular disks of width dx and radius
|x|

4
?

1´ x2
.

Volume =

ż 1/2

´1/2
π

(
|x|

4
?

1´ x2

)2

dx

= 2π

ż 1/2

0

x2
?

1´ x2
dx

We use the substitution x = sin θ, dx = cos θ dθ, so
?

1´ x2 =
a

1´ sin2 θ = cos θ. Note
sin 0 = 0 and sin π

6 = 1
2 .

= 2π

ż π/6

0

sin2 θ

cos θ
cos θ dθ

= 2π

ż π/6

0
sin2 θ dθ

= π

ż π/6

0

(
1´ cos(2θ)

)
dθ

= π

[
θ ´

1
2

sin(2θ)

]π/6

0

= π

(
π

6
´

1
2
¨

?
3

2

)

=
π2

6
´

?
3π

4

S-26: If we think of ex as
(
ex/2)2

, the function under the square root suggests the
substitution ex/2 = tan θ. Then 1

2 ex/2 dx = sec2 θ dθ, so dx = 2
ex/2 sec2 θ dθ = 2

tan θ sec θ dθ.
ż

?
1 + ex dx =

ż

2
a

1 + tan2 θ

tan θ
sec2 θ dθ

= 2
ż

sec3 θ

tan θ
dθ

= 2
ż

sec θ(tan2 θ + 1)
tan θ

dθ

= 2
ż
(

sec θ tan θ +
sec θ

tan θ

)
dθ

= 2
ż (

sec θ tan θ + csc θ
)

dθθ

1

ex/2
? 1+

ex

= 2 sec θ + 2 log | cot θ ´ csc θ|+ C

= 2
?

1 + ex + 2 log
ˇ

ˇ

ˇ

ˇ

1
ex/2 ´

?
1 + ex

ex/2

ˇ

ˇ

ˇ

ˇ

+ C

= 2
?

1 + ex + 2 log
ˇ

ˇ

ˇ
1´

?
1 + ex

ˇ

ˇ

ˇ
´ 2 log(ex/2) + C

= 2
?

1 + ex + 2 log
ˇ

ˇ

ˇ
1´

?
1 + ex

ˇ

ˇ

ˇ
´ x + C
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We used the substitution ex/2 = tan θ, so cot θ = 1
ex/2 . To find sec θ and csc θ, we draw a

right triangle with opposite side ex/2 and adjacent side 1. They by the Pythagorean
Theorem, the hypotenuse has length

?
1 + ex.

Remark: if we use the substitution u =
?

1 + ex, then we can change the integral to
ż

2u2

u2 ´ 1
du. We can integrate this using the method of partial fractions, which we’ll

learn in the next section. You can explore this option in Question 26, Section 1.10.

S-27:

(a) We can save ourselves some trouble by applying logarithm rules before we
differentiate.

log
ˇ

ˇ

ˇ

ˇ

1 + x
?

1´ x2

ˇ

ˇ

ˇ

ˇ

= log |1 + x| ´ log |
a

1´ x2|

= log |1 + x| ´
1
2

log |1´ x2
|

= log |1 + x| ´
1
2

log |(1 + x)(1´ x)|

= log |1 + x| ´
1
2

log |1 + x| ´
1
2

log |1´ x|

d
dx

"

log
ˇ

ˇ

ˇ

ˇ

1 + x
?

1´ x2

ˇ

ˇ

ˇ

ˇ

*

=
d
dx

"

log |1 + x| ´
1
2

log |1 + x| ´
1
2

log |1´ x|
*

=
1

1 + x
´

1/2
1 + x

+
1/2

1´ x

=
1/2

1 + x
+

1/2
1´ x

=
1

1´ x2

Notice this is the integrand from our work in blue.

(b) False:
ż 3

2

1
1´ x2 dx is a number, because it is the area under a finite portion of a

continuous curve. (We note that the integrand is continuous over the interval [2, 3],

although it is not continuous everywhere.) However,
[

log
ˇ

ˇ

ˇ

ˇ

1 + x
?

1´ x2

ˇ

ˇ

ˇ

ˇ

]x=3

x=2
is not

defined, since the denominator takes the square root of a negative number. So, these
two expressions are not the same.

(c) The work in the question is not correct. The most salient problem is that when we
make the substitution x = sin θ, we restrict the possible values of x to [´1, 1], since
this is the range of the sine function. However, the original integral had no such
restriction.

How can we be sure we avoid this problem in the future? In the introductory text to
Section 1.9 (before Example 1.9.1), the CLP-2 text tells us that we are allowed to write
our old variable as a function of a new variable (say x = s(u)) as long as that function
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is invertible to recover our original variable x. There is one very obvious reason why
invertibility is necessary: after we antidifferentiate using our new variable u, we
need to get it back in terms of our original variable, so we need to be able to recover
x. Moreover, invertibility reconciles potential problems with domains: if an inverse
function u = s´1(x) exists, then for any x, there exists a u with s(u) = x. (This was
not the case in the work for the question, because we chose x = sin θ, but if x = 2,
there is no corresponding θ. Note, however, that x = sin θ is invertible over [´1, 1], so
the work is correct if we restrict x to those values.)

Remark: in the next section, you will learn to use partial fractions to find
ż

1
1´ x2 dx = log |1 + x| ´

1
2

log |1´ x|. When ´1 ă x ă 1, this is equivalent to

log
ˇ

ˇ

ˇ

ˇ

1 + x
?

1´ x2

ˇ

ˇ

ˇ

ˇ

.

S-28: Remember that for any value X,

|X| =
"

X if X ě 0
´X if X ď 0

So, |X| ‰ X precisely when X ă 0.

(a) The range of arcsine is
[
´ π

2 , π
2

]
. So, since u = arcsin(x/a), u is in the range

[
´ π

2 , π
2

]
.

Therefore cos u ě 0. Since a is positive, a cos u ě 0, so a cos u = |a cos u|. That is,
a

a2 ´ x2 = |a cos u| = a cos u

all the time.

(b) The range of arctangent is
(
´ π

2 , π
2

)
. So, since u = arctan(x/a), u is in the range(

´ π
2 , π

2

)
. Therefore sec u = 1

cos u ą 0. Since a is positive, a sec u ą 0, so
a sec u = |a sec u|.That is,

a

a2 + x2 = |a sec u| = a sec u

all the time.

(c) The range of arccosine is
[
0, π

]
. So, since u = arcsec(x/a) = arccos(a/x), u is in the

range
[
0, π

]
. (Actually, it’s in the range [0, π

2 )Y (π
2 , π], since secant is undefined at π/2.)

If |a tan u| ‰ a tan u, then tan u ă 0, which happens when u is in the range
(

π
2 , π). This is

the same range over which ´1 ă cos u ă 0, and so ´1 ă a
x ă 0. Since a

x ă 0, a and x have
different signs, so x ă 0. Then since ´1 ă a

x , also x ă ´a.

So,
a

x2 ´ a2 = |a tan u| = ´a tan u ‰ a tan u

happens precisely when when x ă ´a.
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S-1: If a quadratic function can be factored as (ax + b)(cx + d) for some constants
a, b, c, d, then it has roots ´ b

a and ´d
c . So, if a quadratic function has no roots, it is

irreducible: this is the case for the function in graph (d).

If a quadratic function has two different roots, then (ax + b) ‰ α(cx + d) for any constant
α. That is, the quadratic function is the product of distinct linear factors. This is the case
for the functions graphed in (b) and (c), since these each have two distinct places where
they cross the x-axis.

Finally, if a quadratic function has precisely one root, then b
a = d

c , so:

(ax + b)(cx + d) = a(x + b
a )(cx + d) = a(x + d

c )(cx + d) = a
c (cx + d)(cx + d)

That is, the quadratic function is the product of a repeated linear factor, and a constant a
c

(which might simply be a
c = 1).

S-2: Our first step is to fully factor the denominator:

(x2
´ 1)2(x2 + 1) = (x´ 1)2(x + 1)2(x2 + 1)

Once a term is linear, it can’t be factored further; for quadratic terms, we should check
that they are irreducible. Since x2 + 1 has no real roots (we are familiar with its graph,
which is entirely above the x-axis), it is irreducible, so now our denominator is fully
factored.

x3 + 3
(x2 ´ 1)2(x2 + 1)

=
x3 + 3

(x´ 1)2(x + 1)2(x2 + 1)

=
A

x´ 1
+

B
(x´ 1)2 +

C
x + 1

+
D

(x + 1)2 +
Ex + F
x2 + 1

Notice (x´ 1) and (x + 1) are (repeated) linear factors, while (x2 + 1) is an irreducible
quadratic factor. This accounts for the difference in the numerators of their
corresponding terms.

S-3: The partial fraction decomposition has the form

3x3 ´ 2x2 + 11
x2(x´ 1)(x2 + 3)

=
A

x´ 1
+ various terms

When we multiply through by the original denominator, this becomes

3x3
´ 2x2 + 11 = x2(x2 + 3)A + (x´ 1)(other terms).

Evaluating both sides at x = 1 yields 3 ¨ 13 ´ 2 ¨ 12 + 11 = 12(12 + 3)A + 0, or A = 3.

S-4:

(a) We start by dividing. The leading term of the numerator is x times the leading term
of the denominator. The remainder is x + 2.
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x
x2 + 1

)
x3 + 2x + 2

´ x3 ´ x
x + 2

That is, x3 + 2x + 2 = x(x2 + 1) + (x + 2). So,

x3 + 2x + 2
x2 + 1

= x +
x + 2
x2 + 1

(b) We start by dividing. The leading term of the numerator is 3x2 times the leading term
of the denominator.

3x2

5x2 + 2x + 8
)

15x4 + 6x3 + 34x2 + 4x + 20
´ 15x4 ´ 6x3 ´ 24x2

10x2 + 4x + 20

Then 5x2 goes into 10x2 twice, so

3x2 + 2
5x2 + 2x + 8

)
15x4 + 6x3 + 34x2 + 4x + 20

´ 15x4 ´ 6x3 ´ 24x2

10x2 + 4x + 20
´ 10x2 ´ 4x ´ 16

4

Our remainder is 4. That is,

15x4 + 6x3 + 34x2 + 4x + 20
5x2 + 2x + 8

= 3x2 + 2 +
4

5x2 + 2x + 8
.

(c) We start by dividing. The leading term of the numerator is x3 times the leading term
of the denominator.

x3

2x2 + 5
)

2x5 + 9x3 + 12x2 + 10x + 30
´ 2x5 ´ 5x3

4x3 + 12x2 + 10x

Then 2x2(2x) gives us 4x3.

x3 + 2x
2x2 + 5

)
2x5 + 9x3 + 12x2 + 10x + 30

´ 2x5 ´ 5x3

4x3 + 12x2 + 10x
´ 4x3 ´ 10x

12x2 + 30
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Finally, 2x2 goes into 12x2 six times.

x3 + 2x + 6
2x2 + 5

)
2x5 + 9x3 + 12x2 + 10x + 30

´ 2x5 ´ 5x3

4x3 + 12x2 + 10x
´ 4x3 ´ 10x

12x2 + 30
´ 12x2 ´ 30

0

Since there is no remainder,

2x5 + 9x3 + 12x2 + 10x + 30
2x2 + 5

= x3 + 2x + 6

Remark: if we wanted to be pedantic about the question statement, we could write
our final answer as x3 + 2x + 6 + 0

x , so that we are indeed adding a polynomial to a
rational function whose numerator has degree strictly smaller than its denominator.

S-5:

(a) The polynomial 5x3 ´ 3x2 ´ 10x + 6 has a repeated pattern: the ratio of the first two
coefficients is the same as the ratio of the last two coefficients. We can use this to
factor.

5x3
´ 3x2

´ 10x + 6 = x2(5x´ 3)´ 2(5x´ 3) = (x2
´ 2)(5x´ 3)

= (x +
?

2)(x´
?

2)(5x´ 3)

(b) The polynomial x4 ´ 3x2 ´ 5 has only even powers of x, so we can (temporarily)
replace them with x2 = y to turn our quartic polynomial into a quadratic.

x4
´ 3x2

´ 5 = y2
´ 3y´ 5

There’s no obvious factoring here, but we can find its roots, if any, using the
quadratic equation.

y =
3˘

a

32 ´ 4(1)(´5)
2

=
3˘

?
29

2

So, y2
´ 3y´ 5 =

(
y´

3 +
?

29
2

)(
y´

3´
?

29
2

)

Therefore, x4
´ 3x2

´ 5 =

(
x2
´

3 +
?

29
2

)(
x2
´

3´
?

29
2

)
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We’d like to use the difference of two squares to factor these quadratic expressions.
For this to work, the constants must be positive (so their square roots are real). Since?

29 ą 3, only the first quadratic is factorable. The other is irreducible–it’s always
positive, so it had no roots.

x4
´ 3x2

´ 5 =


x +

d

3 +
?

29
2




x´

d

3 +
?

29
2



(

x2 +

?
29´ 3

2

)

(c) Without seeing any obvious patterns, we start hunting for roots. Since we have all
integer coefficients, if there are any integer roots, they will divide our constant term,
´6. So, our candidates for roots are ˘1, ˘2, ˘3, and ˘6. To save time, we don’t need
to know exactly the value of our polynomial at these points: only whether or not it is
0. Write f (x) = x4 ´ 4x3 ´ 10x2 ´ 11x´ 6.

f (´1) = 0 f (´2) ‰ 0 f (´3) ‰ 0 f (´6) ‰ 0
f (1) ‰ 0 f (2) ‰ 0 f (3) ‰ 0 f (6) = 0

Since x = ´1 and x = 6 are roots of our polynomial, it has factors (x + 1) and (x´ 6).
Note (x + 1)(x´ 6) = x2 ´ 5x´ 6. We use long division to figure out what else is
lurking in our polynomial.

x2 + x + 1
x2 ´ 5x´ 6

)
x4 ´ 4x3 ´ 10x2 ´ 11x ´ 6

´ x4 + 5x3 + 6x2

x3 ´ 4x2 ´ 11x
´ x3 + 5x2 + 6x

x2 ´ 5x ´ 6
´ x2 + 5x + 6

0

So, x4 ´ 4x3 ´ 10x2 ´ 11x´ 6 = (x + 1)(x´ 6)(x2 + x + 1).

We should check whether x2 + x + 1 is reducible or not. If we try to find its roots

with the quadratic equation, we get
´1˘

?
´3

2
, which are not real numbers. So,

we’re at the end of our factoring.

(d) Without seeing any obvious patterns, we start hunting for roots. Since we have all
integer coefficients, if there are any integer roots, they will divide our constant term,
´15. So, our candidates for roots are ˘1, ˘3, ˘5, and ˘15. Write
f (x) = 2x4 + 12x3 ´ x2 ´ 52x + 15.

f (´1) ‰ 0 f (´3) = 0 f (´5) = 0 f (´5) ‰ 0
f (1) ‰ 0 f (3) ‰ 0 f (5) ‰ 0 f (15) ‰ 0

Since x = ´3 and x = ´5 are roots of our polynomial, it has factors (x + 3) and
(x + 5). Note (x + 3)(x + 5) = x2 + 8x + 15. We use long division to move forward.
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2x2 ´ 4x + 1
x2 + 8x + 15

)
2x4 + 12x3 ´ x2 ´ 52x + 15

´ 2x4 ´ 16x3 ´ 30x2

´ 4x3 ´ 31x2 ´ 52x
4x3 + 32x2 + 60x

x2 + 8x + 15
´ x2 ´ 8x ´ 15

0

So, 2x4 + 12x3 ´ x2 ´ 52x + 15 = (x + 3)(x + 5)(2x2 ´ 4x + 1).

We should check whether 2x2 ´ 4x + 1 is reducible or not. There’s not an obvious
way to factor it, but we can use the quadratic equation. This gives us roots
4˘

?
16´ 8
4

= 1˘
?

2
2 . So, we have two more linear factors.

Specifically:

2x4 + 12x3 ´ x2 ´ 52x + 15 = (x + 3)(x + 5)
(

x´
(

1 +
?

2
2

)) (
x´

(
1´

?
2

2

))
.

S-6: The goal of partial fraction decomposition is to write our integrand in a form that is
easy to integrate. The antiderivative of (1) can be easily determined with the substitution
u = (ax + b). It’s less clear how to find the antiderivative of (2).

S-7: The integrand is a rational function, so it’s a candidate for partial fraction. We
quickly rule out any obvious substitution or integration by parts, so we go ahead with
the decomposition.

We start by expressing the integrand, i.e. the fraction 1
x+x2 = 1

x(1+x) , as a linear

combination of the simpler fractions 1
x and 1

x+1 (which we already know how to
integrate). We will have

1
x + x2 =

1
x(1 + x)

=
a
x
+

b
x + 1

=
a(x + 1) + bx

x(1 + x)

The fraction on the left hand side is the same as the fraction on the right hand side if and
only if the numerator on the left hand side, which is 1 = 0x + 1, is equal to the numerator
on the right hand side, which is a(x + 1) + bx = (a + b)x + a. This in turn is the case if
and only of a = 1 (i.e. the constant terms are the same in the two numerators) and
a + b = 0 (i.e. the coefficients of x are the same in the two numerators). So a = 1 and
b = ´1. Now we can easily evaluate the integral

ż 2

1

dx
x + x2 =

ż 2

1

dx
x(x + 1)

=

ż 2

1

(1
x
´

1
x + 1

)
dx =

[
log x´ log(x + 1)

]2

1

= log 2´ log
3
2
= log

4
3
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S-8: We’ll first do a partial fraction decomposition. The sneaky way is to temporarily
rename x2 to y. Then x4 + x2 = y2 + y and

1
x4 + x2 =

1
y(y + 1)

=
1
y
´

1
y + 1

as we found in Question 7. Now we restore y to x2.
ż

1
x4 + x2 dx =

ż ( 1
x2 ´

1
x2 + 1

)
dx = ´

1
x
´ arctan x + C

S-9: The integrand is of the form N(x)/D(x) with D(x) already factored and N(x) of
lower degree. We immediately look for a partial fraction decomposition:

12x + 4
(x´ 3)(x2 + 1)

=
A

x´ 3
+

Bx + C
x2 + 1

.

Multiplying through by the denominator yields

12x + 4 = A(x2 + 1) + (Bx + C)(x´ 3) (˚)

Setting x = 3 we find:

36 + 4 = A(9 + 1) + 0 ùñ 40 = 10A ùñ A = 4

Substituting A = 4 in (˚) gives

12x + 4 = 4(x2 + 1) + (Bx + C)(x´ 3) ùñ ´4x2 + 12x = (x´ 3)(Bx + C)
ùñ (´4x)(x´ 3) = (Bx + C)(x´ 3)
ùñ B = ´4, C = 0

So we have found that A = 4, B = ´4, and C = 0. Therefore
ż

12x + 4
(x´ 3)(x2 + 1)

dx =

ż
(

4
x´ 3

´
4x

x2 + 1

)
dx

= 4 log |x´ 3| ´ 2 log(x2 + 1) + C

The second integral was found just by guessing an antiderivative. Alternatively, one
could use the substitution u = x2 + 1, du = 2x dx.

S-10: The integrand is of the form N(x)/D(x) with D(x) already factored and N(x) of
lower degree. With no obvious substitution available, we look for a partial fraction
decomposition.

3x2 ´ 4
(x´ 2)(x2 + 4)

=
A

x´ 2
+

Bx + C
x2 + 4

Multiplying through by the denominator gives

3x2
´ 4 = A(x2 + 4) + (Bx + C)(x´ 2) (˚)
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Setting x = 2 we find:

12´ 4 = A(4 + 4) + 0 ùñ 8 = 8A ùñ A = 1

Substituting A = 1 in (˚) gives

3x2
´ 4 = (x2 + 4) + (x´ 2)(Bx + C) ùñ 2x2

´ 8 = (x´ 2)(Bx + C)
ùñ (x´ 2)(2x + 4) = (x´ 2)(Bx + C)
ùñ B = 2, C = 4

Thus, we have:

3x2 ´ 4
(x´ 2)(x2 + 4)

=
1

x´ 2
+

2x + 4
x2 + 4

=
1

x´ 2
+

2x
x2 + 4

+
4

x2 + 4

The first two of these are directly integrable:

F(x) = log |x´ 2|+ log |x2 + 4|+
ż

4
x2 + 4

dx

(The second integral was found just by guessing an antiderivative. Alternatively, one
could use the substitution u = x2 + 4, du = 2x dx.) For the final integral, we substitute:
x = 2y, dx = 2dy, and see that:

ż

4
x2 + 4

dx = 2
ż

1
y2 + 1

dy = 2 arctan y + D = 2 arctan(x/2) + D

for any constant D. All together we have:

F(x) = log |x´ 2|+ log(x2 + 4) + 2 arctan(x/2) + D

S-11: This integrand is a rational function, with no obvious substitution. This sure looks
like a partial fraction problem. Let’s go through our protocol.

• The degree of the numerator x´ 13 is one, which is strictly smaller than the dergee
of the denominator x2 ´ x´ 6, which is two. So we don’t need long division to pull
out a polynomial.

• Next we factor the denominator.

x2
´ x´ 6 = (x´ 3)(x + 2)

• Next we find the partial fraction decomposition of the integrand. It is of the form

x´ 13
(x´ 3)(x + 2)

=
A

x´ 3
+

B
x + 2

To find A and B, using the sneaky method, we cross multiply by the denominator.

x´ 13 = A(x + 2) + B(x´ 3)
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Now we can find A by evaluating at x = 3

3´ 13 = A(3 + 2) + B(3´ 3) ùñ A = ´2

and find B by evaluating at x = ´2.

´2´ 13 = A(´2 + 2) + B(´2´ 3) ùñ B = 3

(Hmmm. A and B are nice round numbers. Sure looks like a rigged exam or
homework question.) Our partial fraction decomposition is

x´ 13
(x´ 3)(x + 2)

=
´2

x´ 3
+

3
x + 2

As a check, we recombine the right hand side and make sure that it matches the left
hand side.

´2
x´ 3

+
3

x + 2
=
´2(x + 2) + 3(x´ 3)

(x´ 3)(x + 2)
=

x´ 13
(x´ 3)(x + 2)

• Finally, we evaluate the integral.

ż

x´ 13
x2 ´ x´ 6

dx =

ż
(
´2

x´ 3
+

3
x + 2

)
dx = ´2 log |x´ 3|+ 3 log |x + 2|+ C

S-12: Again, this sure looks like a partial fraction problem. So let’s go through our
protocol.

• The degree of the numerator 5x + 1 is one, which is strictly smaller than the dergee
of the denominator x2 + 5x + 6, which is two. So we do not long divide to pull out
a polynomial.

• Next we factor the denominator.

x2 + 5x + 6 = (x + 2)(x + 3)

• Next we find the partial fraction decomposition of the integrand. It is of the form

5x + 1
(x + 2)(x + 3)

=
A

x + 2
+

B
x + 3

To find A and B, using the sneaky method, we cross multiply by the denominator.

5x + 1 = A(x + 3) + B(x + 2)

Now we can find A by evaluating at x = ´2

´10 + 1 = A(´2 + 3) + B(´2 + 2) ùñ A = ´9
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and find B by evaluating at x = ´3.

´15 + 1 = A(´3 + 3) + B(´3 + 2) ùñ B = 14

So our partial fraction decomposition is

5x + 1
(x + 2)(x + 3)

=
´9

x + 2
+

14
x + 3

As a check, we recombine the right hand side and make sure that it matches the left
hand side

´9
x + 2

+
14

x + 3
=
´9(x + 3) + 14(x + 2)

(x + 2)(x + 3)
=

5x + 1
(x + 2)(x + 3)

• Finally, we evaluate the integral

ż

5x + 1
x2 + 5x + 6

dx =

ż
(
´9

x + 2
+

14
x + 3

)
dx = ´9 log |x + 2|+ 14 log |x + 3|+ C

S-13: We have a rational function with no obvious substitution, so let’s use partial
fraction decomposition.

• Since the degree of the numerator is the same as the degree of the denominator, we
need to pull out a polynomial.

5
x2 ´ 1

)
5x2 ´ 3x ´ 1

´ 5x2 + 5
´ 3x + 4

That is,

ż

5x2 ´ 3x´ 1
x2 ´ 1

dx =

ż
(

5 +
´3x + 4
x2 ´ 1

)
dx = 5x +

ż

´3x + 4
x2 ´ 1

dx

• Again, there’s no obvious substitution for the new integrand, so we want to use
partial fraction. The denominator factors as (x´ 1)(x + 1), so our decomposition
has this form:

´3x + 4
x2 ´ 1

=
´3x + 4

(x´ 1)(x + 1)
=

A
x´ 1

+
B

x + 1
=

(A + B)x + (A´ B)
(x´ 1)(x + 1)

So, (1) A + B = ´3 and (2) A´ B = 4.

• We solve (2) for A in terms of B, namely A = 4 + B. Plugging this into (1), we see
(4 + B) + B = ´3. So, B = ´7

2 , and A = 1
2 .
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• Now we can write our integral in a friendlier form and evaluate.
ż

5x2 ´ 3x´ 1
x2 ´ 1

dx = = 5x +

ż

´3x + 4
x2 ´ 1

dx = 5x +

ż

1/2
x´ 1

´
7/2

x + 1
dx

= 5x +
1
2

log |x´ 1| ´
7
2

log |x + 1|+ C

S-14: The integrand is a rational function with no obvious substitution, so we use partial
fraction decomposition.

• The degree of the numerator is the same as the degree of the denominator. Since it’s
not smaller, we need to re-write our integrand. We could do this using long
division, but this case is simple enough to do more informally.

4x4 + 14x2 + 2
4x4 + x2 =

4x4 + x2 + 13x2 + 2
4x4 + x2

=
4x4 + x2

4x4 + x2 +
13x2 + 2
4x4 + x2

= 1 +
13x2 + 2
4x4 + x2

• The denominator factors as x2(4x2 + 1).

• We want to find the partial fraction decomposition of the fractional part of our
simplified integrand.

13x2 + 2
4x4 + x2 =

13x2 + 2
x2(4x2 + 1)

=
A
x
+

B
x2 +

Cx + D
4x2 + 1

Multiply through by the original denominator.

13x2 + 2 = Ax(4x2 + 1) + B(4x2 + 1) + (Cx + D)x2 (1)

Setting x = 0 gives us:

2 = B

We use B = 2 to simplify Equation (1).

13x2 + 2 = Ax(4x2 + 1) + 2(4x2 + 1) + (Cx + D)x2

5x2 = Ax(4x2 + 1) + (Cx + D)x2

5x = A(4x2 + 1) + (Cx + D)x (2)

Again, let x = 0.

0 = A

Using A = 0, simplify Equation (2).

5x = (Cx + D)x
5 = Cx + D
C= 0, D = 5
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• Now we can write our integral in pieces.
ż

4x4 + 14x2 + 2
4x4 + x2 dx =

ż
(

1 +
13x2 + 2
4x4 + x2

)
dx

=

ż
(

1 +
2
x2 +

5
4x2 + 1

)
dx

= x´
2
x
+

ż

5
(2x)2 + 1

dx

Substitute u = 2x, du = 2dx.

= x´
2
x
+

ż

5/2
u2 + 1

du

= x´
2
x
+

5
2

arctan u + C

= x´
2
x
+

5
2

arctan(2x) + C

S-15: The integrand is a rational function with no obvious substitution, so we’ll use a
partial fraction decomposition.

• Since the numerator has strictly smaller degree than the denominator, we don’t
need to start off with a long division.

• We do, however, need to factor the denominator. We can immediately pull out x2;
the remaining part is x2 ´ 2x + 1 = (x´ 1)2.

• Now we can perform our partial fraction decomposition.

x2 + 2x´ 1
x4 ´ 2x3 + x2 =

x2 + 2x´ 1
x2(x´ 1)2 =

A
x
+

B
x2 +

C
x´ 1

+
D

(x´ 1)2

Multiply both sides by the original denominator.

x2 + 2x´ 1 = Ax(x´ 1)2 + B(x´ 1)2 + Cx2(x´ 1) + Dx2 (1)

To be sneaky, we set x = 0, and find:

´1 = B

We also set x = 1, and find:

2 = D

We use B and D to simplify Equation (1).

x2 + 2x´ 1 = Ax(x´ 1)2
´1(x´ 1)2 + Cx2(x´ 1) + 2x2

0 = Ax(x´ 1)2 + Cx2(x´ 1)
= x(x´ 1)[(A + C)x´ A]

So, 0 = (A + C)x´ A

That is, A = C = 0.
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• Now we can evaluate our integral.

ż

x2 + 2x´ 1
x4 ´ 2x3 + x2 dx =

ż
(
´1
x2 +

2
(x´ 1)2

)
dx

=
1
x
´

2
x´ 1

+ C

S-16: Our integrand is a rational function with no obvious substitution, so we’ll use the
method of partial fractions.

• The degree of the numerator is less than the degree of the denominator.

• We need to factor the denominator. The first two terms have the same ratio as the
last two terms.

2x3
´ x2

´ 8x + 4 = x2(2x´ 1)´ 4(2x´ 1)

= (x2
´ 4)(2x´ 1)

= (x´ 2)(x + 2)(2x´ 1)

• Now we find our partial fraction decomposition.

3x2 ´ 4x´ 10
2x3 ´ x2 ´ 8x + 4

=
3x2 ´ 4x´ 10

(x´ 2)(x + 2)(2x´ 1)
=

A
x´ 2

+
B

x + 2
+

C
2x´ 1

Multiply both sides by the original denominator.

3x2
´ 4x´ 10 = A(x + 2)(2x´ 1) + B(x´ 2)(2x´ 1) + C(x´ 2)(x + 2)

Distinct linear factors is the best possible scenario for the sneaky method. First, let’s
set x = 2.

3(4)´ 4(2)´ 10 = A(4)(3) + B(0) + C(0)

A = ´
1
2

Now, let x = ´2.

3(4)´ 4(´2)´ 10 = A(0) + B(´4)(´5) + C(0)

B =
1
2

Finally, let x = 1
2 .

3
4
´ 2´ 10 = A(0) + B(0) + C

(
´

3
2

)(
5
2

)

C = 3
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• Now we can evaluate our integral in its new form.
ż

3x2 ´ 4x´ 10
2x3 ´ x2 ´ 8x + 4

dx =

ż
(
´1/2
x´ 2

+
1/2

x + 2
+

3
2x´ 1

)
dx

= ´
1
2

log |x´ 2|+
1
2

log |x + 2|+
3
2

log |2x´ 1|+ C

=
1
2

log
ˇ

ˇ

ˇ

ˇ

x + 2
x´ 2

ˇ

ˇ

ˇ

ˇ

+
3
2

log |2x´ 1|+ C

S-17: The integrand is a rational function with no obvious substitution, so we use the
method of partial fractions.

• The numerator has smaller degree than the denominator.

• We need to factor the denominator. In the absence of any clues, we look for an
integer root. The constant term is 5, so the possible integer roots are ˘1 and ˘5.
Name f (x) = 2x3 + 11x2 + 6x + 5.

f (´1) ‰ 0 f (´5) = 0 f (1) ‰ 0 f (5) ‰ 0

So, (x + 5) is a factor of the denominator.

• We use long division to pull out the factor of (x + 5).

2x2 + x + 1
x + 5

)
2x3 + 11x2 + 6x + 5

´ 2x3 ´ 10x2

x2 + 6x
´ x2 ´ 5x

x + 5
´ x ´ 5

0

That is, our denominator is (x + 5)(2x2 + x + 1).

• The quadratic function 2x2 + x + 1 is irreducible: we can see this by using the
quadratic equation, and finding no real roots. So, we are ready to find our partial
fraction decomposition.

10x2 + 24x + 8
2x3 + 11x2 + 6x + 5

=
10x2 + 24x + 8

(x + 5)(2x2 + x + 1)
=

A
x + 5

+
Bx + C

2x2 + x + 1

Multiply through by the original denominator.

10x2 + 24x + 8 = A(2x2 + x + 1) + (Bx + C)(x + 5) (1)

Set x = ´5.

10(25)´ 24(5) + 8 = A(2(25)´ 5 + 1) + (B(´5) + C)(0)
A = 3
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Using our value of A, we simplify Equation (1).

10x2 + 24x + 8 = 3(2x2 + x + 1) + (Bx + C)(x + 5)

4x2 + 21x + 5 = (Bx + C)(x + 5)

We factor the left side. We know (x + 5) must be one of its factors.

(4x + 1)(x + 5) = (Bx + C)(x + 5)
4x + 1 = Bx + C

So, B = 4 and C = 1.

• Now we can write our integral in smaller pieces.

ż 1

0

10x2 + 24x + 8
2x3 + 11x2 + 6x + 5

dx =

ż 1

0

(
3

x + 5
+

4x + 1
2x2 + x + 1

)
dx

The antiderivative of the left fraction is 3 log |x + 5|. For the right fraction, we use
the substitution u = 2x2 + x + 1, du = (4x + 1)dx to antidifferentiate.

=
[
3 log |x + 5|+ log |2x2 + x + 1|

]1
0

= 3 log 6 + log 4´ 3 log 5´ log 1

= log
(

4 ¨ 63

53

)

S-18: We follow the example in the text.
ż

csc x dx =

ż

1
sin x

dx =

ż

sin x
sin2 x

dx =

ż

sin x
1´ cos2 x

dx

Let u = cos x, du = ´ sin x dx.

=

ż

´1
1´ u2 du =

ż

´1
(1 + u)(1´ u)

du

We see an opportunity for partial fraction.

´1
(1 + u)(1´ u)

=
A

1 + u
+

B
1´ u

Multiply both sides by the original denominator.

´1 = A(1´ u) + B(1 + u)

Let u = 1.

´1 = 2B ñ B = ´
1
2
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Let u = ´1.

´1 = 2A ñ A = ´
1
2

We can now re-write our integral.

ż

csc x dx =

ż

´1
(1 + u)(1´ u)

du =

ż
(
´1/2
1 + u

+
´1/2
1´ u

)
du

= ´
1
2

log |1 + u|+
1
2

log |1´ u|+ C

=
1
2

log
ˇ

ˇ

ˇ

ˇ

1´ u
1 + u

ˇ

ˇ

ˇ

ˇ

+ C

=
1
2

log
ˇ

ˇ

ˇ

ˇ

1´ cos x
1 + cos x

ˇ

ˇ

ˇ

ˇ

+ C

Remark: Elsewhere in the text, and in many tables of integrals, the antiderivative of
cosecant is given as log | csc x´ cot x|. We show that this is equivalent to our result.

log | csc x´ cot x| =
1
2

log
ˇ

ˇ

ˇ
(csc x´ cot x)2

ˇ

ˇ

ˇ
=

1
2

log
ˇ

ˇ

ˇ
csc2 x´ 2 csc x cot x + cot2 x

ˇ

ˇ

ˇ

=
1
2

log
ˇ

ˇ

ˇ

ˇ

1
sin2 x

´
2 cos x
sin2 x

+
cos2 x
sin2 x

ˇ

ˇ

ˇ

ˇ

=
1
2

log
ˇ

ˇ

ˇ

ˇ

1´ 2 cos x + cos2 x
sin2 x

ˇ

ˇ

ˇ

ˇ

=
1
2

log

ˇ

ˇ

ˇ

ˇ

ˇ

(1´ cos x)2

1´ cos2 x

ˇ

ˇ

ˇ

ˇ

ˇ

=
1
2

log

ˇ

ˇ

ˇ

ˇ

ˇ

(1´ cos x)2

(1´ cos x)(1 + cos x)

ˇ

ˇ

ˇ

ˇ

ˇ

=
1
2

log
ˇ

ˇ

ˇ

ˇ

1´ cos x
1 + cos x

ˇ

ˇ

ˇ

ˇ

S-19: We follow the example in the text.

ż

csc3 x dx =

ż

1
sin3 x

dx =

ż

sin x
sin4 x

dx =

ż

sin x
(1´ cos2 x)2 dx

Let u = cos x, du = ´ sin x dx.

=

ż

´1
(1´ u2)2 du
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In Question 18, we saw 1
1´u2 = 1/2

1+u + 1/2
1´u , so

ż

´1
(1´ u2)2 du = ´

ż
(

1
1´ u2

)2

du = ´

ż
(

1/2
1 + u

+
1/2

1´ u

)2

du

= ´
1
4

ż
(

1
(1 + u)2 +

2
1´ u2 +

1
(1´ u)2

)
du

= ´
1
4

ż
(

1
(1 + u)2 +

1
1 + u

+
1

1´ u
+

1
(1´ u)2

)
du

= ´
1
4

(
´

1
1 + u

+ log |1 + u| ´ log |1´ u|+
1

1´ u

)
+ C

= ´
1
4

(
2u

1´ u2 + log
ˇ

ˇ

ˇ

ˇ

1 + u
1´ u

ˇ

ˇ

ˇ

ˇ

)
+ C

=
´u

2(1´ u2)
+

1
4

log
ˇ

ˇ

ˇ

ˇ

1´ u
1 + u

ˇ

ˇ

ˇ

ˇ

+ C

=
´ cos x
2 sin2 x

+
1
4

log
ˇ

ˇ

ˇ

ˇ

1´ cos x
1 + cos x

ˇ

ˇ

ˇ

ˇ

+ C

Remark: In Example 1.8.23 of the CLP-2 text, and in many tables of integrals, the
antiderivative of csc3 x is given as ´1

2 cot x csc x + 1
2 log | csc x´ cot x|+ C. This is

equivalent to our result. Recall in the remark after the solution to Question 18, we saw
1
2 log

ˇ

ˇ

ˇ

1´cos x
1+cos x

ˇ

ˇ

ˇ
= log | csc x´ cot x|.

´
1
2

cot x csc x +
1
2

log | csc x´ cot x| = ´
1
2

cot x csc x +
1
4

log
ˇ

ˇ

ˇ

ˇ

1´ cos x
1 + cos x

ˇ

ˇ

ˇ

ˇ

= ´
1
2

(cos x
sin x

)( 1
sin x

)
+

1
4

log
ˇ

ˇ

ˇ

ˇ

1´ cos x
1 + cos x

ˇ

ˇ

ˇ

ˇ

=
´ cos x
2 sin2 x

+
1
4

log
ˇ

ˇ

ˇ

ˇ

1´ cos x
1 + cos x

ˇ

ˇ

ˇ

ˇ

S-20: This is a rational function, and there’s no obvious substitution, so we’ll use partial
fraction decomposition.

• First, we check that the numerator has strictly smaller degree than the denominator,
so we don’t have to use long division.

• Second, we factor the denominator. We can immediately pull out a factor of x2;
then we’re left with the quadratic polynomial x2 + 5x + 10. Using the quadratic
equation, we check that this has no real roots, so it is irreducible.

• Once we know the factorization of the denominator, we can set up our
decomposition.

3x3 + 15x2 + 35x + 10
x4 + 5x3 + 10x2 =

3x3 + 15x2 + 35x + 10
x2(x2 + 5x + 10)

=
A
x
+

B
x2 +

Cx + D
x2 + 5x + 10
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We multiply both sides by the original denominator.

3x3 + 15x2 + 35x + 10 = Ax(x2 + 5x + 10) + B(x2 + 5x + 10) + (Cx + D)x2 (1)

Following the “Sneaky Method,” we plug in x = 0.

0 + 10 = A(0) + B(10) + (C(0) + D)(0)
B = 1

• Knowing B allows us to simplify our Equation (1).

3x3 + 15x2 + 35x + 10 = Ax(x2 + 5x + 10) + 1(x2 + 5x + 10) + (Cx + D)x2

3x3 + 14x2 + 30x = Ax(x2 + 5x + 10) + (Cx + D)x2

We can factor x out of both sides of the equation.

3x2 + 14x + 30 = A(x2 + 5x + 10) + (Cx + D)x (2)

• Again, we set x = 0.

0 + 30 = A(10) + (C(0 + D)(0)
A = 3

• We simplify Equation (2), using A = 3.

3x2 + 14x + 30 = 3(x2 + 5x + 10) + (Cx + D)x

´x = Cx2 + Dx
C = 0, D = ´1

• Now that we have our coefficients, we can re-write our integral in a friendlier form.

ż 2

1

3x3 + 15x2 + 35x + 10
x4 + 5x + 10x2 dx =

ż 2

1

(
3
x
+

1
x2 ´

1
x2 + 5x + 10

)
dx

=

[
3 log |x| ´

1
x

]2

1
´

ż 2

1

1
x2 + 5x + 10

dx

= 3 log 2 +
1
2
´

ż 2

1

1
x2 + 5x + 10

dx
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The remaining integral is the reciprocal of a quadratic polynomial, much like
1

1 + x2 , whose antiderivative is arctangent. We complete the square and use the

substitution u =
(

2x+5?
15

)
, du = 2?

15
dx.

ż 2

1

1
x2 + 5x + 10

dx =

ż 2

1

1
(
x + 5

2

)2
+ 15

4

dx

=
4

15

ż 2

1

1
(

2x+5?
15

)2
+ 1

dx

=
2
?

15

ż 9/
?

15

7/
?

15

1
u2 + 1

du

=
2
?

15

[
arctan u

]9/
?

15

7/
?

15

=
2
?

15

(
arctan

(
9
?

15

)
´ arctan

(
7
?

15

))

So, all together,
ż 2

1

3x3 + 15x2 + 35x + 10
x4 + 5x3 + 10x2 dx = 3 log 2+

1
2
´

2
?

15

(
arctan

(
9
?

15

)
´ arctan

(
7
?

15

))

S-21: Our integrand is already in the nice form that would come out of a partial fractions
decomposition. Let’s consider its different pieces.

• First piece:
ş 3

x2+2 dx. The fraction looks somewhat like the derivative of arctangent,
so we can massage it to find an appropriate substitution.

ż

3
x2 + 2

dx =
3
2

ż

1
(

x?
2

)2
+ 1

dx

Use the substitution u = x?
2
, du = 1?

2
dx.

=
3
?

2

ż

1
u2 + 1

du

=
3
?

2
arctan u + C

=
3
?

2
arctan

(
x
?

2

)
+ C

• The next piece is
ş x´3
(x2+2)2 dx. If the numerator were only x (and no constant), we

could use the substitution u = x2 + 2, du = 2x dx. So, to that end, we can break up
that fraction into x

(x2+2)2 ´
3

(x2+2)2 . For now, we only evaluate the first half.
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ż

x
(x2 + 2)2 dx =

1
2

ż

1
u2 du = ´

1
2u

+ C

= ´
1

2x2 + 4
+ C

• That leaves us with the final piece, 3
(x2+2)2 , which is the hardest. We saw something

similar in Question 20 in Section 1.9: we can use the substitution x =
?

2 tan θ,
dx =

?
2 sec2 θ dθ.

ż

3
(x2 + 2)2 dx =

ż

3
(2 tan2 θ + 2)2

?
2 sec2 θ dθ

=

ż

3
4 sec4 θ

?
2 sec2 θ dθ

=
3

2
?

2

ż

cos2 θ dθ

=
3

4
?

2

ż (
1 + cos(2θ)

)
dθ

=
3

4
?

2

(
θ +

1
2

sin(2θ)

)
+ C

=
3

4
?

2
(θ + sin θ cos θ) + C

θ
?

2

x? x2 +
2

=
3

4
?

2

(
arctan

(
x
?

2

)
+

x
?

2
x2 + 2

)
+ C

From our substitution, tan θ = x?
2
. So, we can draw a right triangle with angle θ,

opposite side x, and adjacent side
?

2. Then by the Pythagorean Theorem, the
hypotenuse has length

?
x2 + 2, and this gives us sin θ and cos θ.

Now we have our integral.

ż
(

3
x2 + 2

+
x´ 3

(x2 + 2)2

)
dx =

ż

3
x2 + 2

dx +

ż

x
(x2 + 2)2 dx´

ż

3
(x2 + 2)2 dx

=
3
?

2
arctan

(
x
?

2

)
´

1
2x2 + 4

´
3

4
?

2

(
arctan

(
x
?

2

)
+

x
?

2
x2 + 2

)
+ C

=
9

4
?

2
arctan

(
x
?

2

)
´

1
2(x2 + 2)

´
3x

4(x2 + 2)
+ C

=
9

4
?

2
arctan

(
x
?

2

)
´

2 + 3x
4(x2 + 2)

+ C

S-22: This is already as simplified as we can make it using partial fraction. Indeed, this is
the kind of term that could likely come out of the partial fraction decomposition of a
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scarier rational function. So, we need to know how to integrate it. Similar to the last
piece we integrated in Question 21, we can use the substitution x = tan θ, dx = sec2 θ dθ.

ż

1
(1 + x2)3 dx =

ż

sec2 θ

(1 + tan2 θ)3 dθ =

ż

sec2 θ

(sec2 θ)3 dθ

=

ż

cos4 θ dθ =

ż
[

1 + cos(2θ)

2

]2

dθ

=
1
4

ż

(1 + cos(2θ))2 dθ

=
1
4

ż (
1 + 2 cos(2θ) + cos2(2θ)

)
dθ

=
1
4

ż
(

1 + 2 cos(2θ) +
1
2
(1 + cos(4θ))

)
dθ

=
1
4

ż
(

3
2
+ 2 cos(2θ) +

1
2

cos(4θ))

)
dθ

=
1
4

(
3
2

θ + sin(2θ) +
1
8

sin(4θ)

)
+ C

=
3
8

θ +
1
4

sin(2θ) +
1

32
sin(4θ) + C

=
3
8

θ +
1
2

sin θ cos θ +
1

16
sin(2θ) cos(2θ) + C

=
3
8

θ +
1
2

sin θ cos θ +
1
8

sin θ cos θ(cos2 θ ´ sin2 θ) + C

=
3
8

arctan x +
x

2(1 + x2)
+

1
8

(
x

1 + x2

)(
1´ x2

1 + x2

)
+ C

θ

1

x? 1+
x2

=
3
8

arctan x +
3x3 + 5x

8(1 + x2)2 + C

To change our variables from θ to x, recall we used the substitution x = tan θ. So, we
draw a right triangle with angle θ, opposite side length x, and adjacent side length 1. By
the Pythagorean Theorem, the hypotenuse has length

?
1 + x2. This allows us to find

sin θ and cos θ.

S-23: Our integrand is already as simplified as the method of partial fractions can make
it. The first term is easy to antidifferentiate. The second term would be easier if it were
broken into two pieces: one where the numerator is a constant, and one where the
numerator is a multiple of x.

ż
(

3x +
3x + 1
x2 + 5

+
3x

(x2 + 5)2

)
dx =

3
2

x2 +

ż
(

1
x2 + 5

+
3x

x2 + 5
+

3x
(x2 + 5)2

)
dx

=
3
2

x2 +

ż

1
x2 + 5

dx +

ż
(

3x
x2 + 5

+
3x

(x2 + 5)2

)
dx
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The first integral looks similar to the derivative of arctangent. For the second integral, we
use the substitution u = x2 + 5, du = 2x dx.

=
3
2

x2 +
1
5

ż

1
(

x?
5

)2
+ 1

dx +

ż
(

3/2
u

+
3/2
u2

)
du

For the first integral, use the substitution w = x?
5
, dw = 1?

5
dx.

=
3
2

x2 +
1
?

5

ż

1
w2 + 1

dw +
3
2

log |u| ´
3

2u

=
3
2

x2 +
1
?

5
arctan w +

3
2

log |x2 + 5| ´
3

2x2 + 10
+ C

=
3
2

x2 +
1
?

5
arctan

(
x
?

5

)
+

3
2

log |x2 + 5| ´
3

2x2 + 10
+ C

S-24: If our denominator were all sines, we could use the substitution x = sin θ. To that
end, we apply the identity cos2 θ = 1´ sin2 θ.
ż

cos θ

3 sin θ + cos2 θ ´ 3
dθ =

ż

cos θ

3 sin θ + 1´ sin2 θ ´ 3
dθ =

ż

cos θ

3 sin θ ´ sin2 θ ´ 2
dθ

We use the substitution x = sin θ, dx = cos θ dθ.

=

ż

1
3x´ x2 ´ 2

dx =

ż

´1
x2 ´ 3x + 2

dx =

ż

´1
(x´ 1)(x´ 2)

dx

Now we can find a partial fraction decomposition.

´1
(x´ 1)(x´ 2)

=
A

x´ 1
+

B
x´ 2

´1 = A(x´ 2) + B(x´ 1)

Setting x = 1 and x = 2, we see

A = 1, B = ´1

Now, we can evaluate our integral.
ż

cos θ

3 sin θ + cos2 θ ´ 3
dθ =

ż

´1
(x´ 1)(x´ 2)

dx =

ż
(

1
x´ 1

´
1

x´ 2

)
dx

= log |x´ 1| ´ log |x´ 2|+ C = log
ˇ

ˇ

ˇ

ˇ

x´ 1
x´ 2

ˇ

ˇ

ˇ

ˇ

+ C

= log
ˇ

ˇ

ˇ

ˇ

sin θ ´ 1
sin θ ´ 2

ˇ

ˇ

ˇ

ˇ

+ C
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S-25: This looks a lot like a rational function, but with the function et in place of the
variable. So, we would like to make the substitution x = et, dx = etdt. Then
dt = 1

et dx = 1
x dx.

ż

1
e2t + et + 1

dt =
ż

1
x (x2 + x + 1)

dx

The factor x2 + x + 1 is an irreducible quadratic, so the denominator is completely
factored. Now we can use partial fraction decomposition.

1
x (x2 + x + 1)

=
A
x
+

Bx + C
x2 + x + 1

1 = A(x2 + x + 1) + (Bx + C)x

1 = (A + B)x2 + (A + C)x + A

The constant terms tell us A = 1; then the coefficient of x tells us C = ´A = ´1. Finally,
the coefficient of x2 tells us B = ´A = ´1. Now we can evaluate our integral.

ż

1
e2t + et + 1

dt =
ż

1
x (x2 + x + 1)

dx

=

ż
(

1
x
´

x + 1
x2 + x + 1

)
dx

=

ż
(

1
x
´

x + 1/2 + 1/2
x2 + x + 1

)
dx (˚)

=

ż

1
x

dx´
ż

x + 1/2
x2 + x + 1

dx´
ż

1/2
x2 + x + 1

dx

= log |x| ´
1
2

log |x2 + x + 1| ´
ż

1/2
x2 + x + 1

dx

In step (˚), we set ourselves up so that we could evaluate the second integral with the
substitution u = x2 + x + 1. For the remaining integral, we complete the square, so that
the integrand looks something like the derivative of arctangent.

= log |x| ´
1
2

log |x2 + x + 1| ´
ż

1/2
(

x + 1
2

)2
+ 3

4

dx

= log |x| ´
1
2

log |x2 + x + 1| ´
2
3

ż

1
(

2x+1?
3

)2
+ 1

dx
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We use the substitution u = 2x+1?
3

, du = 2?
3
.

= log |x| ´
1
2

log |x2 + x + 1| ´
1
?

3

ż

1
u2 + 1

du

= log |x| ´
1
2

log |x2 + x + 1| ´
1
?

3
arctan u + C

= log |x| ´
1
2

log |x2 + x + 1| ´
1
?

3
arctan

(
2x + 1
?

3

)
+ C

= log |et
| ´

1
2

log |e2t + et + 1| ´
1
?

3
arctan

(
2et + 1
?

3

)
+ C

= t´
1
2

log |e2t + et + 1| ´
1
?

3
arctan

(
2et + 1
?

3

)
+ C

S-26:

Solution 1: We use the substitution u =
?

1 + ex.

Then du =
ex

2
?

1 + ex
dx, so dx =

2u
u2 ´ 1

du.

ż

?
1 + ex dx =

ż

u ¨
2u

u2 ´ 1
du =

ż

2u2

u2 ´ 1
du

=

ż

2(u2 ´ 1) + 2
u2 ´ 1

du =

ż
(

2 +
2

u2 ´ 1

)
du

We use a partial fraction decomposition on the fractional part of the integrand.

2
u2 ´ 1

=
2

(u´ 1)(u + 1)
=

A
u´ 1

+
B

u + 1
=

(A + B)u + (A´ B)
(u´ 1)(u + 1)

A + B = 0, A´ B = 2
A = 1, B = ´1

ż

?
1 + ex dx =

ż
(

2 +
2

u2 ´ 1

)
du =

ż
(

2 +
1

u´ 1
´

1
u + 1

)
du

= 2u + log |u´ 1| ´ log |u + 1|+ C = 2u + log
ˇ

ˇ

ˇ

ˇ

u´ 1
u + 1

ˇ

ˇ

ˇ

ˇ

+ C

= 2
?

1 + ex + log
ˇ

ˇ

ˇ

ˇ

?
1 + ex ´ 1

?
1 + ex + 1

ˇ

ˇ

ˇ

ˇ

+ C

Solution 2: It might not occur to us right away to use the fruitful substitution in
Solution 1. More realistically, we might start with the “inside function,” u = 1 + ex.
Then du = ex dx, so dx = 1

u´1du.

ż

?
1 + ex dx =

ż
?

u
u´ 1

du
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This isn’t quite a rational function, because we have a square root on top. If we
could turn it into a rational function, we could use partial fraction. To that end, let
w =

?
u, dw = 1

2
?

u du, so du = 2wdw.

=

ż

w
w2 ´ 1

2wdw =

ż

2w2

w2 ´ 1
dw

=

ż

2(w2 ´ 1) + 2
w2 ´ 1

dw =

ż

2 +
2

w2 ´ 1
dw

Now we can use partial fraction decomposition.

2
w2 ´ 1

=
2

(w´ 1)(w + 1)
=

A
w´ 1

+
B

w + 1
=

(A + B)w + (A´ B)
(w´ 1)(w + 1)

A + B = 0, A´ B = 2
A = 1, B = ´1

This allows us to antidifferentiate.
ż

?
1 + ex dx =

ż
(

2 +
2

w2 ´ 1

)
dw =

ż
(

2 +
1

w´ 1
´

1
w + 1

)
dw

= 2w + log |w´ 1| ´ log |w + 1|+ C

= 2w + log
ˇ

ˇ

ˇ

ˇ

w´ 1
w + 1

ˇ

ˇ

ˇ

ˇ

+ C

= 2
?

u + log
ˇ

ˇ

ˇ

ˇ

?
u´ 1

?
u + 1

ˇ

ˇ

ˇ

ˇ

+ C

= 2
?

1 + ex + log
ˇ

ˇ

ˇ

ˇ

?
1 + ex ´ 1

?
1 + ex + 1

ˇ

ˇ

ˇ

ˇ

+ C

Remark: we also evaluated this integral using trigonometric substitution in Section 1.9,
Question 26. In that question, we found the antiderivative to be
2
?

1 + ex + 2 log
ˇ

ˇ1´
?

1 + ex
ˇ

ˇ´ x + C. These expressions are equivalent:

log
ˇ

ˇ

ˇ

ˇ

?
1 + ex ´ 1

?
1 + ex + 1

ˇ

ˇ

ˇ

ˇ

= log
ˇ

ˇ

ˇ

?
1 + ex ´ 1

ˇ

ˇ

ˇ
+ log

ˇ

ˇ

ˇ

ˇ

1
?

1 + ex + 1

ˇ

ˇ

ˇ

ˇ

= log
ˇ

ˇ

ˇ

?
1 + ex ´ 1

ˇ

ˇ

ˇ
+ log

ˇ

ˇ

ˇ

ˇ

(
1

?
1 + ex + 1

)(
1´

?
1 + ex

1´
?

1 + ex

)ˇ
ˇ

ˇ

ˇ

= log
ˇ

ˇ

ˇ

?
1 + ex ´ 1

ˇ

ˇ

ˇ
+ log

ˇ

ˇ

ˇ

ˇ

1´
?

1 + ex

1´ (1 + ex)

ˇ

ˇ

ˇ

ˇ

= log
ˇ

ˇ

ˇ

?
1 + ex ´ 1

ˇ

ˇ

ˇ
+ log

ˇ

ˇ

ˇ

ˇ

1´
?

1 + ex

´ex

ˇ

ˇ

ˇ

ˇ

= log
ˇ

ˇ

ˇ

?
1 + ex ´ 1

ˇ

ˇ

ˇ
+ log

ˇ

ˇ

ˇ
1´

?
1 + ex

ˇ

ˇ

ˇ
´ log | ´ ex

|

= 2 log
ˇ

ˇ

ˇ

?
1 + ex ´ 1

ˇ

ˇ

ˇ
´ x
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S-27: (a) Let’s graph y =
10

?
25´ x2

. We start with the endpoints: (3, 5
2) and (4, 10

3 ). Then

we consider the first derivative:

d
dx

"

10
?

25´ x2

*

=
10x

?
25´ x23

Over the interval [3, 4], this is always positive, so our function is increasing over the
entire interval. The second derivative,

d2

dx2

"

10
?

25´ x2

*

=
d
dx

#

10x
?

25´ x23

+

=
10(2x2 + 25)
?

25´ x25 ,

is always positive, so our function is concave up over the entire interval. So, the region R
is:

3 4

y = 10√
25−x2

x

y

(b) Let V1 be the solid obtained by revolving R about the x–axis. The portion of V1 with
x–coordinate between x and x + dx is obtained by rotating the red vertical strip in the
figure on the left below about the x–axis. That portion is a disk of radius 10?

25´x2
and

thickness dx. The volume of this disk is π
( 10?

25´x2

)2 dx. So the total volume of V1 is

ż 4

3
π
( 10
?

25´ x2

)2
dx = 100π

ż 4

3

1
25´ x2 dx = 100π

ż 4

3

1
(5´ x)(5 + x)

dx

= 10π

ż 4

3

( 1
5´ x

+
1

5 + x

)
dx = 10π

[
´ log(5´ x) + log(5 + x)

]4

3

= 10π
[
´ log 1 + log 9 + log 2´ log 8

]
= 10π log

9
4
= 20π log

3
2

3 4

y = 10√
25−x2

x

y

3 4

5
2

x =
√
25− 100

y2

x

y

(c) We’ll use horizontal washers as in Example 1.6.5 of the CLP-2 text.

• We cut R into thin horizontal strips of width dy as in the figure on the right above.
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• When we rotate R about the y–axis, each strip sweeps out a thin washer

– whose outer radius is rout = 4, and

– whose inner radius is rin =
b

25´ 100
y2 when y ě 10?

25´32
= 10

4 = 5
2 (see the red

strip in the figure on the right above), and whose inner radius is rin = 3 when
y ď 5

2 (see the blue strip in the figure on the right above) and

– whose thickness is dy and hence

– whose volume is π(r2
out ´ r2

in)dy = π
(100

y2 ´ 9
)
dy when y ě 5

2 and whose

volume is π(r2
out ´ r2

in)dy = 7π dy when y ď 5
2 and

• As our bottommost strip is at y = 0 and our topmost strip is at y = 10
3 (since at the

top x = 4 and y = 10?
25´x2

= 10?
25´42

= 10
3 ), the volume is

ż 10/3

5/2
π
(100

y2 ´ 9
)

dy +

ż 5/2

0
7π dy

= π
[
´

100
y
´ 9y

]10/3

5/2
+

35
2

π

= π
[
´ 30 + 40´ 30 +

45
2

]
+

35
2

π

= 20π

S-28: In order to find the area between the curves, we need to know which one is on top,
and which on the bottom. Let’s start by finding where they meet.

4
3 + x2 =

2
x(x + 1)

2x2 + 2x = 3 + x2

x2 + 2x´ 3 = 0
(x´ 1)(x + 3) = 0

In the interval [1
4 , 3], the curves only meet at x = 1. So, to find which is on top and on

bottom in the intervals [1
4 , 1) and (1, 3], it suffices to check some point in each interval.

x 4
3+x2

2
x(x+1) Top:

1/2 16/13 8/3 2
x(x+1)

2 4/7 1/3 4
3+x2

So, 2
x(x+1) is the top function when 1

4 ď x ă 1, and 4
3+x2 is the top function when

1 ă x ď 3. Then the area we want to find is:

Area =

ż 1

1
4

(
2

x(x + 1)
´

4
3 + x2

)
dx +

ż 3

1

(
4

3 + x2 ´
2

x(x + 1)

)
dx

415



We’ll need to antidifferentiate both these functions. We can antidifferentiate
2

x(x + 1)
using partial fraction decomposition.

2
x(x + 1)

=
A
x
+

B
x + 1

=
(A + B)x + A

x(x + 1)
A = 2, B = ´2

ż

2
x(x + 1)

dx =

ż
(

2
x
´

2
x + 1

)
dx = 2 log |x| ´ 2 log |x + 1|+ C

= 2 log
ˇ

ˇ

ˇ

ˇ

x
x + 1

ˇ

ˇ

ˇ

ˇ

+ C

We can antidifferentiate
4

3 + x2 using the substitution u = x?
3
, du = 1?

3
dx.

ż

4
3 + x2 dx =

ż

4

3
(

1 +
(

x?
3

)2
) dx =

ż

4
?

3
3 (1 + u2)

du

=
4
?

3
arctan u + C =

4
?

3
arctan

(
x
?

3

)
+ C

Now, we can find our area.

Area =

ż 1

1
4

(
2

x(x + 1)
´

4
3 + x2

)
dx +

ż 3

1

(
4

3 + x2 ´
2

x(x + 1)

)
dx

=

[
2 log

ˇ

ˇ

ˇ

ˇ

x
x + 1

ˇ

ˇ

ˇ

ˇ

´
4
?

3
arctan

(
x
?

3

)]1

1/4
+

[
4
?

3
arctan

(
x
?

3

)
´ 2 log

ˇ

ˇ

ˇ

ˇ

x
x + 1

ˇ

ˇ

ˇ

ˇ

]3

1

=

(
2 log

1
2
´

4
?

3
¨

π

6
´ 2 log

1
5
+

4
?

3
arctan

1
4
?

3

)
+

(
4
?

3
¨

π

3
´ 2 log

3
4
´

4
?

3
¨

π

6
+ 2 log

1
2

)

= 2 log
5
3
+

4
?

3
arctan

1
4
?

3
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S-29: (a) To antidifferentiate
1

t2 ´ 9
, we use a partial fraction decomposition.

1
t2 ´ 9

=
1

(t´ 3)(t + 3)
=

A
t´ 3

+
B

t + 3
=

(A + B)t + 3(A´ B)
(t´ 3)(t + 3)

A + B = 0, A´ B =
1
3

A =
1
6

, B = ´
1
6

F(x) =
ż x

1

1
t2 ´ 9

dx =

ż x

1

(
1/6
t´ 3

´
1/6
t + 3

)
dx

=

[
1
6

log |t´ 3| ´
1
6

log |t + 3|
]x

1

=

(
1
6

log |x´ 3| ´
1
6

log |x + 3| ´
1
6

log 2 +
1
6

log 4
)

=
1
6

(
log

ˇ

ˇ

ˇ

ˇ

2 ¨
x´ 3
x + 3

ˇ

ˇ

ˇ

ˇ

)

(b) Rather than differentiate our answer from (a), we use the Fundamental Theorem of
Calculus Part 1 to conclude

F1(x) =
d
dx

"
ż x

1

1
t2 ´ 9

dt
*

=
1

x2 ´ 9

Solutions to Exercises 1.11 — Jump to TABLE OF CONTENTS

S-1: The absolute error is the difference between the two values:

|1.387´ 1.5| = 0.113

The relative error is the absolute error divided by the exact value:

0.113
1.387

« 0.08147

The percent error is 100 times the relative error:

« 8.147%

S-2: Midpoint rule:
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x

y

2 10

Trapezoidal rule:

x

y

2 10

S-3:

(a) Differentiating, we find f 2(x) = ´x2 + 7x´ 6. Since f 2(x) is quadratic, we have a
pretty good idea of what it looks like.

• It factors as f (x) = ´(x´ 6)(x´ 1), so its two roots are at x = 6 and x = 1.

• The “flat part” of the parabola is at x = 3.5 (since this is exactly half way
between x = 1 and x = 6; alternately, we can check that f3(3.5) = 0).

• Since the coefficient of x2 is negative, f (x) is increasing from ´8 to 3.5, then
decreasing from 3.5 to8.

Therefore, over the interval [1, 6], the largest positive value of f 2(x) occurs when
x = 3.5, and this is f 2(3.5) = ´(3.5´ 6)(3.5´ 1) = 6.25.
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x

y

y = f 2(x)

1 6

6.25

So, we take M = 6.25.

(b) We differentiate further to find f (4)(x) = ´2. This is constant everywhere, so we take
L = | ´ 2| = 2.

S-4: Let’s start by differentiating.

f (x) = x sin x + 2 cos x
f 1(x) = x cos x + sin x´ 2 sin x = x cos x´ sin x
f 2(x) = ´x sin x + cos x´ cos x = ´x sin x

For any value of x, | sin x| ď 1. When ´3 ď x ď 2, then |x| ď 3. So, it is true (and not
unreasonably sloppy) that

f 2(x) ď 3

whenever x is in the interval [´3, 2]. So, we can take M = 3.

Note that | f 2(x)| is actually smaller than 3 whenever x is in the interval [´3, 2], because
when x = ´3, sin x ‰ 1. In fact, since 3 is pretty close to π, sin 3 is pretty small. (The
actual maximum value of | f 2(x)|when ´3 ď x ď 2 is about 1.8.) However, we find
parameters like M for the purpose of computing error bounds. There is often not much
to be gained from taking the time to find the actual maximum of a function, so we
content ourselves with reasonable upper bounds. Question 31 has a further investigation
of “sloppy” bounds like this.

S-5:

(a) Let f (x) = cos x. Then f (4)(x) = cos x, so | f (4)(x)| ď 1 when ´π ď x ď π. So, using
L = 1, we find the upper bound of the error using Simpson’s rule with n = 4 is:

L(b´ a)5

180n4 =
(2π)5

180 ¨ 44 =
π5

180 ¨ 8
« 0.2

The error bound comes from Theorem 1.11.12 in the CLP-2 text. We used a calculator
to find the approximate decimal value.
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(b) We use the general form of Simpson’s rule (Equation 1.11.9 in the CLP-2 text) with
∆x = b´a

n = 2π
4 = π

2 .

A «
∆x
3

( f (x0) + 4 f (x1) + 2 f (x2) + 4 f (x3) + f (x4))

=
π/2

3
(

f (´π) + 4 f (´π
2 ) + 2 f (0) + 4 f (π

2 ) + f (π)
)

=
π

6
(´1 + 4(0) + 2(1) + 4(0)´ 1) = 0

(c) To find the actual error in our approximation, we compare the approximation from
(b) to the exact value of A. In fact, A = 0: this is a fact you’ve probably seen before by
considering the symmetry of cosine, but it’s easy enough to calculate:

A =

ż π

´π
cos x dx = sin π ´ sin(´π) = 0

So, our approximation was exactly the same as our exact value. The absolute error is
0.

Remark: the purpose of this question was to remind you that the error bounds we
calculate are not (usually) the same as the actual error. Often our approximations are
better than we give them credit for. In normal circumstances, we would be
approximating an integral precisely to avoid evaluating it exactly, so we wouldn’t find
our exact error. The bound is a quick way of ensuring that our approximation is not too
far off.

S-6: Using Theorem 1.11.12 in the CLP-2 text, the error using the trapezoidal rule as
described is at most

M(b´ a)3

12 ¨ n2 =
M
48
ď

3
48

=
1

16
.

So, we’re really being asked to find a function with the maximum possible error using
the trapezoidal rule, given its second derivative.

With that in mind, our function should have the largest second derivative possible: let’s
set f 2(x) = 3 for every x. Then:

f 2(x) = 3
f 1(x) = 3x + C

f (x) =
3
2

x2 + Cx + D
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for some constants C and D. Now we can find the exact and approximate values of
ż 1

0
f (x) dx.

Exact:
ż 1

0
f (x) dx =

ż 1

0

(
3
2

x2 + Cx + D
)

dx

=

[
1
2

x3 +
C
2

x2 + Dx
]1

0

=
1
2
+

C
2
+ D

Approximate:
ż 1

0
f (x) dx « ∆x

[
1
2

f (0) + f (1
2) +

1
2

f (1)
]

=
1
2

[
1
2
(D) +

(
3
8
+

C
2
+ D

)
+

1
2

(
3
2
+ C + D

)]

=
1
2

[
9
8
+ C + 2D

]

=
9
16

+
C
2
+ D

So, the absolute error associated with the trapezoidal approximation is:

ˇ

ˇ

ˇ

ˇ

(
1
2
+

C
2
+ D

)
´

(
9

16
+

C
2
+ D

)ˇ
ˇ

ˇ

ˇ

=
1

16

So, for any constants C and D, f (x) = 3
2 x2 + Cx + D has the desired error.

Remark: contrast this question with Question 5. In this problem, our absolute error was
exactly as bad as the bound predicted, but sometimes it is much better. The thing to
remember is that, in general, we don’t know our absolute error. We only guarantee that it’s
not any worse than some worst-case-scenario bound.

S-7: Under any reasonable assumptions5, my mother is older than I am.

S-8: (a) Since both expressions are positive, and 1
24 ď

1
12 , the inequality is true.

(b) False. The reasoning is the same as in Question 7. The error bound given by Theorem
1.11.12 is always better for the trapezoid rule, but this doesn’t necessarily mean the error
is better.

To see how the trapezoid approximation could be better than the corresponding
midpoint approximation in some cases, consider the function f (x) sketched below.

5 Anyone caught trying to come up with a scenario in which I am older than my mother will be sent to
maximum security grad school.
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x

y

a b

The trapezoidal approximation of
ż b

a
f (x) dx with n = 1 misses the thin spike, and gives

a mild underapproximation. By contrast, the midpoint approximation with n = 1 takes
the spike as the height of the entire region, giving a vast overapproximation.

x

y

a b
trapezoidal

x

y

a b
midpoint

S-9: True. Because f (x) is positive and concave up, the graph of f (x) is always below the
top edges of the trapezoids used in the trapezoidal rule.

x

y
y = f (x)

S-10: According to Theorem 1.11.12 in the CLP-2 text, the error associated with the

Simpson’s rule approximation is no more than
L

180
(b´ a)5

n4 , where L is a constant such

that | f (4)(x)| ď L for all x in [a, b]. If L = 0, then the error is no more than 0 regardless of
a, b, or n–that is, the approximation is exact.

Any polynomial f (x) of degree at most 3 has f (4)(x) = 0 for all x. So, any polynomial of
degree at most 3 is an acceptable answer. For example, f (x) = 5x3 ´ 27, or f (x) = x2.
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S-11:

• For all three approximations, ∆x =
b´ a

n
=

30´ 0
6

= 5.

• For the trapezoidal rule and Simpson’s rule, the x-values where we evaluate
1

x3 + 1
start at x = a = 0 and move up by ∆x = 5: x0 = 0, x1 = 5, x2 = 10, x3 = 15,
x4 = 20, x5 = 25, and x6 = 30.

0
x0

5
x1

10
x2

15
x3

20
x4

25
x5

30
x6

• For the midpoint rule, the x-values where we evaluate
1

x3 + 1
start at

x = 2.5 = x0+x1
2 and move up by ∆x = 5: x̄1 = 2.5, x̄2 = 7.5, x̄3 = 12.5, x̄4 = 17.5,

x̄5 = 22.5, and x̄6 = 27.5.

0
x0

5
x1

10
x2

15
x3

20
x4

25
x5

30
x6

2.5
x̄1

7.5
x̄2

12.5
x̄3

17.5
x̄4

22.5
x̄5

27.5
x̄6

• Following Equation 1.11.2 in the CLP-2 text, the midpoint rule approximation is:
ż 30

0

1
x3 + 1

dx «
[

f (x̄1) + f (x̄2) + ¨ ¨ ¨+ f (x̄n)
]
∆x

=

[
1

(2.5)3+1
+ 1

(7.5)3+1
+ 1

(12.5)3+1
+ 1

(17.5)3+1
+ 1

(22.5)3+1
+ 1

(27.5)3+1

]
5

• Following Equation 1.11.6 in the CLP-2 text, the trapezoidal rule approximation is:
ż 30

0

1
x3 + 1

dx «
[

1
2 f (x0) + f (x1) + f (x2) + ¨ ¨ ¨+ f (xn´1) +

1
2 f (xn)

]
∆x

=

[
1/2

03 + 1
+

1
53 + 1

+
1

103 + 1
+

1
153 + 1

+
1

203 + 1
+

1
253 + 1

+
1/2

303 + 1

]
5

• Following Equation 1.11.9 in the CLP-2 text, the Simpson’s rule approximation is:
ż 30

0

1
x3 + 1

dx «
[

f (x0)+ 4 f (x1)+ 2 f (x2)+ 4 f (x3)+ 2 f (x4)+ 4 f (x5)+ f (x6)
]

∆x
3

=
[ 1

03 + 1
+

4
53 + 1

+
2

103 + 1
+

4
153 + 1

+
2

203 + 1
+

4
253 + 1

+
1

303 + 1

]5
3

S-12: By Equation 1.11.2 in the CLP-2 text, the midpoint rule approximation to
şb

a f (x) dx
with n = 3 is

ż b

a
f (x)dx «

[
f (x̄1) + f (x̄2) + f (x̄3)

]
∆x
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where ∆x = b´a
3 and

x0 = a x1 = a + ∆x x2 = a + 2∆x x3 = b

x̄1 = x0+x1
2 x̄2 = x1+x2

2 x̄3 = x2+x3
2

For this problem, a = 0, b = π and f (x) = sin x, so that ∆x = π
3 and

x0 = 0 x1 = π
3 x2 = 2π

3 x3 = π

x̄1 = π
6 x̄2 = π

2 x̄3 = 5π
6

0
x0

π
x3

π/3
x1

2π/3
x2

π/6
x̄1

π/2
x̄2

5π/6
x̄3

Therefore,
ż π

0
sin x dx «

[
sin

π

6
+ sin

π

2
+ sin

5π

6

]
π

3
=

[
1
2
+ 1 +

1
2

]
π

3
=

2π

3

S-13: Let f (x) denote the diameter at height x. As in Example 1.6.6 of the CLP-2 text, we
slice V into thin horizontal “pancakes”, which in this case are circular.

dx

f (x)

x

• We are told that the pancake at height x is a circular disk of diameter f (x) and so

• has cross-sectional area π
( f (x)

2

)2 and thickness dx and hence

• has volume π
( f (x)

2

)2dx.

Hence the volume of V is
ż 40

0
π
[

f (x)
2

]2
dx «

π

4
10
[

1
2 f (0)2 + f (10)2 + f (20)2 + f (30)2 + 1

2 f (40)2
]

=
π

4
10
[

1
2242 + 162 + 102 + 62 + 1

242
]

= 688ˆ 2.5π = 1720π « 5403.5

where we have approximated the integral using the trapezoidal rule with ∆x = 10, and
used a calculator to get a decimal approximation.
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S-14: Let f (x) be the diameter a distance x from the left end of the log. If we slice our log
into thin disks, the disks x metres from the left end of the log has

• radius f (x)
2 ,

• width dx, and so

• volume π
(

f (x)
2

)2
dx = π

4 f (x)2 dx.

x

f (x)

dx

Using Simpson’s Rule with ∆x = 1, the volume of the log is:

V =

ż 6

0

π

4
f (x)2 dx «

π

4
1
3

[
f (0)2 + 4 f (1)2 + 2 f (2)2 + 4 f (3)2 + 2 f (4)2 + 4 f (5)2 + f (6)2

]

=
π

12

[
1.22 + 4(1)2 + 2(0.8)2 + 4(0.8)2 + 2(1)2 + 4(1)2 + 1.22

]

=
π

12
(16.72)

« 4.377 m3

where we used a calculator to approximate the decimal value.

S-15: At height x metres, let the circumference of the tree be c(x). The corresponding

radius is
c(x)
2π

, so the corresponding cross–sectional area is π

(
c(x)
2π

)2

=
c(x)2

4π
.
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dx

c(x)

x

The height of a very thin cross–sectional disk is dx, so the volume of a cross-sectional

disk is
c(x)2

4π
dx. Therefore, total volume of the tree is:

ż 8

0

c(x)2

4π
dx «

1
4π

2
3

[
c(0)2 + 4c(2)2 + 2c(4)2 + 4c(6)2 + c(8)2

]

=
1

6π

[
1.22 + 4(1.1)2 + 2(1.3)2 + 4(0.9)2 + 0.22

]

=
12.94

6π
« 0.6865

where we used Simpson’s rule with ∆x = 2 and n = 4 to approximate the value of the
integral based on the values of c(x) given in the table.

S-16: For both approximations, ∆x = 10 and n = 6.

(a) The Trapezoidal Rule gives

V =

ż 60

0
A(h)dh « 10

[
1
2 A(0) + A(10) + A(20) + A(30) + A(40) + A(50) + 1

2 A(60)
]

= 363,500

(b) Simpson’s Rule gives

V =

ż 60

0
A(h)dh «

10
3

[
A(0) + 4A(10) + 2A(20) + 4A(30) + 2A(40) + 4A(50) + A(60)

]

= 367,000
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S-17: Call the curve in the graph y = f (x). It looks like

f (2) = 3 f (3) = 8 f (4) = 7 f (5) = 6 f (6) = 4

We’re estimating
ş6

2 f (x) dx with n = 4, so ∆x = 6´2
4 = 1.

(a) The trapezoidal rule gives

T4 =

[
3
2
+ 8 + 7 + 6 +

4
2

]
ˆ 1 =

49
2

(b) Simpson’s rule gives

S4 =
1
3
[
3 + 4ˆ 8 + 2ˆ 7 + 4ˆ 6 + 4

]
ˆ 1 =

77
3

S-18: Let f (x) = sin(x2). Then f 1(x) = 2x cos(x2) and

f 2(x) = 2 cos(x2)´ 4x2 sin(x2).

Since |x2| ď 1 when |x| ď 1, and |sin θ| ď 1 and |cos θ| ď 1 for all θ, we have
ˇ

ˇ

ˇ
2 cos(x2)´ 4x2 sin(x2)

ˇ

ˇ

ˇ
ď 2| cos(x2)|+ 4x2

| sin(x2)| ď 2ˆ 1 + 4ˆ 1ˆ 1 = 2 + 4 = 6

We can therefore choose M = 6, and it follows that the error is at most

M[b´ a]3

24n2 ď
6 ¨ [1´ (´1)]3

24 ¨ 10002 =
2

106 = 2 ¨ 10´6

S-19: Setting f (x) = 2x4 and b´ a = 1´ (´2) = 3, we compute f 2(x) = 24x2. The largest
value of 24x2 on the interval [´2, 1] occurs at x = ´2, so we can take M = 24 ¨ (´2)2 = 96.
Thus the total error for the midpoint rule with n = 60 points is bounded by

M(b´ a)3

24n2 =
96ˆ 33

24ˆ 60ˆ 60
=

3
100

That is: we are guaranteed our absolute error is certainly no more6 than 3
100 , and using

the bound stated in the problem we cannot give a better guarantee. (The second part of
the previous sentence comes from the fact that we used the smallest possible M: if we
had used a larger value of M, we would still have some true statement about the error,
for example “the error is no more than 5

100 ,” but it would not be the best true statement
we could make.)

6 This is what the error bound always tells us.
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S-20: (a) Since a = 0, b = 2 and n = 6, we have ∆x = b´a
n = 2´0

6 = 1
3 , and so x0 = 0,

x1 = 1
3 , x2 = 2

3 , x3 = 1, x4 = 4
3 , x5 = 5

3 , and x6 = 2. Since Simpson’s Rule with n = 6 in
general is

∆x
3
[

f (x0) + 4 f (x1) + 2 f (x2) + 4 f (x3) + 2 f (x4) + 4 f (x5) + f (x6)
]
,

the desired approximation is

1/3
3

(
(´3)5 + 4

(1
3
´ 3
)5

+ 2
(2

3
´ 3
)5

+ 4(´2)5 + 2
(4

3
´ 3
)5

+ 4
(5

3
´ 3
)5

+ (´1)5
)

(b) Here f (x) = (x´ 3)5, which has derivatives

f 1(x) = 5(x´ 3)4 f 2(x) = 20(x´ 3)3

f (3)(x) = 60(x´ 3)2 f (4)(x) = 120(x´ 3).

For 0 ď x ď 2, (x´ 3) runs from ´3 to ´1, so the maximum absolute values are found at
x = 0, giving M = 20 ¨ |0´ 3|3 = 540 and L = 120 ¨ |0´ 3| = 360. Consequently, for the
Midpoint Rule with n = 100,

|EM| ď
M(b´ a)3

24n2 =
540ˆ 23

24ˆ 104 =
180
104 ;

whereas for Simpson’s Rule with n = 10,

|ES| ď
360ˆ 25

180ˆ 104 =
64
104 .

Since 64 ă 180, Simpson’s Rule results in a smaller error bound.

S-21: In general the error in approximating
şb

a f (x) dx using Simpson’s rule with n steps
is bounded by L(b´a)

180 (∆x)4 where ∆x = b´a
n and L ě | f (4)(x)| for all a ď x ď b. In this

case, a = 1, b = 5, n = 4 and f (x) = 1
x . We need to find L, so we differentiate.

f 1(x) = ´
1
x2 f 2(x) =

2
x3 f (3)(x) = ´

6
x4 f (4)(x) =

24
x5

and
ˇ

ˇ f (4)(x)
ˇ

ˇ ď 24 for all x ě 1

So we may take L = 24 and ∆x = 5´1
4 = 1, which leads to

|Error | ď
24(5´ 1)

180
(1)4 =

24
45

=
8

15
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S-22: In general, the error in approximating
şb

a f (x) dx using Simpson’s rule with n steps

is bounded by
L(b´ a)

180
(∆x)4 where ∆x =

b´ a
n

and L ě | f (4)(x)| for all a ď x ď b. In this

case, a = 0, b = 1, n = 6 and f (x) = e´2x + 3x3. We need to find L, so we differentiate.

f 1(x) = ´2e´2x + 9x2 f 2(x) = 4e´2x + 18x f (3)(x) = ´8e´2x + 18 f (4)(x) = 16e´2x

Since e´2x =
1

e2x , we see f (4)(x) is a positive, decreasing function. So, its maximum

occurs when x is as small as possible. In the interval [0, 1], that means x = 0.
ˇ

ˇ f (4)(x)
ˇ

ˇ ď f (0) = 16 for all x ě 0

So, we take L = 16 and ∆x = 1´0
6 = 1

6 .

|Error | ď
L(b´ a)

180
(∆x)4 =

16(1´ 0)
180

(1/6)4 =
16

180ˆ 64 =
1

180ˆ 34 =
1

14580

S-23: For both approximations, a = 1, b = 2, n = 4, f (x) = 1
x and ∆x = b´a

n = 1
4 .

Then x0 = 1, x1 = 5
4 , x2 = 3

2 , x3 = 7
4 , and x4 = 2.

1
x0

5/4
x1

3/2
x2

7/4
x3

2
x4

(a)

T4 =∆x
[

1
2

f (x0) + f (x1) + f (x2) + f (x3) +
1
2

f (x4)

]

=∆x
[

1
2

f (1) + f (5/4) + f (3/2) + f (7/4) +
1
2

f (2)
]

=
1
4

[(
1
2
ˆ 1
)
+

4
5
+

2
3
+

4
7
+

(
1
2
ˆ

1
2

)]

(b)

S4 =
∆x
3
[

f (x0) + 4 f (x1) + 2 f (x2) + 4 f (x3) + f (x4)
]

=
∆x
3
[

f (1) + 4 f (5/4) + 2 f (3/2) + 4 f (7/4) + f (2)
]

=
1

12

[
1 +

(
4ˆ

4
5

)
+

(
2ˆ

2
3

)
+

(
4ˆ

4
7

)
+

1
2

]

(c) In this case, a = 1, b = 2, n = 4 and f (x) = 1
x . We need to find L, so we differentiate.

f 1(x) = ´
1
x2 f 2(x) =

2
x3 f (3)(x) = ´

6
x4 f (4)(x) =

24
x5
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So,
ˇ

ˇ f (4)(x)
ˇ

ˇ ď 24 for all x in the interval [1, 2]

We take L = 24.

|Error | ď
L(b´ a)5

180ˆ n4 ď
24(2´ 1)5

180ˆ 44 =
24

180ˆ 44 =
3

5760

S-24: Set a = 0 and b = 8. Since we have information about s(x) when x is 0, 2, 4, 6, and
8, we set ∆x = b´a

n = 2, so n = 4. (Recall with the trapezoid rule and Simpson’s rule,
n = 4 intervals actually uses the value of the function at 5 points.)

We could perform the trapezoidal approximations with fewer intervals, for example
n = 2, but this would involve ignoring some of the points we’re given. Since the question
asks for the best estimation we can give, we use n = 4 intervals and no fewer.

(a)

T4 = ∆x
[

1
2

s(0) + s(2) + s(4) + s(6) +
1
2

s(8)
]

= 2
[

1.00664
2

+ 1.00543 + 1.00435 + 1.00331 +
1.00233

2

]

= 8.03515

S4 =
∆x
3
[
s(0) + 4s(2) + 2s(4) + 4s(6) + s(8)

]

=
2
3
[
1.00664 + 4ˆ 1.00543 + 2ˆ 1.00435 + 4ˆ 1.00331 + 1.00233

]

« 8.03509

(b) The information
ˇ

ˇs(k)(x)
ˇ

ˇ ď
k

1000
, with k = 2, tells us |s2(x)| ď 2

1000 for all x in the

interval [0, 8]. So, we take K2 (also called M in your text) to be 2
1000 .

Then the absolute error associated with our trapezoid rule approximation is at most

ˇ

ˇ

ˇ

ˇ

ż b

a
f (x) dx´ Tn

ˇ

ˇ

ˇ

ˇ

ď
K2(b´ a)3

12n2 ď
2

1000
¨

83

12(4)2ď 0.00533

For k = 4, we see |s(4)(x)| ď 4
1000 for all x in the interval [0, 8]. So, we take K4 (also

called L in your text) to be 4
1000 .

Then the absolute error associated with our Simpson’s rule approximation is at most

ˇ

ˇ

ˇ

ˇ

ż b

a
f (x) dx´ Sn

ˇ

ˇ

ˇ

ˇ

ď
K4(b´ a)5

180n4 ď
4

1000
¨

85

180(4)4ď 0.00284
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S-25: In this case, a = 1, b = 4. Since ´2 ď f 2(x) ď 0 over the relevant interval, we take
M = 2. (Remember M is an upper bound on | f 2(x)|, not f 2(x).) So we need n to obey

2(4´ 1)3

12n2 ď 0.001 ðñ n2
ě

2(3)3

12
1000 =

27000
6

=
9000

2
= 4500

One obvious allowed n is 100. Since
?

4500 « 67.01, and n has to be a whole number, any
n ě 68 works.

S-26: Denote by f (x) the width of the pool x feet from the left-hand end. From the sketch,
f (0) = 0, f (2) = 10, f (4) = 12, f (6) = 10, f (8) = 8, f (10) = 6, f (12) = 8, f (14) = 10
and f (16) = 0.

A cross-section of the pool x feet from the left end is half of a circular disk with diameter
f (x) (so, radius f (x)

2 ) and thickness dx. So, the volume of the part of the pool with

x–coordinate running from x to (x + dx) is 1
2 π
( f (x)

2

)2 dx = π
8 [ f (x)]2 dx.

The total volume is given by the following integral.

V =
π

8

ż 16

0
f (x)2 dx

«
π

8
¨

∆x
3

[
f (0)2 + 4 f (2)2 + 2 f (4)2 + 4 f (6)2 + 2 f (8)2 + 4 f (10)2 + 2 f (12)2 + 4 f (14)2+ f (16)2

]

=
π

8
¨

2
3

[
0 + 4(10)2 + 2(12)2 + 4(10)2 + 2(8)2 + 4(6)2 + 2(8)2 + 4(10)2 + 0

]

=
472
3

π « 494 ft3

S-27: (a) The Trapezoidal Rule with n = 4, a = 0, b = 1, and ∆x = 1
4 gives:

W = 2π10´6
ż 1

0
rg(r)dr « 2π10´6∆x

[
1
2

x0g(x0) + x1g(x1) + x2g(x2) + x3g(x3) +
1
2

x4g(x4)

]

= 2π10´6 1
4

[1
2

0g(0) +
1
4

g
(1

4

)
+

1
2

g
(1

2

)
+

3
4

g
(3

4

)
+

1
2

g(1)
]

= π10´6 1
2

[8100
4

+
8144

2
+

3 ¨ 8170
4

+
8190

2

]

=
32639π

4 ¨ 106 « 0.025635

(b) Using the product rule, the integrand f (r) = 2π10´6rg(r) obeys

f 2(r) = 2π10´6 d
dr
[
g(r) + rg1(r)

]
= 2π10´6[2g1(r) + rg2(r)

]

and hence, for 0 ď r ď 1,
ˇ

ˇ f 2(r)
ˇ

ˇ ď 2π10´6[2ˆ 200 + 1ˆ 150
]
= 1.1π10´3
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So,

|Error| ď
1.1π10´3(1´ 0)3

12(4)2 ď 1.8ˆ 10´5

S-28: (a) Let f (x) = 1
x , a = 1, b = 2 and ∆x = b´a

6 = 1
6 . Using Simpson’s rule:

ż 2

1

1
x

dx «
∆x
3

[
f (1) + 4 f

(7
6

)
+ 2 f

(8
6

)
+ 4 f

(9
6

)
+ 2 f

(10
6

)
+ 4 f

(11
6

)
+ f (2)

]

=
1
18

[
1 +

24
7

+
12
8

+
24
9

+
12
10

+
24
11

+
1
2

]
« 0.6931698

(b) The integrand is f (x) = 1
x . The first four derivatives of f (x) are:

f 1(x) = ´
1
x2 , f 2(x) =

2
x3 , f (3)(x) = ´

6
x4 , f (4)(x) =

24
x5

On the interval 1 ď x ď 2, the fourth derivative is never bigger in magnitude than L = 24.

|En| ď
L(b´ a)5

180n4 =
24(2´ 1)5

180n4 =
4

30n4

So, we want an even number n such that

4
30n4 ď 0.00001 =

1
105

n4
ě

40000
3

n ě 4

c

40000
3

« 10.7

So, any even number greater than or equal to 12 will do.

S-29: (a) From the figure, we see that the magnitude of | f4(x)| never exceeds 310 for
0 ď x ď 2. So, the absolute error is bounded by

310(2´ 0)5

180ˆ 84 ď 0.01345

(b) We want to choose n such that:

310(2´ 0)5

180ˆ n4 ď 10´4

n4
ě

310ˆ 25

180
104

n ě 10 4

c

310ˆ 32
180

« 27.2

For Simpson’s rule, n must be even, so any even integer obeying n ě 28 will guarantee us
the requisite accuracy.
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S-30: Let g(x) =
ż x

0
sin(

?
t)dt. By the Fundamental Theorem of Calculus Part 1,

g1(x) = sin(
?

x). By its definition, f (x) = g(x2), so we use the chain rule to differentiate
f (x).

f 1(x) = 2xg1(x2) = 2x sin x f 2(x) = 2 sin x + 2x cos x

Since | sin x|, | cos x| ď 1, we have | f 2(x)| ď 2 + 2|x| and, for 0 ď t ď 1, | f 2(t)| ď 4. When
the trapezoidal rule with n subintervals is applied, the resulting error En obeys

En ď
4(1´ 0)3

12n2 =
1

3n2

We want an integer n such that

1
3n2 ď 0.000005

n2
ě

4
12ˆ 0.000005

n ě

c

1
3ˆ 0.000005

« 258.2

Any integer n ě 259 will do.

S-31:

(a) When 0 ď x ď 1, then x2 ď 1 and x + 1 ě 1, so | f 2(x)| =
x2

|x + 1|
ď

1
1
= 1.

(b) To find the maximum value of a function over a closed interval, we test the function’s
values at the endpoints of the interval and at its critical points inside the interval. The
critical points are where the function’s derivative is zero or does not exist.

The function we’re trying to maximize is | f 2(x)| = x2

|x+1| =
x2

x+1 = f 2(x) (since our
interval only contains nonnegative numbers). So, the critical points occur when
f3(x) = 0 or does not exist. We find f3(x) Using the quotient rule.

f3(x) =
(x + 1)(2x)´ x2

(x + 1)2 =
x2 + 2x
(x + 1)2

0 =
x(x + 2)

x + 1
0 = x or x = ´1 or x = ´2

The only critical point in [0, 1] is x = 0. So, the extrema of f 2(x) over [0, 1] will occur
at its endpoints. Indeed, since f3(x) ě 0 for all x in [0, 1], f 2(x) is increasing over this
interval, so its maximum occurs at x = 1. That is,

| f 2(x)| ď f 2(1) =
1
2
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(c) The absolute error using the midpoint rule is at most
M(b´ a)3

24n2 . Using M = 1, if we

want this to be no more than 10´5, we find an acceptable value of n with the
following calculation:

M(b´ a)3

24n2 ď 10´5

1
24n2 ď 10´5 (b´ a = 1, M = 1)

105

24
ď n2

n ě 65

(d) The absolute error using the midpoint rule is at most
M(b´ a)3

24n2 . Using M = 1
2 , if we

want this to be no more than 10´5, we find an acceptable value of n with the
following calculation:

M(b´ a)3

24n2 ď 10´5

1
48n2 ď 10´5 (b´ a = 1, M =

1
2
)

105

48
ď n2

n ě 46

Remark: how accurate you want to be in these calculations depends a lot on your
circumstances. Imagine, for instance, that you were finding M by hand, using this to find
n by hand, then programming a computer to evaluate the approximation. For a simple
integral like this, the difference between computing time for 65 intervals versus 46 is
likely to be miniscule. So, there’s not much to be gained by the extra work in (b).
However, if your original sloppy M gave you something like n = 1000000, you might
want to put some time into improving it, to shorten computation time. Moreover, if you
were finding the approximation by hand, the difference between adding 46 terms and
adding 65 terms would be considerable, and you would probably want to put in the
effort up front to find the most accurate M possible.

S-32: Before we can take our Simpson’s rule approximation of
ż x

1

1
t

dt, we need to know

how many intervals to use. That means we need to bound our error, which means we
need to bound d4

dt4

!

1
t

)

.

d
dt

"

1
t

*

= ´
1
t2

d2

dt2

"

1
t

*

=
2
t3

d3

dt3

"

1
t

*

= ´
6
t4

d4

dt4

"

1
t

*

=
24
t5
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So, over the interval [1, 3],
ˇ

ˇ

ˇ

ˇ

d4

dt4

"

1
t

*
ˇ

ˇ

ˇ

ˇ

ď 24.

Now, we can find an appropriate n to ensure our error will be be less than 0.1 for any x in
[1, 3]:

L(b´ a)5

180n4 ă 0.1

24(x´ 1)5

180n4 ă
1

10

n4
ą

24 ¨ (x´ 1)5

18

Because x´ 1 ď 2 for every x in [1, 3], if n4 ą
24 ¨ 25

18
, then n4 ą

24 ¨ (x´ 1)5

18
for every

allowed x.

n4
ą

24 ¨ 25

18
=

128
3

n ą 4

c

128
3
« 2.6

Since n must be even, n = 4 is enough intervals to guarantee our error is not too high for
any x in [1, 3]. Now we find our Simpson’s rule approximation with n = 4, a = 1, b = x,

and ∆x =
x´ 1

4
. The points where we evaluate 1

t are:

x0 =1 x1 = 1 +
x´ 1

4
x2 = 1 + 2

x´ 1
4

x3 = 1 + 3
x´ 1

4
x4 = 1 + 4

x´ 1
4

=
x + 3

4
=

x + 1
2

=
3x + 1

4
= x

1
x0

x+3
4

x1

x+1
2

x2

3x+1
4

x3

x
x3

log x =

ż x

1

1
t

dt «
∆x
3

[
1
x0

+
4
x1

+
2
x2

+
4
x3

+
1
x4

]

=
x´ 1

12

[
1 +

16
x + 3

+
4

x + 1
+

16
3x + 1

+
1
x

]

= f (x)

Below is a graph of our approximation f (x) and natural logarithm on the same axes. The
natural logarithm function is shown red and dashed, while our approximating function
is solid blue. Our approximation appears to be quite accurate for small, positive values
of x.
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x

y

y = f (x)

y = log x

2 4 6 8 10

1

2

3

S-33: First, we want a strategy for approximating arctan 2. Our hints are that involves

integrating
1

1 + x2 , which is the antiderivative of arctangent, and the number
π

4
, which is

the same as arctan(1). With that in mind:
ż 2

1

1
1 + x2 dx = arctan(2)´ arctan(1) = arctan(2)´

π

4

So, arctan(2) =
π

4
+

ż 2

1

1
1 + x2 dx (˚)

We won’t know the value of the integral exactly, but we’ll have an approximation A
bounded by some positive error bound ε. Then,

´ε ď

(
ż 2

1

1
1 + x2 dx´ A

)
ď ε

A´ ε ď

(
ż 2

1

1
1 + x2 dx

)
ď A + ε

So, from (˚),
π

4
+ A´ ε ď arctan(2) ď

π

4
+ A + ε

Which approximation should we use? We’re given the fourth derivative of
1

1 + x2 , which

is the derivative we need for Simpson’s rule. Simpson’s rule is also usually quite efficient,
and we’re very interested in not adding up dozens of terms, so we choose Simpson’s rule.

Now that we’ve chosen Simpson’s rule, we should decide how many intervals to use. In
order to bound our error, we need to find a bound for the fourth derivative. To that end,
define N(x) = 24(5x4 ´ 10x2 + 1). Then N1(x) = 24(20x3 ´ 20x) = 480x(x2 ´ 1), which
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is positive over the interval [1, 2]. So, N(x) ď N(2) = 24(5 ¨ 24 ´ 10 ¨ 22 + 1) = 984 when
1 ď x ď 2. Furthermore, let D(x) = (x2 + 1)5. If 1 ď x ď 2, then D(x) ě 25. Now we can
find a reasonable value of L:

| f (4)(x)| =
ˇ

ˇ

ˇ

ˇ

25(5x4 ´ 10x2 + 1)
(x2 + 1)5

ˇ

ˇ

ˇ

ˇ

=

ˇ

ˇ

ˇ

ˇ

N(x)
D(x)

ˇ

ˇ

ˇ

ˇ

ď
984
25 =

123
4

= 30.75

So, we take L = 30.75.

We want
[π

4
+ A´ ε,

π

4
+ A + ε

]
to look something like

[π

4
+ 0.321,

π

4
+ 0.323

]
. Note ε

is half the length of the first interval. Half the length of the second interval is
0.001 = 1

1000 . So, we want a value of ε that is no larger than this. Now we can find our n:

L(b´ a)5

180 ¨ n4 ď
1

1000
30.75

180 ¨ n4 ď
1

1000

n4
ě

30.75ˆ 1000
180

n ě 4

c

30750
180

« 3.62

So, we choose n = 4), and are guaranteed that the absolute error in our approximation

will be no more than
30.75

180 ¨ 44 ă 0.00067.

Since n = 4, then ∆x =
b´ a

n
=

1
4

, so:

x0 = 1 x1 =
5
4

x2 =
3
2

x3 =
7
4

x4 = 2

Now we can find our Simpson’s rule approximation A:

ż 1

0

1
1 + x2 dx «

∆x
3
[

f (x0) + 4 f (x1) + 2 f (x2) + 4 f (x3) + f (x4)
]

=
1/4

3
[

f (1) + 4 f (5/4) + 2 f (3/2) + 4 f (7/4) + f (2)
]

=
1

12

[
1

1 + 1
+

4
25/16 + 1

+
2

9/4 + 1
+

4
49/16 + 1

+
1

4 + 1

]

=
1

12

[
1
2
+

4 ¨ 16
25 + 16

+
2 ¨ 4

9 + 4
+

4 ¨ 16
49 + 16

+
1
5

]

=
1

12

[
1
2
+

64
41

+
8

13
+

64
65

+
1
5

]

« 0.321748 = A
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As we saw before, the error associated with this approximation is at most
30.75

180 ¨ 44 ă 0.00067 = ε. So,

A´ ε ď

ż 2

1

1
1 + x2 dx ď A + ε

ñ 0.321748´ 0.00067 ď

ż 2

1

1
1 + x2 dx ď 0.321748 + 0.00067

ñ 0.321078 ď

ż 2

1

1
1 + x2 dx ď 0.322418

ñ 0.321 ď

ż 2

1

1
1 + x2 dx ď 0.323

ñ
π

4
+ 0.321 ď

ż 2

1

1
1 + x2 dx +

π

4
ď

π

4
+ 0.323

ñ
π

4
+ 0.321 ď arctan(2) ď

π

4
+ 0.323

This is precisely what we wanted to show.

Solutions to Exercises 1.12 — Jump to TABLE OF CONTENTS

S-1: If b = ˘8, then our integral is improper because one limit is not a real number.

Furthermore, our integral will be improper if its domain of integration contains either of
its infinite discontinuities, x = 1 and x = ´1. Since one limit of integration is 0, the
integral is improper if b ě 1 or if b ď ´1.

Below, we’ve graphed 1
x2´1 to make it clearer why values of b in (´1, 1) are the only

values that don’t result in an improper integral when the other limit of integration is
a = 0.

x

y

y = 1
x2´1

´1 1
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S-2: Since the integrand is continuous for all real x, the only kind of impropriety
available to us is to set b = ˘8.

S-3: For large values of x, |red function| ď (blue function) and 0 ď (blue function). If the
blue function’s integral converged, then the red function’s integral would as well (by the
comparison test, Theorem 1.12.17 in the CLP-2 text). Since one integral converges and the
other diverges, the blue function is g(x) and the red function is f (x).

S-4: False. The inequality goes the “wrong way” for Theorem 1.12.17 in the CLP-2 text:
the area under the curve f (x) is finite, but the area under g(x) could be much larger,
even infinitely larger.

For example, if f (x) = e´x and g(x) = 1, then 0 ď f (x) ď g(x) and
ż 8

1
f (x)dx

converges, but
ż 8

1
g(x)dx diverges.

S-5:

(a) Not enough information to decide. For example, consider h(x) = 0 versus

h(x) = ´1. In both cases, h(x) ď f (x). However,
ż 8

0
0 dx converges to 0, while

ż 8

0
´1 dx diverges.

Note: if we had also specified 0 ď h(x), then we would be able to conclude that
ş8

0 h(x) dx converges by the comparison test.

(b) Not enough information to decide. For example, consider h(x) = f (x) versus
h(x) = g(x). In both cases, f (x) ď h(x) ď g(x).

(c)
ż 8

0
h(x) dx converges.

• From the given information, |h(x)| ď 2 f (x).

• We claim
ż 8

0
2 f (x) dx converges.

– We can see this by writing
ż 8

0
2 f (x) dx = 2

ż 8

0
f (x) dx and noting that the

second integral converges.

– Alternately, we can use the limiting comparison test, Theorem 1.12.22 in the

CLP-2 text. Since f (x) ě 0,
ż 8

0
f (x) dx converges, and lim

xÑ8

2 f (x)
f (x)

= 2 (the

limit exists), we conclude
ż 8

0
2 f (x) dx converges.
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• So, comparing h(x) to 2 f (x), by the comparison test (Theorem 1.12.17 in the

CLP-2 text)
ż 8

0
h(x) dx converges.

S-6: The denominator is zero when x = 1, but the numerator is not, so the integrand has
a singularity (infinite discontinuity) at x = 1. Let’s replace the limit x = 1 with a variable
that creeps toward 1.

ż 1

0

x4

x5 ´ 1
dx = lim

tÑ1´

ż t

0

x4

x5 ´ 1
dx

To evaluate this integral we use the substitution u = x5, du = 5x4dx. When x = 0 we
have u = 0, and when x = t we have u = t5, so

ż 1

0

x4

x5 ´ 1
dx = lim

tÑ1´

ż t

0

x4

x5 ´ 1
dx = lim

tÑ1´

ż u=t5

u=0

1
5(u´ 1)

du

= lim
tÑ1´

([
1
5

log |u´ 1|
]t5

0

)
= lim

tÑ1´

1
5

log |t5
´ 1| = ´8

The limit diverges, so the integral diverges as well.

S-7: The denominator of the integrand is zero when x = ´1, but the numerator is not. So,
the integrand has a singularity (infinite discontinuity) at x = ´1. This is the only “source
of impropriety” in this integral, so we only need to make one break in the domain of
integration.

ż 2

´2

1
(x + 1)4/3 dx = lim

tÑ´1´

ż t

´2

1
(x + 1)4/3 dx + lim

tÑ´1+

ż 2

t

1
(x + 1)4/3 dx

Let’s start by considering the left limit.

lim
tÑ´1´

ż t

´2

1
(x + 1)4/3 dx = lim

tÑ´1´

([
´

3
(x + 1)1/3

ˇ

ˇ

ˇ

ˇ

t

´2

)

= lim
tÑ´1´

(
´

3
(t + 1)1/3 +

3
(´1)1/3

)
= 8

Since this limit diverges, the integral diverges. (A similar argument shows that the
second integral diverges. Either one of them diverging is enough to conclude that the
original integral diverges.)

S-8: First, let’s identify all “sources of impropriety.” The integrand has a singularity
when 4x2 ´ x = 0, that is, when x(4x´ 1) = 0, so at x = 0 and x = 1

4 . Neither of these are
in our domain of integration, so the only “source of impropriety” is the unbounded
domain of integration.

We could antidifferentiate this function (it looks like a nice candidate for a trig
substitution), but is seems easier to use a comparison. For large values of x, the term x2
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will be much larger than x, so we might guess that our integral behaves similarly to
ş8

1
1?
4x2 dx =

ş8

1
1

2x dx.

For all x ě 1,
?

4x2 ´ x ď
?

4x2 = 2x. So, 1?
4x2´x

ě 1
2x . Note

ş8

1
1

2x dx diverges:

lim
tÑ8

ż t

1

1
2x

dx = lim
tÑ8

(
1
2
[

log x
]t

1

)
= lim

tÑ8

1
2

log t = 8

So:

• 1
2x and 1?

4x2´x
are defined and continuous for all x ě 1,

• 1
2x ě 0 for all x ě 1,

• 1?
4x2´x

ě 1?
4x2 = 1

2x for all x ě 1, and

•
ş8

1
1

2x dx diverges.

By the comparison test, Theorem 1.12.17 in the CLP-2 text, the integral does not
converge.

S-9: The integrand is positive everywhere. So, either the integral converges to some finite
number, or it is infinite. We want to generate a guess as to which it is.

When x is small,
?

x ą x2, so we might guess that our integral behaves like the integral of
1?
x when x is near to 0. On the other hand, when x is large,

?
x ă x2, so we might guess

that our integral behaves like the integral of 1
x2 as x goes to infinity. This is the hunch that

drives the following work:

0 ď
1

x2 +
?

x
ď

1
?

x
and the integral

ż 1

0

dx
?

x
converges by Example 1.12.9 in the CLP-2 text, and

0 ď
1

x2 +
?

x
ď

1
x2 and the integral

ż 8

1

dx
x2 converges by Example 1.12.8 in the CLP-2 text

Note that 1
x2+

?
x is defined and continuous for all x ą 0, 1?

x is defined and continuous for

x ą 0, and 1
x2 is defined and continuous for x ě 1. So, the integral converges by the

comparison test, Theorem 1.12.17 in the CLP-2 text, together with Remark 1.12.16.

S-10: There are two “sources of impropriety:” the two (infinite) limits of integration. So,
we break our integral into two pieces.

ż 8

´8

cos x dx =

ż 0

´8

cos x dx +

ż 8

0
cos x dx

= lim
aÑ8

[
ż 0

´a
cos x dx

]
+ lim

bÑ8

[
ż b

0
cos x dx

]
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These are easy enough to antdifferentiate.

= lim
aÑ8

[sin 0´ sin(´a)] + lim
bÑ8

[sin b´ sin 0]

= DNE

Since the limits don’t exist, the integral diverges. (It happens that both limits don’t exist;
even if only one failed to exist, the integral would still diverge.)

S-11: There are two “sources of impropriety:” the two bounds. So, we break our integral
into two pieces.

ż 8

´8

sin x dx =

ż 0

´8

sin x dx +

ż 8

0
sin x dx

= lim
aÑ8

[
ż 0

´a
sin x dx

]
+ lim

bÑ8

[
ż b

0
sin x dx

]

= lim
aÑ8

[´ cos 0 + cos(´a)] + lim
bÑ8

[´ cos b + cos 0]

= DNE

Since the limits don’t exist, the integral diverges. (It happens that both limits don’t exist;
even if only one failed to exist, the integral would diverge.)

Remark: it’s very tempting to think that this integral should converge, because as an odd
function the area to the right of the x-axis “cancels out” the area to the left when the
limits of integration are symmetric. One justification for not using this intuition is given
in Example 1.12.11 in the CLP-2 text. Here’s another: In Question 10 we saw that
ş8

´8
cos x dx diverges. Since sin x = cos(x´ π/2), the area bounded by sine and the area

bounded by cosine over an infinite region seem to be the same–only shifted by π/2. So if
ş8

´8
sin x dx = 0, then we ought to also have

ş8

´8
cos x dx = 0, but we saw in Question 10

this is not the case.

x

y

y = sin x

y = cos x

S-12: First, we check that the integrand has no singularities. The denominator is always
positive when x ě 10, so our only “source of impropriety” is the infinite limit of
integration.

We further note that, for large values of x, the integrand resembles
x4

x5 =
1
x

. So, we have a
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two-part hunch: that the integral diverges, and that we can show it diverges by

comparing it to
ż 8

10

1
x

dx.

In order to use the comparison test, we’d need to show that
x4 ´ 5x3 + 2x´ 7

x5 + 3x + 8
ě

1
x

. If this

is true, it will be difficult to prove–and it’s not at all clear that it’s true. So, we will use the

limiting comparison test instead, Theorem 1.12.22 in the CLP-2 text, with g(x) =
1
x

,

f (x) =
x4 ´ 5x3 + 2x´ 7

x5 + 3x + 8
, and a = 10.

• Both f (x) and g(x) are defined and continuous for all x ą 0, so in particular they
are defined and continuous for x ě 10.

• g(x) ě 0 for all x ě 10

•
ż 8

10
g(x) dx diverges.

• Using l’Hôpital’s rule (5 times!), or simply dividing both the numerator and
denominator by x5 (the common leading term), tells us:

lim
xÑ8

f (x)
g(x)

= lim
xÑ8

x4´5x3+2x´7
x5+3x+8

1
x

= lim
xÑ8

x ¨
x4 ´ 5x3 + 2x´ 7

x5 + 3x + 8

= lim
xÑ8

x5 ´ 5x4 + 2x2 ´ 7x
x5 + 3x + 8

= 1

That is, the limit exists and is nonzero.

By the limiting comparison test, we conclude
ż 8

10
f (x) dx diverges.

S-13: Our domain of integration is finite, so the only potential “sources of impropriety”
are infinite discontinuities in the integrand. To find these, we factor.

ż 10

0

x´ 1
x2 ´ 11x + 10

dx =

ż 10

0

x´ 1
(x´ 1)(x´ 10)

dx

A removable discontinuity doesn’t affect the integral.

=

ż 10

0

1
x´ 10

dx

Use the substitution u = x´ 10, du = dx. When x = 0, u = ´10, and when x = 10, u = 0.

=

ż 0

´10

1
u

du

This is a p-integral with p = 1. From Example 1.12.9 and Theorem 1.12.20 in the CLP-2
text, we know it diverges.
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S-14: You might think that, because the integrand is odd, the integral converges to 0. This
is a common mistake– see Example 1.12.11 in the CLP-2 text, or Question 11 in this
section. In the absence of such a shortcut, we use our standard procedure: identifying
problem spots over the domain of integration, and replacing them with limits.

There are two “sources of impropriety,” namely x Ñ +8 and x Ñ ´8. So, we split the
integral in two, and treat the two halves separately. The integrals below can be evaluated
with the substitution u = x2 + 1, 1

2du = xdx.

ż +8

´8

x
x2 + 1

dx =

ż 0

´8

x
x2 + 1

dx +

ż +8

0

x
x2 + 1

dx
ż 0

´8

x
x2 + 1

dx = lim
RÑ8

ż 0

´R

x
x2 + 1

dx = lim
RÑ8

1
2

log(x2 + 1)
ˇ

ˇ

ˇ

0

´R

= lim
RÑ8

1
2

[
log 1´ log(R2 + 1)

]
= lim

RÑ8
´

1
2

log(R2 + 1) = ´8

ż +8

0

x
x2 + 1

dx = lim
RÑ8

ż R

0

x
x2 + 1

dx = lim
RÑ8

1
2

log(x2 + 1)
ˇ

ˇ

ˇ

R

0

= lim
RÑ8

1
2

[
log(R2 + 1)´ log 1

]
= lim

RÑ8

1
2

log(R2 + 1) = +8

Both halves diverge, so the whole integral diverges.

Once again: after we found that one of the limits diverged, we could have stopped and
concluded that the original integrand diverges. Don’t make the mistake of thinking that
8´8 = 0. That can get you into big trouble. 8 is not a normal number. For example
28 = 8. So if8were a normal number we would have both8´8 = 0 and
8´8 = 28´8 = 8.

S-15: We don’t want to antidifferentiate this integrand, so let’s use a comparison. Note
the integrand is positive when x ą 0.

For any x, | sin x| ď 1, so
| sin x|

x3/2 + x1/2 ď
1

x3/2 + x1/2 .

Since x = 0 and x Ñ 8 both cause the integral to be improper, we need to break it into
two pieces. Since both terms in the denominator give positive numbers when x is

positive,
1

x3/2 + x1/2 ď
1

x3/2 and
1

x3/2 + x1/2 ď
1

x1/2 . That gives us two options for

comparison.

When x is positive and close to zero, x1/2 ě x3/2, so we guess that we should compare
our integrand to 1

x1/2 near the limit x = 0. In contrast, when x is very large, x1/2 ď x3/2,
so we guess that we should compare our integrand to 1

x3/2 as x goes to infinity.
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| sin x|
x3/2 + x1/2 ď

1
x1/2 and the integral

ż 1

0

dx
x1/2 converges by the p-test, Example 1.12.9

in the CLP-2 text
| sin x|

x3/2 + x1/2 ď
1

x3/2 and the integral
ż 8

1

dx
x3/2 converges by the p-test, Example 1.12.8

in the CLP-2 text

Now we have all the data we need to apply the comparison test, Theorem 1.12.17 in the
CLP-2 text.

•
| sin x|

x3/2 + x1/2 ,
1

x1/2 , and
1

x3/2 are defined and continuous for x ą 0

•
1

x1/2 and
1

x3/2 are nonnegative for x ě 0

•
| sin x|

x3/2 + x1/2 ď
1

x1/2 for all x ą 0 and
ż 1

0

1
x1/2 dx converges, so (using

Remark 1.12.16 in the CLP-2 text)
ż 1

0

| sin x|
x3/2 + x1/2 dx converges.

•
| sin x|

x3/2 + x1/2 ď
1

x3/2 for all x ě 1 and
ż 8

1

1
x3/2 dx converges, so

ż 8

1

| sin x|
x3/2 + x1/2 dx

converges.

Therefore, our integral
ż 8

0

| sin x|
x3/2 + x1/2 dx converges.

S-16: The integrand is positive everywhere, so either the integral converges to some finite
number or it is infinite. There are two potential “sources of impropriety” — a possible
singularity at x = 0 and the fact that the domain of integration extends to8. So we split
up the integral.

ż 8

0

x + 1
x1/3(x2 + x + 1)

dx =

ż 1

0

x + 1
x1/3(x2 + x + 1)

dx +

ż 8

1

x + 1
x1/3(x2 + x + 1)

dx

Let’s develop a hunch about whether the integral converges or diverges. When x « 0, x2

and x are both a lot smaller than 1, so we guess we should compare the integrand to 1
x1/3 .

x + 1
x1/3(x2 + x + 1)

«
1

x1/3(1)
=

1
x1/3

Note
ş1

0
1

x1/3 dx converges by Example 1.12.9 in the CLP-2 text (it’s a p-type integral), so

we guess
ş1

0
x+1

x1/3(x2+x+1) dx converges as well.

When x is very large, x2 is much bigger than x, which is much bigger than 1, so we guess
we should compare the integrand to 1

x4/3 .

x + 1
x1/3(x2 + x + 1)

«
x

x1/3(x2)
=

1
x4/3
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Note
ş8

1
1

x4/3 dx converges by Example 1.12.8 in the CLP-2 text (it’s a p-type integral), so
we guess

ş8

1
x+1

x1/3(x2+x+1) dx converges as well.

Now it’s time to verify our guesses with the limiting comparison test, Theorem 1.12.22 in
the CLP-2 text. Be careful: our “«” signs are not strong enough to use either the limiting
comparison test or the comparison test, they are only enough to suggest a reasonable
function to compare to.

• x+1
x1/3(x2+x+1) , 1

x1/3 , and 1
x4/3 are defined and continuous for all x ą 0

• 1
x1/3 and 1

x4/3 are positive for all x ą 0

•
ş1

0
1

x1/3 dx and
ş8

1
1

x4/3 dx both converge

• lim
xÑ0

x+1
x1/3(x2+x+1)

1
x1/3

= lim
xÑ0

x + 1
x2 + x + 1

=
0 + 1

0 + 0 + 1
= 1; in particular, this limit exists.

• Using the limiting comparison test (Theorem 1.12.22 in the CLP-2 text, together
with Remark 1.12.16 because our impropriety is due to a singularity),
ş1

0
x+1

x1/3(x2+x+1) dx converges.

• lim
xÑ8

x+1
x1/3(x2+x+1)

1
x4/3

= lim
xÑ0

x(x + 1)
x2 + x + 1

= 1; in particular, this limit exists.

• Using the limiting comparison test (Theorem 1.12.22 in the CLP-2 text),
ş8

1
x+1

x1/3(x2+x+1) dx converges.

We conclude
ż 8

0

x + 1
x1/3(x2 + x + 1)

dx converges.

S-17: To find the volume of the solid, we cut it into horizontal slices, which are thin
circular disks. At height y, the disk has radius x = 1

y and thickness dy, so its volume is
π
y2 dy. The base of the solid is at height y = 1, and its top is at height y = 1

a . So, the
volume of the entire solid is:

ż 1/a

1

π

y2 dy =

[
´

π

y

]1/a

1
= π(1´ a)

If we imagine sliding a closer and closer to 0, the volume increases, getting closer and
closer to π units, but never quite reaching it.

So, the statement is false. For example, if we set M = 4, no matter which a we choose our
solid has volume strictly less than M.

Remark: we’ve seen before that
ş1

0
1
x dx diverges. If we imagine the solid that would

result from choosing a = 0, it would have a scant volume of π cubic units, but a
silhouette (side view) of infinite area.
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S-18: Our goal is to decide when this integral diverges, and where it converges. We will
leave q as a variable, and antidifferentiate. In order to antidifferentiate without knowing
q, we’ll need different cases. The integrand is x´5q, so when ´5q ‰ ´1, we use the power

rule (that is,
ş

xn dx = xn+1

n+1 ) to antidifferentiate. Note x(´5q)+1 = x1´5q =
1

x5q´1 .

ż t

1

1
x5q dx =

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

[
x1´5q

1´5q

]t

1
with 1´ 5q ą 0 if q ă 1

5

[
log x

]t

1
if q = 1

5

[
1

(1´5q)x5q´1

]t

1
with 5q´ 1 ą 0 if q ą 1

5

=

$

’

&

’

%

1
1´5q (t

1´5q ´ 1) with 1´ 5q ą 0 if q ă 1
5

log t if q = 1
5

1
5q´1(1´

1
t5q´1 ) with 5q´ 1 ą 0 if q ą 1

5 .

Therefore,

ż 8

1

1
x5q dx = lim

tÑ8

(
ż t

1

1
x5q dx

)
=

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

1
1´5q

(
lim
tÑ8

t1´5q
´ 1
)
= 8 if q ă 1

5

lim
tÑ8

log t = 8 if q = 1
5

1
5q´1

(
1´ lim

tÑ8

1
t5q´1

)
= 1

5q´1 if q ą 1
5 .

The first two cases are divergent, and so the largest such value is q = 1
5 . (Alternatively,

we might recognize this as a “p-integral” with p = 5q, and recall that the p-integral
diverges precisely when p ď 1.)

S-19: This integrand is a nice candidate for the substitution u = x2 + 1, 1
2du = xdx.

Remember when we use substitution on a definite integral, we also need to adjust the
limits of integration.

ż 8

0

x
(x2 + 1)p dx = lim

tÑ8

ż t

0

x
(x2 + 1)p dx

= lim
tÑ8

1
2

ż t2+1

1

1
up du

= lim
tÑ8

1
2

ż t2+1

1
u´p du

=

$

’

’

’

&

’

’

’

%

1
2 lim

tÑ8

[
u1´p

1´ p

]t2+1

1
if p ‰ 1

1
2 lim

tÑ8

[
log |u|

]t2+1

1
if p = 1

=

$

’

&

’

%

1
2 lim

tÑ8

1
1´ p

[
(t2 + 1)1´p

´ 1
]

if p ‰ 1

1
2 lim

tÑ8

[
log(t2 + 1)

]
= 8 if p = 1
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At this point, we can see that the integral diverges when p = 1. When p ‰ 1, we have the
limit

lim
tÑ8

1/2
1´ p

[
(t2 + 1)1´p

´ 1
]
=

1/2
1´ p

[
lim
tÑ8

(t2 + 1)1´p
]
´

1/2
1´ p

Since t2 + 1 Ñ 8, this limit converges exactly when the exponent 1´ p is negative; that
is, it converges when p ą 1, and diverges when p ă 1.

So, the integral in the question converges when p ą 1.

S-20:

• First, we notice there is only one “source of impropriety:” the domain of integration
is infinite. (The integrand has a singularity at t = 1, but this is not in the domain of
integration, so it’s not a problem for us.)

• We should try to get some intuition about whether the integral converges or
diverges. When t Ñ 8, notice the integrand “looks like” the function 1

t4 . We know
ş8

1
1
t4 dt converges, because it’s a p-integral with p = 4 ą 1 (see Example 1.12.8 in

the CLP-2 text). So, our integral probably converges as well. If we were only asked
show it converges, we could use a comparison test, but we’re asked more than that.

• Since we guess the integral converges, we’ll need to evaluate it. The integrand is a
rational function, and there’s no obvious substitution, so we use partial fractions.

1
t4 ´ 1

=
1

(t2 + 1)(t2 ´ 1)
=

1
(t2 + 1)(t + 1)(t´ 1)

=
At + B
t2 + 1

+
C

t + 1
+

D
t´ 1

Multiply by the original denominator.

1 = (At + B)(t + 1)(t´ 1) + C(t2 + 1)(t´ 1) + D(t2 + 1)(t + 1) (˚)

Set t = 1.

1 = 0 + 0 + D(2)(2) ñ D =
1
4

Set t = ´1.

1 = 0 + C(2)(´2) + 0 ñ C = ´
1
4

Simplify (˚) using D = 1
4 and C = ´1

4 .

1 = (At + B)(t + 1)(t´ 1)´
1
4
(t2 + 1)(t´ 1) +

1
4
(t2 + 1)(t + 1)

= (At + B)(t + 1)(t´ 1) +
1
2
(t2 + 1)

= At3 +

(
B +

1
2

)
t2
´ At +

(
1
2
´ B

)
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By matching up coefficients of corresponding powers of t, we find A = 0 and B = ´1
2 .

ż 8

2

1
t4 ´ 1

dt =
ż 8

2

(
´1/2
t2 + 1

´
1/4
t + 1

+
1/4
t´ 1

)
dt

= lim
RÑ8

ż R

2

(
´1/2
t2 + 1

´
1/4
t + 1

+
1/4
t´ 1

)
dt

= lim
RÑ8

[
´

1
2

arctan t´
1
4

log |t + 1|+
1
4

log |t´ 1|
]R

2

= lim
RÑ8

[
´

1
2

arctan t +
1
4

log
ˇ

ˇ

ˇ

ˇ

t´ 1
t + 1

ˇ

ˇ

ˇ

ˇ

]R

2

= lim
RÑ8

(
´

1
2

arctan R +
1
2

arctan 2 +
1
4

log
ˇ

ˇ

ˇ

ˇ

R´ 1
R + 1

ˇ

ˇ

ˇ

ˇ

´
1
4

log
ˇ

ˇ

ˇ

ˇ

2´ 1
2 + 1

ˇ

ˇ

ˇ

ˇ

)

We can use l’Hôpital’s rule to see lim
RÑ8

R´ 1
R + 1

= 1. Also note ´ log(1/3) = log 3.

= ´
1
2

(π

2

)
+

1
2

arctan 2 +
1
4

log 1 +
1
4

log 3

=
log 3´ π

4
+

1
2

arctan 2

S-21: There are three singularities in the integrand: x = 0, x = 1, and x = 2. We’ll need to
break up the integral at each of these places.

ż 5

´5

(
1

a

|x|
+

1
a

|x´ 1|
+

1
a

|x´ 2|

)
dx

=

ż 0

´5

(
1

a

|x|
+

1
a

|x´ 1|
+

1
a

|x´ 2|

)
dx +

ż 1

0

(
1

a

|x|
+

1
a

|x´ 1|
+

1
a

|x´ 2|

)
dx

+

ż 2

1

(
1

a

|x|
+

1
a

|x´ 1|
+

1
a

|x´ 2|

)
dx +

ż 5

2

(
1

a

|x|
+

1
a

|x´ 1|
+

1
a

|x´ 2|

)
dx

This looks rather unfortunate. Let’s think again. If all of the integrals below converge,
then we can write:
ż 5

´5

(
1

a

|x|
+

1
a

|x´ 1|
+

1
a

|x´ 2|

)
dx =

ż 5

´5

1
a

|x|
dx +

ż 5

´5

1
a

|x´ 1|
dx +

ż 5

´5

1
a

|x´ 2|
dx

That looks a lot better. Also, we have a good reason to guess these integrals
converge–they look like p-integrals with p = 1

2 . Let’s take a closer look at each one.
ż 5

´5

1
a

|x|
dx =

ż 0

´5

1
a

|x|
dx +

ż 5

0

1
a

|x|
dx

= 2
ż 5

0

1
a

|x|
dx (even function)

= 2
ż 5

0

1
?

x
dx
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This is a p-integral, with p = 1
2 . By Example 1.12.9 in the CLP-2 text (and

Theorem 1.12.20, since the upper limit of integration is not 1), it converges. The other two
pieces behave similarly.

ż 5

´5

1
a

|x´ 1|
dx =

ż 1

´5

1
a

|x´ 1|
dx +

ż 5

1

1
a

|x´ 1|
dx

Use u = x´ 1, du = dx

=

ż 0

´6

1
a

|u|
du +

ż 4

0

1
a

|u|
dx

=

ż 6

0

1
?

u
du +

ż 4

0

1
?

u
dx

Since our function is even, we use the reasoning of Example 1.2.9 in the CLP-2 text to
consider the area under the curve when x ě 0, rather than when x ď 0. Again, these are
p-integrals with p = 1

2 , so they both converge. Finally:

ż 5

´5

1
a

|x´ 2|
dx =

ż 2

´5

1
a

|x´ 2|
dx +

ż 5

2

1
a

|x´ 2|
dx

Use u = x´ 2, du = dx.

=

ż 0

´7

1
a

|u|
du +

ż 3

0

1
a

|u|
du

=

ż 7

0

1
?

u
du +

ż 3

0

1
?

u
du

Since p = 1
2 , so they both converge.

We conclude our original integral, as the sum of convergent integrals, converges.

S-22: We can use integration by parts twice to find the antiderivative of e´x sin x, as in
Example 1.7.10 of the CLP-2 text. To keep our work a little simpler, we’ll find the
antiderivative first, then take the limit.

Let u = e´x, dv = sin x dx, so du = ´e´x dx and v = ´ cos x.
ż

e´x sin x dx = ´e´x cos x´
ż

e´x cos x dx

Now let u = e´x, dv = cos x dx, so du = ´e´x dx and v = sin x.

= ´e´x cos x´
[

e´x sin x +

ż

e´x sin x dx
]

= ´e´x cos x´ e´x sin x´
ż

e´x sin x dx
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All together, we found
ż

e´x sin x dx = ´e´x cos x´ e´x sin x´
ż

e´x sin x dx + C

2
ż

e´x sin x dx = ´e´x cos x´ e´x sin x + C
ż

e´x sin x dx = ´
1

2ex (cos x + sin x) + C

(Remember, since C is an arbitrary constant, we can rename C
2 to simply C.) Now we can

evaluate our improper integral.

ż 8

0
e´x sin x dx = lim

bÑ8

ż b

0
e´x sin x dx

= lim
bÑ8

[
´

1
2ex (cos x + sin x)

]b

0

= lim
bÑ8

(
1
2
´

1
2eb (cos b + sin b)

)

To find the limit, we use the Squeeze Theorem (Theorem 1.4.17 in the CLP-1 text). Since
| sin b|, | cos b| ď 1 for any b, we can use the fact that ´2 ď cos b + sin b ď 2 for any b.

´2
2eb ď

1
2eb (cos b + sin b) ď

2
2eb

lim
bÑ8

´2
2eb = 0 =

2
2eb

So, lim
bÑ8

[
1

2eb (cos b + sin b)
]
= 0

Therefore,
1
2
= lim

bÑ8

(
1
2
´

1
2eb (cos b + sin b)

)

That is,
ż 8

0
e´x sin x dx =

1
2

.

S-23: The integrand is positive everywhere. So either the integral converges to some
finite number or it is infinite. There are two potential “sources of impropriety” — a
possible singularity at x = 0 and the fact that the domain of integration extends to8. So,
we split up the integral.

ż 8

0

sin4 x
x2 dx =

ż 1

0

sin4 x
x2 dx +

ż 8

1

sin4 x
x2 dx

Let’s consider the first integral. By l’Hôpital’s rule (or recall Example 3.7.3 in the CLP-1
text),

lim
xÑ0

sin x
x

= lim
xÑ0

cos x
1

= cos 0 = 1
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Consequently,

lim
xÑ0

sin4 x
x2 =

(
lim
xÑ0

sin2 x
)(

lim
xÑ0

sin x
x

)(
lim
xÑ0

sin x
x

)
= 0ˆ 1ˆ 1 = 0

and the first integral is not even improper.

Now for the second integral. Since | sin x| ď 1, we’ll compare it to
ş8

1
1
x2 .

• sin4 x
x2 and 1

x2 are defined and continuous for every x ě 1

• 0 ď sin4 x
x2 ď 14

x2 = 1
x2 for every x ě 1

•
ş8

1
1
x2 dx converges by Example 1.12.8 in the CLP-2 text (it’s a p-type integral with

p ą 1)

By the comparison test, Theorem 1.12.17 in the CLP-2 text,
ż 8

1

sin4 x
x2 dx converges.

Since
ż 1

0

sin4 x
x2 dx and

ż 8

1

sin4 x
x2 dx both converge, we conclude

ż 8

0

sin4 x
x2 dx converges

as well.

S-24: Since the denominator is positive for all x ě 0, the integrand is continuous over
[0,8). So, the only “source of impropriety” is the infinite domain of integration.

Solution 1: Let’s try to use a direct comparison. Note
x

ex +
?

x
ě 0 whenever x ě 0. Also

note that, for large values of x, ex is much larger than
?

x. That leads us to consider
the following inequalty:

0 ď
x

ex +
?

x
ď

x
ex

If
ş8

0
x
ex dx converges, we’re in business. Let’s figure it out. The integrand looks like

a candidate for integration by parts: take u = x, dv = e´x dx, so du = dx and
v = ´e´x.

ż 8

0

x
ex dx = lim

bÑ8

ż b

0

x
ex dx = lim

bÑ8

([
´

x
ex

]b

0
+

ż b

0
e´x dx

)

= lim
bÑ8

(
´

b
eb +

[
´e´x]b

0

)
= lim

bÑ8

(
´

b
eb ´

1
eb + 1

)

= lim
bÑ8

(
1´

b + 1
eb

loomoon

numÑ8
denÑ8

)
= lim

bÑ8

(
1´

1
eb

)
= 1

Using l’Hôpital’s rule, we see
ş8

0
x
ex dx converges. All together:

• x
ex and x

ex+
?

x are defined and continuous for all x ě 0,

•
ˇ

ˇ

ˇ

x
ex+

?
x

ˇ

ˇ

ˇ
ď x

ex , and
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•
ş8

0
x
ex dx converges.

So, by Theorem 1.12.17 in the CLP-2 text, our integral
ż 8

0

x
ex +

?
x

dx converges.

Solution 2: Let’s try to use a different direct comparison from Solution 1, and avoid

integration by parts. We’d like to compare to something like
1
ex , but the inequality

goes the wrong way. So, we make a slight modification: we consider 2e´x/2. To that
end, we claim x ă 2ex/2 for all x ě 0. We can prove this by noting the following two
facts:

• 0 ă 2 = 2e0/2, and

• d
dxtxu = 1 ď ex/2 = d

dxt2ex/2u.

So, when x = 0, x ă 2ex/2, and then as x increases, 2ex/2 grows faster than x.

Now we can make the following comparison:

0 ď
x

ex +
?

x
ď

x
ex ă

2ex/2

ex =
2

ex/2

We have a hunch that
ş8

0
2

ex/2 dx converges, just like
ş8

0
1
ex dx. This is easy enough to

prove. We can guess an antiderivative, or use the substitution u = x/2.

ż 8

0

2
ex/2 dx = lim

RÑ8

ż R

0

2
ex/2 dx = lim

RÑ8

[
´

4
ex/2

]R

0

= lim
RÑ8

[
4
e0 ´

4
eR/2

]R

0
= 4

Now we know:

• 0 ď x
ex+

?
x ď

2
ex/2 , and

•
ş8

0
2

ex/2 dx converges.

• Furthermore, x
ex+

?
x and 2

ex/2 are defined and continuous for all x ě 0.

By the comparison test (Theorem 1.12.17) in the CLP-2 text, we conclude the
integral converges.

Solution 3: Let’s use the limiting comparison test (Theorem 1.12.22 in the CLP-2 text).
We have a hunch that our integral behaves similarly to

ş8

0
1
ex dx, which converges

(see Example 1.12.18 in the CLP-2 text). Unfortunately, if we choose g(x) = 1
ex (and,

of course, f (x) = x
ex+

?
x ), then

lim
xÑ8

f (x)
g(x)

= lim
xÑ8

x
ex +

?
x
¨ ex = lim

xÑ8

x

1 +
?

x
ex

loomoon

Ñ0

= 8
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That is, the limit does not exist, so the limiting comparison test does not apply. (To
find lim

xÑ8

?
x

ex , you can use l’Hôpital’s rule.)

This setback encourages us to try a slightly different angle. If g(x) gave larger
values, then we could decrease f (x)

g(x) . So, let’s try g(x) = 1
ex/2 = e´x/2. Now,

lim
xÑ8

f (x)
g(x)

= lim
xÑ8

x
ex +

?
x
˜

1
ex/2 = lim

xÑ8

x

ex/2 +
?

x
ex/2

Hmm... this looks hard. Instead of dealing with it directly, let’s use the squeeze
theorem, Theorem 1.4.17 in the CLP-1 text.

0 ď
x

ex/2 +
?

x
ex/2

ď
x

ex/2

Using l’Hôpital’s rule,

lim
xÑ8

x
ex/2
loomoon

numÑ8
denÑ8

= lim
xÑ8

1
1
2 ex/2

= 0 = lim
xÑ8

0

So, by the squeeze theorem lim
xÑ0

x
ex+

?
x

1
ex/2

= 0. Since this limit exists, 1
ex/2 is a reasonable

function to use in the limiting comparison test (provided its integral converges). So,
we need to show that

ş8

0
1

ex/2 dx converges. This can be done by simply evaluating
it:

ż 8

0

1
ex/2 dx = lim

bÑ8

ż b

0
e´x/2 dx = lim

bÑ8
´

1
2
[
e´x/2]b

0 = lim
bÑ8

´
1
2

[
1

eb/2 ´ 1
]
=

1
2

So, all together:

• The functions x
ex+

?
x and 1

ex/2 are defined and continuous for all x ě 0, and
1

ex/2 ě 0 for all x ě 0.

•
ş8

0
1

ex/2 dx converges.

• The limit lim
xÑ8

x
ex +

?
x

1
ex/2

exists (it’s equal to 0).

• So, the limiting comparison test (Theorem 1.12.17 in the CLP-2 text) tells us
that

ş8

0
x

ex+
?

x dx converges as well.

S-25: There are two sources of error: the upper bound is t, rather than infinity, and we’re
using an approximation with some finite number of intervals, n. Our plan is to first find
a value of t that introduces an error of no more than 1

210´4. That is, we’ll find a value of t
such that

ş8

t
e´x

1+x dx ď 1
210´4. After that, we’ll find a value of n that approximates
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şt
0

e´x

x+1 dx to within 1
210´4. Then, all together, our error will be at most

1
210´4 + 1

210´4 = 10´4, as desired. (Note we could have broken up the error in another
way—it didn’t have to be 1

210´4 and 1
210´4. This will give us one of many possible

answers.)

Let’s find a t such that
ş8

t
e´x

1+x dx ď 1
210´4. For all x ě 0, 0 ă e´x

1+x ď e´x, so

ż 8

t

e´x

1 + x
dx ď

ż 8

t
e´x dx = e´t (˚)

ď
1
2

10´4

where (˚) is true if t ě ´ log
(1

2
10´4

)
« 9.90

Choose, for example, t = 10.

Now it’s time to decide how many intervals we’re going to use to approximate
ż t

0

e´x

x + 1
dx. Again, we want our error to be less than 1

210´4. To bound our error, we need

to know the second derivative of e´x

x+1 .

f (x) =
e´x

1 + x
ùñ f 1(x) = ´

e´x

1 + x
´

e´x

(1 + x)2 ùñ f 2(x) =
e´x

1 + x
+ 2

e´x

(1 + x)2 + 2
e´x

(1 + x)3

Since f 2(x) is positive, and decreases as x increases,

| f 2(x)| ď f 2(0) = 5 ùñ |En| ď
5(10´ 0)3

24n2 =
5000
24n2 =

625
3n2

and |En| ď
1
210´4 if

625
3n2 ď

1
2

10´4

ðñ n2
ě

1250ˆ 104

3

ðñ n ě

c

1.25ˆ 107

3
« 2041.2

So t = 10 and n = 2042 will do the job. There are many other correct answers.

S-26:

(a) Since f (x) is odd, using the reasoning of Example 1.2.10 in the CLP-2 text,

ż ´1

´8

f (x) dx = lim
tÑ8

ż ´1

´t
f (x) dx = lim

tÑ8
´

ż t

1
f (x) dx = ´ lim

tÑ8

ż t

1
f (x) dx

Since
ż 8

1
f (x) dx converges, the last limit above converges. Therefore,

ż ´1

´8

f (x) dx

converges.
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(b) Since f (x) is even, using the reasoning of Example 1.2.9 in the CLP-2 text,

ż ´1

´8

f (x) dx = lim
tÑ8

ż ´1

´t
f (x) dx = lim

tÑ8

ż t

1
f (x) dx = lim

tÑ8

ż t

1
f (x) dx

Since
ż 8

1
f (x) dx converges, the last limit above converges. Since f (x) is continuous

everywhere, by Theorem 1.12.20 in the CLP-2 text,
ż 8

´1
f (x) dx converges (note the

adjusted lower limit). Then, since

ż 8

´8

f (x) dx =

ż ´1

´8

f (x) dx +

ż 8

´1
f (x) dx

and both summands converge, our original integral converges as well.

S-27: Define F(x) =
şx

0
1
et dt.

F(x) =
ż x

0

1
et dt =

[
´

1
et

]x

0
=

1
e0 ´

1
ex ă

1
e0 = 1

So, the statement is false: there is no x such that F(x) = 1. For every real x, F(x) ă 1
e0 = 1.

We note here that lim
xÑ8

ż x

0

1
et dt = 1. So, as x grows larger, the gap between F(x) and 1

grows infintesimally small. But there is no real value of x where F(x) is exactly equal to 1.

Solutions to Exercises 1.13 — Jump to TABLE OF CONTENTS

S-1: (A) Note
ş

f 1(x) f (x) dx =
ş

u du if we substitute u = f (x). This is the kind of
integrand described in (I). It’s quite possible that a u = f (x) substitution would work on
the others, as well, but (I) is the most reliable kind of integrand for a u = f (x)
substitution.
(B) A trigonometric substitution usually allows us to cancel out a square root containing
a quadratic function, as in (IV).
(C) We can often antidifferentiate the product of a polynomial with an exponential
function using integration by parts: see Examples 1.7.1, 1.7.6 in the CLP-2 text. If we let u
be the polynomial function and dv be the exponential, as long as we can antidifferentiate
dv, we can repeatedly apply integration by parts until the polynomial function goes
away. So, we go with (II)
(D) We apply partial fractions to rational functions, (III).

Note: without knowing more about the functions, there’s no guarantee that the methods
we chose will be the best methods, or even that they will work (with the exception of (I)).
With practice, you gain intuition about likely methods for different integrals. Luckily for
you, there’s lots of practice below.
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S-2:

The integrand is a product of powers of sine and cosine. Since cosine has an odd power,
we want to substitute u = sin x, du = cos xdx. Therefore, we should:

• reserve one cosine for the derivative of sine in our substitution, and

• change the rest of the cosines to sines using the identity sin2 x + cos2 x = 1.

ż π/2

0
sin4 x cos5 xdx =

ż π/2

0
sin4 x(cos2 x)2 cos xdx

=

ż π/2

0
sin4 x(1´ sin2 x)2 cos xdx

looomooon

du

=

ż sin(π/2)

sin(0)
u4(1´ u2)2du

=

ż 1

0
u4(1´ 2u2 + u4)du

=

ż 1

0
(u4

´ 2u6 + u8)du

=

[
1
5

u5
´

2
7

u7 +
1
9

u9
]u=1

u=0

=

(
1
5
´

2
7
+

1
9

)
´ 0

=
8

315

S-3:

We notice that there is a quadratic equation under the square root. If that equation were a
perfect square, we could get rid of the square root: so we’ll mould it into a perfect square
using a trig substitution.

Our candidates will use one of the following identities:

1´ sin2 θ = cos2 θ tan2 θ + 1 = sec2 θ sec2 θ ´ 1 = tan2 θ

We’ll be substituting x =(something), so we notice that 3´ 5x2 has the general form of
(constant)´(function), as does 1´ sin2 θ. In order to get the constant right, we multiply
through by three:

3´ 3 sin2 θ = 3 cos2 θ

Our goal is to get 3´ 5x2 = 3´ 3 sin2 θ; so we solve this equation for x and decide on the
substitution

x =

c

3
5

sin θ, dx =

c

3
5

cos θdθ
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Now we evaluate our integral.

ż

a

3´ 5x2dx =

ż

g

f

f

e3´ 5

(
c

3
5

sin θ

)2c
3
5

cos θdθ

=

ż

a

3´ 3 sin2 θ
a

3/5 cos θdθ

=

ż

a

3 cos2 θ
a

3/5 cos θdθ

=

ż

?
3 cos θ

a

3/5 cos θdθ

=
3
?

5

ż

cos2 θdθ

=
3
?

5

ż

1 + cos 2θ

2
dθ

=
3

2
?

5

ż

(1 + cos 2θ)dθ

=
3

2
?

5

[
θ +

1
2

sin(2θ)

]
+ C

=
3

2
?

5
[θ + sin θ cos θ] + C

From our substitution x =
?

3/5 sin θ, we glean sin θ = x
?

5/3, and θ = arcsin
(
x
?

5/3
)
.

To figure out cos θ, we draw a right triangle. Let θ be one angle, and since sin θ =
x
?

5
?

3
,

we let the hypotenuse be
?

3 and the side opposite θ be x
?

5. By Pythagoras, the missing
side (adjacent to θ) has length

?
3´ 5x2.

θ
?

3´ 5x2

x
?

5
? 3

Therefore, cos θ =
adj
hyp =

?
3´ 5x2
?

3
. So our integral evaluates to:

3
2
?

5
[θ + sin θ cos θ] + C =

3
2
?

5

[
arcsin(x

a

5/3) + x
a

5/3 ¨

?
3´ 5x2
?

3

]
+ C

=
3

2
?

5
arcsin(x

a

5/3) +
x
2
¨

a

3´ 5x2 + C

S-4: First, we note the integral is improper. So, we’ll need to replace the top bound with a
variable, and take a limit. Second, we’re going to have to antidifferentiate. The integrand
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is the product of an exponential function, e´x, with a polynomial function, x´ 1, so we
use integration by parts with u = x´ 1, dv = e´xdu, du = dx, and v = ´e´x.

ż

x´ 1
ex dx = ´(x´ 1)e´x +

ż

e´x dx

= ´(x´ 1)e´x
´ e´x + C = ´xe´x + C

So,
ż 8

0

x´ 1
ex dx = lim

bÑ8

ż b

0

x´ 1
ex dx

= lim
bÑ8

[
´

x
ex

]b

0
= lim

bÑ8

[
´

b
eb

loomoon

numÑ8
denÑ8

]

(˚)
= lim

bÑ8
´

1
eb = 0

(In the equality marked (˚), we used l’Hôpital’s rule.)

So,
ż 8

0

x´ 1
ex dx = 0.

Remark: this shows that, interestingly,
ż 8

0

x
ex dx =

ż 8

0

1
ex dx.

S-5:

Solution 1: Notice the denominator factors as (x + 1)(3x + 1). Since the integrand is a
rational function (the quotient of two polynomials), we can use partial fraction
decomposition.

´2
3x2 + 4x + 1

=
´2

(x + 1)(3x + 1)

=
A

x + 1
+

B
3x + 1

=
A(3x + 1) + B(x + 1)

(x + 1)(3x + 1)

=
(3A + B)x + (A + B)

(x + 1)(3x + 1)

So:

´2 = (3A + B)x + (A + B)
0 = 3A + B and ´ 2 = A + B
B = ´3A and hence ´ 2 = A + (´3A)

A= 1 so then B = ´3
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So now:

´2
3x2 + 4x + 1

=
1

x + 1
´

3
3x + 1

ż

´2
3x2 + 4x + 1

dx =

ż
(

1
x + 1

´
3

3x + 1

)
dx

= log |x + 1| ´ log |3x + 1|+ C

= log
ˇ

ˇ

ˇ

ˇ

x + 1
3x + 1

ˇ

ˇ

ˇ

ˇ

+ C

Solution 2: The previous solution is probably the nicest. However, for the foolhardy or
the brave, this integral can also be evaluated using trigonometric substitution.

We start by completing the square on the denominator.

3x2 + 4x + 1 = 3
(

x2 +
4
3

x +
1
3

)

= 3
(

x2 + 2 ¨
2
3

x +
4
9
´

4
9
+

1
3

)

= 3

((
x +

2
3

)2

´
4
9
+

3
9

)

= 3

((
x +

2
3

)2

´
1
9

)

= 3
(

x +
2
3

)2

´
1
3

This has the form of a function minus a constant, which matches the trigonometric
identity sec2 θ ´ 1 = tan2 θ. Multiplying through by 1

3 , we see we can use the
identity 1

3 sec2 θ ´ 1
3 = 1

3 tan2 θ. So, to get the substitution right, we want to choose a
substitution that makes the following true:

3
(

x +
2
3

)2

´
1
3
=

1
3

sec2 θ ´
1
3

3
(

x +
2
3

)2

=
1
3

sec2 θ

9
(

x +
2
3

)2

= sec2 θ

3x + 2 = sec θ

And, accordingly:

3dx = sec θ tan θdθ
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Now, let’s simplify a little and use this substitution on our integral:

ż

´2
3x2 + 4x + 1

dx =

ż

´2

3
(
x + 2

3

)2
´ 1

3

dx

=

ż

´2

9
(
x + 2

3

)2
´ 1

3dx

=

ż

´2
(3x + 2) 2 ´ 1

3dx

=

ż

´2
(sec θ) 2 ´ 1

sec θ tan θdθ

=

ż

´2
tan2 θ

sec θ tan θdθ

=

ż

´2
sec θ

tan θ
dθ

=

ż

´2
1

cos θ
¨

cos θ

sin θ
dθ

=

ż

´2
1

sin θ
dθ

=

ż

´2 csc θdθ

Using the result of Example 1.8.21 in the CLP-2 text, or a table of integrals:

= 2 log |csc θ + cot θ|+ C

Our final task is to translate this back from θ to x. Recall we used the substitution
3x + 2 = sec θ. Using this information, and sec θ =

hypotenuse
adjacent

, we can fill in two

sides of a right triangle with angle θ. The Pythagorean theorem tells us the third
side (opposite to θ) has measure

a

(3x + 2)2 ´ 1 =
?

9x2 ´ 12x + 3.
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θ

1

?
9x2 + 12x + 33x +

2

2 log |csc θ + cot θ|+ C = 2 log
ˇ

ˇ

ˇ

ˇ

3x + 2
?

9x2 + 12x + 3
+

1
?

9x2 + 12x + 3

ˇ

ˇ

ˇ

ˇ

+ C

= 2 log
ˇ

ˇ

ˇ

ˇ

3x + 3
?

9x2 + 12x + 3

ˇ

ˇ

ˇ

ˇ

+ C

= log

ˇ

ˇ

ˇ

ˇ

ˇ

(3x + 3)2

?
9x2 + 12x + 3

2

ˇ

ˇ

ˇ

ˇ

ˇ

+ C

= log
ˇ

ˇ

ˇ

ˇ

(3x + 3)2

9x2 + 12x + 3

ˇ

ˇ

ˇ

ˇ

+ C

= log
ˇ

ˇ

ˇ

ˇ

9(x + 1)2

3(3x + 1)(x + 1)

ˇ

ˇ

ˇ

ˇ

+ C

= log
ˇ

ˇ

ˇ

ˇ

3(x + 1)2

(3x + 1)(x + 1)

ˇ

ˇ

ˇ

ˇ

+ C

= log
ˇ

ˇ

ˇ

ˇ

3(x + 1)
3x + 1

ˇ

ˇ

ˇ

ˇ

+ C

= log
ˇ

ˇ

ˇ

ˇ

x + 1
3x + 1

ˇ

ˇ

ˇ

ˇ

+ log 3 + C

Since C is an arbitrary constant, we can write our final answer as

log
ˇ

ˇ

ˇ

ˇ

x + 1
3x + 1

ˇ

ˇ

ˇ

ˇ

+ C

S-6:

We see that we have two functions multiplied, but they don’t simplify nicely with each
other. However, if we differentiate logarithm, and integrate x2, we’ll get a polynomial.
So, let’s use integration by parts.

u = log x dv = x2dx

du = (1/x)dx v = x3/3

462



First, let’s antidifferentiate. We’ll deal with the limits of integration later.
ż

x2 log xdx = (log x)
loomoon

u

(x3/3)
loomoon

v

)´

ż

(x3/3)
loomoon

v

(1/x)dx
looomooon

du

=
1
3

x3 log x´
1
3

ż

x2dx

=
1
3

x3 log x´
1
3
¨

1
3

x3 + C

=
1
3

x3 log x´
1
9

x3 + C

We use the Fundamental Theorem of Calculus Part 2 to evaluate the definite integral.
ż 2

1
x3 log xdx =

[
1
3

x3 log x´
1
9

x3
]2

1

=

[
1
3

23 log 2´
1
9

23
]
´

[
1
3

13 log 1´
1
9

13
]

=
8 log 2

3
´

8
9
´ 0 +

1
9

=
8
3

log 2´
7
9

S-7: The derivative of the denominator shows up in the numerator, only differing by a
constant, so we perform a substitution. Specifically, substitute u = x2 ´ 3, du = 2x dx.
This gives

ż

x
x2 ´ 3

dx =

ż

du/2
u

=
1
2

log |u|+ C =
1
2

log
ˇ

ˇx2
´ 3

ˇ

ˇ+ C

S-8: (a) Although a quadratic under a square root often suggests trigonometric
substitution, in this case we have an easier substitution. Specifically, let y = 9 + x2. Then
dy = 2xdx, xdx = dy

2 , y(0) = 9, and y(4) = 25.
ż 4

0

x
?

9 + x2
dx =

ż 25

9

1
?y

dy
2

=
1
2
¨

?y
1/2

ˇ

ˇ

ˇ

25

9
= 5´ 3 = 2

(b) The power of cosine is odd, so we can reserve one cosine for the differential and
change the rest to sines. Substituting y = sin x, dy = cos x, dx, y(0) = 0, y(π/2) = 1,
cos2 x = 1´ y2:

ż π/2

0
cos3 x sin2 x dx =

ż π/2

0
cos2 x sin2 x cos x dx =

ż 1

0
(1´ y2)y2 dy =

ż 1

0
(y2

´ y4)dy

=

[
y3

3
´

y5

5

]1

0
=

1
3
´

1
5

=
2

15
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(c) The integrand is the product of two different kinds of functions, with no obvious
substitution or simplification. If we differentiate log x, it will match better with the
polynomial nature of the rest of the integrand. So, integrate by parts with u(x) = log x
and dv = x3 dx, then du = 1

x dx and v = x4/4.
ż e

1
x3 log x dx =

x4

4
log x

ˇ

ˇ

ˇ

ˇ

e

1
´

ż e

1

x4

4
¨

1
x

dx =
e4

4
´

ż e

1

x3

4
dx =

e4

4
´

x4

16

ˇ

ˇ

ˇ

ˇ

e

1

=
3e4

16
+

1
16

S-9: (a) Integrate by parts with u = x and dv = sin x dx so that du = dx and v = ´ cos x.
ż

x sin x dx = ´x cos x´
ż

(´ cos x)dx = ´x cos x + sin x + C

So,
ż π/2

0
x sin x dx =

[
´ x cos x + sin x

]π/2

0
= 1

(b) The power of cosine is odd, so we can reserve one cosine for du and change the rest
into sines. Make the substitution u = sin x, du = cos x dx.
ż π/2

0
cos5 x dx =

ż π/2

0

(
1´ sin2 x

)2 cos x dx =

ż 1

0

(
1´ u2)2 du =

ż 1

0

(
1´ 2u2 + u4)du

=

[
u´

2
3

u3 +
1
5

u5
]1

0
= 1´

2
3
+

1
5
=

8
15

S-10: (a) This is a classic integration-by-parts example. If we integrate ex, it doesn’t
change, and if we differentiate x it becomes a constant. So, let u = x and dv = ex dx, so
that du = dx and v = ex.

ż 2

0
xex dx =

[
xex
]2

0
´

ż 2

0
ex dx = 2e2

´

[
ex
]2

0
= e2 + 1

(b) We have a quadratic function underneath a square root. In the absence of an easier
substitution, we can get rid of the square root with a trigonometric substitution.
Substitute x = tan y, dx = sec2 y dy. When x = 0, tan y = 0 so y = 0. When x = 1,

tan y = 1 so y = π
4 . Also

?
1 + x2 =

b

1 + tan2 y =
a

sec2 y = sec y, since sec y ě 0 for all
0 ď y ď π

4 .
ż 1

0

1
?

1 + x2
dx =

ż π/4

0

sec2 y dy
sec y

=

ż π/4

0
sec y dy =

[
log | sec y + tan y|

]π/4

0

= log
ˇ

ˇ

ˇ
sec

π

4
+ tan

π

4

ˇ

ˇ

ˇ
´ log |sec 0 + tan 0|

= log
ˇ

ˇ

ˇ

?
2 + 1

ˇ

ˇ

ˇ
´ log |1 + 0| = log(

?
2 + 1)

So,
ż 1

0

1
?

1 + x2
dx = log(

?
2 + 1)
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(c) The integral is a rational function. In the absence of an obvious substitution, we use
partial fractions.

4x
(x2 ´ 1)(x2 + 1)

=
4x

(x´ 1)(x + 1)(x2 + 1)
=

a
x´ 1

+
b

x + 1
+

cx + d
x2 + 1

Multiplying by the denominator,

4x = a(x + 1)(x2 + 1) + b(x´ 1)(x2 + 1) + (cx + d)(x´ 1)(x + 1) (˚)

Setting x = 1 gives 4a = 4, so a = 1. Setting x = ´1 gives ´4b = ´4, so b = 1.
Substituting in a = b = 1 in (˚) gives:

4x = (x + 1)(x2 + 1) + (x´ 1)(x2 + 1) + (cx + d)(x´ 1)(x + 1)

4x = 2x(x2 + 1) + (cx + d)(x´ 1)(x + 1)

4x´ 2x(x2 + 1) = (cx + d)(x´ 1)(x + 1)

´2x(x2
´ 1) = (cx + d)(x2

´ 1)
´2x = cx + d

c = ´2, d = 0

So,

ż 5

3

4x
(x2 ´ 1)(x2 + 1)

dx =

ż 5

3

( 1
x´ 1

+
1

x + 1
´

2x
x2 + 1

)
dx

=
[

log |x´ 1|+ log |x + 1| ´ log(x2 + 1)
]5

3

= log 4 + log 6´ log 26´ log 2´ log 4 + log 10

= log
6ˆ 10
26ˆ 2

= log
15
13
« 0.1431

S-11: (a)
ş3

0

?
9´ x2 dx is the area of the portion of the disk x2 + y2 ď 9 that lies in the first

quadrant. It is 1
4 π33 = 9

4 π . Alternatively, you could also evaluate this integral using the
substitution x = 3 sin y, dx = 3 cos y dy.

ż 3

0

a

9´ x2 dx =

ż π/2

0

b

9´ 9 sin2 y (3 cos y)dy = 9
ż π/2

0
cos2 y dy

=
9
2

ż π/2

0
[1 + cos(2y)]dy =

9
2

[
y +

sin(2y)
2

]π/2

0

=
9
4

π
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x

y

y =
?

9´ x2

3

(b) It’s not immediately obvious what to do with this one, but remember we found
ş

log xdx using integration by parts with u = log x and dv = dx. Let’s hope a similar
trick works here. Integrate by parts, using u = log(1 + x2) and dv = dx, so that
du = 2x

1+x2 dx, v = x.

ż 1

0
log(1 + x2)dx =

[
x log(1 + x2)

]1

0
´

ż 1

0
x

2x
1 + x2 dx = log 2´ 2

ż 1

0

x2

1 + x2 dx

= log 2´ 2
ż 1

0

(
1´

1
1 + x2

)
dx = log 2´ 2

[
x´ arctan x

]1
0

= log 2´ 2 +
π

2
« 0.264

(c) The integrand is a rational function with no obvious substitution, so we use partial
fractions.

x
(x´ 1)2(x´ 2)

=
a

(x´ 1)2 +
b

x´ 1
+

c
x´ 2

=
a(x´ 2) + b(x´ 1)(x´ 2) + c(x´ 1)2

(x´ 1)2(x´ 2)

Multiply by the denominator.

x = a(x´ 2) + b(x´ 1)(x´ 2) + c(x´ 1)2

Setting x = 1 gives a = ´1. Setting x = 2 gives c = 2. Substituting in a = ´1 and c = 2
gives

b(x´ 1)(x´ 2) = x + (x´ 2)´ 2(x´ 1)2 = ´2x2 + 6x´ 4 = ´2(x´ 1)(x´ 2)
ùñ b = ´2

466



Hence
ż 8

3

x
(x´ 1)2(x´ 2)

dx = lim
MÑ8

ż M

3

(
´

1
(x´ 1)2 ´

2
x´ 1

+
2

x´ 2

)
dx

= lim
MÑ8

[
1

x´ 1
´ 2 log |x´ 1|+ 2 log |x´ 2|

]M

3

= lim
MÑ8

[
1

x´ 1
+ 2 log

ˇ

ˇ

ˇ

ˇ

x´ 2
x´ 1

ˇ

ˇ

ˇ

ˇ

]M

3

= lim
MÑ8

[
1

M´ 1
+ 2 log

ˇ

ˇ

ˇ

ˇ

M´ 2
M´ 1

ˇ

ˇ

ˇ

ˇ

]
´

[
1

3´ 1
+ 2 log

ˇ

ˇ

ˇ

ˇ

3´ 2
3´ 1

ˇ

ˇ

ˇ

ˇ

]

= 2 log 2´
1
2
« 0.886

since

lim
MÑ8

log
M´ 2
M´ 1

= lim
MÑ8

log
1´ 2/M
1´ 1/M

= log 1 = 0

and log
1
2
= ´ log 2

S-12: This looks quite a lot like a rational function, but with variable sin θ instead of x. So,
we use the substitution x = sin θ, dx = cos θ dθ.

ż

sin4 θ ´ 5 sin3 θ + 4 sin2 θ + 10 sin θ

sin2 θ ´ 5 sin θ + 6
cos θ dθ =

ż

x4 ´ 5x3 + 4x2 + 10x
x2 ´ 5x + 6

dx

Since the numerator does not have smaller degree than the denominator, we need to do
some long division before we can set up our partial fractions decomposition.

x2 ´ 2
x2 ´ 5x + 6

)
x4 ´ 5x3 + 4x2 + 10x

´ x4 + 5x3 ´ 6x2

´ 2x2 + 10x
2x2 ´ 10x + 12

12

That is,

x4 ´ 5x3 + 4x2 + 10x
x2 ´ 5x + 6

= x2
´ 2 +

12
x2 ´ 5x + 6

= x2
´ 2 +

12
(x´ 2)(x´ 3)

We use partial fractions decomposition on the rightmost term.

12
(x´ 2)(x´ 3)

=
A

x´ 2
+

B
x´ 3

12 = A(x´ 3) + B(x´ 2)
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Setting x = 3 and x = 2 gives us

B = 12, A = ´12

Now we can evaluate our integral.

ż

sin4 θ ´ 5 sin3 θ + 4 sin2 θ + 10 sin θ

sin2 θ ´ 5 sin θ + 6
cos θdθ =

ż

x4 ´ 5x3 + 4x2 + 10x
x2 ´ 5x + 6

dx

=

ż
(

x2
´ 2 +

12
(x´ 2)(x´ 3)

)
dx

=

ż
(

x2
´ 2´

12
x´ 2

+
12

x´ 3

)
dx

=
1
3

x3
´ 2x´ 12 log |x´ 2|+ 12 log |x´ 3|+ C

=
1
3

x3
´ 2x + 12 log

ˇ

ˇ

ˇ

ˇ

x´ 3
x´ 2

ˇ

ˇ

ˇ

ˇ

+ C

=
1
3

sin3 θ ´ 2 sin θ + 12 log
ˇ

ˇ

ˇ

ˇ

sin θ ´ 3
sin θ ´ 2

ˇ

ˇ

ˇ

ˇ

+ C

S-13: (a) It doesn’t matter to us right now that the arguments of sine and cosine are 2x
rather than x. This is still the integral of powers of products of sines and cosines. Since
cosine has an odd power, we make the substitution u = sin(2x), du = 2 cos(2x)dx.

ż π
4

0
sin2(2x) cos3(2x) dx =

ż π
4

0
sin2(2x)

[
1´ sin2(2x)

]
cos(2x) dx =

1
2

ż 1

0
u2[1´ u2] du

=
1
2

ż 1

0

(
u2
´ u4) du =

1
2

[1
3

u3
´

1
5

u5
]1

0
=

1
15

(b) Make the substitution x = 3 tan t, dx = 3 sec2 t dt and use the trig identity
9 + 9 tan2 t = 9 sec2 t.

ż (
9 + x2)´ 3

2 dx =

ż (
9 + 9 tan2 t

)´ 3
2 3 sec2 t dt =

ż (
3 sec t

)´3 3 sec2 t dt

=
1
9

ż

cos t dt =
1
9

sin t + C =
1
9

x
?

x2 + 9
+ C

To convert back to x, in the last step, we used the triangle below, which is rigged to have
tan t = x

3 .

t

3

x? x2 +
9
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(c) Seeing a rational function with no obvious substitutions, we use partial fractions.

1
(x´ 1)(x2 + 1)

=
a

x´ 1
+

bx + c
x2 + 1

=
a(x2 + 1) + (bx + c)(x´ 1)

(x´ 1)(x2 + 1)

Multiply by the original denominator.

1 = a(x2 + 1) + (bx + c)(x´ 1) (˚)

Setting x = 1 gives 2a = 1 or a = 1
2 . Substituting in a = 1

2 in (˚) gives

1
2
(x2 + 1) + (bx + c)(x´ 1) = 1

ðñ (bx + c)(x´ 1) =
1
2
(1´ x2) = ´

1
2
(x´ 1)(x + 1)

ðñ (bx + c) = ´
1
2
(x + 1)

ðñ b = c = ´
1
2

So,
ż

dx
(x´ 1)(x2 + 1)

=

ż [ 1/2
x´ 1

´

1
2(x + 1)
x2 + 1

]
dx

To antidifferentiate the second piece, we split it into two integrals: one that can be
handled with the substitution u = x2 + 1, and another that looks like the derivative of
arctangent.

=

ż ( 1/2
x´ 1

´
x/2

x2 + 1
´

1/2
x2 + 1

)
dx

=

ż ( 1/2
x´ 1

´
1
4
¨

2x
x2 + 1

´
1/2

x2 + 1

)
dx

=
1
2

log |x´ 1| ´
1
4

log(x2 + 1)´
1
2

arctan x + C

(d) We know the derivative of arctangent, and it would integrate nicely if multiplied to
the antiderivative of x. So, we integrate by parts with u = arctan x and dv = x dx so that
du = 1

1+x2 dx and v = 1
2 x2. Then

ż

x arctan x dx =
1
2

x2 arctan x´
1
2

ż

x2

1 + x2 dx

=
1
2

x2 arctan x´
1
2

ż

1 + x2 ´ 1
1 + x2 dx

=
1
2

x2 arctan x´
1
2

ż
(

1´
1

1 + x2

)
dx

=
1
2
[
x2 arctan x´ x + arctan x

]
+ C
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S-14: (a) We substitute y = sin(2x), dy = 2 cos(2x) dx. Note sin(2 ¨ 0) = 0 and
sin(2 ¨ π

4 ) = 1.

ż π/4

0
sin5(2x) cos(2x) dx =

ż 1

0
y5 dy

2
=

1
12

[
y6
]1

0
=

1
12

(b) We can get rid of the square root with a trig substitution. Substituting x = 2 sin y,
dx = 2 cos y dy,

ż

a

4´ x2 dx =

ż

b

4´ 4 sin2 y 2 cos y dy = 4
ż

cos2 y dy = 2
ż [

1 + cos(2y)
]

dy

= 2y + sin(2y) + C = 2y + 2 sin y cos y + C

= 2 sin´1 x
2
+ x

c

1´
x2

4
+ C

since sin y = x
2 and cos y =

b

1´ sin2 y =
b

1´ x2

4 . Alternately, we can draw a triangle
with sin y = x

2 , and use the Pythagorean theorem to find the adjacent side.

y
?

4´ x2

x
2

(c) Seeing a rational function with no obvious substitution, we use the method of partial
fractions. The denominator is already completely factored.

x + 1
x2(x´ 1)

=
A
x
+

B
x2 +

C
x´ 1

x + 1 = Ax(x´ 1) + B(x´ 1) + Cx2

Setting x = 1 gives us C = 2. Setting x = 0 gives us B = ´1. Furthermore, the coefficient
of x2 on the left hand side (after collecting like terms), namely A + C, must be the same
as the coefficient of x2 on the right hand side, namely 0. So A + C = 0 and A = ´2.
Checking,

´2x(x´ 1)´ (x´ 1) + 2x2 = ´2x2 + 2x´ x + 1 + 2x2 = x + 1

as desired. Thus,
ż

x + 1
x2(x´ 1)

dx =

ż [
´

2
x
´

1
x2 +

2
x´ 1

]
dx = ´2 log |x|+

1
x
+ 2 log |x´ 1|+ C

S-15: (a) Define

I1 =

ż 8

0
e´x sin(2x)dx I2 =

ż 8

0
e´x cos(2x)dx
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We integrate by parts, with u = sin(2x) or cos(2x) and dv = e´x dx. That is, v = ´e´x.

I1 =

ż 8

0
e´x sin(2x)dx = lim

RÑ8

ż R

0
e´x sin(2x)dx

= lim
RÑ8

([
´ e´x sin(2x)

]R

0
+ 2

ż R

0
e´x cos(2x)dx

)
= 2I2

I2 =

ż 8

0
e´x cos(2x)dx = lim

RÑ8

ż R

0
e´x cos(2x)dx

= lim
RÑ8

([
´ e´x cos(2x)

]R

0
´ 2

ż R

0
e´x sin(2x)dx

)
= 1´ 2I1

Substituting I2 =
1
2

I1 into I2 = 1´ 2I1 gives
5
2

I1 = 1, or
ż 8

0
e´x sin(2x)dx =

2
5

.

(b) We can cancel out the square root if we use a trig substitution. Substitute
x =

?
2 tan y, dx =

?
2 sec2 y dy.

ż

?
2

0

1
(2 + x2)3/2 dx =

?
2
ż π/4

0

sec2 y
(2 + 2 tan2 y)3/2 dy =

1
2

ż π/4

0
cos y dy =

1
2

[
sin y

]π/4

0
=

1
2
?

2

(c)

Solution 1: Integrate by parts, using u = log(1 + x2) and dv = x dx, so that du = 2x
1+x2 ,

v = x2

2 .

ż 1

0
x log(1 + x2)dx =

[1
2

x2 log(1 + x2)
]1

0
´

ż 1

0

x3

1 + x2 dy =
1
2

log 2´
ż 1

0

[
x´

x
1 + x2

]
dx

=
1
2

log 2´
[x2

2
´

1
2

log(1 + x2)
]1

0
= log 2´

1
2
« 0.193

Solution 2: First substitute y = 1 + x2, dy = 2x dx.

ż 1

0
x log(1 + x2)dx =

1
2

ż 2

1
log y dy

Then integrate by parts, using u = log y and dv = dy, so that du = 1
y , v = y.

ż 1

0
x log(1 + x2)dx =

1
2

ż 2

1
log y dy =

[1
2

y log y
]2

1
´

1
2

ż 2

1
y

1
y

dy = log 2´
1
2
« 0.193

(d) Seeing a rational function with no obvious substitution, we use partial fractions.

1
(x´ 1)2(x´ 2)

=
a

(x´ 1)2 +
b

x´ 1
+

c
x´ 2

1 = a(x´ 2) + b(x´ 1)(x´ 2) + c(x´ 1)2 (˚)
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Setting x = 1 gives a = ´1. Setting x = 2 gives c = 1. Substituting in a = ´1 and c = 1 to
(˚) gives

b(x´ 1)(x´ 2) = 1 + (x´ 2)´ (x´ 1)2

= ´x2 + 3x´ 2
= ´(x´ 1)(x´ 2)

ùñ b = ´1

Hence:
ż 8

3

1
(x´ 1)2(x´ 2)

dx = lim
MÑ8

ż M

3

(
´

1
(x´ 1)2 ´

1
x´ 1

+
1

x´ 2

)
dx

= lim
MÑ8

[ 1
x´ 1

´ log(x´ 1) + log(x´ 2)
]M

3

= lim
MÑ8

[ 1
M´ 1

+ log
M´ 2
M´ 1

]
´

[ 1
3´ 1

+ log
3´ 2
3´ 1

]

= log 2´
1
2
« 0.193

since

lim
MÑ8

log
M´ 2
M´ 1

= lim
MÑ8

log
1´ 2/M
1´ 1/M

= log 1 = 0

S-16: (a) Integrate by parts with u = log x and dv = x dx, so that du = dx
x and v = 1

2 x2.

ż

x log x dx =
1
2

x2 log x´
1
2

ż

x2
¨

1
x

dx =
1
2

x2 log x´
1
4

x2 + C

(b) The denominator is an irreducible quadratic, so partial fractions can’t get us any
further. To integrate a function whose denominator is quadratic, we split the numerator
up so that one piece can be evaluated with a u-substitution, and the other piece looks like
arctangent.

ż

(x´ 1)dx
x2 + 4x + 5

=

ż

x + 2´ 3
x2 + 4x + 5

dx

=
1
2

ż

2x + 4
x2 + 4x + 5

dx´
ż

3
x2 + 4x + 5

dx

=
1
2

ż

2x + 4
x2 + 4x + 5

dx´ 3
ż

1
(x + 2)2 + 1

dx

=
1
2

log[x2 + 4x + 5]´ 3 arctan(x + 2) + C

For the last step, you can guess the antiderivative, or use the substitutions
u1 = x2 + 4x + 5 and u2 = x + 2, respectively, for the two integrals.
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(c) We use partial fractions.

1
x2 ´ 4x + 3

=
1

(x´ 3)(x´ 1)
=

a
x´ 3

+
b

x´ 1
1 = a(x´ 1) + b(x´ 3)

Setting x = 3 gives a = 1
2 . Setting x = 1 gives b = ´1

2 . So,
ż

dx
x2 ´ 4x + 3

=

ż ( 1/2
x´ 3

´
1/2

x´ 1

)
dx =

1
2

log |x´ 3| ´
1
2

log |x´ 1|+ C

(d) Substitute y = x3, dy = 3x2 dx.
ż

x2 dx
1 + x6 =

1
3

ż

dy
1 + y2 =

1
3

arctan y + C =
1
3

arctan x3 + C

S-17: (a) Integrate by parts with u = arctan x, dv = dx, du = dx
1+x2 and v = x. This gives

ż 1

0
arctan x dx =

[
x arctan x

]1
0 ´

ż 1

0

x
1 + x2 dx = arctan 1´

[1
2

log(1 + x2)
]1

0
=

π

4
´

1
2

log 2

(b) Note that the derivative of the denominator is 2x´ 2, which differs from the
numerator only by 1.

ż

2x´ 1
x2 ´ 2x + 5

dx =

ż

2x´ 2
x2 ´ 2x + 5

dx +

ż

1
x2 ´ 2x + 5

dx

=

ż

2x´ 2
x2 ´ 2x + 5

dx +

ż

1
(x´ 1)2 + 4

dx

= log |x2
´ 2x + 5|+

1
2

arctan
x´ 1

2
+ C

In the last step, you can guess the antiderivative, or use the substitutions
u1 = x2 ´ 2x + 5 and u2 = (x´ 1)/2, respectively.

S-18: (a) Substituting u = x3 + 1, du = 3x2 dx
ż

x2

(x3 + 1)101 dx =

ż

1
u101 ¨

du
3

=
u´100

´100
¨

1
3
+ C = ´

1
300(x3 + 1)100 + C

(b) Substituting u = sin x, du = cos x dx, cos2 x = 1´ sin2 x = 1´ u2,
ż

cos3x sin4x dx =

ż

cos2x sin4x cos x dx =

ż

(1´ u2)u4 du

=

ż

(u4
´ u6) du =

u5

5
´

u7

7
+ C

=
sin5x

5
´

sin7x
7

+ C
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S-19: First, we note that the integral is improper, because sin π = 0. So, we’ll have to use
a limit.

Second, we need to antidifferentiate. The substitution u = sin x, du = cos x dx fits just
right.

ż π

π/2

cos x
?

sin x
dx = lim

bÑπ´

ż b

π/2

cos x
?

sin x
dx = lim

bÑπ´

ż sin b

1

1
?

u
du

= lim
bÑπ´

[
2
?

u
]sin b

1
= 2

?
0´ 2

?
1 = ´2

S-20: (a) If the integrand had x’s instead of ex’s it would be a rational function, ripe for
the application of partial fractions. So let’s start by making the substitution u = ex,
du = ex dx:

ż

ex

(ex + 1)(ex ´ 3)
dx =

ż

du
(u + 1)(u´ 3)

Now, we follow the partial fractions protocol, starting with expressing

1
(u + 1)(u´ 3)

=
A

u + 1
+

B
u´ 3

To find A and B, the sneaky way, we cross multiply by the denominator

1 = A(u´ 3) + B(u + 1)

and find A and B by evaluating at u = ´1 and u = 3, respectively.

1 = A(´1´ 3) + B(´1 + 1) ðñ A = ´
1
4

1 = A(3´ 3) + B(3 + 1) ðñ B =
1
4

Finally, we can do the integral:
ż

ex

(ex + 1)(ex ´ 3)
dx =

ż

du
(u + 1)(u´ 3)

=

ż (
´1/4
u + 1

+
1/4

u´ 3

)
du

= ´
1
4

log |u + 1|+
1
4

log |u´ 3|+ C

= ´
1
4

log |ex + 1|+
1
4

log |ex
´ 3|+ C

(b) The argument of the square root is

12 + 4x´ x2 = 12´ (x´ 2)2 + 4 = 16´ (x´ 2)2
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Hmmm. The numerator is x2 ´ 4x + 4 = (x´ 2)2. So let’s make the integral look
somewhat simpler by substituting u = x´ 2, du = dx. When x = 2 we have u = 0, and
when x = 4 we have u = 2, so:

ż x=4

x=2

x2 ´ 4x + 4
?

12 + 4x´ x2
dx =

ż u=2

u=0

u2
?

16´ u2
du

This is perfect for the trig substitution u = 4 sin θ, du = 4 cos(θ)dθ. When u = 0 we have
4 sin θ = 0 and hence θ = 0. When u = 2 we have 4 sin θ = 2 and hence θ = π

6 . So

ż u=2

u=0

u2
?

16´ u2
du =

ż θ=π/6

θ=0

16 sin2 θ
a

16´ 16 sin2 θ
4 cos θdθ

= 16
ż π/6

0
sin2 θ dθ

= 8
ż π/6

0

(
1´ cos(2θ)

)
dθ

= 8
[

θ ´
1
2

sin(2θ)

]π/6

0
= 8

[
π

6
´

1
2
¨

?
3

2

]

=
4π

3
´ 2
?

3

S-21: (a) Substituting y = cos x, dy = ´ sin x dx, sin2 x = 1´ cos2 x = 1´ y2

ż

sin3 x
cos3 x

dx =

ż

sin2 x
cos3 x

sin x dx =

ż

1´ y2

y3 (´dy) = ´

ż (
y´3

´ y´1) dy

= ´
y´2

´2
+ log |y|+ C =

1
2

sec2 x + log | cos x|+ C

(b) The integrand is an even function, and the limits of integration are symmetric. So, we
can slightly simplify the integral by replacing the lower limit with 0, and doubling the
integral.

We’d rather not use partial fractions here, because it would be pretty complicated.
Instead, notice that the numerator is only off by a constant from the derivative of x5.
Substituting x5 = 4y, 5x4 dx = 4 dy, and using that x = 2 ùñ 25 = 4y ùñ y = 8,

ż 2

´2

x4

x10 + 16
dx = 2

ż 2

0

x4

x10 + 16
dx = 2 ¨

4
5

ż 8

0

1
16y2 + 16

dy =
1

10

ż 8

0

1
y2 + 1

dy

=
1

10
arctan 8 « 0.1446

S-22:
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Solution 1: Let’s use the substitution u = x´ 1, du = dx.
ż

x
?

x´ 1 dx =

ż

(u + 1)
?

u du

=

ż (
u3/2 + u1/2

)
du

=
2
5

u5/2 +
2
3

u3/2 + C

=
2
5
(x´ 1)5/2 +

2
3
(x´ 1)3/2 + C

Solution 2: We have an integrand with x multiplied by something integrable. So, if we
use integration by parts with u = x and dv =

?
x´ 1 dx, then du = dx (that is, the

x goes away) and v = 2
3(x´ 1)3/2.

ż

x
?

x´ 1 dx =
2
3

x
?

x´ 1
3
´

2
3

ż

(x´ 1)3/2dx

=
2
3

x
?

x´ 1
3
´

2
3

(
2
5
(x´ 1)5/2

)
+ C

=
2
3

?
x´ 1

(
x(x´ 1)´

2
5
(x´ 1)2

)
+ C

=
2

15

?
x´ 1 ¨ (3x2

´ x´ 2) + C

=
2

15

?
x´ 1 ¨ (3(x2

´ 2x + 1) + 5x´ 5) + C

=
2

15

?
x´ 1 ¨ (3(x´ 1)2 + 5(x´ 1)) + C

=
2

15
¨ 3
?

x´ 1
5
+

2
15
¨ 5
?

x´ 1
3
+ C

=
2
5

?
x´ 1

5
+

2
3

?
x´ 1

3
+ C

We have just seen two solutions. There are other solutions too. For example, one could
use the substitution u =

?
x´ 1. Or, as another example, one could write

x
?

x´ 1 = (x´ 1)
?

x´ 1 +
?

x´ 1 = (x´ 1)3/2 + (x´ 1)1/2

and just guess a function whose derivative is (x´ 1)3/2 and a function whose derivative
is (x´ 1)1/2.

S-23: We are to integrate
ż

?
x2 ´ 2
x2 dx

We notice that there is a quadratic function under the square root. If that function were a
perfect square, we could get rid of the square root: so we’ll mould it into a perfect square
using a trig substitution.
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Our candidates are the following identities:

1´ sin2 θ = cos2 θ tan2 θ + 1 = sec2 θ sec2 θ ´ 1 = tan2 θ

We’ll be substituting x =(something), so we notice that x2 ´ 2 has the general form of
(function)´(constant), as does sec2 θ ´ 1. In order to get the constant right, we multiply
through by two:

2 sec2 θ ´ 2 = 2 tan2 θ

or:
(
?

2 sec θ)2
´ 2 = 2 tan2 θ

So we decide to use the substitution

x =
?

2 sec θ 0 ď θ ă π/2 (Recall that x ě
?

2.)

dx =
?

2 sec θ tan θ dθ
a

x2 ´ 2 =
a

2 sec2 θ ´ 2 =
a

2 tan2 θ =
?

2 | tan θ|

=
?

2 tan θ since 0 ď θ ă π/2

Now that we’ve chosen the substitution, we evaluate the integral.
ż

?
x2 ´ 2
x2 dx =

ż

?
2 tan θ

2 sec2 θ

?
2 sec θ tan θ dθ

=

ż

tan2 θ

sec θ
dθ

=

ż

sec2 θ ´ 1
sec θ

dθ

=

ż (
sec θ ´ cos θ

)
dθ

= log | sec θ + tan θ| ´ sin θ + C

Now we need everything back in terms of x. We need a triangle. Since x =
?

2 sec θ, that
means that if we label an angle θ, its secant (hypotenuse over adjacent side) is

x
?

2
. By

Pythagoras, the opposite side is
?

x2 ´ 2.

θ
?

2

?
x2 ´ 2

x

So tan θ =
opp
adj =

?
x2 ´ 2
?

2
, and sin θ =

opp
hyp =

?
x2 ´ 2

x
. Then the value of the integral is:

log | sec θ + tan θ| ´ sin θ + C = log

ˇ

ˇ

ˇ

ˇ

ˇ

x
?

2
+

?
x2 ´ 2
?

2

ˇ

ˇ

ˇ

ˇ

ˇ

´

?
x2 ´ 2

x
+ C

= log
ˇ

ˇ

ˇ
x +

a

x2 ´ 2
ˇ

ˇ

ˇ
´ log

?
2´

?
x2 ´ 2

x
+ C

= log
ˇ

ˇ

ˇ
x +

a

x2 ´ 2
ˇ

ˇ

ˇ
´

?
x2 ´ 2

x
+ C
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Note that the simplification in the last step is possible because C is an arbitrary constant.
So, C´ log

?
2 is just another arbitrary constant and can be renamed to C.

S-24:

This is the product of secants and tangents, as in Section 1.8.2 of the CLP-2 text. If
u = tan x, then du = sec2 xdx. We can get the remaining two secants to turn into
tangents with the identity sec2 x = 1 + tan2 x, so we’ll use this substitution.

ż π/4

0
sec4 x tan5 xdx =

ż π/4

0
sec2 x tan5 x sec2 xdx

=

ż π/4

0
(1 + tan2 x) tan5 x sec2 xdx

looomooon

du

=

ż tan(π/4)

tan(0)
(1 + u2)u5du

=

ż 1

0
(u5 + u7)du

=

[
1
6

u6 +
1
8

u8
]1

0

=
1
6
+

1
8
´ 0 =

7
24

S-25: We can use partial fraction decomposition to break this into chunks that we can
deal with. The denominator has a repeated linear factor, so it can be decomposed as the
sum of constants divided by powers of that factor.

3x2 + 4x + 6
(x + 1)3 =

A
x + 1

+
B

(x + 1)2 +
C

(x + 1)3

=
A(x + 1)2 + B(x + 1) + C

(x + 1)3

ñ 3x2 + 4x + 6 = A(x + 1)2 + B(x + 1) + C

= Ax2 + (2A + B)x + (A + B + C)

So, by matching coefficients:

A = 3, 2A + B = 4, and A + B + C = 6
A = 3, B = ´2, C = 5

Therefore:

3x2 + 4x + 6
(x + 1)3 =

3
x + 1

+
´2

(x + 1)2 +
5

(x + 1)3
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Now, the integration is easy, with a substitution of u = x + 1 and du = dx:
ż

3x2 + 4x + 6
(x + 1)3 dx =

ż
(

3
x + 1

+
´2

(x + 1)2 +
5

(x + 1)3

)
dx

=

ż (
3u´1

´ 2u´2 + 5u´3
)

du

= 3 log |u|+ 2u´1
´

5
2

u´2 + C

= 3 log |x + 1|+
2

x + 1
´

5
2(x + 1)2 + C

S-26:

If the denominator were x2 + 1, the antiderivative would be arctangent. So, by

completing the square, let’s aim for the fraction to look like
1

u2 + 1
, for some u. This is a

good strategy for integrating an irreducible quadratic under a constant.

First: complete the square
ż

1
x2 + x + 1

dx =

ż

1
x2 + x + 1

4 +
3
4

dx =

ż

1
(

x + 1
2

)2
+ 3

4

dx

Second: get the denominator in the form u2 + 1. To do this, we need to fix the constant

=

ż


 1
(

x + 1
2

)2
+ 3

4



(

4
3
4
3

)
dx

=
4
3

ż

1

4
3 ¨
(

x + 1
2

)2
+ 1

dx

Now a quick wiggle to make that first part of the denominator into something squared
again:

=
4
3

ż

1
(

2?
3

x + 1?
3

)2
+ 1

dx

Now we see that u =
2
?

3
x +

1
?

3
, du =

2
?

3
dx will do the job

=
4
3

ż

1
u2 + 1

¨

?
3

2
du =

2
?

3

ż

1
u2 + 1

du

=
2
?

3
arctan u + C

=
2
?

3
arctan

(
2
?

3
x +

1
?

3

)
+ C
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S-27: Since tan x = sin x
cos x ,

ż

sin x cos x tan x dx =

ż

sin2 x dx =

ż

1
2
(
1´ cos(2x)

)
dx

=
1
2

(
x´

1
2

sin(2x)
)
+ C

=
1
2
(x´ sin x cos x) + C

S-28: We have the integral of a rational function with no obvious substitution, so we use
partial fractions. That means we need to factor the denominator. We see that x = ´1 is a
root of the denominator, so x + 1 is a factor. You might be able to figure out the rest of the
factorization by inspection, or from having seen this common expression before;
alternately, we can use long division.

x2 ´ x + 1
x + 1

)
x3 + 1

´ x3 ´ x2

´ x2

x2 + x
x + 1

´ x ´ 1
0

Note x2 ´ x + 1 is an irreducible quadratic.

1
x3 + 1

=
1

(x + 1)(x2 ´ x + 1)
=

A
x + 1

+
Bx + C

x2 ´ x + 1
1 = A(x2

´ x + 1) + (Bx + C)(x + 1) (˚)

When x = ´1, we see 1 = 3A, so 1
3 = A. We plug this into (˚).

1 =
1
3
(x2

´ x + 1) + (Bx + C)(x + 1)

´
1
3

x2 +
1
3

x +
2
3
= Bx2 + (B + C)x + C

Matching up coefficients of corresponding power of x, we see B = ´1
3 and C = 2

3 .

ż

1
x3 + 1

dx =

ż

(
1/3

x + 1
´

1
3 x´ 2

3
x2 ´ x + 1

)
dx
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To integrate the second fraction, we break it up into two pieces: one we can integrate
using the substitution u = x2 ´ x + 1, the other will look like the derivative of arctangent.

=
1
3

log |x + 1| ´
ż 1

3 x´ 1
6 ´

1
2

x2 ´ x + 1
dx

=
1
3

log |x + 1| ´
1
6

ż

2x´ 1
x2 ´ x + 1

dx +
1
2

ż

1
(x´ 1

2)
2 + 3

4

dx

=
1
3

log |x + 1| ´
1
6

log |x2
´ x + 1|+

1
2

ż

1

3
4

((
2x´1?

3

)2
+ 1
) dx

=
1
3

log |x + 1| ´
1
6

log |x2
´ x + 1|+

2
3

ż

1
(

2x´1?
3

)2
+ 1

dx

Let u = 2x´1?
3

, du = 2?
3

dx.

=
1
3

log |x + 1| ´
1
6

log |x2
´ x + 1|+

1
?

3

ż

1
u2 + 1

dx

=
1
3

log |x + 1| ´
1
6

log |x2
´ x + 1|+

1
?

3
arctan

(
2x´ 1
?

3

)
+ C

S-29: By process of elimination, we decide to use integration by parts. We won’t get
anything better by antidifferentiating arcsine, so let’s plan on differentiating it:

u = arcsin x dv = (3x)2dx

du =
1

?
1´ x2

dx v = 3x3

ż

(3x)2 arcsin xdx = arcsin x
looomooon

u

¨ 3x3
loomoon

v

´

ż

3x3
loomoon

v

¨
1

?
1´ x2

dx
looooomooooon

du

= 3x3 arcsin x´
ż

3x3
?

1´ x2
dx

So: we’ve gotten rid of the ugly pairing of arcsine with a polynomial, but now we’re in
another pickle. From here, two options present themselves. We could use the
substitution u = 1´ x2, or we could use a trig substitution.
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Option 1: Let u = 1´ x2. Then ´1
2du = dx, and x2 = 1´ u.

ż

(3x)2 arcsin xdx = 3x3 arcsin x´
ż

3x3
?

1´ x2
dx

= 3x3 arcsin x´ 3
ż

x2
?

1´ x2
¨ x dx

= 3x3 arcsin x +
3
2

ż

1´ u
?

u
du

= 3x3 arcsin x +
3
2

ż (
u´1/2

´ u1/2
)

du

= 3x3 arcsin x +
3
2

(
2u1/2

´
2
3

u3/2
)
+ C

= 3x3 arcsin x + 3
a

1´ x2 ´
a

1´ x2
3
+ C

Option 2: If we let x = sin θ, then
?

1´ x2 =
?

cos2 θ = cos θ. So let’s use the
substitution x = sin θ, dx = cos θdθ.

ż

(3x)2 arcsin xdx = 3x3 arcsin x´
ż

3x3
?

1´ x2
dx

= 3x3 arcsin x´
ż

3 sin3 θ
a

1´ sin2 θ
cos θdθ

= 3x3 arcsin x´
ż

3 sin3 θdθ

And now: a substitution from Section 1.8.1 of the CLP-2 text, u = cos x and
du = ´ sin xdx

3x3 arcsin x´
ż

3 sin3 θdθ = 3x3 arcsin x´ 3
ż

sin2 θ sin θdθ

= 3x3 arcsin x´ 3
ż

(1´ cos2 θ) sin θdθ

= 3x3 arcsin x + 3
ż

(1´ u2)du

= 3x3 arcsin x + 3
(

u´
1
3

u3
)
+ C

= 3x3 arcsin x + 3u´ u3 + Cθ
?

1´ x2

x
1

= 3x3 arcsin x + 3 cos θ ´ cos3 θ + C

Recall x = sin θ; so we draw a triangle with angle θ, opposite side x, hypotenuse 1.
Then by Pythagoras, adjacent side is

?
1´ x2, so cos θ =

?
1´ x2.

= 3x3 arcsin x + 3
a

1´ x2 ´ (1´ x2)3/2 + C
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S-30: We would like to not have that square root there. Luckily, there’s a way of turning
cosine into cosine squared: the identity cos(2x) = 2 cos2 x´ 1. If we take 2x = t, then
cos t = 2 cos2(t/2)´ 1.

ż π/2

0

?
cos t + 1 dt =

ż π/2

0

b

2 cos2(t/2) dt =
?

2
ż π/2

0
| cos(t/2)| dt

Over the interval [0, π
2 ], cos(t/2) ą 0, so we can drop the absolute values.

=
?

2
ż π/2

0
cos(t/2) dt =

?
2
[

2 sin
(

t
2

)]π/2

0

= 2
?

2 sin
(π

4

)
= 2

S-31:

Solution 1: Using logarithm rules, log
?

x = log
(
x1/2) = 1

2 log x, so we can simplify:
ż e

1

log
?

x
x

dx =

ż e

1

log x
2x

dx

We use the substitution u = log x, du = 1
x dx:

ż e

1

log x
2x

dx =
1
2

ż e

1
log(x)
loomoon

u

¨
1
x

dx
loomoon

du

=
1
2

ż log(e)

log(1)
u du

=
1
2

ż 1

0
u du

=
1
2

[
1
2

u2
]1

0

=
1
2

[
1
2
´ 0
]
=

1
4

Solution 2: We use the substitution u = log
?

x. Then
du
dx

=
1
?

x
¨

1
2
?

x
=

1
2x

, hence

2du =
1
x

dx. This fits our integral nicely!

ż e

1

log
?

x
x

dx =

ż log
?

e

log
?

1
u ¨ 2du

=
[
u2
]1/2

0

=

(
1
2

)2

´ 02 =
1
4
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S-32:
ż 0.2

0.1

tan x
log(cos x)

dx

It might not be immediately obvious how to proceed on this one, so this is another
example of an integral where you should not be discouraged by finding methods that
don’t work. One thing that’s worked for us in the past is to use a u-substitution with the
denominator. With that in mind, let’s find the derivative of the denominator.

d
dx
tlog(cos x)u =

1
cos x

¨ (´ sin x) =
´ sin x
cos x

= ´ tan x

So, if we let u = log(cos x), we see ´du = tan xdx, which will work for a substitution.

ż 0.2

0.1

tan x
log(cos x)

dx =

ż log(cos(0.2))

log(cos(0.1))

´du
u

=
[
´ log |u|

]log(cos(0.2))

log(cos(0.1))

= ´ log | log(cos 0.2)|+ log | log(cos 0.1)|

= log
ˇ

ˇ

ˇ

ˇ

log(cos(0.1))
log(cos(0.2))

ˇ

ˇ

ˇ

ˇ

= log
(

log(cos(0.1))
log(cos(0.2))

)

Things to notice: the integrand is only defined when log(cos x) exists AND is nonzero.
So, for instance, it is not defined when x = 0, because then log cos x = log 1 = 0, and we
can’t divide by zero.

In the final simplification, since 0.1 and 0.2 are between 0 and π/2, the cosine term is
positive but less than one, so log(cos 0.1) and log(cos 0.2) are both negative; then their
quotient is positive, so we can drop the absolute value signs.

Using the base change formula, we can also write the final answer as
log
(

logcos(0.2) cos(0.1)
)

.

S-33: (a) Without any other ideas, we see we have a compound function–a function of a
function. We often find it useful to substitute for the “inside” function. So, we substitute
u = log x, du = 1

x dx. Then dx = x du = eu du.
ż

sin(log x) dx =

ż

sin(u) eu du

We have already seen, in Example 1.7.11 of the CLP-2 text, that
ż

sin(u) eu du =
1
2

eu( sin u´ cos u
)
+ C
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So,
ż

sin(log x) dx =
1
2

x
[

sin(log x)´ cos(log x)
]
+ C

(b) The integrand is of the form N(x)/D(x) with N(x) of lower degree than D(x). So we
factor D(x) = (x´ 2)(x´ 3) and look for a partial fractions decomposition:

1
(x´ 2)(x´ 3)

=
A

x´ 2
+

B
x´ 3

.

Multiplying through by the denominator yields

1 = A(x´ 3) + B(x´ 2)

Setting x = 2 we find:

1 = A(2´ 3) + 0 ùñ A = ´1

Setting x = 3 we find:

1 = 0 + B(3´ 2) ùñ B = 1

So we have found that A = ´1 and B = 1. Therefore
ż

1
(x´ 2)(x´ 3)

dx =

ż
(

1
x´ 3

´
1

x´ 2

)
dx

= log |x´ 3| ´ log |x´ 2|+ C

and the definite integral

ż 1

0

1
(x´ 2)(x´ 3)

dx =
[

log |x´ 3| ´ log |x´ 2|
]1

0

=
[

log 2´ log 1
]
´
[

log 3´ log 2
]

= 2 log 2´ log 3 = log
4
3

S-34: (a) If we expand the integrand, one part of it is quite familiar–a portion of a circle.
So, we split the specified integral in two.

ż 3

0
(x + 1)

a

9´ x2 dx =

ż 3

0

a

9´ x2 dx +

ż 3

0
x
a

9´ x2 dx

The first piece represents the area above the x–axis and below the curve y =
?

9´ x2, i.e.
x2 + y2 = 9, with 0 ď x ď 3. That’s the area of one quadrant of a disk of radius 3. So

ż 3

0

a

9´ x2 dx =
1
4
(π ¨ 32) =

9
4

π
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For the second part, we substitute u = 9´ x2, du = ´2x dx. Note u(0) = 9 and u(3) = 0.
So,

ż 3

0
x
a

9´ x2 dx =

ż 0

9

?
u

du
´2

= ´
1
2

[
u3/2

3/2

]0

9

= ´
1
2

[
´

27
3/2

]
= 9

All together,
ż 3

0
(x + 1)

a

9´ x2 dx =
9
4

π + 9

(b) The integrand is of the form N(x)/D(x) with D(x) already factored and N(x) of
lower degree. We immediately look for a partial fractions decomposition:

4x + 8
(x´ 2)(x2 + 4)

=
A

x´ 2
+

Bx + C
x2 + 4

.

Multiplying through by the denominator yields

4x + 8 = A(x2 + 4) + (Bx + C)(x´ 2) (˚)

Setting x = 2 we find:

8 + 8 = A(4 + 4) + 0 ùñ 16 = 8A ùñ A = 2

Substituting A = 2 in (˚) gives

4x + 8 = A(x2 + 4) + (Bx + C)(x´ 2)

ùñ ´2x2 + 4x = (x´ 2)(Bx + C)
ùñ (´2x)(x´ 2) = (Bx + C)(x´ 2)
ùñ B = ´2, C = 0

So we have found that A = 2, B = ´2, and C = 0. Therefore
ż

4x + 8
(x´ 2)(x2 + 4)

dx =

ż
(

2
x´ 2

´
2x

x2 + 4

)
dx

= 2 log |x´ 2| ´ log(x2 + 4) + C

Here the second integral was found just by guessing an antiderivative. Alternatively, one
could use the substitution u = x2 + 4, du = 2x dx.

(c) The given integral is improper, but only because of its infinite limits of integration.
(The integrand is continuous for all real numbers.) So, we’ll have to take two limits.
Before we do that, though, let’s find the antiderivative. We would like to use the
substitution u = ex, du = ex dx. That is, 1

u du = dx.
ż

1
ex + e´x dx =

ż

1
u(u + 1

u )
du =

ż

1
u2 + 1

= arctan u + C

= arctan(ex) + C
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Now we can deal with the limits of integration.

ż 8

´8

1
ex + e´x dx =

ż 0

´8

1
ex + e´x dx +

ż 8

0

1
ex + e´x dx

= lim
aÑ´8

[
ż 0

a

1
ex + e´x dx

]
+ lim

bÑ8

[
ż b

0

1
ex + e´x dx

]

= lim
aÑ´8

[
arctan(ex)

]0
a + lim

bÑ8

[
arctan(ex)

]b
0

= lim
aÑ´8

[
arctan(e0)´ arctan(ea)

]
+ lim

bÑ8

[
arctan(eb)´ arctan(e0)

]

= lim
aÑ´8

[
´ arctan(ea)

]
+ lim

bÑ8

[
arctan(eb)

]

= ´ arctan(0) +
π

2
=

π

2

S-35: It’s not immediately clear where to start, but a common method we’ve seen is to
use the denominator in a u-substitution, especially when square roots are involved.

Let u =
?

1´ x, du = ´ 1
2
?

1´x
dx. Then u2 = 1´ x, so x = 1´ u2.

ż

c

x
1´ x

dx = 2
ż

?
x

2
?

1´ x
dx = ´2

ż

a

1´ u2 du

Now we’re back in familiar territory. Let u = sin θ, du = cos θ dθ.

= ´2
ż

a

1´ sin2 θ cos θ dθ

= ´2
ż

cos2 θ dθ

= ´

ż (
1 + cos(2θ)

)
dθ

= ´θ ´
1
2

sin(2θ) + C

= ´θ ´ sin θ cos θ + C

= ´ arcsin u´ u
a

1´ u2 + C (˚)θ
?

1´ u2

u
1

= ´ arcsin(
?

1´ x)´
?

1´ x
?

x + C

In (˚), to convert from θ to u, our substitution u = sin θ tells us θ = arcsin u. To find cos θ,
we can either trace our work backwards to see that we already simplified

?
1´ u2 into

cos θ, or we can draw a right triangle with angle θ and sin θ = u, then use the
Pythagorean theorem to find the length of the adjacent side of the triangle and cos θ.

S-36: Let’s use the substitution u = ex. There are a few reasons to think this is a good
choice. It’s an “inside function,” in that if we let f (x) = ex, then f (ex) = eex

, which is a
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piece of our integrand. Also its derivative, ex, is multiplied by the rest of the integrand,
since e2x = ex ¨ ex .

Let u = ex, du = exdx. When x = 0, u = 1, and when x = 1, u = e.
ż 1

0
e2xeex

dx =

ż 1

0
exeex

exdx =

ż e

1
ueu du

This is more familiar. We use integration by parts with dv = eu du, v = eu. Conveniently,
the “u” we brought in with the substitution is what we want to use for the “u” in
integration by parts, so we don’t have to change the names of our variables.

=
[
ueu]e

1 ´

ż e

1
eu du

= e ¨ ee
´ e´ ee + e = ee(e´ 1)

S-37: The substitution u = x + 1 looks promising at first, but doesn’t result in something
easily integrable. We can’t use partial fractions because our integration isn’t rational.
This doesn’t look like something from the trig-substitution family. So, let’s think about
integration by parts. There’s a lot of different ways we could break up the integrand into

two parts. For example, we could view it as
(

x
(x+1)2

)(
ex
)

, or we could view it as
(

x
x+1

)(
ex

x+1

)
. After some trial and error, we settle on u = xex and dv = (x + 1)´2 dx.

Then du = ex(x + 1) and v = ´1
x+1 .

ż

xex

(x + 1)2 dx = ´
xex

x + 1
+

ż

ex(x + 1)
x + 1

dx

= ´
xex

x + 1
+

ż

exdx

= ´
xex

x + 1
+ ex + C

=
ex

x + 1
+ C

S-38: It would be nice to use integration by parts with u = x, because then we would
integrate

ş

v du, and du = dx. That is, the x would go away, and we’d be left with a pure
trig integral. If we use u = x, then dv = sin x

cos2 x . We need to find v:

v =

ż

sin x
cos2 x

dx =

ż

tan x sec x dx = sec x

Now we use integration by parts.
ż

x sin x
cos2 x

dx = x sec x´
ż

sec x dx = x sec x´ log | sec x + tan x|+ C
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S-39: If the unknown exponent gives you the jitters, think about what this looks like in
easier cases. If n is a whole number, the integrand is a polynomial. Not so scary, right?
However, it’s a little complicated to expand. (You can do it using the very handy
binomial theorem.) Let’s think of an easier way.

If we had simply the variable x raised to the power n, rather than the binomial x + a, that
might be nicer. So, let’s use the substitution u = x + a, du = dx. Note x = u´ a.

ż

x(x + a)n dx =

ż

(u´ a)un dx =

ż (
un+1

´ aun) du

Now, if n ‰ ´1 and n ‰ ´2, we can just use the power rule:

=
u(n+2)

n + 2
´ a

un+1

n + 1
+ C

=
(x + a)(n+2)

n + 2
´ a

(x + a)n+1

n + 1
+ C

If n = ´1, then
ż

x(x + a)n dx =

ż (
un+1

´ aun) du =

ż (
1´

a
u

)
du

= u´ a log |u|+ C = (x + a)´ a log |x + a|+ C

If n = ´2, then
ż

x(x + a)n dx =

ż (
un+1

´ aun) du =

ż
(

1
u
´ au´2

)
du

= log |u|+
a
u
+ C = log |x + a|+

a
x + a

+ C

All together,

ż

x(x + a)n dx =

$

’

&

’

%

(x+a)(n+2)

n+2 ´ a (x+a)n+1

n+1 + C if n ‰ ´1,´2
(x + a)´ a log |a + x|+ C if n = ´1
log |x + a|+ a

x+a + C if n = ´2

S-40: We’ve seen how to antidifferentiate arctan x: integration by parts. Let’s hope the
same thing will work here.

Step 1: integration by parts.
Let u = arctan(x2) and dv = dx. Then du = 2x

x4+1 du and v = x.

ż

arctan(x2) dx = x arctan(x2)´

ż

2x2

x4 + 1
dx

Now we have a rational function. There’s no obvious substitution, but we can use partial
fractions. The degree of the numerator is strictly less than the degree of the denominator,
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so we don’t need to long divide first. We do, however, need to factor the denominator.
It’s a common function, so you might already know the factorization, or you might be
able to guess it. Below, we show another way to find the factorization, similar to the
method of partial fractions.

Step 2: factor x4 + 1.
For any real x, note x4 + 1 ą 0. Since it has no roots, it has no linear factors. That means it
factors as the product of two irreducible quadratics. That is,

x4 + 1 = (ax2 + bx + c)(dx2 + ex + f )

Since the coefficient of x4 on the left-hand is 1, we may assume a = d = 1.

x4 + 1 = (x2 + bx + c)(x2 + ex + f )

Since the constant term is 1, c f = 1. That is, f = 1
c .

x4 + 1 = (x2 + bx + c)(x2 + ex + 1/c)

= x4 + (b + e)
loomoon

(1)

x3 +

(
1
c
+ be + c

)

looooooomooooooon

(3)

x2 +

(
b
c
+ ec

)

loooomoooon

(2)

x + 1

(1) The coefficient of x3 tells us e = ´b.

(2) Then the coefficient of x tells us 0 = b
c + ec = b

c ´ bc. So, c = 1
c , hence c = ˘1.

(3) Finally, the coefficient of x2 tells us 0 = 1
c + be + c = 1

c ´ b2 + c. Since ´b2 is
negative (or zero), 1

c + c is positive, so c = 1. That is, 0 = 1´ b2 + 1. So, b =
?

2.

All together,
x4 + 1 = (x2 +

?
2x + 1)(x2

´
?

2x + 1)

Step 3: partial fraction decomposition.
Now that we have the denominator factored into irreducible quadratics, we can find the
partial fraction decomposition of the integrand.

2x2

x4 + 1
=

Ax + B
x2 +

?
2x + 1

+
Cx + D

x2 ´
?

2x + 1
2x2 = (Ax + B)(x2

´
?

2x + 1) + (Cx + D)(x2 +
?

2x + 1)

= (A + C)x3 + (B + D´
?

2A +
?

2C)x2 + (A + C´
?

2B +
?

2D)x + (B + D)

From the coefficient of x3, we see C = ´A.

2x2 = (B + D´ 2
?

2A)x2 + (´
?

2B +
?

2D)x + (B + D)

From the constant term, we see D = ´B.

2x2 = (´2
?

2A)x2 + (´2
?

2B)x
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From the coefficient of x2, we see ´2
?

2A = 2, so A = ´1/
?

2. Since C = ´A, then
C = 1/

?
2.

From the coefficient of x, we see B = 0. Since D = ´B, also D = 0.

Step 4: integration.

ż

2x2

x4 + 1
dx =

ż
(

(´1/
?

2)x
x2 +

?
2x + 1

+
(1/

?
2)x

x2 ´
?

2x + 1

)
dx

=
1
?

2

ż
(

´x
x2 +

?
2x + 1

+
x

x2 ´
?

2x + 1

)
dx

To integrate, we want to break the fractions into two pieces each: one we can integrate
with a substitution u = x2 ˘

?
2x + 1 , du =

(
2x˘

?
2
)
dx (shown in blue), and one that

looks like the derivative of arctangent (shown in red).

=
1
?

2

ż

(
´x´

?
2

2 +
?

2
2

x2 +
?

2x + 1
+

x´
?

2
2 +

?
2

2

x2 ´
?

2x + 1

)
dx

=
1
?

2

ż

(
´1

2(2x +
?

2)
x2 +

?
2x + 1

+

?
2

2

x2 +
?

2x + 1
+

1
2(2x´

?
2)

x2 ´
?

2x + 1
+

?
2

2

x2 ´
?

2x + 1

)
dx

=
1
?

2

(
´

1
2

log
ˇ

ˇ

ˇ
x2 +

?
2x + 1

ˇ

ˇ

ˇ
+

ż

?
2

2

x2 +
?

2x + 1
dx

+
1
2

log |x2
´
?

2x + 1|+
ż

?
2

2

x2 ´
?

2x + 1
dx

)

We use logarithm rules to compress our work. In order to evaluate the remaining
integrals, we complete the squares of the denominators.

=
1
?

2

(
1
2

log
ˇ

ˇ

ˇ

x2´
?

2x+1
x2+

?
2x+1

ˇ

ˇ

ˇ
+

ż

?
2

2(
x + 1?

2

)2
+ 1

2

dx +

ż

?
2

2(
x´ 1?

2

)2
+ 1

2

dx

)

=
1
?

2

(
1
2

log
ˇ

ˇ

ˇ

x2´
?

2x+1
x2+

?
2x+1

ˇ

ˇ

ˇ
+

ż

?
2

(?
2x + 1

)2
+ 1

dx +

ż

?
2

(?
2x´ 1

)2
+ 1

dx

)

Now, we can either guess the antiderivatives of the remaining integrals, or use the
substitutions u = (

?
2x˘ 1).

=
1
?

2

(
1
2

log
ˇ

ˇ

ˇ

x2´
?

2x+1
x2+

?
2x+1

ˇ

ˇ

ˇ
+ arctan

(?
2x + 1

)
+ arctan

(?
2x´ 1

))
+ C

Step 5: finishing touches.
Finally, we can put our work together. (Remember way back in Step 1, we used
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integration by parts.)
ż

arctan(x2) dx = x arctan(x2)´

ż

2x2

x4 ´ 1
dx

= x arctan(x2)´
1
?

2

(
1
2

log
ˇ

ˇ

ˇ

x2´
?

2x+1
x2+

?
2x+1

ˇ

ˇ

ˇ
+ arctan

(?
2x + 1

)
+ arctan

(?
2x´ 1

))
+ C

Remark: although this integral calculation was longer than average, it didn’t use any
new ideas (except for the factoring of x4 + 1 mentioned in the hint). It’s good exercise to
apply familiar techniques in challenging situations, to deepen your mastery.

Solutions to Exercises 2.1 — Jump to TABLE OF CONTENTS

S-1: Force is mass ˆ acceleration (with acceleration equal to g in this problem), and both
in this scenario are constant, so we don’t need an integral–only a product–to calculate the
force acting on the block.

To find the force in newtons, recall one newton is one kg¨m
sec2 , so we need the mass of our

block in kg. Specifically, our block has mass 3
1000 kg. So, the force involved is

F =

(
3

1000
kg
)
ˆ

(
9.8

m
sec2

)
= 0.0294

kg ¨m
sec2 = 0.0294 N

To find the work in joules, recall one joule is one newton-metre: that is, one newton of
force acting over one metre. So, we need our distance in metres.

W =
(
0.0294 N

)
ˆ

(
1

10
m
)
= 0.00294 N ¨m = 0.00294 J

S-2: The force of the rock is one newton, or one kilogram-metre per second squared, so

1
kg ¨m
sec2 = (x kg)

(
9.8

m
sec2

)

Therefore, the mass of the rock is 1
9.8 kg, or about 102 grams.

Now, since one joule is one newton-metre, the amount of work required to counteract 1
N of gravitational force for one metre is precisely one joule.

Remark: having an idea of how much work a joule is, and how much force a newton is, is
a good tool for checking the reasonableness of your work. For example, after this
question, if you calculate that a marble weighs 100 N, you can be pretty sure there’s an
error in your calculation.

S-3:
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(a) We defined ∆x = b´a
n : that is, the length of one interval, when we chop [a, b] into n of

them. If b and a are measured in metres, then ∆x is measured in metres as well. So,
the units of ∆x are metres.

Put another way, since a and b both describe a quantity in metres, b´ a describes a
quantity in metres as well. (When we add or subtract quantities of the same units,
their sum or difference is given in the same units.) Since n is a unitless quantity
(simply a number: not “n kg” or “n m”), b´a

n still describes a quantity in metres. (If I
have 6 metres of cloth, and I cut it into 3 pieces, each piece has 6

3 = 2 metres–not 2
kilograms, or 2 metres per second.)

(b) Since F(x) is measured in kilogram-metres per second squared (newtons), the units
of F(xi) are kilogram-metres per second squared (newtons).

(c) W is calculated by adding up summands of the form F(xi)∆x. The units of F(xi)∆x
are the products of the units of F(xi) with the units of ∆x. That is, the units of

F(xi)∆x are
(

kg¨m
sec2

)
(m) =

kg¨m2

sec2 = J. The sum of terms given in joules is itself given
in joules, so the units of W are joules.

S-4: As we saw in Question 3, the units of
şb

a f (x)dx are simply the units of the integrand,
f (x), multiplied by the units of the variable of integration, x. In this case, that yields
smoot¨barn
megaFonzie (that is, smoot-barns per megaFonzie).

S-5: Hooke’s law says that the force required to stretch a spring x units past its natural
length is proportional to x; that is, there is some constant k associated with the individual
spring such that the force required to stretch it x m past its natural length is kx.

Solution 1: Since the force required to stretch the spring is proportional to the amount
stretched, and the force acting on the spring is proportional to the mass hanging
from it, we conclude the amount the spring stretches is proportional to the mass
hung from it. So, if 1 kg stretches it 1 cm, then 10 kg will stretch it 10 cm. We should
mark the wall 10 cm below the bottom of the spring as it hangs unloaded.

Solution 2: We can find k from the test with the bag of water. The force exerted by the
bag of water was (1 kg)(9.8 m/sec2) = 9.8 N= k(1 cm). So,

k =
9.8 kg¨m

sec2

0.01 m
= 980

kg
sec2

If we hang 10 kg from the spring, gravity exerts a force of
(10 kg)(9.8 m/sec2) = 98 kg¨m

sec2 . This will be matched by the spring with a force of
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kx newtons, where k is the spring constant and x is the amount stretched.

kx = 98
kg ¨m
sec2(

980
kg

sec2

)
(x m) = 98

kg ¨m
sec2

x =
1

10
m = 10 cm

So, we should put the mark at 10 cm below the natural length of the spring.

S-6: Definition 2.1.1 in the CLP-2 text tells us the work done by the force is
W(b) =

şb
1 F(x) dx, where F(x) is the force on the object at position x. So, by the

Fundamental Theorem of Calculus Part 1,

d
db
tW(b)u =

d
db

#

ż b

1
F(x) dx

+

= F(b)

d
db

!

´b3 + 6b2
´ 9b + 4

)

= F(b)

´3b2 + 12b´ 9 = F(b)
´3(b´ 1)(b´ 3) = F(b)

So, F(x) is the quadratic polynomial ´3(x´ 1)(x´ 3).

x

y

y = F(x)

1 2 3

The largest absolute value of F(x) over [1, 3] occurs at x = 2. At this point, we have our
strongest force.

S-7: By Definition 2.1.1 in the CLP-2 text, the work done in moving the object from x = 1
meters to x = 16 meters by the force F(x) is

W =

ż 16

1
F(x) dx =

ż 16

1

a
?

x
dx =

[
2a
?

x
]x=16

x=1
= 6a

To have W = 18, we need a = 3.

As a side remark, F(x) = a?
x should have units Newtons. Since x, a distance, is measured

in meters, a has to have the bizarre units newton-
?

meters.
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S-8:

(a) Since c
`´x is measured in newtons, and ` and x (and therefore `´ x) are measured in

metres, the units of c are newton-metres, i.e. joules.

(b) Following Definition 2.1.1 in the CLP-2 text, the work done compressing the air is

W =

ż 1.5

1
F(x)dx

where F(x) is the amount of force applied when the plunger is x metres past its
natural position. The amount of force applied is equal in magnitude to the amount of
force supplied by the tube: c

`´x N. Note ` and c are constants. We can guess the
antiderivative, or use the substitution u = `´ x, du = ´dx.

W =

ż 1.5

1

c
`´ x

dx =
[
´ c log |`´ x|

]1.5
1

= ´c
[

log |`´ 1.5| ´ log |`´ 1|
]

= ´c log
(
`´ 1.5
`´ 1

)

= c log
(

`´ 1
`´ 1.5

)
J

Note that, because ` ą 1.5, the argument of logarithm is positive, so we don’t need
the absolute value signs. Furthermore, `´ 1 ą `´ 1.5, so `´1

`´1.5 ą 1, hence

log
(

`´1
`´1.5

)
ą 0.

S-9: By Hooke’s Law, the force exerted by the spring at displacement x m from its natural
length is F = kx, where k is the spring constant. Measuring distance in meters and force
in newtons (since one joule is one newton-metre), the total work is

ż 0.1 m

0
kx dx =

[
1
2

kx2
]0.1 m

0
=

1
2
¨ 50
loomoon

N/m

¨ (0.1)2
loomoon

m2

=
1
4

J.

Note the units of the integrand (kx) are newtons, and the units of the variable of
integration, x, are metres. So, the evaluated integral has units newton-metres, or joules.

S-10: First note that newtons and joules are SI units with one joule equal to one
newton-metre, so we should measure distances in meters rather than centimeters. Next
recall that a spring with spring constant k exerts a force F(x) = kx when the spring is
stretched x m beyond its natural length. So in this case (0.05 m)(k) = 10 N, or k = 200
N/m. The work done is:

ż 0.5 m

0
F(x) dx =

ż 0.5

0
200x dx =

[
100x2

]0.5

0
= 25 J

495



Note the units of the integrand (F(x) = kx = 200x) are newtons (k is given in N/m, and
x is given in m). The units of the variable of integration, x are metres. So, the evaluated
integral has units newton-metres, or joules.

S-11: Note that the cable has mass density 8
5 kg/m. When the bucket is at height y, the

cable that remains to be lifted has length (5´ y) m and mass 8
5(5´ y) = 8

(
1´ y

5

)
kg. So,

at height y, the cable is subject to a downward gravitational force of 8
(
1´ y

5

)
¨ 9.8 N; to

raise the cable we need to apply a compensating upward force of 8
(
1´ y

5

)
¨ 9.8 N. So, the

work required is

ż 5

0
8
(

1´
y
5

)
¨ 9.8 dy = 8

[(
y´

y2

10

)
¨ 9.8

]5

0
= 8 ¨ 2.5 ¨ 9.8 N ¨m = 196 J.

Alternatively, the cable has linear density 8 kg/5 m = 1.6 kg/m, and so the work
required to lift a small piece of the cable (of length ∆y) from height y m to height 5 m is

1.6∆y
loomoon

mass

¨ 9.8
loomoon

gravity
looooooomooooooon

force

¨ (5´ y)
loomoon

distance

.

The total work required is therefore

ż 5

0
1.6 ¨ 9.8(5´ y)dy = 1.6 ¨ 9.8

[
5y´

1
2

y2
]5

0
= 1.6 ¨ 9.8 ¨

(
25´

25
2

)
= 196 J

as before.

S-12: Imagine pumping out a thin, horizontal layer of water that is at height y–that is, y
metres above the bottom of the tank. Let the width of the layer be dy.

dy

• The volume of water in the layer is 3dy m3 (since the cross-section has area 3 m3).

• One cubic metre is equal to 1003 cubic centimetres. So, the mass of water in one

cubic metre is
1003

1000
= 1 000 kg.

• Therefore, the mass of water in our layer is (3 000 dy) kg.
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• The force of gravity acting on it is (´9.8ˆ 3 000 dy) N, so we need to pump with a
compensating force of (9.8ˆ 3 000 dy) N.

• The water needs to be pumped a distance of 1´ y metres.

• So, the work required to pump out the thin layer of water at height y is
(9.8ˆ 3 000ˆ (1´ y)dy) J.

So, all together, the work to pump out the entire tank is

ż 1

0
9.8ˆ 3 000ˆ (1´ y)dy = 9.8ˆ 3000ˆ

[
y´

1
2

y2
]1

0
= 14 700 J

S-13: We can model the sculpture as a collection of thin horizontal plates of width dz.
Remember work is force times distance; a horizontal plate at height z moved z + 2 metres
from the basement to its final position. So, we need to know the force acting on the plate,
which is the product of the mass of the plate with the acceleration due to gravity. Since
we are given the density of iron, if we find the volume of the plate, then we can calculate
its mass.

dz

The plate at height z

• has side length 3´ z m and hence

• has area (3´ z)2 m2 and hence

• has volume (3´ z)2 dz m3 and hence

• has mass 8000(3´ z)2 dz kg and hence

• is subject to a gravitational force of 9.8ˆ 8000(3´ z)2 dz N and hence

• requires work 9.8ˆ 8000(2 + z)(3´ z)2 dz J to raise it from 2 m below ground level
to z m above ground level.

So the total work is
ż 3

0
9.8ˆ 8000(2 + z)(3´ z)2 dz joules

S-14: From the information given about the hanging kilogram, we can find the spring
constant k. One kilogram generates a force of 9.8 N under gravity. (We find this by the
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calculation (1 kg)ˆ (9.8 m/sec2) = 9.8 N.) This force is matched by the force of the
spring, which by Hooke’s law is equal to k( 1

20 m). So,

k =
9.8 N

1
20 m

= 196
N
m

Again by Hooke’s law, the force required to stretch the spring x metres past its natural
length is 196x N (when x is measured in metres).

So, the work required to stretch the spring from 5 cm past its natural length to 7 cm past
its natural length is

W =

ż 0.07

0.05
196x dx =

[
98x2]0.07

0.05 = 0.2352 J

S-15: Let M be the mass of the rope. Then its density is M
4 kg/m. Following the method

of Example 2.1.6 in the CLP-2 text, we let y be the height of the firewood above the
ground, so the wood is raised from y = 0 to y = 4. When the wood is at height y,

• the rope that remains to be lifted has length 4´ y, and so it has mass M
4 (4´ y) kg,

• and the firewood still has mass 10 kg.

• The remaining rope and the wood are subject to a downward gravitational force of

magnitude
[

M
4
(4´ y) + 10

]

loooooooooomoooooooooon

mass

ˆ 9.8 N.

• So, to raise the firewood from height y to height (y + dy), we need to apply a
compensating upward force of

[M
4 (4´ y) + 10

]
ˆ 9.8 through distance dy. This

takes work
[M

4 (4´ y) + 10
]
ˆ 9.8 dy J.

All together, the work involved in hauling up the wood is
ż 4

0

([
M
4
(4´ y) + 10

]
ˆ 9.8

)
dy = 9.8

ż 4

0

(
(M + 10)´

M
4

y
)

dy = 9.8(2M + 40) J

Since the work was 400 joules, solving 400 = 9.8(2M + 40) for M tells us the mass of the
rope is 200

9.8 ´ 20 = 20
49 kg, or about 408 g.

Alternately, the work involved in lifting up the wood is 10ˆ 9.8ˆ 4 = 392 J, so the work
in lifting up the rope is 8 J. A small section of rope of length dy, that starts at height y
above the ground, has mass M

4 dy kg and is lifted (4´ y) metres, so the work involved in
lifting this section of rope is 9.8ˆ (4´ y)ˆ M

4 dy. Then the amount of work to lift the
whole rope (but not the wood) is

8 J =
ż 4

0

(
9.8ˆ (4´ y)ˆ

M
4

)
dy =

9.8ˆM
4

ż 4

0
(4´ y) dy =

9.8ˆM
4

ˆ 8

which again results in M = 4
9.8 = 20

49 kg.
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S-16: For Questions 11 and 15 in this section, we gave two methods for finding the work
involved in pulling up a cable: one where we consider pulling up the entire remaining
cable a tiny distance of dy, and one where we consider pulling a tiny slice of cable of
length dy the entire distance up.

There is another variation we can consider with the weight: we can either calculate the
work done on the weight and the work done on the rope separately, or we can calculate
them together. If we calculate them together, then there are two cases to consider: the
work done pulling up the first 5 metres of rope involves the weight, while the last 5
metres does not. These two choices (how to model the rope, and how to deal with the
weight) actually lead to four solutions, but to avoid unnecessary repetition only two are
presented below.

Solution 1: In this solution, we consider the work on the rope separately from work on
the weight, and we imagine lifting a tiny piece of rope the entire distance to the
window.

The weight has a mass of 5 kg, and is lifted a distance of 5 m to the window. The
force of gravity acting on the weight is (5 kg)(9.8 m/sec2) = 49 N, so the work to
lift it 5 metres is (49 N)(5 m) = 245 J.

y

dy

The density of the rope is 1
10 kg/m. A tiny piece of rope of length dy, hanging y

metres from the window, has mass ( 1
10 dy) kg, and needs to be lifted y metres. So,

the force of gravity acting on the piece of rope is ( 1
10 dy kg)

(
9.8 m/sec2

)
= 0.98 dy

N, and the work to pull it up to the window is (0.98y dy) J. So, the total work to
pull up the rope is

ż 10

0
0.98y dy = 0.98

[
y2

2

]10

0
= 49 J

All together, the work to pull up the rope with the weight is 245 + 49 = 294 J.

Solution 2: In this solution, we consider the work on the rope together with the weight,
and we imagine lifting the remaining rope a tiny distance to the window.

Suppose y metres of the rope have been pulled in, and 0 ď y ď 5 (shown on the left,
below). Then the remaining rope has length 10´ y, and contains the weight, so the
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mass remaining to be pulled up is
1

10
(10´ y)

looooomooooon

rope

+ 5
loomoon

weight

= 6´ y
10 kg. Then the force

of gravity acting on the dangling rope and weight is
(9.8 m/sec2)((6´ y

10) kg) = (58.8´ 0.98y) N. The work needed to lift this rope dy
metres is (58.8´ 0.98y)dy J.

10´ y
10´ y

Now, suppose y metres of the rope have been pulled in, and 5 ă y ď 10 (shown
above, right). Then the remaining rope has length 10´ y, but does not contain the
weight, so the mass remaining to be pulled up is 1

10(10´ y) = 1´ y
10 kg. Then the

force of gravity acting on the dangling rope is
(9.8 m/sec2)((1´ y

10) kg) = (9.8´ 0.98y) N. The work needed to lift this rope dy
metres is (9.8´ 0.98y)dy J.

All together, the work needed to lift the rope is

W =

ż 10

0
F(y) dy =

ż 5

0
(58.8´ 0.98y)dy +

ż 10

5
(9.8´ 0.98y)dy

=
[
58.8y´ 0.49y2

]5

0
+
[
9.8y´ 0.49y2

]10

5

= 294 J

S-17:

(a) The frictional force is µˆmˆ g = 0.4 (10 kg)
(

9.8 m
sec2

)
= 39.2 kg¨m

sec2 = 39.2 N. Since
this constant force acts over a distance of 3 metres, the work is 3ˆ 39.2 = 117.6 J.

In the case of a constant force, we don’t need to use an integral, but we could if we
wanted:

W =

ż 3

0
39.2 dx =

[
39.2x

]3
0 = 39.2ˆ 3 = 117.6 J.

(b) Since the box is moving at a speed of 1 m/sec, at time t we can say the box is at
position t, 0 ď t ď 3. At position t, the mass of the box is (10´

?
t) kg, so the

frictional force is 0.4ˆmˆ g = 0.4
(
10´

?
t kg

) (
9.8 m

sec2

)
= 3.92(10´

?
t) N. Now
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that we know the force, to find the work we simply integrate, following
Definition 2.1.1 in the CLP-2 text:

W =

ż 3

0
3.92(10´

?
t) dt = 3.92

[
10t´

2
3

t3/2
]3

0

= 3.92
[

30´
2
3

?
3

3
]
= 3.92

[
30´ 2

?
3
]
« 104 J

S-18: Definition 2.1.1 in the CLP-2 text is justified by showing that the work done by a
force acting on a particle is equal to the change in the kinetic energy of that particle. We
can use Hooke’s law to calculate the work done stretching the spring. That work will be
equal to the change in kinetic energy of the ball.

The ball initially has kinetic energy 1
2(1 kg)(v0 m/sec)2 =

v2
0

2
kg¨m2

sec2 =
v2

0
2 J. At the time the

spring is stretched its farthest, the ball’s velocity is 0 m/sec, so its kinetic energy is
1
2(1 kg)(0 m/sec)2 = 0 J. So, the change in kinetic energy of the ball is v2

0
2 J.

Now let’s find the work done by the spring. Its spring constant is k = 5 N/m, so, the
force on the spring when it is stretched x metres past its natural length is 5x N. The
spring is stretched from its natural length to 10 cm, which is 0.1 m. Then the work done
by the spring is

W =

ż 0.1

0
kx dx =

ż 0.1

0
5x dx =

[
5
2

x2
]0.1

0
=

1
40

J

Now we can find v0.

v2
0

2
=

1
40

ùñ v0 =
1
?

20
m/sec « 22.36 cm/sec

S-19: The setup to answer this question is similar to Question 18 in this section: the work
done by a spring on the occupied vehicle will be equal to the change in kinetic energy of
that occupied vehicle. So, we need to find the work done by the spring, and the kinetic
energy lost by the falling car. In order to find the work done by the spring, we need to
find the spring constant.

Spring constant: The car’s mass of 2000 kg compresses the struts 2 cm past their natural
length. The force of the car under gravity is (2000 kg)ˆ (9.8 m/sec2) = 19 600 N.
This force is exactly the same as that exerted by the spring, k(0.02 m). So,
k = 980 000 N/m.

Work done by spring: The spring can safely compress 20 cm. So, the amount of work
done by the spring compressing that far gives us the maximum amount of work the
spring can safely do. While the car is falling, the spring is at its natural length, so
the work done to compress it to 20 cm (0.2 m) shorter is:

ż 0.2

0
kx dx =

ż 0.2

0
980 000x dx =

[
490 000x2]0.2

0 = 19 600 J
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Change in kinetic energy: When the car first hits the pavement, it’s falling at 4 m/sec,
so it has kinetic energy 1

2(2100 kg)(4 m/sec)2 = 16 800 J. When the car compresses
the springs as far as they go and it starts to rebound, it has kinetic energy 0, since its
instantaneous velocity is zero. So, the change in kinetic energy is 16 800 J.

Since the change in kinetic energy is 16 800 J, and the struts can safely do a work of (up
to) 19 600 J, the jump is within the (meagre) safety limits set by the question.

S-20: Let’s consider sucking up a flat, horizontal layer of water. If the water is y metres
above bottom of the cone, then it needs to be raised 0.15´ y metres. So, if its mass is m
kg, then the force of gravity acting on it is 9.8m N and the work involved in slurping it to
the top of the cone is 9.8m(0.15´ y) J. So, what we need to find is the mass of a layer of
water y metres from the bottom of the cone.

dy
r

y

0.15

0.05

y

r

A horizontal cross-section of the cone is a circle. To find its radius, we use similar
triangles: r

y = 0.05
0.15 , so r = 1

3 y. Therefore, the area of the cross-section of the cone y metres

above its bottom is π
(

1
3 y
)2

= π
9 y2 m2. If this layer has height dy, then its volume is

π
9 y2 dy m3, and its mass is 1000π

9 y2 dy kg.

Now, we know that the work to suck up the layer of water y metres from the bottom of
the cup is 9.8(0.15´ y)

(
1000π

9 y2 dy
)

J. So, the work involved in drinking all the water is:

W =

ż 0.15

0
9.8(0.15´ y)

(
1000

π

9
y2
)

dy

=
9800π

9

ż 0.15

0

(
0.15y2

´ y3)dy

=
9800π

9

[
0.15

3
y3
´

1
4

y4
]0.15

0

=
9800π

9

[
0.05(0.15)3

´
1
4
(0.15)4

]

« 0.144 J

Even drinking water takes work. Life is hard.
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S-21: Imagine slicing the water into horizontal pancakes of thickness dx as in the sketch
below.

1m

3mx

Denote by x the distance of a pancake below the surface of the water. (So, x runs from 0
to 3.) Each pancake:

• has radius
?

32 ´ x2 m (by Pythagoras) and hence

• has cross–sectional area π(9´ x2) m2 and hence

• has volume π(9´ x2)dx m3 and hence

• has mass 1000π(9´ x2)dx kg and hence

• is subject to a gravitational force of 9.8ˆ 1000π(9´ x2)dx N and hence

• requires work 9800π(9´ x2)(x + 4)dx J to raise it to the spout. (It has to be raised x
m to bring it to the height of the centre of the sphere, then 3 m more to bring it to
the top of the sphere, and finally 1 m more to bring it to the spout.)

The total work is:

ż 3

0
9800π(9´ x2)(x + 4)dx =

ż 3

0
9800π

(
36 + 9x´ 4x2

´ x3)dx

= 9800π
[
36x +

9
2

x2
´

4
3

x3
´

1
4

x4
]3

0

= 9800 ¨
369
4

π = 904,050π joules

S-22:

Solution 1: Let’s consider the work involved in lifting up a small section of cable, with
length dy, distance y from the bottom end of the cable.
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5

0

5´ y

y dy

The distance this section must travel is (5´ y) metres, so if its mass is M(y), then
the work involved is

W =

ż 5

0
9.8ˆ (5´ y)ˆM(y)

So, we need to find M(y). The length of the section of cable is dy, and its distance
from the end of the cable is y, so the mass of the section is (10´ y)dy. Therefore,

W =

ż 5

0
9.8ˆ (5´ y)ˆM(y)

=

ż 5

0
9.8ˆ (5´ y)ˆ (10´ y)dy

= 9.8
ż 5

0

(
50´ 15y + y2)dy

= 9.8
[

50y´
15
2

y2 +
1
3

y3
]5

0

=
6125

6
= 10205

6 J

Solution 2: Alternately, we can continue to use the basic method of Example 2.1.6 in the
CLP-2 text, noticing that the density of the cable is no longer constant.

Let’s consider pulling the cable up a tiny distance of dy metres, after we have
already lifted it y metres (so (5´ y) metres of the cable is still in the hole).

504



5

0

y

5´ y

If R(y) is the mass of the remaining cable (in kg), then the force of gravity is
´9.8ˆ R(y), so the work done is 9.8ˆ R(y)ˆ dy. Once we find R(y), we can
calculate the total work done:

W =

ż 5

0
9.8ˆ R(y)ˆ dy (˚)

As given in the question statement, the density of the cable is (10´ x) kg/m, where
x is the distance from the bottom end of the cable. Consider a tiny section of cable x
metres from the bottom end, of length dx.

0

x dx

The mass of this tiny section is
(

10´ x kg
m

)
ˆ (dx m) = (10´ x) dx kg. The section

of cable dangling is the last (5´ y) metres of cable. So, the combined mass of the
section of cable dangling, after we’ve already pulled up y metres of it, is

R(y) =
ż 5´y

0
(10´ x) dx =

[
10x´

1
2

x2
]5´y

0
=

75
2
´ 5y´

1
2

y2

Now we can calculate the total work involved in pulling up the entire cable, using
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equation (˚).

W =

ż 5

0
9.8ˆ R(y)ˆ dy

=

ż 5

0
9.8ˆ

(
75
2
´ 5y´

1
2

y2
)
ˆ dy

= 9.8
[

75
2

y´
5
2

y2
´

1
6

y3
]5

0

=
6125

6
= 1020

5
6

J

S-23:

(a) The force of the depends on depth, which varies. So, consider a thin rectangle of the
plunger at depth y, with height dy and width 1 m (the width of the entire plunger).
Let the area of this rectangle be dA.

depth

0

y dy

The area of this rectangle is 1dy m2, so the force of the water acting on it is
F = P ¨ dA =

(
9800 N

m3

)
looooomooooon

c

(y m)
loomoon

d

(
dy m2

)
loooomoooon

dA

= 9800y dy N.

The depth at the top of the plunger is y = 0. To find the depth at the bottom of the
plunger, note that the water has a volume of 3 m3, and is in a rectangular container
with base 1 m by 3 m. So, its height is 1 m.

The force over the entire plunger, from depth y = 0 to y = 1, is
ż 1

0
9800y dy =

[
4900y2]1

0 = 4900 N

(b) Let’s follow our work from part (a), but with the width of the length of the base as x
m.

Still, a thin rectangle of plunger has width 1 m and height dy m, so it has area dy m2.
At depth y, it has a force from the water of 9800y dy N. This hasn’t changed from (a).

Now, let’s consider the depth of the water. The volume of water is 3 m3, and it is in a
rectangular container with base 1 m by x m. So, its depth is 3/x m. Therefore, the
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force on the entire plunger must be calculated from y = 0 to y = 3/x.

F(x) =
ż 3/x

0
9800y dy =

[
4900y2]3/x

0 =
9
x2 4900 =

44100
x2 N

Let’s check that this answer makes sense: F(3) = 4900 N, which matches our answer
from (a).

(c) If the force of water acting on the plunger, when the length of the base is x metres, is
given by F(x), then we push the plunger with a force of ´F(x). Then the work we’re
looking for is

W =

ż 1

3
´F(x)dx =

ż 3

1
F(x)dx

F(x) is exactly what we found in (b): F(x) = 44100
x2 N.

W =

ż 3

1
F(x)dx =

ż 3

1

44100
x2 dx = 44100

[
´

1
x

]3

1
= 44100 ¨

2
3
= 29 400 J

S-24: Let’s start by converting from time spent pulling to amount pulled. When y metres
of rope have been pulled up, 2y seconds have passed, so 1

5 y litres of water have leaked
out of the bucket, leaving 5´ 1

5 y litres. (This only makes sense when 1
5 y ď 5, but we only

consider values of y from 0 to 5, so it’s not a problem. That is, we’re never hauling up an
empty bucket that can’t leak any more.)

When we’ve pulled up y metres of rope, the mass in the bucket is (5´ 1
5 y) kg, so the

force of gravity acting on it is 9.8(5´ 1
5 y) N. Since we pull up 5 metres of rope, the work

done is:

W =

ż 5

0
9.8
(

5´
1
5

y
)

dy = 9.8
[

5y´
1

10
y2
]5

0
= 9.8 [25´ 2.5] = 220.5 J

S-25:

According to the formula for gravity between two objects, the earth and moon will
gravitationally attract one another no matter how far apart they are, so what we’re
looking for is the work to separate them infinitely far. That is, we want to calculate
ż 8

a
F(r)dr, where a = 400 000 000 m.

If we take m1 and m2 to be the mass of the earth and moon as given in the question
statement, then:

Gm1m2 =

(
6.7ˆ 10´11 m3

kg ¨ sec2

)(
6ˆ 1024 kg

) (
7ˆ 1022 kg

)

« 2.8ˆ 1037 kg ¨m3

sec2
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With that out of the way, let’s calculate our work.

W =

ż 8

a
F(r)dr = lim

bÑ8

ż b

a
G

m1m2

r2 dr

= (Gm1m2) lim
bÑ8

[
´

1
r

]b

a

= (Gm1m2) lim
bÑ8

(
1
a
´

1
b

)

=
Gm1m2

a

«
2.8ˆ 1037 kg¨m3

sec2

4ˆ 108 m
= 7ˆ 1028 J

Remark: since the force of gravity between the earth and the moon gets weaker as they
are farther apart, it takes less and less work to move them each kilometre. If we move
them a finite distance apart, the work involved will always be less than 7ˆ 1028 joules,
no matter how huge that finite distance is. If we move them a very, very long (but finite)
distance apart, the work we did will be quite close to (but still less than) 7ˆ 1028 joules.

S-26: A ball of mass m experiences a gravitational force of mg, so lifting it a height of `/2
involves a work of 1

2 mg`.

The cable has density m/`. A tiny section of cable with length dy has mass m
` dy, and so

gravity acts on it with a force of mg
` dy. If the tiny section of cable is y units from the top

of the cable, it needs to be pulled up y units, so the work on that section is mg
` y dy.

Therefore, the work to pull up the entire cable is
ż `

0

mg
`

y dy =
[mg

2`
y2
]`

0
=

mg
2`

`2 =
1
2

mg`

So, the work to pull up a cable with uniform density is the same as the work to pull up a
ball with the same mass from the middle height of the cable.

Remark: this is a nice fact to use when you’re checking your computations for “pulling
up cable” problems, but keep in mind it depends on the cable being of uniform density.

S-27: Like our other tank-pumping problems (e.g. Questions 12, 20, and 21 in this
section, and Example 2.1.4 in the CLP-2 text), we can find the work done by considering
thin layers of liquid. If the layer of liquid h metres above the bottom of the tank with
thickness dh has mass M(h), then the force of gravity acting on it is ´9.8M(h) N and the
work required to pump it to the top of the tank (1´ h metres away) is 9.8(1´ h)M(h) J.
So, the work to empty the entire tank is

W =

ż 1

0
9.8(1´ h)M(h) (˚)
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Our remaining task is to find M(h). There are two things that vary with height: the
density of the liquid, and the area of the cross-section of the tank.

At height h metres, the cross-section of the tank is shaped like the finite region bounded
by the curves y = x2 and y = 2´ h´ 3x2. To find this area, we need an integral (see
Section 1.5 for a refresher), and to find the limits of integration, we need to know where
the two curves meet. By solving x2 = 2´ h´ 3x2, we find that they meet at
x = ˘1

2

?
2´ h. (Recall h is between 0 and 1, so

?
2´ h is a real number, i.e. the curves do

indeed meet.) Furthermore, when ´1
2

?
2´ h ď x ď 1

2

?
2´ h, then x2 ď 2´ h´ 3x2, so

y = x2 is the bottom function and 2´ h´ 3x2 is the top function.

x

y

´1
2

?
2´ h

y = x2

y = 2´ h´ 3x2

So, (taking advantage of the fact that our region has even symmetry) the area of the
cross-section of the tank at height h is

A(h) =
ż 1

2
?

2´h

´ 1
2
?

2´h

([
2´ h´ 3x2]

´ x2
)

dx

= 2
ż 1

2
?

2´h

0

(
2´ h´ 4x2

)
dx

= 2
[
(2´ h)x´

4
3

x3
] 1

2
?

2´h

0

= 2
[
(2´ h) ¨

1
2

?
2´ h´

4
3
¨

1
8

?
2´ h

3
]

= (2´ h)3/2
[

1´
1
3

]
=

2
3
(2´ h)3/2

Now, we can calculate the volume of a slice at height h of thickness dh.

V(h) =
2
3
(2´ h)3/2 dh

The density of the liquid at height h is 1000
?

2´ h kg/m3, so

M(h) = 1000
?

2´ hˆ
2
3
(2´ h)3/2 dh

=
2000

3
(2´ h)2dh
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Now we use (˚) to find the work done pumping out the tank.

W =

ż 1

0
9.8(1´ h)M(h) =

ż 1

0
9.8(1´ h) ¨

2000
3

(2´ h)2dh

=
19600

3

ż 1

0

(
4´ 8h + 5h2

´ h3)dh

=
19600

3

[
4h´ 4h2 +

5
3

h3
´

1
4

h4
]1

0

=
19600

3

[
4´ 4 +

5
3
´

1
4

]

=
19600

3
ˆ

17
12

=
83300

9
= 92555

9 J

S-28: Since the only work done is against the force of gravity, we only need to know how
high the sand was lifted, not how it got there. So, we don’t really need to worry about its
semicircular path: we can imagine that every grain of sand was lifted from its old
position to its new position.

Consider a thin, horizontal layer of sand in the hourglass, y metres below the vertical
centre of the hourglass.

• Its final position is y metres above the centre of the hourglass. That is, it was lifted
2y metres against the force of gravity.

• The layer is shaped like a circle with radius y2 + 0.01 and height dy, so its volume is
π
(
y2 + 0.01

)2 dy cubic metres.

• To find the mass of the layer, we need to know the density of the sand. Let the
volume of sand in the hourglass be V. We are given its mass M. Then
π
(
y2 + 0.01

)2 dy cubic metres has a mass of M
V π

(
y2 + 0.01

)2 dy kilograms.

• So, the force of gravity acting on the layer is 9.8 M
V π

(
y2 + 0.01

)2 dy N, acting
vertically downwards.

• To lift the layer to its final position, we apply a compensating force over a distance
of 2y metres, for a total work of 9.8 M

V π
(
y2 + 0.01

)2 2y dy J.

• Since the hourglass has height 0.2 m, and exactly half of it is filled with sand, the
top layer of sand is exactly at the vertical centre of the hourglass, and the bottom
layer of sand is 0.1 metres below.

Using V is the volume of sand in the hourglass, and M is its mass (we’re given M = 1
7

kg) then the total work flipping all the sand is:
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W =

ż 0.1

0
9.8

M
V

π
(

y2 + 0.01
)2

2y dy =
19.6Mπ

V

ż 0.1

0

(
y5 + 0.02y3 + 0.0001y

)
dy

=
19.6Mπ

V

ż 1/10

0

(
y5 +

2
102 y3 +

1
104 y

)
dy =

19.6Mπ

V

[
1
6

y6 +
1

2 ¨ 102 y4 +
1

2 ¨ 104 y2
]1/10

0

=
19.6Mπ

V

[(
1

6 ¨ 106 +
1

2 ¨ 106 +
1

2 ¨ 106

)
´ 0
]

=
19.6Mπ

V

[
7

6 ¨ 106

]
(˚)

It remains to find V: the volume of sand in the hourglass. We know the sand is in the
shape of a solid of rotation. Recall from Section 1.6 that we can find the volume of such
shapes by slicing them into thin disks.

0

x

0.1

x2 + 0.01

dx

In the picture above, we’ve used an axis that matches the way we’ve been describing our
solid: 0 is the vertical centre of the hourglass, which is where the top of the sand is, and
the bottom of the sand is 0.1 metres from 0.

To find the volume of this solid, we slice it into horizontal disks. The disk that is x metres
from the centre of the hourglass has radius x2 + 0.01 and thickness dx, so it has volume
π(x2 + 0.01)2 dx. The volume of the entire solid, i.e. the volume of the sand, is:

V =

ż 0.1

0
π(x2 + 0.01)2 dx = π

ż 0.1

0
(x4 + 0.02x2 + 0.0001)dx

= π

[
1
5

x5 +
2

3ˆ 102 x3 +
1

104 x
]0.1

0

= π

[(
1

5ˆ 105 +
2

3ˆ 105 +
1

105

)
´ 0
]

=
28π

15ˆ 105 =
28π

1.5ˆ 106

So, the volume of sand in the hourglass is V = 28π
1.5ˆ106 cubic metres.
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Using (˚), we can find the total work done quickly flipping the hourglass.

W =
19.6Mπ

V

[
7

6 ¨ 106

]

=
19.6ˆ 1

7 π
28π

1.5ˆ106

[
7

6 ¨ 106

]

=
19.6ˆ 1.5

28ˆ 6
=

29.4
168

=
7

40
= 0.175 J

S-29: Using Definition 2.1.1 in the CLP-2 text, the work involved is

W =

ż 1/2

0

a

1´ x4 dx J.

However, the function F(x) =
?

1´ x4 happens to not have an antiderivative that can be
expressed as an elementary function. That means we can’t use the Fundamental
Theorem of Calculus Part 2 to evaluate this integral (at least, not without knowing a bit
more about functions than is prerequisite for this course). Instead, we can use numerical
methods, like the midpoint rule or Simpson’s rule, to approximate its value.

It’s not immediately clear which rule (Simpson’s, midpoint, or trapezoidal) will lead us
down the easiest path. For Simpson’s rule, we need to know the fourth derivative of
F(x), which is not a simple task. But, we often need fewer intervals for Simpson’s rule
than for the midpoint or trapezoid rules. In this case, we’ll show below that n = 2
intervals suffice to guarantee a low enough error using the midpoint rule, so Simpson’s
rule won’t let us get away with fewer intervals. Below, we find the approximation using
the midpoint rule–but there are other ways as well.

In order to decide how many intervals we should use with the midpoint rule, we need to
know the second derivative of F(x).

F(x) = (1´ x4)1/2

F1(x) =
1
2

(
1´ x4

)´1/2
¨ (´4x3) = ´2x3

(
1´ x4

)´1/2

F2(x) = (´2x3)

(
´

1
2

)(
1´ x4

)´3/2
(´4x3) + (´6x2)

(
1´ x4

)´1/2

= ´4x6
(

1´ x4
)´3/2

+ (´6x2)
(

1´ x4
)´1/2

= 2x2
(

1´ x4
)´3/2 (

´2x4
´ 3

(
1´ x4

))

= 2x2
(

1´ x4
)´3/2 (

x4
´ 3
)

=
2x2 (x4 ´ 3

)

(1´ x4)
3/2

For values of x between 0 and 1
2 ,
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• the denominator
(
1´ x4)3/2 is always at least as big as

(
1´

(1
2

)4)3/2
,

• the factor x2 in the numerator is never bigger than
(1

2

)2, and

• the factor x4 ´ 3 in the numerator has magnitude at most 3,

so that

|F2(x)| =
2x2

ˇ

ˇx4 ´ 3
ˇ

ˇ

(1´ x4)
3/2 ď

2(1
2)

2(3)
(

1´ (1
2)

4
)3/2 =

3
2

153/2

64

=
32

5
?

15
ă 2

Using Theorem 1.11.12 in the CLP-2 text with M = 2, a = 0, and b = 1/2, the error in a
midpoint approximation with n intervals is at most

M
24
¨
(b´ a)3

n2 =
2

24
¨

1/8
n2 =

1
96n2

If n ě 2, then our error is certainly less than 1
100 .

If we use the midpoint rule with n = 2, then x̄1 = 1
8 and x̄2 = 3

8 .

x
0 1

2
1
4

3
8

1
8

The midpoint rule approximation of
ş1/2

0

?
1´ x4 dx with n = 2 and ∆x = 1

4 is:
ż 1/2

0

a

1´ x4 dx « ∆x
[
b

1´ x̄4
1 +

b

1´ x̄4
2

]

=
1
4



d

1´
(

1
8

)4

+

d

1´
(

3
8

)4



Since we used n = 2, by our previous work the error in this approximation is less than
1

96ˆ22 = 1
384 , which is certainly less than 0.01, as required.

Solutions to Exercises 2.2 — Jump to TABLE OF CONTENTS

S-1: Since the average of f (x) on the interval [0, 5] is A, using Definition 2.2.2 in the
CLP-2 text,

A =
1
5

ż 5

0
f (x)dx

5A =

ż 5

0
f (x)dx

So, a rectangle with width 5 and height A has area
ş5

0 f (x)dx.

That is: if we replace f (x) with the constant function g(x) = A, then on the interval [0, 5],
the area under the curve is unchanged.
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x

y

5

A

(There are many rectangles with area 5A; we drew the one we consider to be the most
straightforward in this context.)

S-2: Average velocity, as discussed in Example 2.2.5 of the CLP-2 text, is change in
position divided by change in time. So, the change in position (i.e. distance travelled) is
(100 km/h)(5 h) = 500 km.

S-3: The work done is

W =

ż b

a
F(x)dx

so the average value of F(x) is

1
b´ a

ż b

a
F(x)dx =

1
b´ a

(W).

We can quickly check our units: since W is in joules (that is, newton-metres), and b´ a is
in metres, so W

b´a is in newtons.

S-4:

(a) The entire interval has length b´ a, and we’re cutting it into n pieces, so the length of
one piece (and hence the distance between two consecutive samples) is b´a

n .

(b) The first sample, as given in the question statement, is taken at x = a. The second
sample, then, is at x = a + b´a

n , this third is at x = 1 + 2 b´a
n , and the fourth is at

a + 3 b´a
n .

(c) The y-value of the fourth sample is simply f
(

a + 3 b´a
n

)
. Note this is the number we

use in our average, not the x-value.

(d) Our samples are f (a), f
(

a + b´a
n

)
, f
(

a + 2 b´a
n

)
, f
(

a + 3 b´a
n

)
, etc. Since there are n
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of them, we divide their sum by n. So, the average is:

f (a) + f
(

a + b´a
n

)
+ f

(
a + 2 b´a

n

)
+ ¨ ¨ ¨+ f

(
a + (n´ 1) b´a

n

)

n

=
1
n

[
f (a) + f

(
a +

b´ a
n

)
f
(

a + 2
b´ a

n

)
+ ¨ ¨ ¨+ f

(
a + (n´ 1)

b´ a
n

)]

=
1
n

n
ÿ

i=1

f
(

a + (i´ 1)
b´ a

n

)

Remark: if we multiply and divide by b´ a, we see this expression is equivalent to a
left Riemann sum, divided by the length of our interval.

=
1

b´ a

n
ÿ

i=1

f
(

a + (i´ 1)
b´ a

n

)
b´ a

n

=
1

b´ a

n
ÿ

i=1

f (a + (i´ 1)∆x)∆x

As n gets larger and larger, using the definition of a definite integral, this expression
gets closer and closer to 1

b´a
şb

a f (x)dx. This is one way of justifying our definition of
an average of a function on an interval.

S-5:

(a) Yes, the average of f (x) is less than or equal to the average of g(x) on [0, 10]. The
reason is that, if f (x) ď g(x) for all x in [0, 10], then:

1
10

ż 10

0
f (x)dx ď

1
10

ż 10

0
g(x)dx.

(b) There is not enough information to tell. It’s certainly possible: for instance, take
f (x) = 0 and g(x) = 1 for all x in [0, 10]. Then f (x) ď g(x) and the average of f (x) is
0, which is less than 1, the average of g(x).

However, consider f (x) =

#

100 if 0 ď x ď 0.01
0 else

and g(x) = 0. Then f (x) ď g(x)

for all x in [0.01, 10], but the average of f (x) is 0.1, while the average of g(x) is 0.

S-6: Recall the definition of an odd function: f (´x) = ´ f (x). Since the domain of
integration is symmetric, the signed area on one side of the y-axis “cancels out” the
signed area on the other–this is Theorem 1.2.11 in the CLP-2 text.

1
20

ż 10

´10
f (x)dx =

1
20

(0) = 0

515



S-7: By definition, the average value is

1
π

ż π/2

´π/2

(
sin(5x) + 1

)
dx

We now observe that sin(5x) is an odd function, and hence its integral over the
symmetric interval [´π

2 , π
2 ] equals zero. So the average value of f (x) on this interval is 1:

1
π

ż π/2

´π/2

(
sin(5x) + 1

)
dx =

1
π

ż π/2

´π/2
sin(5x)dx +

1
π

ż π/2

´π/2
1 dx

=
1
π

ż π/2

´π/2
1 dx = 1

Alternatively, using the fundamental theorem of calculus, the average equals:

1
π

[
´ cos(5x)

5
+ x
]π/2

´π/2
=

1
π

"[
´ cos(5π/2)

5
+

π

2

]
´

[
´ cos(´5π/2)

5
+
´π

2

]*
=

π

π
= 1

S-8: By definition, the average is

1
e´ 1

ż e

1
x2 log x dx

To antidifferentiate, we use integration by parts with u = log x and dv = x2 dx, hence
du = 1

x dx and v = 1
3 x3.

1
e´ 1

ż e

1
x2 log x dx =

1
e´ 1

([
1
3

x3 log x
]e

1
´

ż e

1

1
3

x2 dx
)

=
1

e´ 1

[
x3

3
log x´

x3

9

]x=e

x=1

=
1

e´ 1

[
e3

3
´

e3

9
+

1
9

]

=
1

e´ 1

[
2
9

e3 +
1
9

]

S-9: By definition, the average value in question equals

1
π/2´ 0

ż π/2

0
(3 cos3 x + 2 cos2 x)dx =

2
π

(
ż π/2

0
3 cos3 x dx +

ż π/2

0
2 cos2 x dx

)

For the first integral we use the substitution u = sin x, du = cos x dx,
cos2 x = 1´ sin2 x = 1´ u2. Note that the endpoints x = 0 and x = π

2 become u = 0 and
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u = 1, respectively.

ż π/2

0
3 cos3 x dx =

ż π/2

0
3 cos2 x cos x dx

=

ż 1

0
3(1´ u2)du

= (3u´ u3)
ˇ

ˇ

ˇ

1

0
= 2.

For the second integral we use the trigonometric identity cos2 x dx = 1+cos(2x)
2 .

2
ż π/2

0
cos2 x dx =

ż π/2

0

(
1 + cos(2x)

)
dx

=

[
x +

1
2

sin(2x)
]π/2

0
=

π

2

Therefore, the average value in question is

2
π

(
ż π/2

0
3 cos3 x dx +

ż π/2

0
2 cos2 x dx

)
=

2
π

(
2 +

π

2

)
=

4
π
+ 1.

S-10: By definition, the average value in question equals

Ave =
1

π/k´ 0

ż π/k

0
sin(kx)dx

To evaluate the integral, we use the substitution u = kx, du = k dx. Note that the
endpoints x = 0 and x = π/k become u = 0 and u = π, respectively. So

Ave =
k
π

ż π

0
sin(u)

du
k

=
1
π

[
´ cos(u)

]π

0
=

2
π

Remark: the average does not depend on k. To see why this is, note that sin(kx) runs
between ´1 and 1 as x changes. When x = 0, kx = 0, and when x = π/k, kx = π. So, our
function sin(kx) runs exactly from sin 0 = 0 to sin(π/2) = 1, then back down to
sin π = 0.

x

y

π
k

π
2k

1

y = sin(kx)
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S-11: By definition, the average temperature is

1
3

ż 3

0
T(x)dx =

1
3

ż 3

0

80
16´ x2 dx

We don’t see an obvious substitution, but integrand is a rational function. The degree of
the numerator is strictly less than the degree of the denominator, so we factor the
denominator and use a partial fraction decomposition.

80
16´ x2 =

80
(4´ x)(4 + x)

=
A

4´ x
+

B
4 + x

80 = A(4 + x) + B(4´ x)

Setting x = 4, we see 80 = 8A, so A = 10. Setting x = ´4, we see 80 = 8B, so B = 10.

1
3

ż 3

0

80
16´ x2 dx =

1
3

ż 3

0

80
(4´ x)(4 + x)

dx =
1
3

ż 3

0

[ 10
4´ x

+
10

4 + x

]
dx

=
1
3

ż 3

0

[
´

10
x´ 4

+
10

4 + x

]
dx

=
10
3

[
´ log |x´ 4|+ log |x + 4|

]3

0

=
10
3

log
ˇ

ˇ

ˇ

x + 4
x´ 4

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

3

0
=

10
3
[log 7´ log 1]

=
10
3

log 7 degrees Celsius

S-12: By definition, the average value is

1
e´ 1

ż e

1

log x
x

dx

To integrate, we use the substitution u = log x, du = 1
x dx. Then the limits of integration

become 0 and 1, respectively.

1
e´ 1

ż e

1

log x
x

dx =
1

e´ 1

ż 1

0
u du =

1
e´ 1

[
u2

2

]1

0
=

1
2(e´ 1)

S-13: By definition, the average value is:

1
2π

ż 2π

0
cos2 x dx =

1
2π
¨

1
2

ż 2π

0

(
cos(2x) + 1

)
dx =

1
4π

[sin(2x)
2

+ x
]2π

0
=

1
4π
¨ 2π =

1
2
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S-14: Before we start answering questions, let’s look at our function a little more
carefully. The term 50 cos

( t
12 π

)
has a period of 24 hours, while the term 200 cos

( t
4380 π

)

has a period of one year. So, the former term describes a standard daily variation, while
the latter gives a seasonal variation over the year.

(a) Using the definition of an average, the average concentration over one year (t = 0 to
8760) is:

1
8760

ż 8760

0

(
400 + 50 cos

(
t

12
π

)
+ 200 cos

(
t

4380
π

))
dt

=
1

8760

ż 8760

0
400 dt +

50
8760

ż 8760

0
cos

(
t

12
π

)
dt +

200
8760

ż 8760

0
cos

(
t

4380
π

)
dt

= 400 +
5

876

[
12
π

sin
(

t
12

π

)]8760

0
+

5
219

[
4380

π
sin
(

t
4380

π

)]8760

0

Since 8760
12 = 730, which is even, sin

(8760
12 π

)
= sin(0) = 0. Also,

sin
(8760

4380 π
)
= sin(2π) = 0.

= 400 +
5

876
(0) +

5
219

(0)

= 400 ppm

Remark: for the portions of the integral in red and blue, we also could have noticed that
the integrand goes through a whole (integer) number of periods. For every period, the
net signed area between the curve and the x-axis is zero, so we could have seen from the
very beginning these terms would contribute 0 to the final average.

(b) Using the definition of an average, the average concentration over the first day (t = 0
to t = 24) is:

1
24

ż 24

0

(
400 + 50 cos

(
t

12
π

)
+ 200 cos

(
t

4380
π

))
dt

=
1
24

ż 24

0
400 dt +

50
24

ż 24

0
cos

(
t

12
π

)
dt +

200
24

ż 24

0
cos

(
t

4380
π

)
dt

Note t = 0 to t = 24 is one complete period for the integrand in red, so the red integral
will evaluate to zero. However, t = 0 to t = 24 is less than one cycle for the integrand in
blue, so we expect this will contribute some non-zero quantity to the average.

= 400 + 0 +
200
24

[
4380

π
sin
(

t
4380

π

)]24

0

= 400 +
25
3
¨

4380
π

sin
(

24
4380

π

)

= 400 +
25
3
¨

4380
π

sin
(

2
365

π

)

« 400 + 199.99
= 599.99 ppm
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Remark: C(0) = 400 + 50 + 200. The red term comes from the daily variation, and over
the first day this will have an average of 0. The blue term comes from the seasonal
variation, which changes dramatically over the course of an entire year but won’t change
very much over the course of a single day. So, it is reasonable that the average
concentration over the first day should be close to (but not exactly) 400 + 200 ppm.

(c) The average of N(t) over [0, 8760] is:

1
8760

ż 8760

0

(
350 + 200 cos

(
t

4380
π

))
dt = 350 +

200
8760

[
4380

π
sin
(

t
4380

π

) ]8760

0

= 350 +
200
8760

[
4380

π
sin
(

8760
4380

π

)]

= 350 +
100
π

sin (2π)

= 350

Since the average of C(t) was 400, this gives us an absolute error of |400´ 350| = 50 ppm,
for a relative error of

50
400

= 0.125,

or 12.5%.

That is: sampling at the same time every day, rather than throughout the day, lead to an
error of 12.5% in the yearly average concentration of carbon dioxide.

S-15:

(a) The cross-section of S at x is a circle with radius x2, so area πx4. The average of these
values, 0 ď x ď 2, is

A =
1

2´ 0

ż 2

0
πx4 dx =

1
2

[π

5
x5
]2

0
=

16π

5

(b) To find the volume of S, imagine cutting it into thin circular disks of radius x2 and
thickness dx. The volume of one such disk is πx4 dx, so the volume of S is

ż 2

0
πx4 dx =

[π

5
x5
]2

0
=

32π

5

(c) The volume of a cylinder is the product of its base area with its length. A cylinder
with circular cross-sections of area 16π

5 and length 2 has volume 32π
5 .

Remark: this is the same as the volume of S, so the average cross-sectional area of S
tells us the cross-sectional area of a cylinder with the same length and volume as S.
Compare this to Question 1, where we saw the average value of a function gave the
height of a rectangle with the same area as the function over the given interval.

S-16:
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(a) We can see without calculation that the average will be zero, since f (x) = x is an odd
function and [´3, 3] is a symmetric interval. Alternately, we can use the definition of
an average to calculate

1
6

ż 3

´3
x dx =

[
1
12

x2
]3

´3
=

1
12

(9´ 9) = 0

(b) Using the definition provided for root mean square:

RMS =

d

1
6

ż 3

´3
x2 dx =

d[
1

18
x3
]3

´3
=

c

27
18
´
´27
18

=
?

3

S-17: Using the definition provided,

RMS =

d

2
π

ż π/4

´π/4
tan2 x dx =

d

2
π

ż π/4

´π/4
(sec2 x´ 1) dx

=

d

2
π

[
tan x´ x

]π/4

´π/4
=

c

2
π

[(
1´

π

4

)
´

(
´1 +

π

4

)]

=

c

2
π

(
2´

π

2

)
=

c

4
π
´ 1 « 0.52

S-18:

(a) Using Hooke’s law, when the spring is stretched (or compressed) f (t) metres past its
natural length, the force exerted is k f (t), where k is the spring constant. In this case,
the force is

F(x) = (3 N/cm)( f (t) cm) = 3 sin (tπ) N

(b) Our interval encompasses three full periods of sine, so the average will be zero.

Alternately, we can compute, using the definition of an average:

Avg =
1
6

ż 6

0
3 sin(tπ)dt =

1
6

[
´

3
π

cos(tπ)

]6

0
=

1
2π

[cos 0´ cos(6π)] = 0

This it doesn’t tell us very much about the “normal” amount of force from the spring
during our time period. It only tells us that force in one direction at is “cancelled out”
by force in the opposite direction at another time.
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(c) Using the definition given for root mean square,

RMS =

d

1
6

ż 6

0
(3 sin(tπ))2 dt =

d

3
2

ż 6

0
sin2(tπ)dt

=

d

3
4

ż 6

0
(1´ cos(2tπ)) dt

=

d

3
4

[
t´

1
2π

sin(2tπ)

]6

0

=

d

3
4

[
6´

1
2π

sin(12π)´ 0
]

=

c

3
4
(6) =

3
?

2
« 2.12

S-19: (a) Let v(t) be the speed of the car at time t. Then, by the trapezoidal rule with
a = 0, b = 2, ∆t = 1/3, the distance traveled is

ż 2

0
v(t)dt « ∆t

[
1
2 v(0) + v(1/3) + v(2/3) + v(3/3) + v(4/3) + v(5/3) + 1

2 v(2)
]

=
1
3

[
1
250 + 70 + 80 + 55 + 60 + 80 + 1

240
]
= 130 km

(b) The average speed is dist
time «

130 km
2 hr = 65 km/hr.

S-20:

(a) Using the definition of an average,

A =
1

1´ 0

ż 1

0
et dt = e´ 1

(b) Since s(t)´ A = et ´ e + 1, its average on [0, 1] is

1
1´ 0

ż 1

0

(
et
´ e + 1

)
dt =

[
et
´ et + t

]1
0 = (e´ e + 1)´ (1) = 0

Remark: what’s happening here is that the average difference between s(t) and A is
zero, because the values of s(t) that are larger than A (and give a positive value of
s(t)´ A) exactly cancel out the values of s(t) that are smaller than A (and give a
negative value of s(t)´ A). However, knowing how far the average value is from our
calculated average is a reasonable thing to measure. That’s where (c) comes in.

(c) Using the definition of an average, the quantity we want is:

1
1´ 0

ż 1

0

ˇ

ˇet
´ e + 1

ˇ

ˇ dt
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To deal with the absolute value, we consider the integral over two intervals: one
where et ´ e + 1 is positive, and one where it’s negative. To decide where to break the
limits of integration, notice et ´ e + 1 ą 0 exactly when et ą e´ 1, so t ą log(e´ 1).

1
1´ 0

ż 1

0

ˇ

ˇet
´ e + 1

ˇ

ˇ dt =
ż log(e´1)

0
| et
´ e + 1

loooomoooon

negative

|dt +
ż 1

log(e´1)
| et
´ e + 1

loooomoooon

positive

|dt

=

ż log(e´1)

0

(
´ et + e´ 1

)
dt +

ż 1

log(e´1)

(
et
´ e + 1

)
dt

=
[
´ et + (e´ 1)t

]log(e´1)

0
+
[
et
´ (e´ 1)t

]1

log(e´1)

= [´(e´ 1) + (e´ 1) log(e´ 1) + 1] + [e´ (e´ 1)´ (e´ 1) + (e´ 1) log(e´ 1)]
= 4´ 2e + 2(e´ 1) log(e´ 1)
« 0.42

Remark: what we just measured is how far s(t) is, on average, from A. We had to
neglect whether s(t) was above or below A, because (as we saw in (b)) the values
above A “cancel out” the values below A. That’s where the absolute value came in.

Knowing how well most of your function’s values match the average is an important
measure, but dealing with absolute values can be a little clumsy. Therefore, the
variance of a function squares the differences, rather than taking their absolute value.
(In our example, that means looking at (s(t)´ A)2, rather than |s(t)´ A|.) To
compensate for the change in magnitude involve in squaring, the standard deviation
is the square root of the variance. These are two very commonly used measures of
how similar a function is to its average. Compare standard deviation to
root-square-mean voltage from Example 2.2.6 in the CLP-2 text and Questions 16 to
18.

S-21:

(a) Neither: the average of both these functions is zero. We saw this with a particular
function in Question 20 (b), but it’s actually true in general. It’s a quick calculation to
prove.

The average of f (x)´ A is:

1
4´ 0

ż 4

0

(
f (x)´ A

)
dx =

1
4

ż 4

0
f (x)dx

loooooomoooooon

A

´A = A´ A = 0

Similarly, the average of g(x)´ A is:

1
4´ 0

ż 4

0

(
g(x)´ A

)
dx =

1
4

ż 4

0
g(x)dx

loooooomoooooon

A

´A = A´ A = 0
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(b) The function | f (x)´ A| tells us how far f (x) is from A, without worrying whether
f (x) is larger or smaller. Looking at our graph, for most values of x in [0, 4], f (x) is
quite far away from A, so | f (x)´ A| is usually a large, positive quantity.

By contrast, |g(x)´ A| is a small positive quantity for most values of x. The function
g(x) is quite close to A for all values of x in [0, 4].

So, since |g(x)´ A| generally has much smaller values than | f (x)´ A|, the average of
| f (x)´ A| on [0, 4] will be larger than the average of |g(x)´ A| on [0, 4].

As discussed in Question 20(c), the average of | f (x)´ A| is a measure of how closely
f (x) resembles its average. We see from the graph that f (x) doesn’t resemble the
constant function y = A much at all, while g(x) seems much more similar to the
constant function y = A.

This kind of measure–how similar a function is to its average–is also the idea behind
the root square mean.

S-22: When we rotate f (x) about the x-axis, we form a solid whose radius at x is | f (x)|.
So, its circular cross-sections have area π| f (x)|2 = π f 2(x). If we slice this solid into
circular disks of thickness dx, then the disks have volume π f 2(x)dx. Therefore, the

volume of the entire solid is
ż b

a
π f 2(x)dx. All we need to do now is get this into a form

where we can replace the integral with the root mean square, R.

V =

ż b

a
π f 2(x)dx = π

b´ a
b´ a

ż b

a
f 2(x)dx

= π(b´ a)



d

1
b´ a

ż b

a
f 2(x)dx




2

= π(b´ a)R2

Remark: the volume of a cylinder with length b´ a and radius r is π(b´ a)r2. So, the
root mean square of f (x) gave us the radius of a cylinder with the same volume as the
solid formed by rotating f (x). Recall the average of f (x) gave us the height of a rectangle
with the same area as f (x). Compare this to the geometric interpretations of averages in
Questions 1 and 15.

S-23: The question tells you 1
1´0

ş1
0 f (x)dx = f (0)+ f (1)

2 . Note f (0) = c, and
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f (1) = a + b + c.

1
1´ 0

ż 1

0
f (x)dx =

f (0) + f (1)
2

=
c + (a + b + c)

2
ż 1

0

(
ax2 + bx + c

)
dx =

a + b + 2c
2

[
a
3

x3 +
b
2

x2 + cx
]1

0
=

a
2
+

b
2
+ c

a
3
+

b
2
+ c =

a
2
+

b
2
+ c

a
3
= a

a = 0

That is, f (x) is linear.

S-24: The information given in the question is:

(
as2 + bs + c

)
+
(
at2 + bt + c

)

2
=

1
t´ s

ż t

s

(
ax2 + bx + c

)
dx

=
1

t´ s

[
a
3

x3 +
b
2

x2 + cx
]t

s

=
1

t´ s

[
a
3
(t3
´ s3) +

b
2
(t2
´ s2) + c(t´ s)

]

=
a
3
(t2 + st + s2) +

b
2
(t + s) + c

a
2
(s2 + t2) +

b
2
(s + t) + c =

a
3
(t2 + st + s2) +

b
2
(t + s) + c

a
2
(s2 + t2) =

a
3
(t2 + st + s2)

a
[

s2 + t2

2
´

t2 + st + s2

3

]
= 0

a
[

s2 ´ 2st + t2

6

]
= 0

a(s´ t)2 = 0
a = 0 OR s = t

So, unless s = t (and we’re taking the very boring average of a single point!) then a = 0.
That is: f (x) is linear whenever s ‰ t.

S-25: The function g(x) = f (a + b´ x), on the interval [a, b], is a mirror of the function
f (x), with g(a) = f (b) and g(b) = f (a). So,

şb
a f (a + b´ x)dx =

şb
a f (x)dx, and hence

1
b´a

şb
a f (a + b´ x)dx = 1

b´a
şb

a f (x)dx, so the average value of f (a + b´ x) on [a, b] is A.
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Alternately, we can evaluate 1
b´a

şb
a f (a + b´ x)dx directly, using the substitution

u = a + b´ x, dx = ´dx:

1
b´ a

ż b

a
f (a + b´ x)dx =

´1
b´ a

ż u(b)

u(a)
f (u)du

=
´1

b´ a

ż a

b
f (u)du

=
1

b´ a

ż b

a
f (u)du

= A

S-26:

(a) The function A(x) only gives us information about an integral when one limit of
integration is zero. We can get around this by using properties of definite integrals
from Section 1.2 to break our integral into two integrals, each of which has 0 as one
limit of integration. So, we find the average of f (t) on [a, b] as follows:

1
b´ a

ż b

a
f (t)dt =

1
b´ a

(
ż 0

a
f (t)dt +

ż b

0
f (t)dt

)

=
1

b´ a

(
´

ż a

0
f (t)dt +

ż b

0
f (t)dt

)

=
1

b´ a


´a ¨

1
a

ż a

0
f (t)dt

loooooomoooooon

A(a)

+b ¨
1
b

ż b

0
f (t)dt

loooooomoooooon

A(b)




=
1

b´ a
(´aA(a) + bA(b)) =

bA(b)´ aA(a)
b´ a

(b) From the definition of A(x), we know

A(x) =
1
x

ż x

0
f (t)dt

That is,

xA(x) =
ż x

0
f (t)dt

To find f (x), we differentiate both sides. For the left side, we use the product rule; for
the right side, we use the Fundamental Theorem of Calculus part 1.

A(x) + xA1(x) = f (x)

So, f (t) = A(t) + tA1(t).
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S-27:

(a) One of many possible answers: f (x) =

#

´1 if x ď 0
1 if x ą 0

.

(b) No such function exists.

Note 1: Suppose f (x) ą 0 for all x in [´1, 1]. Then 1
2

ş1
´1 f (x)dx ą 1

2

ş1
´1 0 dx = 0.

That is, the average value of f (x) on the interval [´1, 1] is not zero–it’s
something greater than zero.

Note 2: Suppose f (x) ă 0 for all x in [´1, 1]. Then 1
2

ş1
´1 f (x)dx ă 1

2

ş1
´1 0 dx = 0.

That is, the average value of f (x) on the interval [´1, 1] is not zero–it’s
something less than zero.

So, if the average value of f (x) is zero, then f (x) ě 0 for some x in [´1, 1], and
f (y) ď 0 for some y P [´1, 1]. Since f is a continuous function, and 0 is between f (x)
and f (y), by the intermediate value theorem (Theorem 1.6.12 in the CLP-1 text) there
is some value c between x and y such that f (c) = 0. Since x and y are both in [´1, 1],
then c is as well. Therefore, no function exists as described in the question.

S-28: This seems like it might be true: if f is getting closer and closer to zero, as x grows
towards infinity, then over time the later values will become a larger and larger portion
of the total interval we’re looking at, and so the average should look more and more like
f (x) when x is large–that is, like 0. That’s some intuition to start us out, but it isn’t a
rigorous argument. To be sure we haven’t overlooked something, let’s use the definition
of an average to express A(x).

A(x) =
1
x

ż x

0
f (t)dt

lim
xÑ8

A(x) = lim
xÑ8

1
x

ż x

0
f (t)dt

If
ş8

0 f (t)dt converges, then this limit is 0, and the statement is true. So, suppose it does
not converge. Since f (x) is positive, that means lim

xÑ8

şx
0 f (t)d(t) = 8, so we can use

l’Hôpital’s rule. To differentiate the numerator, we use the Fundamental Theorem of
Calculus part 1.

lim
xÑ8

A(x) = lim
xÑ8

şx
0 f (t)dt

x
= lim

xÑ8

f (t)
1

= 0

So, the statement is true whether
şx

0 f (t)dt converges or not.

S-29: Note f (t) is a continuous function that takes only positive values, and lim
tÑ8

f (t) = 0.

By the result of Question 28, lim
xÑ8

A(x) = 0.
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Solutions to Exercises 2.3 — Jump to TABLE OF CONTENTS

S-1: Note ´x2 + 2x + 1 = 2´ (x´ 1)2. So, both parabolas are symmetric about the line
x = 1, and the x-coordinate of the centroid is x = 1.

x

y

y = (x´ 1)2

y = ´x2 + 2x + 1

x = 1

The parabolas meet when:

(x´ 1)2 = 2´ (x´ 1)2

2(x´ 1)2 = 2
|x´ 1| = 1

x = 0, x = 2

At both these points, y = 1, so we see the figure is symmetric about the line y = 1. Then
the y-coordinate of the centroid is 1.

x

y

y = (x´ 1)2

y = ´x2 + 2x + 1

y = 1

Therefore, the centroid is at (1, 1).

S-2: The circle and the cut-out rectangle are symmetric about the x-axis, and about the
y-axis, so the centroid is the origin.

Remark: the centroid of a region doesn’t have to be a point in the region!

S-3: In general, this is false: weights farther out from the centre “count more” when we
calculate the centre of mass. For instance, a rod with a 1-kg weight at x = ´10 and a
10-kg weight at x = 1 will balance at x = 0. There’s far more mass to one side of x = 0
than the other.
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S-4: Following Equation 2.3.1 in the CLP-2 text, the centre of mass of the rod is at:

x̄ =

ř

(mass)ˆ(position)
ř

(mass)
=

1ˆ 1 + 2ˆ 3 + 2ˆ 4 + 1ˆ 6
1 + 2 + 2 + 1

=
21
6

=
7
2

That is, the centre of mass is 3.5 metres from the left end.

S-5: (a) If we were to set this figure on a pencil lined up along the vertical line x = a, it
seems pretty clear that it would fall to the left. So, the centre of mass is to the left of the
line x = a. The same is true in (b): the added density on the left makes it only more
lopsided. However, in (c), the right side is denser than the left, which could
counterbalance the left. Without knowing more about the dimensions and the density,
we can’t say where the centre of mass is in relation to the line x = a.

(d) Consider a section of the figure, consisting of all points (x, y) in the figure with
b ď x ď c, and its “mirror” section on the other side of the line x = a. These two sections,
which are drawn in red in the sketches below, will have the same area, at the same
distance from x = a. Since we only care about the x-coordinate of the centre of mass, it
doesn’t matter that the two halves are at different y-coordinates. The centre of mass falls
along the line x = a.

A

A

B

B

a
x

y

A

A

B

B

a
x

y

(e) There is the same amount of area to the left and right of the line x = a, as in part (d).
However, the area to the right is “stretched out” more, so that it occupies space farther
away from the line x = a. So, the centre of mass will be to the right of the line x = a.

S-6:

• The volume of water in Tank A is 4
3 π(1)3 = 4

3 π cubic metres.

• The mass of water is 4000
3 π kg.

• By symmetry, the centre of mass of the water when it fills Tank A is exactly in the
centre of the sphere, at height ȳ1 = 4 metres above the ground (one metre above the
bottom of Tank A, which is three metres above the ground).

• When the water is entirely in Tank B, its height is 2
3 π metres. (The base of Tank B

has area 2 m2, and the volume of water is 4
3 π m3.) By symmetry, the centre of mass

is exactly halfway up, at height ȳ2 = 1
3 π metres.

• So, the point mass in our model is moved from ȳ1 = 4 to ȳ2 = 1
3 π, a distance of

4´ 1
3 π metres, by gravity.
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• The work involved is:
(

4000
3

π kg
)
ˆ

(
4´

1
3

π m
)
ˆ

(
9.8

m
sec2

)
=

39200π

9
(12´ π) « 121, 212 J

S-7:

(a) A thin slice of S at position x has height 1
x , so if its width is dx, its area is 1

x dx.

(b) A small piece of R at position x has density 1
x , so if its length is dx, its mass is 1

x dx.

(c) Adding up all our tiny slices from (a) gives us the total area of S:

ż 3

1

1
x

dx = log 3

(d) Adding up all our tiny pieces from (b) gives us the total mass of R:

ż 3

1

1
x

dx = log 3

(e) Using Equation 2.3.3 in the CLP-2 text, the x-coordinate of the centroid of S is

ş3
1 x ¨ 1

x dx
ş3

1
1
x dx

=

ş3
1 1 dx
log 3

=
2

log 3

(f) Using Equation 2.3.2 in the CLP-2 text, the centre of mass of R is

ş3
1 x ¨ 1

x dx
ş3

1
1
x dx

=

ş3
1 1 dx
log 3

=
2

log 3

Remark: following the derivation of Equation 2.3.3 in the CLP-2 text, if we wanted to
find the x-coordinate of the centroid of S, we would set up a rod that had exactly the
characteristics of R. That’s why all the answers were repeated.

S-8:

(a) If we chop R into n pieces, each piece has length b´a
n

. Then our ith cut is at position

a + i
(

b´a
n

)
, so our ith piece runs from a + (i´ 1)

(
b´a

n

)
to a + i

(
b´a

n

)
. The

approximation of the mass of this piece comes from the density at its midpoint,

mi =

[
a + (i´ 1)

(
b´a

n

)]
+
[

a + i
(

b´a
n

)]

2
= a + (i´ 1

2)

(
b´ a

n

)
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a b

b´a
n

m1 m2 mn

So, the ith piece has length b´a
n

, with approximate density

ρ (mi) = ρ
(

a + (i´ 1
2)
(

b´a
n

))
. We approximate that the ith piece has mass(

b´a
n

)
¨ ρ (mi) and position mi. Using Equation 2.3.1 in the CLP-2 text, the centre of

mass of R is approximately at position:

x̄n =

n
ř

i=1
(mass of ith piece)ˆ (position of ith piece)

n
ř

i=1
(mass of ith piece)

=

n
ř

i=1

[
b´a

n ρ(mi)ˆmi

]

n
ř

i=1

b´a
n ρ(mi)

=

n
ř

i=1

[
b´a

n ρ
(

a +
(

i´ 1
2

)
( b´a

n )
)
ˆ

(
a + (i´ 1

2)
(

b´a
n

))]

n
ř

i=1

b´a
n ρ

(
a + (i´ 1

2)
(

b´a
n

))

(b) Remember the definition of a midpoint Riemann sum:

ż b

a
f (x)dx «

n
ÿ

i=1

b´ a
n

¨ f
(

a + (i´ 1
2)

(
b´ a

n

))

The numerator of our approximation in part (a) is, therefore, a midpoint Riemann
sum of

şb
a ρ(x)ˆ x dx, and the denominator is a midpoint Riemann sum of

şb
a ρ(x)dx.

Using the definition of a definite integral (Definition 1.1.9 in the CLP-2 text), we see
the limit of the approximation in (a) as x goes to infinity is

x̄ =

şb
a xρ(x)dx
şb

a ρ(x)dx

This gives us the exact centre of mass of our rod.

Remark: this is Equation 2.3.2 in the CLP-2 text.

S-9:
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(a) On the left-most corner of S, T(x) = B(x), so the height of S is zero; that is, the area
of a very small vertical strip is very close to zero, so the density of R is close to 0. As
we move closer to the position labeled a1, the height of the strips increases, so the
areas of the strips increases, so the density of R increases. Then, between the points
labeled a1 and b1, the height of S remains constant, since T(x) and B(x) are parallel
here, so the areas of the strips of S remain constant, and the density of R remains
constant. Then, between b1 and b, the height of S decreases, so the area of the strips
decrease, so the density of R decreases.

x

y T(x)

B(x)

a ba1 b1

R

(b) At position x, the height of S is T(x)´ B(x), so a rectangle with width dx and this
height would have area (T(x)´ B(x))dx.

(c) According to our model, the tiny section of R at position x with width dx has mass
(T(x)´ B(x))dx (that is, the area of S over this same tiny interval), so its density is
ρ(x) = mass

length = (T(x)´B(x))dx
dx = T(x)´ B(x).

(d) Imagine S were a solid, of constant density. The mass of a portion of S is proportional
to the area of that portion. To find the x-coordinate where the solid would balance,
we imagine compressing together the vertical dimension of S until it’s a rod. That is,
we would take a very thin vertical strip of S, and turn it into a small segment of a
rod, with the same mass. Then the centre of mass of that rod would be exactly the
x-coordinate of the centre of mass of the solid–that is, the x-coordinate of the centroid
of S.

The compressed rod we form in this way is exactly R (perhaps multiplied by a
constant, to account for the density of S, but this doesn’t affect where R balances). So,
the x-coordinate of the centroid has the same position as the centre of mass of R.

Our result from Question 8(b) tells us the centre of mass of R is
şb

a xρ(x)dx
şb

a ρ(x)dx

In (c), we found ρ(x) = T(x)´ B(x). So, for the solid S bounded by T(x) and B(x) on
the interval [a, b],

x̄ =

şb
a x(T(x)´ B(x))dx
şb

a(T(x)´ B(x))dx
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Remark: the denominator is the area of S. This formula is the same as the formula
found in Equation 2.3.3 of the CLP-2 text.

S-10:

(a) To begin with, we’ll sketch some strips, and put a dot at the centre of mass of each
one (its vertical centre).

x

y T(x)

B(x)

a ba1 b1

In our model, each of these strips corresponds to a weight on R, positioned at its
centre of mass (the height of the dot), and with a mass equal to the strip’s area. For
the portion of S with a1 ď x ď b1, each centre of mass is at a slightly different height,
but the areas of the slices are the same. So, the corresponding weights along R are at
different heights, but all have the same mass, as shown below. (Note the rod R below
only contains the weights from the middle of S–we’ll add the rest later.)

For clarity, the diagrams below are zoomed in.

x

y T(x)

B(x)

a ba1 b1

R

By contrast to the slices in the interval [a1, b1], the slices of S along [a, a1] all have the
same centre of mass, but different areas. So, there is one position along R that has a
number of weights all stacked on top of one another, of varying masses.

The same situation applies to the slices of S along [b, b1]. So, all together, our rod
looks something like this:
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x

y T(x)

B(x)

a ba1 b1

R

Remark: if we had sketched the density of R, it would have looked something like
this:

x

y T(x)

B(x)

a ba1 b1

R

because from our sketch, we see that the density of R:

• is 0 at either end,

• is suddenly very high where the blue weights are, and

• is constant and lower between the blue weights.

(b) At position x, the height of S is T(x)´ B(x), and the width of the strip is dx, so the
area of the strip is (T(x)´ B(x))dx.

Since the density of S is uniform, the centre of mass of the strip is halfway up: at
T(x) + B(x)

2
.

(c) If we cut S into n strips, then the strip at position xi has area (T(xi)´ B(xi))∆x,

where ∆x = b´a
n , and its centre of mass is at height

T(xi) + B(xi)

2
. So, our
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approximation of the centre of mass of the rod is:

ȳn =

n
ř

i=1
(Mi ˆ yi)

n
ř

i=1
Mi

=

n
ř

i=1
((T(xi)´ B(xi))∆x)ˆ

(
T(xi) + B(xi)

2

)

n
ř

i=1
(T(xi)´ B(xi))∆x

=

n
ř

i=1
(T(xi)

2 ´ B(xi)
2)∆x

2
n
ř

i=1
(T(xi)´ B(xi))∆x

We use the definition of a definite integral (Definition 1.1.9 in the CLP-2 text) to
re-write the limit of the above function.

ȳ = lim
nÑ8

n
ř

i=1
(T(xi)

2 ´ B(xi)
2)∆x

2
n
ř

i=1
(T(xi)´ B(xi))∆x

=

şb
a
(
T(x)2 ´ B(x)2)dx

2
şb

a
(
T(x)´ B(x)

)
dx

Remark: the denominator is twice the area of S. This equation for the y-coordinate of
the centroid is the same as the one given in Equation 2.3.3 in the CLP-2 text.

S-11: We use vertical strips, as in the sketch below. (To use horizontal strips we would
have to split the domain of integration in two: ´3 ď y ď 0 and 0 ď y ď 3.)

(−1,−3)

(−1, 3)

(0, 0)

y = −3x

y = 3x

The equations of the top and bottom of the triangle are

y = T(x) = ´3x and y = B(x) = 3x.

The area of the triangle is A = 1
2(6)(1) = 3. Now, we can apply the vertical-slice versions

of Equation 2.3.3 in the CLP-2 text.

x̄ =
1
A

ż 0

´1
x
[
T(x)´ B(x)

]
dx =

1
3

ż 0

´1
x
[
(´3x)´ (3x)

]
dx = ´

1
3

ż 0

´1
6x2 dx
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S-12: Applying Equation 2.3.2 in the CLP-2 text,

x̄ =

ş7
0 x ¨ x dx
ş7

0 x dx
=

[
1
3 x3
]7

0[
1
2 x2
]7

0

=
1
3(7

3)
1
2(7

2)
=

14
3

S-13: Applying Equation 2.3.2 in the CLP-2 text,

x̄ =

ş10
´3 x ¨ 1

1+x2 dx
ş10
´3

1
1+x2 dx

For the numerator, we use the substitution u = 1 + x2, du = 2x dx.

=
1
2

ş101
10

1
u du

[
arctan x

]10

´3

=

1
2

[
log u

]101

10
arctan 10´ arctan(´3)

=

[
log 101´ log 10

]

2(arctan 10 + arctan(3))
=

log 10.1
2(arctan 10 + arctan(3))

« 0.43

Since arctangent is an odd function, arctan(´3) = ´ arctan(3); using logarithm rules,
log 101´ log 10 = log 101

10 = log 10.1.

S-14: If we use horizontal strips, then we need to break the region into two pieces:
y ě ´1 = ´e0, and y ď ´1. However, if we use vertical strips, the equation of the top of
the region is y = T(x) = 1, and the equation of the bottom of the region is
y = B(x) = ´ex, for all x from a = 0 to b = 1. So, we use vertical strips.

x

y

1

y = ´ex

Using Equation 2.3.3 in the CLP-2 text, the y-coordinate of the centre of mass is

ȳ =
1

2A

ż 1

0

[
T(x)2

´ B(x)2]dx =
1
2e

ż 1

0

(
1´ e2x

)
dx =

1
2e

[
x´

1
2

e2x
]1

0

=
1
2e

[
1´

e2

2
´ 0 +

1
2

]
=

3
4e
´

e
4
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S-15: (a) The lines y = 0, x = 0, and x = 2 are easy enough to sketch. Let’s get some basic
information about y = T(x) = 1?

16´x2
on the interval [0, 2].

• For all x in its domain, T(x) ě 0. In particular, it’s always the top of our region (so
T(x) is a reasonable name for it), while the bottom is B(x) = 0.

• T(0) = 1
4 , and T(2) = 1

2
?

3

• T1(x) = x
(16´x2)3/2 , which is positive on [0, 2], so T(x) is increasing.

Remark: to see that T(x) is increasing, we can also just break it into pieces:

– When x ě 0, x2 is increasing, so

– 16´ x2 is decreasing, so

–
?

16´ x2 is decreasing, so

– 1?
16´x2

= T(x) is increasing.

• T2(x) = 2x2+16
(16´x2)5/2 , which is positive, so T(x) is concave up.

x = 2

y = 1√
16−x2

x

y

Remark: If we only wanted to solve (b), it would still be nice to have a sketch of the
region, but it wouldn’t need to be so detailed. Knowing that T(x) is always greater than
0 would be enough to tell us we could use vertical slices with T(x) as the top and y = 0
as the bottom.

If we wanted to use horizontal slices (we don’t... but we could!) we would additionally
want to know that T(x) is increasing over [0, 2], T(0) = 1

4 , and T(2) = 1
2
?

3
. This would

tell us that:

• the right endpoint of a horizontal strip is always x = 2,

• the left endpoint is determined by T(x) from y = 1
4 to y = 1

2
?

3
, and

• the left endpoint is x = 0 for 0 ď y ď 1
4 .

(b)
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x = 2

y = 1√
16−x2

x

y

The part of the region with x coordinate between x and x + dx is a strip of width dx
running from y = 0 to y = 1?

16´x2
. It is illustrated in red in the figure above. So, the area

of the region is

A =

ż 2

0

1
?

16´ x2
dx =

ż arcsin(1/2)

0

1
4 cos t

4 cos t dt = arcsin
1
2
=

π

6

where we made the substitution x = 4 sin t, dx = 4 cos tdt,
?

16´ x2 = 4 cos t.

Using Equation 2.3.3 in the CLP-2 text,

ȳ =

ş2
0

[
T(x)2 ´ B(x)2]dx

2A
=

ż 2

0

[(
1

?
16´ x2

)2

´ 02

]
dx

2A

=
1

2A

ż 2

0

1
16´ x2 dx =

1
2A

ż 2

0

1
(4´ x)(4 + x)

dx

Using the method of partial fractions, we see
1

16´ x2 =
1/8

4 + x
+

1/8
4´ x

.

=
1

2A

ż 2

0

[ 1/8
4 + x

+
1/8

4´ x

]
dx =

1
16A

ż 2

0

[ 1
x + 4

´
1

x´ 4

]
dx

=
1

16A

[
log |x + 4| ´ log |x´ 4|

]2

0
=

6
16π

[
log 6´ log 2´ log 4 + log 4

]

=
3 log 3

8π

S-16:

x

y

π
4

y = sin x

y = cos x
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The top of the region is y = T(x) = cos(x) and the bottom of the region is
y = B(x) = sin(x). So, the area of the region is

A =

ż π/4

0

(
T(x)´ B(x)

)
dx =

ż π/4

0

(
cos(x)´ sin(x)

)
dx =

[
sin(x) + cos(x)

]π/4

0

=

[
1
?

2
+

1
?

2

]
´ [0 + 1] =

?
2´ 1

If we use horizontal slices, we’ll need to break up the object into two regions, so let’s use
vertical slices. Using Equation 2.3.3 in the CLP-2 text, the region has centroid (x̄, ȳ) with:

x̄ =
1
A

ż π/4

0
x
(
T(x)´ B(x)

)
dx =

1
A

ż π/4

0
x
(

cos(x)´ sin(x)
)

dx

We use integration by parts with u = x, dv = (cos x´ sin x)dx; du = dx,
v = sin x + cos x.

=
1
A

([
x(sin x + cos x)

]π/4

0
´

ż π/4

0
(sin x + cos x)dx

)

=
1
A

[
x sin(x) + x cos(x) + cos x´ sin x

]π/4

0

=
1
A

[(
π

4
¨

1
?

2
+

π

4
¨

1
?

2
+

1
?

2
´

1
?

2

)
´ 1
]

=
π
4

?
2´ 1
A

=
π
4

?
2´ 1

?
2´ 1

Again using Equation 2.3.3 in the CLP-2 text,

ȳ =
1

2A

ż π/4

0

(
T(x)2

´ B(x)2)dx =
1

2A

ż π/4

0

(
cos2(x)´ sin2(x)

)
dx

=
1

2A

ż π/4

0
cos(2x)dx =

1
2A

[1
2

sin(2x)
]π/4

0
=

1
4(
?

2´ 1)

S-17: (a) Since k is positive, k?
1+x2 ą 0 for every x. Then the top of our region is defined

by T(x) = k?
1+x2 , and the bottom is defined by B(x) = 0.

If we make vertical slices, we don’t have to turn our region into two parts, so let’s use
vertical slices. The question asks for our final answer in terms of the area A of the region,
so we don’t need to find A explicitly. Using Equation 2.3.3 in the CLP-2 text, the
x–coordinate of the centroid is

x̄ =
1
A

ż 1

0
x(T(x)´ B(x))dx =

1
A

ż 1

0
x

k
?

1 + x2
dx
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Although we have a quadratic function underneath a square root, we find an easier
method than a trig substitution: the substitution u = 1 + x2, du = 2x dx. This changes
the limits of integration to 1 + 02 = 1 and 1 + 12 = 2, respectively.

=
1
A

ż 2

1

k
?

u
du
2

=
k

2A

[?
u

1/2

]2

1
=

k
A
[?

2´ 1
]

Again using Equation 2.3.3 in the CLP-2 text, the y–coordinate of the centroid is

ȳ =
1

2A

ż 1

0
(T(x)2

´ B(x)2)dx =
1

2A

ż 1

0

k2

1 + x2 dx

=
k2

2A

ż 1

0

1
1 + x2 dx =

k2

2A

[
arctan 1´ arctan 0

]
=

k2

2A
¨

π

4
=

k2π

8A

(b) We have x̄ = ȳ if and only if

k
A
[?

2´ 1
]
=

k2π

8A

Since k and A are a positive constants (hence neither is equal to 0), we can divide both
sides by k and multiply both sides by A:

?
2´ 1 =

kπ

8

k =
8
π

[?
2´ 1

]

S-18: (a)

The curve y = x2 ´ 3x is a parabola, pointing up, with x-intercepts at x = 0 and x = 3.

The curve y = x´ x2 is a parabola, pointing down, with x-intercepts at x = 0 and x = 1.

To find where the two curves meet, we set them equal to each other:

x2
´ 3x = x´ x2

2x2
´ 4x = 0

2x(x´ 2) = 0
x = 0 and x = 2

This is enough information to sketch the figure, on the left below.

y=x−x2

y=x2−3x

x
y

(2,−2)

y=x−x2

y=x2−3x

x
y

(2,−2)
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(b) As we found in (a), the curves cross when x = 0, x = 2. The corresponding values of
y are y = 0 and y = 2´ 22 = ´2. Note the top curve is T(x) = x´ x2, and the bottom
curve is B(x) = x2 ´ 3x. Using vertical strips, as in the figure on the right above, the area
of R is

ż 2

0

[
(x´ x2)´ (x2

´ 3x)
]

dx =

ż 2

0

[
4x´ 2x2]dx =

[
2x2

´
2
3

x3
]2

0
= 8´

16
3

=
8
3

(c) Using Equation 2.3.3 in the CLP-2 text, the x–coordinate of the centroid of R (i.e. the
weighted average of x over R) is

x̄ =
3
8

ż 2

0
x
[
(x´x2)´ (x2

´3x)
]

dx =
3
8

ż 2

0

[
4x2

´ 2x3]dx =
3
8

[4
3

x3
´ 1

2 x4
]2

0
=

3
8

[32
3
´ 8
]

= 1

S-19: Using Equation 2.3.3 in the CLP-2 text, the x–coordinate of the centroid is

x̄ =

ş1
0 x 1

1+x2 dx
ş1

0
1

1+x2 dx

We can guess the antiderivative in the numerator, or use the substitution u = 1 + x2,
du = 2x dx.

=
1
2 log(1 + x2)

ˇ

ˇ

1
0

arctan x
ˇ

ˇ

1
0

=
1
2 log 2
π/4

=
2
π

log 2 « 0.44127

S-20: By symmetry, the centroid lies on the y–axis, so x̄ = 0.

The area of the figure is the area of a half-circle of radius 3, and a rectangle of width 6 and
height 2. So, A = 1

2 π(9) + 6ˆ 2 = 9
2 π + 12.

We’ll use vertical strips as in the sketch below.

y

x

−2

−1

1

2

3

321−1−2−3

y =
√
32 − x2

y = −2
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The top function of our figure is T(x) =
?

9´ x2, and the bottom function of our figure is
B(x) = ´2. Using Equation 2.3.3 in the CLP-2 text, the y–coordinate of the centroid is:

ȳ =
1

2A

ż b

a

(
T(x)2

´ B(x)2)dx

=
1

2A

ż 3

´3

(
a

9´ x2
2
´ (´2)2

)
dx

=
1

2A

ż 3

´3

(
5´ x2

)
dx

=
1

2A

[
5x´

1
3

x3
]3

´3

=
1

2A
[15´ 9 + 15´ 9]

=
6
A

=
6

9
2 π + 12

=
12

9π + 24

S-21: (a) Notice that when x = 0, y = 3 and as x2 increases, y decreases until y hits zero at
x2 = 9

4 , i.e. at x = ˘3
2 . For x2 ą 9

4 , y is not even defined. So, on D, x runs from ´3
2 to +3

2
and, for each x, y runs from 0 to

?
9´ 4x2. Here is a sketch of D.

y =
√
9− 4x2

(−3/2, 0) (3/2, 0)
x

y

As an aside, we can rewrite y =
?

9´ 4x2 as 4x2 + y2 = 9, y ě 0, which is the top half of
the ellipse which passes through (˘a, 0) and (0,˘b) with a = 3

2 and b = 3. The area of
the full ellipse is πab = 9

2 π. The area of D is half of that, which is 9
4 π. But we are told to

use an integral, so we will do so.

The area is

Area =

ż 3/2

´3/2

a

9´ 4x2 dx

We can evaluate this integral by substituting x = 3
2 sin θ, dx = 3

2 cos θ dθ and using

x = ˘
3
2
ðñ sin θ = ˘1
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So ´π
2 ď θ ď π

2 and

Area =

ż π/2

´π/2

b

9´ 4
(3

2 sin θ
)2 3

2
cos θ dθ =

ż π/2

´π/2

a

9´ 9 sin2 θ
3
2

cos θ dθ

=
9
2

ż π/2

´π/2
cos2 θ dθ =

9
2

ż π/2

´π/2

cos(2θ) + 1
2

dθ =
9
4

[sin(2θ)

2
+ θ
]π/2

´π/2
=

9
4

π

(b) The region D is symmetric about the y axis. So the centre of mass lies on the y axis.
That is, x̄ = 0. Since D has area A = 9

4 π, top equation y = T(x) =
?

9´ 4x2 and bottom
equation y = B(x) = 0, with x running from a = ´3

2 to b = 3
2 , Equation 2.3.3 in the CLP-2

text gives us ȳ:

ȳ =
1

2A

ż b

a

[
T(x)2

´ B(x)2] dx =
2

9π

ż 3/2

´3/2

[
9´ 4x2] dx =

4
9π

ż 3/2

0

[
9´ 4x2] dx

=
4

9π

[
9x´

4
3

x3
]3/2

0
=

4
9π

[
9 ¨

3
2
´

4
3
¨

33

23

]
=

4
9π

[
9 ¨

3
2
´ 9 ¨

1
2

]
=

4
π

S-22: Let’s start by sketching the region at hand. We know the general shape of arcsine
(it’s like half a period of sine, if you swapped the x and y axes); we can sketch the curve
y = arcsin(2´ x) by mirroring y = arcsin x about the line x = 1.

x

y

´1 1 2 3

´π
2

π
2

y = arcsin x

y = arcsin(2´ x)

If we use vertical strips, then we need two separate regions, because T(x) = arcsin x
when x ď 1, and T(x) = arcsin(2´ x) when x ą 1. Also, we’d have to antidifferentiate
functions that have arcsine in them. Let’s think about horizontal strips. If y = arcsin x,
then x = sin y, and if y = arcsin(2´ x) then x = 2´ sin y. For all y from ´π

2 to π
2 , the left

endpoint of a strip is given by L(y) = sin y, and the right endpoint is given by
R(y) = 2´ sin y.

First, let’s use our horizontal slices7 to find the area of our region, A.

A =

ż π/2

´π/2

(
(2´ sin y)´ (sin y)

)
dy =

ż π/2

´π/2

(
2´ 2 sin y

)
dy

=
[
2y + 2 cos y

]π/2

´π/2
= (π + 0)´ (´π + 0) = 2π

7 There’s also a sneaky way to find the area of A: look for a way to snip and rearrange bits of the figure
to turn it into a rectangle!
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From symmetry, it is clear that x̄ = 1. We find ȳ using Equation 2.3.3 in the CLP-2 text.

ȳ =

şπ/2
´π/2 y [R(y)´ L(y)] dy

A

=

şπ/2
´π/2 y [(2´ sin y)´ (sin y)] dy

2π

=
1

2π

ż π/2

´π/2
y(2´ 2 sin y)dy

=
1
π

ż π/2

´π/2
y dy´

1
π

ż π/2

´π/2
(y sin y)dy

Since y is an odd function, and the domain of integration is symmetric, the first integral
evaluates to 0. Since y sin y is an even function (recall the product of two odd functions is
an even function), we can simplify our limits of integration.

= ´
2
π

ż π/2

0
y sin y dy

We use integration by parts with u = y, dv = sin y dy; du = dy, v = ´ cos y.

= ´
2
π

(
[
´ y cos y

]π/2
0 +

ż π/2

0
cos y dy

)

= ´
2
π

[
´ y cos y + sin y

]π/2
0

= ´
2
π
[(0 + 1)´ 0] = ´

2
π

S-23: We’ll start by sketching the region.
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x

y

21

1

3 y = 3(x´ 1)

y = exy = ex

If we use horizontal slices, we need to divide our figure into three regions, as in the
figure below, because the left and right functions change at the dashed lines.

x

y

21

1

3
y=3(x´1)

x=1+ y
3

y=ex

x=log y

L(x) = 0

L(y) = log y

R(y) = 1 + y
3

R(y) = 2

If we use vertical slices, we only need two regions (shown below) to account for the
different top and bottom functions. This seems easier than three regions, so we use
vertical slices.
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x

y

21

1

3 y = 3(x´ 1)

y = exy = ex

T(x) = ex

B(x) = 3(x´ 1)
B(x) = 0

When 0 ď x ď 2, T(x) = ex. When 0 ď x ď 1, B(x) = 0, and when 1 ď x ď 2,
B(x) = 3(x´ 1).

The area of the figure is:

A =

ż 2

0
(T(x)´ B(x))dx =

ż 1

0
(ex
´ 0)dx +

ż 2

1
(ex
´ 3(x´ 1))dx

=

ż 2

0
ex dx´

ż 2

1
3(x´ 1)dx

=
[
ex
]2

0
´

[
3
2
(x´ 1)2

]2

1

= e2
´ 1´

3
2
= e2

´
5
2

Using Equation 2.3.3 in the CLP-2 text:

x̄ =

ş2
0 x(T(x)´ B(x))dx

A

=
1

e2 ´ 5/2

[
ż 1

0
x (ex

´ 0) dx +

ż 2

1
x (ex

´ 3(x´ 1)) dx

]

=
1

e2 ´ 5/2

[
ż 2

0
xex dx´

ż 2

1
3x(x´ 1)dx

]
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For the left integral, we use integration by parts with u = x, dv = ex dx; du = dx, v = ex.

=
1

e2 ´ 5/2

[
[xex]20 ´

ż 2

0
ex dx´ 3

ż 2

1
(x2

´ x)dx

]

=
1

e2 ´ 5/2

(
[xex

´ ex]20 ´ 3
[

1
3

x3
´

1
2

x2
]2

1

)

=
1

e2 ´ 5/2

(
(2e2

´ e2)´ (´1)´ 3
(

8
3
´ 2´

1
3
+

1
2

))

=
e2 ´ 3/2
e2 ´ 5/2

« 1.2

Using Equation 2.3.3 in the CLP-2 text again:

ȳ =

ş2
0

(
T(x)2 ´ B(x)2) dx

2A

=
1

2(e2 ´ 5/2)

[
ż 1

0

(
e2x
´ 0
)

dx +

ż 2

1

(
e2x
´ 9(x´ 1)2

)
dx

]

=
1

2(e2 ´ 5/2)

[
ż 2

0
e2x dx´

ż 2

1
9(x´ 1)2 dx

]

=
1

2(e2 ´ 5/2)

([
1
2

e2x
]2

0
´

[
3(x´ 1)3

]2

1

)

=
1

2e2 ´ 5

(
1
2

e4
´

1
2
´ 3
)

=
e4 ´ 7

4e2 ´ 10
« 2.4

S-24: The area of the region is

A =

ż 8

1

8
x3 dx = lim

tÑ8

(
ż t

1

8
x3 dx

)
= lim

tÑ8

[
´

4
x2

]t

1
= lim

tÑ8

[
´

4
t2 +

4
12

]
= 0 + 4

We’ll now compute ȳ twice, once with vertical strips, as in the figure in the left below,
and once with horizontal strips as in the figure on the right below.

(1, 8)

y = 8
x3

x

y

1

(1, 8)

x = 2
y1/3

x

y

1
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Vertical strips: The equation of the top of the region is y = T(x) =
8
x3 and the equation of

the bottom of the region is y = B(x) = 0. Using vertical strips, as in the figure on the left
above, the y-coordinate of the centre of mass is

ȳ =
1

2A

ż 8

1

[
T(x)2

´ B(x)2]dx

=
1
8

ż 8

1

(
8
x3

)2

dx

= lim
tÑ8

(
ż t

1

8
x6 dx

)

= lim
tÑ8

[
´

8
5x5

]t

1

= lim
tÑ8

[
´

8
5t5 +

8
5ˆ 15

]
=

8
5

Vertical strips: Since y =
8
x3 is equivalent to x = 3

d

8
y

, the equation of the right-hand side

of the region is x = R(y) =
2

y1/3 and the equation of the left hand side of the region is

x = L(y) = 1. The point at the top of the region is (1, 8). Thus y runs from 0 to 8. So,
using horizontal strips, as in the figure on the right above, the y-coordinate of the centre
of mass is

ȳ =
1
A

ż 8

0
y
[
R(y)´ L(y)

]
dy

=
1
4

ż 8

0
y
[
2y´1/3

´ 1
]

dy

=
1
4

ż 8

0

[
2y2/3

´ y
]

dy

=
1
4

[
6
5

y5/3
´

y2

2

]8

0

=
1
4

[
6ˆ 32

5
´

8ˆ 8
2

]
= 8

[
6
5
´ 1
]
=

8
5

S-25: (a) The two curves cross at points (x, y) that satisfy both y = x2 and y = 6´ x, and
hence

x2 = 6´ x ðñ x2 + x´ 6 = 0 ðñ (x + 3)(x´ 2) = 0

So we see that the two curves intersect at x = 2 (as well as x = ´3, which is to the left of
the y-axis and therefore irrelevant). Here is a sketch of A.
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(2, 4)

y = x2

y = 6− x

x

y

A

The top of A has equation y = T(x) = 6´ x, the bottom has equation y = B(x) = x2 and
x runs from 0 to 2. So, using vertical strips,

x̄ =
1
A

ż 2

0
x
[
T(x)´ B(x)

]
dx

=
1

22/3

ż 2

0
x
[
(6´ x)´ x2]dx =

3
22

ż 2

0
(6x´ x2

´ x3)dx

=
3
22

[
3x2

´
x3

3
´

x4

4

]2

0

=
3

22

[
12´

8
3
´ 4
]
=

3
22

16
3

=
8
11

and

ȳ =
1

2A

ż 2

0

[
T(x)2

´ B(x)2]dx

=
1
2
¨

1
22/3

ż 2

0

(
(6´ x)2

´ x4 )dx =
3
44

[
´
(6´ x)3

3
´

x5

5

]2

0

=
3

44

(
´

64´ 216
3

´
32
5

)
=

3
44
¨

664
15

=
166
55

The integral was evaluated by guessing an antiderivative for the integrand. It could also
be evaluated as

3
44

ż 2

0

(
36´ 12x + x2

´ x4 )dx =
3

44

[
36x´ 6x2 +

x3

3
´

x5

5

]2

0

=
3

44

(
72´ 24 +

8
3
´

32
5

)
=

3
44

664
15

=
166
55

(b) The question specifies the use of horizontal slices (as in Example 1.6.5 of the CLP-2
text). The radius of the slice at height y is the x-value of the right-hand boundary of the
region at that point. So, we start by converting both equations y = 6´ x and y = x2 into
equations of the form x = f (y). To do so we solve for x in both equations, yielding
x =

?y and x = 6´ y.
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(2, 4)

(0, 6)

x =
√
y

x = 6− y

x

y

• We use thin horizontal strips of width dy as in the figure above.

• When we rotate about the y–axis, each strip sweeps out a thin disk

– whose radius is r = 6´ y when 4 ď y ď 6 (see the blue strip in the figure
above), and whose radius is r = ?y when 0 ď y ď 4 (see the red strip in the
figure above) and

– whose thickness is dy and hence

– whose volume is πr2 dy = π(6´ y)2 dy when 4 ď y ď 6 and whose volume is
πr2 dy = πy dy when 0 ď y ď 4.

• As our bottommost strip is at y = 0 and our topmost strip is at y = 6, the total
volume is

π

ż 4

0
y dy + π

ż 6

4
(6´ y)2 dy

S-26: (a) Here is a sketch of the specified region, which we shall call R.

(0,−1)
(1,−1)

y = ex

x

y

R

y = −1

The top of R has equation y = T(x) = ex, the bottom has equation y = B(x) = ´1 and x
runs from 0 to 1. So, using vertical strips, we see that R has area

A =

ż 1

0

[
T(x)´ B(x)

]
dx =

ż 1

0

[
ex
´ (´1)

]
dx =

ż 1

0

[
ex + 1

]
dx =

[
ex + x

]1
0 = e
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and

ȳ =
1

2A

ż 1

0

[
T(x)2

´ B(x)2]dx

=
1
2e

ż 1

0

[
e2x
´ 1

]
dx =

1
2e

[
e2x

2
´ x
]1

0

=
1
2e

(
e2

2
´ 1´

1
2

)
=

e
4
´

3
4e

(b) To compute the volume when R is rotated about the line y = ´1

• we use thin vertical strips of width dx as in the figure above.

• When we rotate about the line y = ´1, each strip sweeps out a thin disk

– whose radius is r = T(x)´ B(x) = ex + 1 and

– whose thickness is dx and hence

– whose volume is πr2 dx = π(ex + 1)2 dx.

• As our leftmost strip is at x = 0 and our rightmost strip is at x = 1, the total volume
is

π

ż 1

0
(ex + 1)2 dx = π

ż 1

0
(e2x + 2ex + 1)dx = π

[
e2x

2
+ 2ex + x

]1

0

= π

[( e2

2
+ 2e + 1

)
´

(1
2
+ 2 + 0

)]

= π
( e2

2
+ 2e´

3
2

)

S-27: By symmetry, ȳ = 1.5. We can’t immediately use Equation 2.3.3 in the CLP-2 text to
find x̄, because the density is not constant. Instead, we’ll go through the derivation of
Equation 2.3.3, to figure out what to do with a non-constant density. (This is a good time
to review Questions 9 and 10 in this section.)

Our model is that we’re making a rod R that reaches from x = 0 to x = 4, and the mass of
the section of the rod along [a, b] is equal to the mass of the strip of our rectangle along
[a, b]. If we have a formula ρ(x) for the density of R, we can find the centre of mass of R,
which is also the x-coordinate of the centre of mass of the rectangle.

A thin vertical strip of the rectangle with length dx at position x has area 3dx m2 and
density x2 kg/m2, so it has mass 3x2 dx kg. Therefore, a short section of R at position x
with length dx ought to have mass 3x2 dx kg as well. Then its density at x is

ρ(x) = 3x2 dx kg
dx m = 3x2 kg/m.

Now, we can use Equation 2.3.2 in the CLP-2 text to find the centre of mass of the rod,
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which is also the x-coordinate of the centre of mass of our rectangle:

x̄ =

ş4
0 xρ(x)dx
ş4

0 ρ(x)dx
=

ş4
0 3x3 dx
ş4

0 3x2 dx
=

[3
4 x4]4

0[
x3
]4

0

=
3 ¨ 43

43 = 3

The centre of mass of our rectangle is (3, 1.5).

S-28: By symmetry, the x-coordinate of the centre of mass will be x̄ = 0; that is, exactly in
the middle, horizontally. To find the y-coordinate of the centre of mass, we need to
consider the origin of Equation 2.3.3 in the CLP-2 text.

We can make vertical strips or horizontal strips. A vertical strip of the circle has a density
that varies from the bottom of the strip to the top, but a horizontal strip has a constant
density (assuming the strip is very thin). So it seems that horizontal strips in this case
will be the easier route.

Following the derivation of Equation 2.3.3 in the CLP-2 text, we model our circle as a
vertical rod R, filling the y-interval [0, 6]. A portion of the rod with a ď y ď b should have
the same mass as the portion of the circle with a ď y ď b. To achieve this, we slice the
circle into thin horizontal strips of thickness dy, calculate their mass, then use that to find
ρ(y), the density of R.

First, let’s find a formula for the mass of a thin horizontal strip of the circle at position y
with height dy.

dyy

x

y

x

The circle with radius 3 centred at (0, 3) has equation x2 + (y´ 3)2 = 9. So, the right half
of the circle has equation x =

a

9´ (y´ 3)2, and the left half of the circle has equation
x = ´

a

9´ (y´ 3)2. So, the width of a strip at height y is 2
a

9´ (y´ 3)2 m. Its height is
dy m, so its area is 2

a

9´ (y´ 3)2 dy m2. Its density is 2 + y kg
m2 , so its mass is

2(2 + y)
a

9´ (y´ 3)2 dy kg.

Now we can find ρ(y), the density of R at position y. The mass of the section of R at
position y with length dy is 2(2 + y)

a

9´ (y´ 3)2 dy kg (the mass of the strip in the
paragraph above), so its density is
2(2+y)

?
9´(y´3)2 dy kg
dy m = 2(2 + y)

a

9´ (y´ 3)2 kg
m = ρ(y).

Now, Equation 2.3.2 in the CLP-2 text will tell us the centre of mass of R, which is also
the y-coordinate of the centre of mass of the circle.
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ȳ =

şb
a yρ(y)dy
şb

a ρ(y)dy
=

ş6
0 yˆ 2(2 + y)

a

9´ (y´ 3)2 dy
ş6

0 2(2 + y)
a

9´ (y´ 3)2 dy

=

ş6
0 y(2 + y)

a

9´ (y´ 3)2 dy
ş6

0(2 + y)
a

9´ (y´ 3)2 dy

To make things look a little cleaner, we use the substitution u = y´ 3, du = dy. Then the
limits of integration become ´3 and 3, respectively, and y = u + 3. (Geometrically, we’re
re-centring the circle at the origin, instead of at the point (0,3).)

=

ş3
´3(u + 3)(2 + u + 3)

?
9´ u2 du

ş3
´3

(
2 + u + 3

)?
9´ u2 du

=

ş3
´3

(
u2 + 8u + 15

)?
9´ u2 du

ş3
´3

(
u + 5

)?
9´ u2 du

=
N
D

(˚)

Let’s start by finding D, the integral of the denominator. If we break it into two pieces,
we can use symmetry and geometry to evaluate it.

D =

ż 3

´3
u
a

9´ u2 du + 5
ż 3

´3

a

9´ u2 du

The left integrand is odd, so its integral over a symmetric interval is 0. (You can also
evaluate this using the substitution w = 9´ u2, dw = ´2u du.) The right integral
represents the area underneath half a circle of radius 3, centred at the origin.

D = 0 + 5 ¨
1
2

π ¨ 32 =
45
2

π

Now, let’s evaluate our numerator integral from (˚), N =
ş3
´3

(
u2 + 8u + 15

)?
9´ u2 du. If

we break it into three pieces, we can simplify the integration somewhat.

N =

ż 3

´3
u2
a

9´ u2 du + 8
ż 3

´3
u
a

9´ u2 du + 15
ż 3

´3

a

9´ u2 du

The first integrand is even, with a symmetric interval of integration, so we can simplify
its limits of integration a little bit. The middle integrand is odd, so its integral over the
symmetric interval [´3, 3] is zero. The last integral is the area of half a circle of radius 3.

N = 2
ż 3

0
u2
a

9´ u2 du + 0 + 15 ¨ π ¨ 32

=
135
2

π + 2
ż 3

0
u2
a

9´ u2 du
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The remaining integral has a quadratic function underneath a square root with no
obvious substitution, so we use a trigonometric substitution. Let u = 3 sin θ,
du = 3 cos θ dθ. Note 3 sin(0) = 0 and 3 sin(π/2) = 3, so the limits of integration become
0 and π

2 .

N =
135
2

π + 2
ż π/2

0

(
3 sin θ

)2
b

9´
(
3 sin θ

)2
¨ 3 cos θ dθ

=
135
2

π + 2
ż π/2

0
9 sin2 θ ¨

a

9´ 9 sin2 θ ¨ 3 cos θ dθ

=
135
2

π + 54
ż π/2

0
sin2 θ ¨

a

9 cos2 θ ¨ cos θ dθ

=
135
2

π + 54
ż π/2

0
sin2 θ ¨ 3 cos θ ¨ cos θ dθ

=
135
2

π + 162
ż π/2

0
sin2 θ ¨ cos2 θ dθ

Using the identity sin(2θ) = 2 sin θ cos θ, we see sin2 θ cos2 θ =
(

sin θ cos θ
)2

= 1
4 sin2(2θ)

N =
135
2

π + 162
ż π/2

0

1
4

sin2(2θ)dθ

Now, we use the identity sin2 x = 1
2(1´ cos(2x)), with x = 2θ.

N =
135
2

π + 162
ż π/2

0

1
8
(
1´ cos(4θ)

)
dθ

=
135
2

π +
81
4

ż π/2

0
1´ cos(4θ)dθ

=
135
2

π +
81
4

[
θ ´

1
4

sin(4θ)

]π/2

0

=
135
2

π +
81
4

(π

2

)

=
621
8

π

Now, using equation (˚), we find ȳ:

ȳ =
N
D

=
621

8 π
45
2 π

=
69
20

= 3.45

Let’s quickly check that this makes sense: if the circle has uniform density, its centre of
mass would lie at (0, 3). Since it’s denser at the top, the centre of mass should be higher,
and indeed 3.45 is higher than 3 (without being so high it’s above the entire circle).

S-29:
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(a) To find the centre of mass of the rod R, we need to know its density at height y, ρ(y).
Since the mass of a section of R is the same as the volume of a section of the cone,
let’s find the volume of a thin horizontal slice of the cone at height y, with thickness
dy. To find its radius s, we use similar triangles. The diagram below represents a
vertical cross-section of the cone.

x

y

h

y

r

s

Since r
h = s

h´y , the radius of our slice at height y is s = r
h (h´ y). Then the volume of

the slice is πs2dy = π
( r

h (h´ y)
)2 dy. Correspondingly, the mass of the piece of the

rod at position y with length dy is π
( r

h (h´ y)
)2 dy, so its density is

ρ(y) =
π
( r

h (h´ y)
)2 dy

dy
= π

( r
h
(h´ y)

)2
.

Now, we can find the centre of mass of R:

ȳ =

şh
0 yρ(y)dy
şh

0 ρ(y)dy
=

şh
0 yπ

( r
h (h´ y)

)2 dy
şh

0 π
( r

h (h´ y)
)2 dy

=
r2

h2 π
şh

0 y (h´ y)2 dy
r2

h2 π
şh

0 (h´ y)2 dy

=

şh
0

(
h2y´ 2hy2 + y3) dy

şh
0 (h

2 ´ 2hy + y2) dy

=

[
h2

2 y2 ´ 2h
3 y3 + 1

4 y4
]h

0[
h2y´ hy2 + 1

3 y3
]h

0

=
h4

2 ´
2h4

3 + h4

4

h3 ´ h3 + 1
3 h3

=
h4

h3 ¨
1
2 ´

2
3 +

1
4

1
3

=
h
4
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So, the centre of mass of the cone occurs h
4 metres above its base.

Remark: it is quite interesting that the centre of mass does not depend on the radius
of the cone!

(b) To find the centre of mass of a truncated cone, we simply consider a truncated rod. If
the top h´ k metres are missing, then the height of the cone (and also the rod) is k.
Then the centre of mass has height:

ȳ =

şk
0 yρ(y)dy
şh

0 ρ(y)dy
=

şk
0 yπ

( r
h (h´ y)

)2 dy
şh

0 π
( r

h (h´ y)
)2 dy

=
r2

h2 π
şk

0 y (h´ y)2 dy
r2

h2 π
şk

0 (h´ y)2 dy

=

şk
0

(
h2y´ 2hy2 + y3) dy

şk
0 (h

2 ´ 2hy + y2) dy

=

[
h2

2 y2 ´ 2h
3 y3 + 1

4 y4
]k

0[
h2y´ hy2 + 1

3 y3
]k

0

=
1
2 h2k2 ´ 2

3 hk3 + 1
4 k4

h2k´ hk2 + 1
3 k3

=
1
2 h2k´ 2

3 hk2 + 1
4 k3

h2 ´ hk + 1
3 k2

S-30: To use the result of Question 29, we need to know the dimensions of the cone that
was truncated to make the hourglass. The bottom (or top) half of our hourglass has base
radius 5 cm, height 9 cm, and top radius 0.5 cm. Imagine extending it to a full cone. Let t
be the distance from the top of the half hourglass to the tip of the full cone.

5

9

0.5

t

556



Using similar triangles,

t
0.5

=
t + 9

5

so 5t =
1
2
(t + 9)

4.5t = 4.5
t = 1

Then the height of the full cone (that we imagined truncating to make half of the
hourglass) is h = 10 cm.

Before the hourglass is turned over, the sand forms a truncated cone of height 6 cm. So,
it’s the bottom k = 6 cm of a cone of height h = 10 cm. Using the result of Question 29, its
centre of mass is at height:

1
2 h2k´ 2

3 hk2 + 1
4 k3

h2 ´ hk + 1
3 k2

=
1
2102 ¨ 6´ 2

310 ¨ 62 + 1
463

102 ´ 10 ¨ 6 + 1
362

=
57
26
« 2.2

Next, let’s find the centre of mass of the sand after it’s been rotated. We have to be a little
careful with our vocabulary here: usually we imagine a cone sitting on its base, with its
tip pointing up. The upturned sand is in the opposite configuration. When we say the
“base” of the cone, we mean the larger horizontal face–the top of the sand as it sits in the
hourglass.

The formula we have from Question 29 gives us our centre of mass as a distance from the
base of the truncated cone (that is, the distance from the top of the upturned sand). If k is
the height the sand actually occupies, then we were told we may assume k = 8.8 cm. It’s
missing its “tip” of height 1 cm, so h, the height of the “untruncated” cone, is 9.8 cm.
Using our model from Question 29, we don’t care about the empty, uppermost piece of
the hourglass. The shape of the sand is of a cone of height 9.8 cm (not 10 cm), with a tip
of height 1 cm chopped off.

0.2 cm of empty hourglass:
ignored in our calculation of sand’s centre of mass

cut-off tip: height 1 cm

sand: height k = 8.8 cm

h
=

9.
8

1
2 h2k´ 2

3 hk2 + 1
4 k3

h2 ´ hk + 1
3 k2

=
1
29.82 ¨ 8.8´ 2

39.8 ¨ 8.82 + 1
48.83

9.82 ´ 9.8 ¨ 8.8 + 1
38.82

« 2.443
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That is, the centre of mass of the upturned sand is about 2.443 centimetres below its top,
which is at height 8.8 + 10 = 18.8 cm above the very bottom of the hourglass. So, the
centre of mass of the upturned sand is at height y = 18.8´ 2.443 = 16.357 cm.

Now, we have our model: the sand, viewed as a point mass, is moved from y = 57
26 to

y = 16.357 cm. That is, it moved about 14.165 cm, or about 0.14165 m. It has a mass of 0.6
kg, so the force required to lift it against gravity is

(0.6 kg)ˆ
(

9.8
m

sec2

)
ˆ (0.14165 m) « 0.833 newtons

S-31: The techniques of Section 2.1 get pretty complicated here, so we will use the
techniques we developed in Questions 6, 29 and 30 in this section. That is, (1) find the
centre of mass of the water in its starting and ending positions, and then (2) compute the
work done as the work moving a point mass with the weight of the water from the first
centre of mass to the second. For the centre of mass, all we need to know is the height–for
one thing, we could find the other coordinates by symmetry, but we don’t need them.
The height moved by the water is all that matters if we’re calculating the work done
opposing gravity.

Let’s start by calculating the volume of the water. The volume of a sphere of radius 1 is
4
3 π ¨ 13, so the volume of water is 2

3 π m3.

Then the mass of the water is 2000
3 π kg.

Next, we calculate the centre of mass of Tank A, and the work done to pump the water
out of Tank A to a height of 3 metres. Symmetry alone won’t tell us the height of the
centre of mass. We’ll show you two ways to go about this.

Option 1: As in Question 29, we’ll model the tank of water as a vertical rod, along the
y–axis spanning the interval [0, 1], such that the mass of a piece of the rod along
[a, b] is the same as the mass of the water from height y = a to height y = b. Then,
the centre of mass of the rod will be the same as the centre of mass of the water.

Consider a horizontal slice of water at height y, with thickness dy. If the radius of
this slice is r(y), then the volume of the slice is πr(y)2 dy m3, so its mass is
1000πr(y)2 dy kg. Then the mass of the slice of the rod at position y with length dy
is 1000πr(y)2 dy kg, so its density ρ(y) is

ρ(y) =
1000πr(y)2 dy kg

dy m
= 1000πr(y)2 kg

m
.

So, let’s find r(y), the radius of the slice of water at height y.
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x

y

ry

1

Using the Pythagorean Theorem, r =
a

1´ y2. Therefore,

ρ(y) = 1000π(1´ y2)

We use Equation 2.3.2 in the CLP-2 text to calculate the centre of mass of the rod,
which is the height of the centre of mass of Tank A:

ȳA =

ş1
0 yρ(y)dy
ş1

0 ρ(y)dy
=

ş1
0 1000πy(1´ y2)dy
ş1

0 1000π(1´ y2)dy

=

ş1
0(y´ y3)dy
ş1

0(1´ y2)dy
=

[
1
2 y2 ´ 1

4 y4
]1

0[
y´ 1

3 y3
]1

0

=
1
2 ´

1
4

1´ 1
3

=
3
8

m

From here, we can find the work done moving pumping the water to a height of 3
metres. We’ve moved the centre of mass from ȳA = 3

8 metres to 3 metres.

W =

(
2000

3
π kg

)
ˆ

(
3´

3
8

m
)
ˆ

(
9.8

m
sec2

)

= 17, 150π J

Option 2: We can use the techniques of Section 2.1 in the CLP-2 text to calculate the
amount of work it takes to pump the water from tank A to a height of 3 metres.
That solves part (a), and we can use the amount of work to figure out the centre of
gravity of the water in Tank A to help us solve part (b).

At height y, a horizontal layer of water in Tank A forms a disk with thickness dy
and radius

a

1´ y2. (The radius comes from the Pythagorean Theorem–see the
diagram below.)

x

y

y
1
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The volume of the layer at height y is π
(
a

1´ y2
)2

dy = π(1´ y2)dy m3, so its

mass is 1000π(1´ y2)dy kg.

The layer at height y needs to be pumped a distance of 3´ y metres. So, the work
involved pumping the layer at height y is:

dW =
(

1000π(1´ y2)dy kg
)
ˆ (3´ y m)ˆ

(
9.8 m/sec2

)

= 9800π(y3
´ 3y2

´ y + 3)dy J

Then the work involved pumping out the entire tank to a height of 3 metres is:

W =

ż 1

0
9800π(y3

´ 3y2
´ y + 3)dy

= 9800π

[
1
4

y4
´ y3

´
1
2

y2 + 3y
]1

0

= 17, 150π J

This gives us an answer to part (a). To find the centre of mass of the water in Tank
A, note that the work done is equivalent to moving a point mass from the centre of
mass of the tank to a height of 3 metres. We know the water in Tank A has mass
2000

3 π kg. So, if ȳA is the centre of mass of the water in Tank A:

W =

(
2000

3
π kg

)
ˆ (3´ ȳA m)ˆ

(
9.8 m/sec2

)

17, 150π =

(
2000

3
π

)
(3´ ȳA) (9.8)

21
8

= 3´ ȳA

ȳA =
3
8

m

Next let’s calculate the centre of mass of the water in Tank B. Since the volume of the
water in Tank B is 2

3 π m3, and the base of Tank B has area 1 m2, the height of the water in
Tank B is 2

3 π m. Since the water is of uniform density, and Tank B has uniform horizontal
cross-sections, by symmetry the centre of mass of the water in Tank B is at

ȳB =
1
3

π m.

Now, we can calculate the work done by moving the water directly from Tank A to its
final position in Tank B. The work done moving a point mass of 2000

3 π kg a distance of
ȳB ´ ȳA = 1

3 π ´ 3
8 m against the gravity, g = 9.8 m/sec2, is:

W =

(
2000

3
π kg

)
ˆ

(
1
3

π ´
3
8

m
)
ˆ

(
9.8m/sec2

)

=
2450

9
π (8π ´ 9) « 13, 797 J
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Finally, the “wasted” work is:

∆W = 17, 150π ´
2450

9
π (8π ´ 9)

= 2450π

(
7´

8π ´ 9
9

)

= 2450π

(
8´

8π

9

)

= 19, 600π
(

1´
π

9

)

As a percentage of 17,150π, this is:

waste =

(
19, 600π

(
1´ π

9

)

17, 150π

)
ˆ 100

=
8
7

(
1´

π

9

)
ˆ 100 « 74%

S-32: Using Equation 2.3.3 in the CLP-2 text with T(x) = 2x sin(x2) and B(x) = 0,

x̄ =

ż

?
π/2

0
2x2 sin(x2)dx

ż

?
π/2

0
2x sin(x2)dx

We can evaluate the bottom integral exactly with the substitution u = x2, du = 2xdx.
When x = 0, u = 0, and when x =

?
π/2, u = π/2.

ż

?
π/2

0
2x sin(x2)dx =

ż π/2

0
sin u du =

[
´ cos u

]π/2

0
= 1

So,

x̄ =

ż

?
π/2

0
2x2 sin(x2)dx

Evaluating the integral
ş

x2 sin(x2)dx is not so simple8, so we use a numerical
approximation. Since we’re given an upper bound on the fourth derivative, we decide to
use Simpson’s rule. The error involved using Simpson’s rule with n intervals is at most
L(b´a)5

180n4 . For our approximation, a = 0 and b =
?

π/2. According to the information

8 Indeed, the antiderivative of 2x2 sin(x2) is not expressible as an elementary function.
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given in the problem statement,
ˇ

ˇ

ˇ

d4

dx4

 

2x2 sin(x2)
(

ˇ

ˇ

ˇ
ď 415 over the interval

[
0,
b

π
2

]
, so

we set L = 415.

We want our final error to be no more than 1
100 , so we want to find an even n such that:

415
(b

π
2 ´ 0

)5

180n4 ď
1

100

n4
ě

415 ¨ 100
(

π
2

)5/2

180
=

2075π5/2

36
?

2

n ě 4

d

2075π5/2

36
?

2
« 5.17

So, n = 6 intervals suffices. Then ∆x = b´a
6 = 1

6

b

π
2 and our grid points are x0 = 0,

x1 = 1
6

b

π
2 , x2 = 1

3

b

π
2 , x3 = 1

2

b

π
2 , x4 = 2

3

b

π
2 , x5 = 5

6

b

π
2 , and , x6 =

b

π
2 .

0 1
6

b

π
2

1
3

b

π
2

1
2

b

π
2

2
3

b

π
2

5
6

b

π
2

b

π
2

Following Equation 1.11.9 in the CLP-2 text, the Simpson’s rule approximation of
ż

?
π/2

0
2x2 sin(x2)dx is:

∆x
3

[
f (x0) + 4 f (x1) + 2 f (x2) + 4 f (x3) + 2 f (x4) + 4 f (x5) + f (x6)

]

=
1
6

c

π

2
¨

1
3

[
0 + 4ˆ

2π

72
sin
( π

72

)
+ 2ˆ

2π

18
sin
( π

18

)
+ 4ˆ

2π

8
sin
(π

8

)
+ 2ˆ

8π

18
sin
(

4π

18

)

+ 4ˆ
50π

72
sin
(

25π

72

)
+

2π

2
sin
(π

2

) ]

=
1

18

c

π

2

[
π

9
sin
( π

72

)
+

2π

9
sin
( π

18

)
+ π sin

(π

8

)
+

8π

9
sin
(

2π

9

)

+
25π

9
sin
(

25π

72

)
+ π

]

=
π

18

c

π

2

[
1
9

sin
( π

72

)
+

2
9

sin
( π

18

)
+ sin

(π

8

)
+

8
9

sin
(

2π

9

)
+

25
9

sin
(

25π

72

)
+ 1
]

=
π

162

c

π

2

[
sin
( π

72

)
+ 2 sin

( π

18

)
+ 9 sin

(π

8

)
+ 8 sin

(
2π

9

)
+ 25 sin

(
25π

72

)
+ 9
]

« 0.976

The absolute error in our answer is at most:

L(b´ a)5

180n4 =
415ˆ

b

π
2

5

180ˆ 64 =
82
?

π
5

186624
?

2
« 0.005
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Remark: combining the error with our approximation, we see the actual value of x̄ is in
the interval

[0.976´ 0.005, 0.976 + 0.005] = [0.971, .981]

A computer algebra system approximates x̄ as 0.977451.

Solutions to Exercises 2.4 — Jump to TABLE OF CONTENTS

S-1:

(a) If y = 5(ex ´ 3x2 ´ 6x´ 6), then dy
dx = 5(ex ´ 6x´ 6). Let’s see whether this is equal to

y + 15x2:

y + 15x2 = 5(ex
´ 3x2

´ 6x´ 6) + 15x2

= 5(ex
´ 3x2

´ 6x´ 6 + 3x2)

= 5(ex
´ 6x´ 6)

=
dy
dx

So, y = 5(ex ´ 3x2 ´ 6x´ 6) is indeed a solution to the differential equation
dy
dx = y + 15x2.

(b) If y =
´2

x2 + 1
, then dy

dx =
4x

(x + 1)2 . Let’s see whether this is equal to xy2:

xy2 = x
(

´2
x2 + 1

)2

=
4x

(x2 + 1)2

=
dy
dx

So, y =
´2

x2 + 1
is indeed a solution to the differential equation dy

dx = yx2.

(c) If y = x3/2 + x, then dy
dx = 3

2
?

x + 1.

(
dy
dx

)2

+
dy
dx

=

(
3
2
?

x + 1
)2

+
3
2
?

x + 1

=
9
4

x +
9
2
?

x + 2

‰
dy
dx

So, y = x3/2 + x is not a solution to the differential equation
(

dy
dx

)2
+ dy

dx = y.
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S-2:

(a) 3y dy
dx = x sin y can be written as dy

dx = x
(

sin y
3y

)
, which fits the form of a separable

equation with f (x) = x, g(y) = sin y
3y .

(b) dy
dx = ex+y = exey which fits the form of a separable equation using f (x) = ex,
g(y) = ey.

(c) dy
dx + 1 = x can be written as dy

dx = (x´ 1), which fits the form of a separable equation
using f (x) = x´ 1, g(y) = 1. (We can solve it by simply antidifferentiating.)

(d) Notice the left side of the equation
(

dy
dx

)2
´ 2x dy

dx + x2 = 0 is a perfect square. So, this

equation is equivalent to
(

dy
dx ´ x

)2
= 0, that is, dy

dx = x. This has the form of a
separable equation with f (x) = x, g(y) = 1.

S-3: The mnemonic allows us to skip from the separable differential equation we want to
solve (very first line) to the equation

ż

1
g(y)

dy =

ż

f (x)dx

So, the mnemonic is just a shortcut for the substitution we performed to get this point.

We also generally skip the explanation about C1 and C2 being replaced with C.

S-4: To say y = f (x) + C is a solution to the differential equation means:

d
dx
t f (x) + Cu = x( f (x) + C)

Since y = f (x) is a solution, we know d
dxt f (x)u = x f (x). Also, d

dxt f (x) + Cu = d
dxt f (x)u.

So, d
dxt f (x) + Cu = x f (x).

x f (x) = x( f (x) + C)
0 = xC

Our equation should hold for all x in our domain, and for the derivative to y with respect
to x to make sense, our domain should not be a single point. So, there is some x in our
domain such that x ‰ 0. Therefore, the C must be zero. So, f (x) + C is not a solution to the
differential equation for any constant C.

When we’re finding a general antiderivative, we add “+C” at the end. When we’re
finding a general solution to a differential equation, the “+C” gets added when we
antidifferentiate–we don’t add another one at the end of our work.

S-5:

(a) Since |y| ě 0 no matter what y is, we see Cx ě 0 for all x in the domain of f (x). Since
C is positive, that means the domain of f (x) only includes nonnegative numbers. So,
the largest possible domain of f (x) is [0,8).
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(b) None exists.

The graph of Cx is given below for some positive constant C, also with the graph of
´Cx. If y = f (x) were sometimes the top function, and other times the bottom
function, then there would be a jump discontinuity where it switched. Then the
derivative of f (x) would not exist, violating the second property.

x

y

y = Cx

y = ´Cx

A tiny technical note is that it’s possible that f (x) = Cx when x = 0 and f (x) = ´Cx
when x ą 0 (or vice-versa). This would not introduce a jump discontinuity, but it also
does not satisfy that f (x) ą 0 for some values of x.

Remark: in several instances below, solving a differential equation will lead us to
conclude something like |y| = g(x). In these cases, we choose either y = g(x), or
y = ´g(x), but not y = ˘g(x) (which is not a function) or that y is sometimes g(x), and
other times ´g(x). The reasoning above somewhat explains this choice: if y were
sometimes positive and sometimes negative, then dy

dx would not exist at the values of x
where the sign of y switches, unless that switch occurrs at a root of g(x). Since that’s a
pretty specific occurrence, we usually feel safe ignoring it to avoid getting bogged down
in technical details.

S-6: Let Q(t) be the quantity of morphine in a patient’s bloodstream at time t, where t is
measured in minutes.

Using the definition of a derivative,

dQ
dt

= lim
hÑ0

Q(t + h)´Q(t)
h

«
Q(t + 1)´Q(t)

1

So, dQ
dt is roughly the change in the amount of morphine in one minute, from t to t + 1.

The sentence tells us that the change in the amount of morphine in one minute is about
´0.003Q, where Q is the quantity in the bloodstream. That is:

dQ
dt

= ´0.003Q(t)
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S-7: If p(t) is the proportion of times speakers use the new form, measured between 0
and 1, then 1´ p(t) is the proportion of times speakers use the old form.

The law, then, states that dp
dt is proportional to p(t)ˆ

(
1´ p(t)

)
. When we say two

quantities are proportional, we mean that one is a constant multiple of the other. So, the
law says

dp
dt

= αp(t)
(
1´ p(t)

)

for some constant α.

Remark: it follows from this model that, when a new form is either very rare or entirely
ubiquitous, the rate of change of its adoption is small. This makes sense: if the new form
is used all the time (p(t) « 1), there’s nobody left to convert; if the new form is almost
never used (p(t) « 0) then people don’t know about it, so they won’t pick it up.

S-8:

(a) When y = 0, y1 = 0
2 ´ 1 = ´1.

(b) When y = 2, y1 = 2
2 ´ 1 = 0.

(c) When y = 3, y1 = 3
2 ´ 1 = 0.5.

(d) The small red lines have varying slopes. The red lines on points with y-coordinate 2
have slopes of 0; this matches y1 when y = 0, as we saw above. The red lines on
points with y-coordinate 0 have slopes of approximately ´1; again, this matches
what we found for y1 when y = 0.

The red lines correspond to a tiny section of y(x), if y(x) passes through that point.
So, we can sketch a possible curve y(x) satisfying the equation by starting
somewhere, then following the slopes.

For example, suppose we start at the origin.

x

y

1

1
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Then our function is decreasing at that point, which leads us to a coordinate where
(as we see from the red marks) the function is decreasing slightly faster.

x

y

1

1

Following the red marks leads us down even further, so our function y(x) might look
something like this:

x

y

1

1

However, we didn’t have to start at the origin. Suppose y(0) = 3. Then at x = 0, y is
increasing, with slope 1

2 .
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x

y

1

1

Our red marks run out that high up, but we now y1 = 1
2 y´ 1, so y1 increases as y

increases. That means our function keeps getting steeper and steeper, possibly
something like this:

x

y

1

1

If y(0) = 2, we see another possible curve is the constant function y(x) = 2.

Remark: from Theorem 2.4.4 in the CLP-2 text, we see the solutions to the equation
y1 = 1

2 y´ 1 = 1
2(y´ 2) are of the form y(x) = Cex/2 + 2 for some constant C. Check that

the curves you’re sketching look exponential.

S-9:

(a) If y(1) = 0, then y1(1) = 0´ 1
2 = ´1

2 .

(b) If y(1) = 2, then y1(1) = 2´ 1
2 = 3

2 .

(c) If y(1) = ´2, then y1(1) = ´2´ 1
2 = ´5

2 .
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(d) There are 7ˆ 7 = 49 points on the grid; we don’t want to make 49 separate
calculations. Let’s find some shortcuts.

• If y1(x) = 0, then y = x
2 , which applies to the points (0, 0), (2, 1), (4, 2) and (6, 3).

These are the orange dots in the sketch below.

• If y1(x) = 1, then y = 1 + x
2 , which applies to the points (0, 1), (2, 2), and (4, 3).

(Note these are exactly 1 unit above the points with y1 = 0.) These are the red
dots in the sketch below.

• If y1(x) = ´1, then y = ´1 + x
2 , which applies to the points (0,´1), (2,´2), and

(4,´3). (Note these are exactly 1 unit below the points with y1 = 0.) These are
the yellow dots in the sketch below.

• If x increases and y stays the same, y decreases.

• If y increases and x stays the same, y increases.

• If we draw a straight line of slope
1
2

on our sketch, for every point on that line,
our mark has the same slope: for instance, the points where we draw a mark
with slope 0 are (0, 0), (2, 1), and (4, 2), and these all lie on the line f (x) = x

2 .

This is enough to give us a pretty good sketch. The points whose slopes we found
explicitly have dots; the rest can be sketched as either steeper or less steep than
what’s near them.

x

y

1

1

(e) To sketch a possible graph of y(x), we choose a point (x, y(x)), then follow the red
lines.

For example, if we suppose that y(4) = 2, then near (4, 2), the lines tell us y(x) is
fairly flat; and it is increasing to the left of x = 4, and decreasing to the right.
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x

y

1

1

Following the red lines a little farther in each direction brings us somewhere like this:

x

y

1

1

Extending yet further, we might sketch something like the following:
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x

y

1

1

By choosing another point (x, y(x)) to be on the curve, we might find other potential
curves. Some examples are shown below.

Passing through (0, 0):

x

y

1

1

Passing through (0, 1):

x

y

1

1
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Passing through (6, 3):

x

y

1

1

Passing through (6,´3):

x

y

1

1

Remark: the differential equation y1 = y´ x
2 is not separable, so we haven’t talked about

how to solve it. The solutions have the form y(x) = Cex + x+1
2 . You can verify that these

functions satisfy y1 = y´ x
2 .

S-10: Rearranging, we have:

ey dy = 2x dx.

Integrating both sides:

ż

ey dy =

ż

2x dx

ey = x2 + C

Since y = log 2 when x = 0, we have

elog 2 = 02 + C
2 = C,

and therefore

ey = x2 + 2

y = log(x2 + 2)
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S-11: Using separation of variables:

dy
dx

=
xy

x2 + 1
dy
y

=
x

x2 + 1
dx

ż

dy
y

=

ż

x
x2 + 1

dx

log |y| =
1
2

log(1 + x2) + C

To satisfy y(0) = 3, we need log 3 = 1
2 log(1 + 0) + C, so C = log 3. Thus:

log |y| =
1
2

log(1 + x2) + log 3

= log
a

1 + x2 + log 3

= log 3
a

1 + x2

So,

|y| = 3
a

1 + x2

We are told to find a function y(x). So far, we have two possible functions from the work
above: maybe y = 3

?
1 + x2, and maybe y = ´3

?
1 + x2. It’s important to note that

y = ˘3
?

1 + x2 is not a function: for an equation to represent a function, for every input
in the domain, there must only be one output. That is, functions pass the vertical line
test. (Definition 0.4.1 in the CLP-1 text gives a formal definition of a function.) So, we
need to decide whether our function is y = 3

?
1 + x2 or y = ´3

?
1 + x2. Since y(0) = 3,

we conclude

y(x) = 3
a

1 + x2

S-12: The given differential equation is separable and we solve it accordingly.

y1 = e
y
3 cos t

e´y/3dy = cos t dt
ż

e´y/3dy =

ż

cos t dt

´3e´y/3 = sin t + C
1

ey/3 =
sin t + C
´3

ey/3 =
´3

C + sin t
y
3
= log

(
´3

C + sin t

)

y(t) = 3 log
(

´3
C + sin t

)
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for any constant C.

Since the domain of logarithm is (0,8), the solution only exists when C + sin t ă 0.

S-13: The given differential equation is separable and we solve it accordingly.

dy
dx

= xex2´log(y2) =
xex2

y2

y2dy = xex2
dx

ż

y2dy =

ż

xex2
dx

We can guess the antiderivative of xex2
, or use the substitution u = x2, du = 2xdx.

y3

3
=

1
2

ex2
+ C1

y3 =
3
2

ex2
+ 3C1

Since C1 can be any constant in (´8,8), then also 3C1 can be any constant in (´8,8), so
we replace 3C1 with the arbitrary constant C.

y3 =
3
2

ex2
+ C

y =
3

c

3
2

ex2 + C

for any constant C.

S-14: The given differential equation is separable and we solve it accordingly.

dy
dx

= xey

dy
ey = x dx

ż

dy
ey =

ż

x dx

´e´y =
1
2

x2 + C

e´y = ´
1
2

x2
´ C

Since C can be any constant in (´8,8), then also ´C can be any constant in (´8,8), so
we write C instead of ´C.

e´y = C´
1
2

x2

´y = log
(

C´
x2

2

)

y = ´ log
(

C´
x2

2

)
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for any constant C.

The solution only exists for C´ x2

2 ą 0. For this to happen, we need C ą 0, and then the
domain of the function is those values x for which |x| ă

?
2C.

S-15: The given differential equation is separable and we solve it accordingly.
Cross–multiplying, we rewrite the equation as

y2 dy
dx

= ex
´ 2x

y2 dy = (ex
´ 2x)dx.

Integrating both sides, we find
ż

y2 dy =

ż

(ex
´ 2x)dx

1
3

y3 = ex
´ x2 + C

Setting x = 0 and y = 3, we find 1
333 = e0 ´ 02 + C and hence C = 8.

1
3

y3 = ex
´ x2 + 8

y = (3ex
´ 3x2 + 24)1/3

S-16: This is a separable differential equation that we solve in the usual way.

dy
dx

= ´xy3

´
dy
y3 = x dx

ż

´
dy
y3 =

ż

x dx

´
y´2

´2
=

x2

2
+ C

y´2 = x2 + 2C. (˚)

To have y = ´1
4 when x = 0, we must choose C to obey

(
´

1
4

)´2
= 0 + 2C

16 = 2C

So, from (˚),

y´2 = x2 + 2C = x2 + 16

y2 =
1

x2 + 16
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Now, we have two potential candidates for y(x):

y =
1

?
x2 + 16

OR y = ´
1

?
x2 + 16

We know y = ´1
4 when x = 0. The only function above that fits this is

y = ´
1

?
x2 + 16

So, f (x) = ´
1

?
x2 + 16

.

S-17: This is a separable differential equation that we solve in the usual way.
Cross-multiplying and integrating,

y dy = (15x2 + 4x + 3)dx
ż

y dy =

ż

(15x2 + 4x + 3)dx

y2

2
= 5x3 + 2x2 + 3x + C.

Plugging in x = 1 and y = 4 gives 42

2 = 5 + 2 + 3 + C, and so C = ´2. Therefore

y2

2
= 5x3 + 2x2 + 3x´ 2

y2 = 10x3 + 4x2 + 6x´ 4

This leaves us with two possible functions for y:

y =
a

10x3 + 4x2 + 6x´ 4 OR y = ´
a

10x3 + 4x2 + 6x´ 4

When x = 1, y = 4. This only fits the first equation, so

y =
a

10x3 + 4x2 + 6x´ 4

S-18: The given differential equation is separable and we solve it accordingly.

dy
dx

= x3y

dy
y

= x3 dx
ż

dy
y

=

ż

x3 dx

log |y| =
x4

4
+ C

|y| = ex4/4+C = ex4/4eC
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We are told that y = 1 when x = 0. That is, 1 = e0eC, so eC = 1. That is, C = 0.

|y| = ex4/4

This leaves us with two potential functions:

y = ex4/4 OR y = ´ex4/4

The first is always positive, and the second is always negative. Since y = 1 (a positive
number) when x = 0, we see

y = ex4/4

S-19: This is a separable differential equation, even if it doesn’t quite look like it. First
move the y from the left hand side to the right hand side.

x
dy
dx

+ y = y2

x
dy
dx

= y2
´ y = y(y´ 1)

dy
y(y´ 1)

=
dx
x

Using the method of partial fractions, we see 1
y(y´1) =

1
y´1 ´

1
y .

(
1

y´ 1
´

1
y

)
dy =

dx
x

ż
(

1
y´ 1

´
1
y

)
dy =

ż

dx
x

log |y´ 1| ´ log |y| = log |x|+ C

log
|y´ 1|
|y|

= log |x|+ C (˚)

To determine C we set x = 1 and y = ´1.

log
| ´ 2|
| ´ 1|

= log |1|+ C

log 2 = C

Returning to (˚),

log
|y´ 1|
|y|

= log |x|+ log 2

log
ˇ

ˇ

ˇ

ˇ

y´ 1
y

ˇ

ˇ

ˇ

ˇ

= log |2x|
ˇ

ˇ

ˇ

ˇ

y´ 1
y

ˇ

ˇ

ˇ

ˇ

= |2x|
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As y(1) = ´1 is an initial condition, we have that x ě 1 and |2x| = 2x. For x = 1, we
have y = ´1. So at least for x near 1, we have y near ´1, so that y´1

y is positive and we

may drop the absolute value signs. There remains the possibility that y(x)´1
y(x) changes sign

for some larger x ą 1. For now, we will simply ignore that possibility. At the end, we will
explicitly check that the y(x) we come up with really does satisfy the differential
equation x dy

dx + y = y2 and the initial condition y(1) = ´1.

y´ 1
y

= 2x

y´ 1 = 2xy
y´ 2xy = 1

y(1´ 2x) = 1

y =
1

1´ 2x

As a check, we compute:

x
dy
dx

+ y = x
d
dx

"

1
1´ 2x

*

+ y

= x
2

(1´ 2x)2 +
1

1´ 2x

=
2x + (1´ 2x)
(1´ 2x)2

=
1

(1´ 2x)2

= y2

So, our differential equation is satisfied. Furthermore:

y(1) =
1

1´ 2ˆ 1
= ´1

as desired. This confirms that our solution is correct.

S-20: The unknown function f (x) satisfies an equation that involves the derivative of f .
That means we’re in differential equation territory. Specifically, we are told that y = f (x)
obeys the separable differential equation dy

dx = xy.

dy
dx

= xy

dy
y

= x dx
ż

dy
y

=

ż

x dx

log |y| =
x2

2
+ C
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To determine C we set x = 0 and y = e.

log e =
02

2
+ C

1 = C

So, the solution is

log |y| =
x2

2
+ 1

We are told that y = f (x) ą 0, so may drop the absolute value signs.

log y =
x2

2
+ 1

y = e1+ 1
2 x2

= e ¨ ex2/2

S-21: This is a separable differential equation.

dy
dx

=
1

(x2 + x)y

y dy =
dx

x(x + 1)

Using partial fractions decomposition, we find 1
x(x+1) =

1
x ´

1
x+1 .

y dy =

(
1
x
´

1
x + 1

)
dx

ż

y dy =

ż
(

1
x
´

1
x + 1

)
dx

y2

2
= log |x| ´ log |x + 1|+ C = log

ˇ

ˇ

ˇ

ˇ

x
x + 1

ˇ

ˇ

ˇ

ˇ

+ C

To satisfy the initial condition y(1) = 2 we must choose C to obey

22

2
= log

ˇ

ˇ

ˇ

ˇ

1
1 + 1

ˇ

ˇ

ˇ

ˇ

+ C

2 = log
1
2
+ C

C = 2´ log
1
2

So,

y2

2
= log

ˇ

ˇ

ˇ

ˇ

x
x + 1

ˇ

ˇ

ˇ

ˇ

+ 2´ log
1
2

y2 = 2 log
ˇ

ˇ

ˇ

ˇ

x
x + 1

ˇ

ˇ

ˇ

ˇ

+ 4´ 2 log
1
2
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Note that the question specifies that y(1) = 2 is an initial condition. So we always have
x ě 1. Then x

x+1 is positive, and we can drop the absolute values.

y2 = 2 log
x

x + 1
+ 4´ 2 log

1
2

This leaves two options for y(x): the positive or negative square root of the right hand
side above. Since y(1) = 2, which is positive, we must choose the positive square root.

y(x) =

c

2
(

log
x

x + 1
´ log

1
2
+ 2
)

=

c

4 + 2 log
2x

x + 1

You might worry that y(x) could pass through zero, changing sign, at some x ą 1. But
the differential equation says that dy

dx = 1
(x2+x)y is positive whenever y ą 0 and x ě 1. So

y(x) is an increasing function whenever y ą 0 and x ě 1. As y(1) = 2, we have y(x) ě 2
for all x ě 1.

S-22: This is a separable differential equation.

1 +
a

y2 ´ 4
tan x

dy
dx

=
sec x

y

y
[
1 +

b

y2 ´ 4
]

dy = sec x tan x dx
ż

y
[
1 +

b

y2 ´ 4
]

dy =

ż

sec x tan x dx

For the integral on the left, we use the substitution u = y2 ´ 4, 1
2du = y dy.

1
2

ż (
1 +

?
u
)

du = sec x + C

1
2

(
u +

2
3

u3/2
)
= sec x + C

1
2

(
y2
´ 4 +

2
3
(y2

´ 4)3/2
)
= sec x + C

y2 +
2
3
(y2

´ 4)3/2 = 2 sec x + 2C + 4

To find C we set x = 0 and y = 2.

4 +
2
3

?
4´ 4

3
= 2 sec(0) + 2C + 4

4 = 2 + 2C + 4
2 = 2C + 4

So,

y2 +
2
3
(y2

´ 4)3/2 = 2 sec x + 2
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S-23: The given differential equation is separable and we solve it accordingly.

dP
dt

= ´k
?

P

dP
?

P
= ´k dt

ż

dP
?

P
=

ż

´k dt

2
?

P = ´kt + C

At t = 0, P = 90, 000 so

2
a

90, 000 = ´kˆ 0 + C
C = 2ˆ 300 = 600

Therefore,

2
?

P = ´kt + 600 (˚)

Now, we find k. Let t be measured in weeks. Then when t = 6, P = 40, 000.

2
a

40, 000 = ´6k + 600
2 ¨ 200 = ´6k + 600

k =
200
6

=
100
3

Substituting our value of k into (˚):

2
?

P = ´
100
3

t + 600

To find when the population will be 10,000, we set P = 10, 000 and solve for t.

2
a

10, 000 = ´
100
3

t + 600

2 ¨ 100 = ´
100
3

t + 600

100
3

t = 400

t = 12

Since we measured t in weeks when we found k, we see that in 12 weeks the population
will decrease to 10,000 individuals.

S-24: The given differential equation is separable and we solve it accordingly.

m
dv
dt

= ´(mg + kv2)

m
mg + kv2 dv = ´dt

ż

m
mg + kv2 dv =

ż

´dt
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The left integral looks something like the antiderivative of arctangent. Let’s factor out
that mg from the denominator.

1
mg

ż

m
1 + k

mg v2
dv = ´t + C

1
g

ż

1

1 +
(b

k
mg v

)2 dv = ´t + C

Now it looks even more like the derivative of arctangent. We can guess the antiderivative
from here, or use the substitution u =

b

k
mg v, du =

b

k
mg dv.

1
g

c

mg
k

arctan

(d
k

mg
v

)
= ´t + C

c

m
gk

arctan

(d
k

mg
v

)
= ´t + C (˚)

At t = 0, v = v0, so:
c

m
gk

arctan

(d
k

mg
v0

)
= C

Plug C into (˚).
c

m
gk

arctan

(d
k

mg
v

)
=

c

m
gk

arctan

(d
k

mg
v0

)
´ t

At its highest point, the object has velocity v = 0. This happens when t obeys:
c

m
gk

arctan

(d
k

mg
0

)
=

c

m
gk

arctan

(d
k

mg
v0

)
´ t

0 =

c

m
gk

arctan

(d
k

mg
v0

)
´ t

t =
c

m
gk

arctan

(d
k

mg
v0

)

S-25: (a) The given differential equation is separable and we solve it accordingly.

dv
dt

= ´k v2

´
dv
v2 = k dt

ż

´
dv
v2 =

ż

k dt

1
v
= kt + C
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At t = 0, v = 40 so

1
40

= kˆ 0 + C

C =
1

40

Therefore,

v(t) =
1

kt + C
=

1
kt + 1/40

=
40

40kt + 1
(˚)

The constant of proportionality k is determined by

v(10) = 20

20 =
40

40kˆ 10 + 1
1
2
=

1
400k + 1

400k + 1 = 2

k =
1

400

(b) Subbing in the value of k to (˚),

v(t) =
40

40kt + 1
=

40
t/10 + 1

We want to know the value of t that gives v(t) = 5.

5 =
40

t/10 + 1
t

10
+ 1 = 8

t = 70 sec

S-26: (a) The given differential equation is separable and we solve it accordingly.

dx
dt

= k(3´ x)(2´ x)

dx
(x´ 2)(x´ 3)

= kdt
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Using the method of partial fractions, we find 1
(x´2)(x´3) =

1
x´3 ´

1
x´2 .

ż [ 1
x´ 3

´
1

x´ 2

]
dx =

ż

kdt

log |x´ 3| ´ log |x´ 2| = kt + C

log
ˇ

ˇ

ˇ

ˇ

x´ 3
x´ 2

ˇ

ˇ

ˇ

ˇ

= kt + C
ˇ

ˇ

ˇ

ˇ

x´ 3
x´ 2

ˇ

ˇ

ˇ

ˇ

= ekt+C = ekteC

x´ 3
x´ 2

= Dekt

where D = ˘eC. When t = 0, x = 1, forcing

1´ 3
1´ 2

= De0

D = 2

Hence

x´ 3
x´ 2

= 2ekt

x´ 3 = 2ekt(x´ 2)

x´ 2ektx = 3´ 4ekt

x(t) =
3´ 4ekt

1´ 2ekt

(b) To evaluate the limit, we could use l’Hôpital’s rule, but we could also just multiply
the numerator and denominator by e´kt. Note lim

tÑ8
e´tk = 0.

lim
tÑ8

x(t) = lim
tÑ8

3´ 4ekt

1´ 2ekt
looomooon

numÑ´8
denÑ´8

= lim
tÑ8

3´ 4ekt

1´ 2ekt ¨
e´kt

e´kt = lim
tÑ8

3e´kt ´ 4
e´kt ´ 2

=
0´ 4
0´ 2

= 2

S-27: (a) The given differential equation is separable and we solve it accordingly.

dP
dt

= 4P´ P2

dP
4P´ P2 = dt

dP
P(4´ P)

= dt
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Using the method of partial fractions, we see 1
P(4´P) =

1/4
P + 1/4

4´P .

1
4

[ 1
P
+

1
4´ P

]
dP = dt

ż

1
4

[ 1
P
+

1
4´ P

]
dP =

ż

dt

1
4
[

log |P| ´ log |4´ P|
]
= t + C

When t = 0, P = 2, so 1
4

[
log |2| ´ log |2|

]
= C ùñ C = 0. So,

1
4

log
ˇ

ˇ

ˇ

P
4´ P

ˇ

ˇ

ˇ
= t

At time t = 0, P
4´P = 1 ą 0. The ratio may not change sign at any finite time, because this

could only happen if at some finite time P took either the value 0 or the value 4. But at
this time t = 1

4 log
ˇ

ˇ

P
4´P

ˇ

ˇ would have to be infinite. So P
4´P ą 0 for all time and:

1
4

log
P

4´ P
= t

log
P

4´ P
= 4t

P
4´ P

= e4t

P = (4´ P)e4t

P + Pe4t = 4e4t

P =
4e4t

1 + e4t =
4

1 + e´4t

(b) At t = 1
2 , P = 4

1+e´2 « 3.523.

lim
tÑ8

P(t) = lim
tÑ8

4
1 + e´4t =

4
1 + 0

= 4

S-28:

(a) The rate of change of speed at time t is ´kv(t)2 for some constant of proportionality k
(to be determined–but we assume it is positive, since the speed is decreasing). So v(t)
obeys the differential equation dv

dt = ´kv2 .

(b) The equation dv
dt = ´kv2 is a separable differential equation, which we can solve in

585



the usual way.

dv
dt

= ´kv2

dv
´v2 = kdt

ż

´
dv
v2 =

ż

kdt

1
v
= kt + C

At time t = 0, v = 400, so C = 1
400 . Then:

1
v
= kt +

1
400

(˚)

At time t = 1, v = 200, so

1
200

= k +
1

400

k =
1

400

Therefore, from (˚),

1
v
=

t
400

+
1

400
=

t + 1
400

v =
400

t + 1

(c) To find when the speed is 50, we set v = 50 in the equation from (b) and solve for t.

50 =
400

t + 1
50(t + 1) = 400

t + 1 = 8
t = 7

S-29: (a) The given differential equation is separable and we solve it accordingly.

dB
dt

= (0.06 + 0.02 sin t)B

dB
B

= (0.06 + 0.02 sin t)dt
ż

dB
B

=

ż

(0.06 + 0.02 sin t)dt

log |B(t)| = 0.06t´ 0.02 cos t + C1
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Since B(t) is our bank account balance and we’re not withdrawing money, B(t) is
positive, so we can drop the absolute value signs.

log B(t) = 0.06t´ 0.02 cos t + C1

B(t) = e0.06t´0.02 cos teC1

B(t) = Ce0.06t´0.02 cos t

for arbitrary constants C1 and C = eC1 ě 0.

Remark: the function B(t) = 0 obeys the differential equation so that C = 0 is allowed,
even though it is not of the form C = eC1 . This seeming discrepancy arose because, in our
very first step of part (a), we divided both sides of the differential equation by B, which is
only allowable if B ‰ 0. So, in this step, we implicitly assumed B was nonzero.

(b) We are told that B(0) = 1000. This allows us to find C.

1000 = B(0) = Ce0´0.02 cos 0 = Ce´0.02

C = 1000e0.02

So, when t = 2,

B(2) = 1000e0.02
looomooon

C

e0.06ˆ2´0.02 cos 2 = $1159.89

rounded to the nearest cent.

Note that cos 2 is the cosine of 2 radians, cos 2 « ´0.416.

S-30: (a) The given differential equation is separable and we could solve it accordingly. In
fact we have already done so. If we rewrite the equation in the form

dB
dt

= a
(

B´
m
a

)

it is of the form covered by Theorem 2.4.4 in the CLP-2 text. So that theorem tells us that
the solution is

B(t) =
(

B(0)´
m
a

)
eat +

m
a

In this problem we are told that a = 0.02 = 1
50 , so

B(t) = tB(0)´ 50mu et/50 + 50m = t30000´ 50mu et/50 + 50m

(b) The solution of part (a) is independent of time if and only if 30000´ 50m = 0. So we
need

m =
30000

50
= $600
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S-31: What we’re given is an equation relating y to the integral of a function of y. What
we know how to solve is an equation relating the derivative of y to a function of y. We can
create this by differentiating the given integral equation. By the Fundamental Theorem
of Calculus, part 1:

y1(x) =
d
dx

"
ż x

0

(
y(t)2

´ 3y(t) + 2
)

sin t dt
*

=
(
y(x)2

´ 3y(x) + 2
)

sin x

So y(x) satisfies the differential equation y1 =
(
y2 ´ 3y + 2

)
sin x = (y´ 2)(y´ 1) sin x

and the initial equation y(0) = 3 (just substitute x = 0 into (˚)). For y ‰ 1, 2:

dy
dx

= (y´ 2)(y´ 1) sin x

dy
(y´ 2)(y´ 1)

= sin x dx
ż

dy
(y´ 2)(y´ 1)

=

ż

sin x dx

Using the method of partial fractions, we see 1
(y´2)(y´1) =

1
y´2 ´

1
y´1 .

ż [ 1
y´ 2

´
1

y´ 1

]
dy =

ż

sin x dx

log |y´ 2| ´ log |y´ 1| = ´ cos x + c

log
ˇ

ˇ

ˇ

ˇ

y´ 2
y´ 1

ˇ

ˇ

ˇ

ˇ

= ´ cos x + c
ˇ

ˇ

ˇ

ˇ

y´ 2
y´ 1

ˇ

ˇ

ˇ

ˇ

= ec´cos x

The condition y(0) = 3 forces
ˇ

ˇ

3´2
3´1

ˇ

ˇ = ec´1 or ec = 1
2 e, hence

ˇ

ˇ

ˇ

ˇ

y´ 2
y´ 1

ˇ

ˇ

ˇ

ˇ

=
1
2

e1´cos x

Observe that, when x = 0, y´2
y´1 = 1

2 ą 0. Furthermore 1
2 e1´cos x, and hence

ˇ

ˇ

y´2
y´1

ˇ

ˇ, can never
take the value zero. As y(x) varies continuously with x, y(x) must remain larger than 2.
Consquently, y´2

y´1 remains positive and we may drop the absolute value signs. Hence

y´ 2
y´ 1

=
1
2

e1´cos x

Solving for y,

y´ 2
y´ 1

=
1
2

e1´cos x

2(y´ 2) = e1´cos x(y´ 1)

2y´ 4 = ye1´cos x
´ e1´cos x

y
(
2´ e1´cos x) = 4´ e1´cos x

y =
4´ e1´cos x

2´ e1´cos x
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To avoid division by zero in the last step, we need

e1´cos x
‰ 2

1´ cos x ‰ log 2
cos x ‰ 1´ log 2

Let L = 1´ log 2, for brevity, and note that L ą 0. (This can be seen by observing 2 ă e,
so, log 2 ă log e = 1, hence 1´ log 2 ą 0.)

x

Y

L

arccos(L)´ arccos(L)

Y = cos x

We know x = 0 is in the domain of our function, but the points
x = ˘ arccos(L) = ˘ arccos(1´ log 2) are not.

x
0

in domain

arccos(1´ log 2)

not in domain

´ arccos(1´ log 2)

not in domain

Therefore, the largest interval for which our answer makes sense is

´ arccos(1´ log 2)) ą x ą arccos(1´ log 2)

or approximately ´1.259 ă x ă 1.259.

S-32: Suppose that in a very short time interval dt, the height of water in the tank
changes by dh (which is negative). Then in this time interval the amount of the water in
the tank decreases by dV = ´π(3)2dh. This must be the same as the amount of water
that flows through the hole in this time interval. The water flowing through the hole
makes a cylinder of radius 1 cm (that is, 0.01 m) with length v(t)dt, the distance the
water moves out of the hole in dt seconds. So, the amount of water leaving the hole over
the time interval dt is π(0.01)2v(t)dt = π(0.01)2

a

2gh(t)dt.
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dh

dV

This gives us a separable differential equation. Recall g is a constant.

´π(3)2dh = π(0.01)2
b

2gh(t)dt

dh
?

h
= ´

(0.01
3

)2
a

2g dt
ż

dh
?

h
=

ż

´

(0.01
3

)2
a

2g dt

2
?

h = ´

(0.01
3

)2
a

2g t + C

At time 0, the height is 6, so C = 2
?

6 and

2
?

h = ´

(0.01
3

)2
a

2g t + 2
?

6

We want to know when the height of the water in the tank is 0.

0 = ´

(0.01
3

)2
a

2g t + 2
?

6
(0.01

3

)2
a

2g t = 2
?

6

t =
2
?

6
(

0.01
3

)2
a

2g

= 2
( 3

0.01

)2
d

3
g

= 180, 000

d

3
g
« 99, 591 sec « 27.66 hr

S-33: Suppose that at time t, the mercury in the tank has height h, which is between 0 and
12 feet. At that time, the top surface of the mercury forms a circular disk of radius
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6

6h− 6

a

62 ´ (h´ 6)2. (We found this by applying the Pythagorean Theorem to the triangle in
the diagram above. In the diagram, h is shown as being larger than 6, but the same
equation holds for all h in [0, 12].) Now suppose that in a very short time interval dt, the
height of mercury in the tank changes by dh (which is negative). Then in this time
interval the amount of the mercury in the tank decreases by ´π

(a
62 ´ (h´ 6)2

)2dh.
(That’s the volume of the red disk in the figure above.) This must be the same as the
amount of mercury that flows through the hole in this time interval. The mercury comes
out of the hole as a cylinder. Its radius is the radius of the hole, 1

12 foot, and its length is
the distance the mercury travels in dt seconds, v(t)dt feet. So, the volume of escaped
mercury is π

( 1
12

)2v dt = π
( 1

12

)2a2gh dt. This gives us a separable differential equation.

´π
(b

62 ´ (h´ 6)2
)2

dh = π
( 1

12

)2a
2gh dt

´
(
36´ (h2

´ 12h + 36)
)
dh =

( 1
12

)2a
2gh dt

(
h2
´ 12h

)
dh =

1
144

a

2g
?

h dt

(
h3/2

´ 12h1/2)dh =
1

144

a

2g dt
ż (

h3/2
´ 12h1/2)dh =

ż

1
144

a

2g dt

h5/2

5/2
´ 12

h3/2

3/2
=

1
144

a

2g t + C

At time 0, the height is 12, so C = 125/2

5/2 ´ 12123/2

3/2 = 125/2(2
5 ´

2
3

)
= ´ 4

15125/2, which yields

h5/2

5/2
´ 12

h3/2

3/2
=

1
144

a

2g t´
4

15
125/2

We want to find the time t when the height is h = 0.

0 =
1

144

a

2g t´
4

15
125/2

1
144

a

2g t =
4

15
125/2

t =
4ˆ 144

15

d

125

2g

= 38.4

d

124416
g

« 2, 394 sec « 0.665 hr
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S-34: (a) Setting x = 0 gives

f (0) = 3 +
ż 0

0

(
f (t)´ 1

)(
f (t)´ 2

)
dt = 3

(b) By the Fundamental Theorem of Calculus part 1,

f 1(x) =
d
dx

ż x

0

(
f (t)´ 1

)(
f (t)´ 2

)
dt =

(
f (x)´ 1

)(
f (x)´ 2

)

Thus y = f (x) obeys the differential equation y1 = (y´ 1)(y´ 2).

(c) If y ‰ 1, 2,

dy
dx

= (y´ 1)(y´ 2)

dy
(y´ 1)(y´ 2)

= dx
ż

dy
(y´ 1)(y´ 2)

=

ż

dx

Using the method of partial fractions,
ż
(

1
y´ 2

´
1

y´ 1

)
dy =

ż

dx

log |y´ 2| ´ log |y´ 1| = x + C

log
ˇ

ˇ

ˇ

ˇ

y´ 2
y´ 1

ˇ

ˇ

ˇ

ˇ

= x + C

Observe that dy
dx = (y´ 1)(y´ 2) ą 0 for all y ě 2. That is, f (x) is increasing at all x for

which f (x) ą 2. As f (0) = 3, f (x) increases for all x ě 0, and f (x) ě 3 for all x ě 0. So
we may drop the absolute value signs.

log
f (x)´ 2
f (x)´ 1

= x + C

f (x)´ 2
f (x)´ 1

= eCex

At x = 0, f (x)´2
f (x)´1 = 1

2 so eC = 1
2 .

f (x)´ 2
f (x)´ 1

=
1
2

ex

2 f (x)´ 4 = [ f (x)´ 1]ex

[2´ ex] f (x) = 4´ ex

f (x) =
4´ ex

2´ ex
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S-35: Suppose that at time t (measured in hours starting at, say, noon), the water in the
tank has height y, which is between 0 and 2 metres. At that time, the top surface of the
water forms a circular disk of radius r = yp and area A(y) = πy2p. Thus, by Torricelli’s
law,

πy2p dy
dt

= ´c
?

y

´
π

c
¨ y2p´ 1

2 dy = dt
ż

´
π

c
¨ y2p´ 1

2 dy =

ż

dt

´
π

c
¨

y2p+ 1
2

2p + 1
2

+ d = t

for some constant d. At time t = 0, the height is y = 2, so d =
π

c
¨

22p+ 1
2

2p + 1
2

.

t =
π

c

(
22p+ 1

2

2p + 1
2

´
y2p+ 1

2

2p + 1
2

)

=
π

c(2p + 1
2)

(
22p+ 1

2 ´ y2p+ 1
2

)

The time at which the height is 1 is obtained by subbing y = 1 into this formula. The time
at which the height is 0 is obtained by subbing y = 0 into this formula. Thus the
condition that the top half (y = 2 to y = 1) takes exactly the same amount of time to
drain as the bottom half (y = 1 to y = 0) is:

t(2)´ t(1) = t(1)´ t(0)
0´ t(1) = t(1)´ t(0)

t(0) = 2t(1)
π

c(2p + 1
2)

(
22p+ 1

2 ´ 02p+ 1
2

)
= 2

π

c(2p + 1
2)

(
22p+ 1

2 ´ 12p+ 1
2

)

22p+ 1
2 = 2

(
22p+ 1

2 ´ 1
)

22p+ 1
2 = 2 ¨ 22p+ 1

2 ´ 2

2 = 22p+ 1
2

1 = 2p +
1
2

p =
1
4

S-36:

(a) If we let f (t) = 0 for all t, then its average over any interval is 0, as is its root mean
square.
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(b) Let’s start by simplifying the given equation.

1
x´ a

ż x

a
f (t)dt =

d

1
x´ a

ż x

a
f 2(t)dt

1
?

x´ a

ż x

a
f (t)dt =

d

ż x

a
f 2(t)dt (3.1)

d
dx

"

1
?

x´ a

ż x

a
f (t)dt

*

=
d
dx

#

d

ż x

a
f 2(t)dt

+

(3.2)

For the derivative on the left, we use the product rule and the Fundamental Theorem
of Calculus, part 1.

d
dx

"

1
?

x´ a

ż x

a
f (t)dt

*

=
d
dx

"

1
?

x´ a

*
ż x

a
f (t)dt +

1
?

x´ a
¨

d
dx

"
ż x

a
f (t)dt

*

= ´
1

2
?

x´ a3

ż x

a
f (t)dt +

f (x)
?

x´ a

=
1

?
x´ a

[
f (x)´

1
2(x´ a)

ż x

a
f (t)dt

]

For the derivative on the right in Equation (3.2), we use the chain rule and the
Fundamental Theorem of Calculus, part 1.

d
dx

#

d

ż x

a
f 2(t)dt

+

=
1
2

(
ż x

a
f 2(t)dt

)´ 1
2

¨
d
dx

"
ż x

a
f 2(t)dt

*

=
f 2(x)

2
b

şx
a f 2(t)dt

So, Equation (3.2) yields the following:

1
?

x´ a

[
f (x)´

1
2(x´ a)

ż x

a
f (t)dt

]
=

f 2(x)

2
b

şx
a f 2(t)dt

(3.3)

(c) From Equation (3.1),
b

şx
a f 2(t)dt = 1?

x´a

şx
a f (t)dt.

1
?

x´ a

[
f (x)´

1
2(x´ a)

ż x

a
f (t)dt

]
=

f 2(x)
2 1?

x´a

şx
a f (t)dt

2
x´ a

ż x

a
f (t)dt

[
f (x)´

1
2(x´ a)

ż x

a
f (t)dt

]
= f 2(x)

(d) Now what we have is a differential equation, although it might not look like it. Let
Y =

şx
a f (t)dt. Then dY

dx = f (x).

2
x´ a

Y
[

dY
dx

´
1

2(x´ a)
Y
]
=

(
dY
dx

)2

(3.4)
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We’re used to solving differential equations of the form dY
dx =(something). So, let’s

manipulate our equation until it has this form.
(

dY
dx

)2

´

(
2Y

x´ a

)(
dY
dx

)
+

(
Y

x´ a

)2

= 0

This is a quadratic equation, with variable dY
dx . Its solutions are:

dY
dx

=

(
2Y

x´a

)
˘

c(
2Y

x´a

)2
´ 4 ¨

(
Y

x´a

)2

2

=
2Y

x´a ˘ 0
2

=
Y

x´ a
This gives us the separable differential equation

dY
dx

=
Y

x´ a
dY
Y

=
dx

x´ a
(3.5)

ż

dY
Y

=

ż

dx
x´ a

log |Y| = log |x´ a|+ C

|Y| = elog(x´a)+C = (x´ a)eC

Y = D(x´ a)

where D is some constant, eC or ´eC. Note this covers all real constants except D = 0.
If D = 0, then Y(x) = 0 for all x. This function also satisfies Equation (3.4), so indeed,

Y(x) = D(x´ a) (3.6)

for any constant D is the family of equations satisfying our differential equation.

Remark: the reason we “lost” the solution Y(x) = 0 is that in Equation (3.5), we
divided by Y, thus tacitly assuming it was not identically 0.

(e) Remember Y =
şx

a f (t)dt. So, Equation (3.6) tells us:
ż x

a
f (t)dt = D(x´ a)

d
dx

"
ż x

a
f (t)dt

*

=
d
dx
tD(x´ a)u

f (x) = D

We should check that this function works.

favg =
1

x´ a

ż x

a
D dt =

1
x´ a

[
Dt
]t=x

t=a
=

Dx´Da
x´ a

= D

fRMS =

d

1
x´ a

ż x

a
D2 dt =

c

1
x´ a

[
D2x

]t=x

t=a
=

d

D2x´D2a
x´ a

=
?

D2 = |D|
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So, f (x) = D works only if D is nonnegative.

That is: the only functions whose average matches their root square mean over every
interval are constant, nonnegative functions.

Remark: it was step (c) where we introduced the erroneous answer f (x) = D, D ă 0
to our solution. In Equation (3.3), f (x) = D is not a solution if D ă 0:

1
?

x´ a

[
f (x)´

1
2(x´ a)

ż x

a
f (t)dt

]
=

f 2(x)

2
b

şx
a f 2(t)dt

1
?

x´ a

[
D´

1
2(x´ a)

ż x

a
D dt

]
=

D2

2
b

şx
a D2 dt

1
?

x´ a

[
D´

1
2(x´ a)

D(x´ a)
]
=

D2

2
a

D2(x´ a)
1

?
x´ a

[
1
2

D
]
=

D2

2|D|
?

x´ a

D =
D2

|D|
= |D|

In (c), we replace
b

şx
a f 2(t)dt, which cannot be negative, with 1?

x´a

şx
a f (t)dt, which

could be negative if f (t) = D ă 0. Indeed, if f (t) = D, then
b

şx
a f 2(t)dt = |D|

?
x´ a, while 1?

x´a

şx
a f (t)dt = D

?
x´ a. It is at this point that

negative functions creep into our solution.

S-37: We start by antidifferentiating both sides with respect to x.
ż
(

d2y
dx2

)
dx =

ż
(

2
y3 ¨

dy
dx

)
dx

The right integral is in exactly the form we would use for a change of variables
(substitution) to y.

dy
dx

=

ż
(

2
y3

)
dy = ´

1
y2 + C

When y = 1, dy
dx = 3.

3 = ´
1
1
+ C

C = 4

So,

dy
dx

= ´
1
y2 + 4
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This is a separable differential equation.

dy
dx

=
4y2 ´ 1

y2

y2

4y2 ´ 1
dy = dx

ż

y2

4y2 ´ 1
dy =

ż

dx (˚)

We can evaluate the left integral with partial fractions, but because the numerator has the
same degree as the denominator, we have to simplify first. We do this by inspection, but
you can also use long division.

y2

4y2 ´ 1
=

1
4(4y2 ´ 1) + 1

4
4y2 ´ 1

=
1
4

(
1 +

1
4y2 ´ 1

)

=
1
4

(
1 +

1
(2y´ 1)(2y + 1)

)

=
1
4

(
1 +

1/2
2y´ 1

´
1/2

2y + 1

)

Now, we return to (˚).
ż

dx =

ż

y2

4y2 ´ 1
dy

=

ż

1
4

(
1 +

1/2
2y´ 1

´
1/2

2y + 1

)
dy

=
1
4

(
y +

1
4

log |2y´ 1| ´
1
4

log |2y + 1|
)

=
1
4

(
y +

1
4

log
ˇ

ˇ

ˇ

ˇ

2y´ 1
2y + 1

ˇ

ˇ

ˇ

ˇ

)

x + C =
1
4

(
y +

1
4

log
ˇ

ˇ

ˇ

ˇ

2y´ 1
2y + 1

ˇ

ˇ

ˇ

ˇ

)

When x = ´ 1
16 log 3, y = 1.

´
1

16
log 3 + C =

1
4

(
1 +

1
4

log
ˇ

ˇ

ˇ

ˇ

2´ 1
2 + 1

ˇ

ˇ

ˇ

ˇ

)
=

1
4
+

1
16

log
1
3

C =
1
4

So,

x +
1
4
=

1
4

(
y +

1
4

log
ˇ

ˇ

ˇ

ˇ

2y´ 1
2y + 1

ˇ

ˇ

ˇ

ˇ

)

x =
1
4

(
y´ 1 +

1
4

log
ˇ

ˇ

ˇ

ˇ

2y´ 1
2y + 1

ˇ

ˇ

ˇ

ˇ

)
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We can check our answer by differentiating with respect to x.

x =
1
4

(
y´ 1 +

1
4

log
ˇ

ˇ

ˇ

ˇ

2y´ 1
2y + 1

ˇ

ˇ

ˇ

ˇ

)

4x = y´ 1 +
1
4

log |2y´ 1| ´
1
4

log |2y + 1|

d
dx
t4xu =

d
dx

"

y´ 1 +
1
4

log |2y´ 1| ´
1
4

log |2y + 1|
*

4 =
dy
dx

+
1
4
¨

2dy
dx

2y´ 1
´

1
4
¨

2dy
dx

2y + 1

4 =
dy
dx

(
1 +

1/2
2y´ 1

´
1/2

2y + 1

)
=

dy
dx

(
4y2

4y2 ´ 1

)

dy
dx

=
4y2 ´ 1

y2 = 4´
1
y2 (˚˚)

Differentiating with respect to x again, using the chain rule,

d2y
dx2 =

2
y3 ¨

dy
dx

This is exactly the differential equation we were meant to solve.

Solutions to Exercises 3.1 — Jump to TABLE OF CONTENTS

S-1: (a) The values of the sequence seem to be getting closer and closer to -2, so we guess
the limit of this sequence is -2.
(b) Overall, the values of the sequence seem to be getting extremely close to 0, so we
approximate the limit of this sequence as 0. It doesn’t matter that the sequence changes
signs, or that the numbers are sometimes farther from 0, sometimes closer.
(c) This limit does not exist. The sequence is sometimes 0, sometimes -2, and not
consistently staying extremely near to either one.

S-2: True. We consider the end behaviour of the sequences, which does not depend on
any finite number of terms at their beginning.

S-3: (a) We follow the arithmetic of limits, Theorem 3.1.8 in the CLP-2 text:
A´ B

C
(b) Since lim

nÑ8
cn is some real number, and n grows without bound, lim

nÑ8

cn

n
= 0.

(c) We note lim
nÑ8

a2n+5 = lim
nÑ8

an, so
a2n+5

bn
=

A
B

.

S-4: There are many possible answers. One is:

an =

#

3000´ n if n ď 1000
´2 + 1

n if n ą 1000
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where we have a series that looks different before and after its thousandth term. Note
every term is smaller than the term preceding it.

Another sequence with the desired properties is:

an =
1, 002, 001

n
´ 2

When n ď 1000, an ě
1,002,001

1000 ´ 2 ą 1,002,000
1,000 ´ 2 = 1000. That is, an ą 1000 when n ď 1000.

As n gets larger, an gets smaller, so an+1 ă an for all n. Finally, lim
nÑ8

an = 0´ 2 = ´2.

S-5: One possible answer is an = (´1)n = t´1, 1,´1, 1,´1, 1,´1, . . .u.
Another is an = n(´1)n = t´1, 2,´3, 4,´5, 6,´7, . . .u.

S-6: If the terms of a sequence are alternating sign, but the limit of the sequence exists, the
limit must be zero. (If it were a positive number, the negative terms would not get very
close to it; if it were a negative number, the positive terms would not get very close to it.)

This gives us the idea to modify an answer from Question 5. One possible sequence:

an =
(´1)n

n
=

"

´1,
1
2

, ´
1
3

,
1
4

, ´
1
5

,
1
6

, . . .
*

S-7:

(a) Since ´1 ď sin n ď 1 for all n, one potential set of upper and lower bound is

´1
n
ď

sin n
n

ď
1
n

Note lim
nÑ8

´1
n

= lim
nÑ8

1
n

, so these are valid comparison sequences for the squeeze
theorem.

(b) Since ´1 ď sin n ď 1 and ´5 ď ´5 cos n ď 5 for all n, we see

7´1´5 ď 7 + sin n´ 5 cos n ď 7 + 1 + 5
1 ď 7 + sin n´ 5 cos n ď 13

This gives us the idea to try the bounds

n2

13en ď
n2

en(7 + sin n´ 5 cos n)
ď

n2

en

We check that lim
nÑ8

n2

13en = lim
nÑ8

n2

en (they’re both 0–you can verify using l’Hôpital’s
rule), so these are indeed reasonable bounds to choose to use with the squeeze
theorem. Alternatively, since 0 ď n2

13en , we can also use

0 ď
n2

en(7 + sin n´ 5 cos n)
ď

n2

en

599



(c) Since (´n)´n =
1

(´n)n =
(´1)n

nn , we see

´1
nn ď (´n)´n

ď
1

nn

Since both lim
nÑ8

´1
nn and lim

nÑ8

1
nn are 0, these are reasonable bounds to use with the

squeeze theorem.

S-8:

(a) • Note an = bn since n = |n| for all n ě 1. Then an = bn = 1 +
1
n
=

n + 1
n

. So,

whenever n is a whole number, an and bn are the same as h(n) and i(n). (Be
careful here: h(x) ‰ i(x) when x is not a whole number.)

• cn = e´n =
1
en = j(n)

• For any integer n, cos(πn) = (´1)n. So, dn = f (n).

• Similarly, en = g(n).

(b) According to Theorem 3.1.6 in the CLP-2 text, if any of the functions on the right
have limits that exist as x Ñ 8, then these limits match the limits of their
corresponding sequences. So, we only have to be suspicious of f (x) and i(x), since
these do not converge.

The limit lim
xÑ8

f (x) does not exist, and f (n) = dn; the limit lim
nÑ8

dn also does not exist.
(We generally don’t write equality for two things that don’t exist: equality refers to
numerical value, and these have none.9)

The limit lim
xÑ8

i(x) does not exist, because i(x) = 0 when x is not a whole number,

while i(x) approaches 1 when x is a whole number. However,
lim lim

nÑ8
an = lim

nÑ8
bn = 1.

So, using our answers from part (a), we match the following:

• lim
nÑ8

an = lim
nÑ8

bn = lim
xÑ8

h(x) = 1

• lim
nÑ8

cn = lim
nÑ8

en = lim
xÑ8

g(x) = lim
xÑ8

j(x) = 0

• lim
nÑ8

dn, lim
xÑ8

f (x) and lim
xÑ8

i(x) do not exist.

S-9: (a) We want to find odd multiples of π that are close to integers.

Solution 1: One way to do that is to remember that π is somewhat close to
22
7

. Then
when we multiply π by a multiple of 7, we should get something close to an

9 The idea “two things that both don’t exist are equal” is also rejected because it can lead to contradictions.
For example, in the real numbers

?
´1 and

?
´2 don’t exist; if we write

?
´1 =

?
´2, then squaring

both sides yields the inanity ´1 = ´2.
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integer. In particular, 7π, 21π, and 35π should be reasonably close to 7
(

22
7

)
= 22,

21
(

22
7

)
= 66, and 35

(
22
7

)
= 110, respectively. We check whether they are close

enough:

7π « 21.99 21π « 65.97 35π « 109.96

So indeed, 22, 66, and 110 are all within 0.1 of some odd multiple of π.

Since the cosine of an odd multiple of π is ´1, we expect all of the sequence values
to be close to ´1. Using a calculator:

a22 = cos(22) « ´0.99996,
a66 = cos(66) « ´0.99965,

a110 = cos(110) « ´0.99902

Solution 2: Alternately, we could have just listed odd multiple of π until we found three
that are close to integers.

2k + 1 (2k + 1)πππ
1 3.14
3 9.42
5 15.71
7 21.99
9 28.27

11 34.56
13 40.84
15 47.12
17 53.41
19 59.69
21 65.97
23 72.26
25 78.54
27 84.82
29 91.11
31 97.39
33 103.67
35 109.96

Some earlier odd multiples of π (like 15π and 29π) get fairly close to integers, but
not within 0.1.

(b) If x =
2k + 1

2
π for some integer k (that is, x is an odd multiple of π/2), then cos x = 0.

So, we can either list out the first few terms of an until we find three that are very close to

0, or we can use our approximation π «
22
7

to choose values of n that are close to
2k + 1

2
π.
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Solution 1:

2k + 1
2

π «
(2k + 1)ˆ 22

2ˆ 7
= 11ˆ

2k + 1
7

So, we expect our values to be close to integers when 2k + 1 is a multiple of 7. For
example, 2k + 1 = 7, 2k + 1 = 21, and 2k + 1 = 35.

We check:

x n an

7ˆ
π

2
« 10.99557 11 a11 « 0.0044

21ˆ
π

2
« 32.98672 33 a33 « ´0.0133

35ˆ
π

2
« 54.97787 55 a55 « 0.0221

These seem like values of an that are all pretty close to 0.

Solution 2: We could have listed the first several values of an, and looked for some that
are close to 0.

n an
1 0.54
2 ´0.42
3 ´0.99
4 ´0.65
5 0.28
6 0.96
7 0.75
8 ´0.15
9 ´0.91

10 ´0.84

Oof. Nothing very close yet. Maybe a better way is to list values of 2k+1
2 π, and see

which ones are close to integers.
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2k + 1 2k+1
2 πππ

1 1.57
3 4.71
5 7.85
7 10.996
9 14.14

11 17.28
13 20.42
15 23.56
17 26.70
19 29.85
21 32.99
23 36.13
25 39.27
27 42.41
29 45.55
31 48.69
33 51.84
35 54.98

We find roughly the same candidates we did in Solution 1, depending on what
we’re ready to accept as “close”.

(c) One can use the same strategies as we did for parts (a) and (b). But since we already
know some n’s with cos(n) close to ´1, it’s easier to use the trig identity

cos(2m) = 2 cos2(m)´ 1

This identity shows that if cos(m) is close to ´1, then cos(2m) is close to +1. So let’s try
n = 2m = 2ˆ 22 = 44, 2ˆ 66 = 132 and 2ˆ 110 = 220.

n an
44 0.9998
132 0.9986
220 0.9961

They do the trick.

Remark: it is possible to turn the ideas of this question into a rigorous proof that
lim

nÑ8
cos n is undefined.

• Let, for each integer k ě 1, nk be the integer that is closest to 2kπ. Then
2kπ ´ 1

2 ď nk ď 2kπ + 1
2 so that cos(nk) ě cos 1

2 ě 0.8. Consequently, if
lim

nÑ8
cos n = c exists, we must have c ě 0.8.

• Let, for each integer k ě 1, n1k be the integer that is closest to (2k + 1)π. Then
(2k + 1)π´ 1

2 ď n1k ď (2k + 1)π + 1
2 so that cos(n1k) ď ´ cos 1

2 ď ´0.8. Consequently,
if lim

nÑ8
cos n = c exists, we must have c ď ´0.8.
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• It is impossible to have both c ě 0.8 and c ď ´0.8, so lim
nÑ8

cos n does not exist.

Remark: This question also hints at a property of the set of all numbers cos(n), with n
running over the integers. Mathematicians say that this set is “dense in the interval
[´1, 1]”. This means that if you pick any number ´1 ď r ď 1, there is an integer n such
that cos(n), while not necessarily being exactly r, is as close to r as you like. If you feed
“cos(n) dense” into your favourite search engine, you can find out more.

S-10: When determining the end behaviour of rational functions, recall from last
semester that we can either cancel out the highest power of n from the numerator and
denominator, or skip this step and compare the highest powers of the numerator and
denominator.

(a) Since the numerator has a higher degree than the denominator, this sequence will
diverge to positive or negative infinity; since its terms are positive for large n, its
limit is (positive) infinity. (You can imagine that the numerator is growing much,
much faster than the denominator, leading the terms to have a very, very large
absolute value.)

Calculating the longer way:

an =
3n2 ´ 2n + 5

4n + 3

(
1
n
1
n

)
=

3n´ 2 + 5
n

4 + 3
n

lim
nÑ8

an = lim
nÑ8

3n´ 2 + 5
n

4 + 3
n

= lim
nÑ8

3n´ 2 + 0
4 + 0

= 8

(b) Since the numerator has the same degree as the denominator, as n goes to infinity,

this sequence will converge to the ratio of their leading coefficients:
3
4

. (You can
imagine that the numerator is growing at roughly the same rate as the denominator,
so the terms settle into an almost-constant ratio.)

Calculating the longer way:

bn =
3n2 ´ 2n + 5

4n2 + 3

(
1

n2

1
n2

)
=

3´ 2
n + 5

n2

4 + 3
n2

lim
nÑ8

bn = lim
nÑ8

3´ 2
n + 5

n2

4 + 3
n2

=
3´ 0 + 0

4 + 0
=

3
4

(c) Since the numerator has a lower degree than the denominator, this sequence will
converge to 0 as n goes to infinity. (You can imagine that the denominator is growing
much, much faster than the numerator, leading the terms to be very, very small.)
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Calculating the longer way:

cn =
3n2 ´ 2n + 5

4n3 + 3

(
1

n3

1
n3

)
=

3
n ´

2
n2 +

5
n3

4 + 3
n3

lim
nÑ8

cn = lim
nÑ8

3
n ´

2
n2 +

5
n3

4 + 3
n3

=
0´ 0 + 0

4 + 0
= 0

S-11: At first glance, we see both the numerator and denominator grow huge as n
increases, so we’ll need to think a little further to find the limit.

We don’t have a rational function, but we can still divide the top and bottom by ne to get
a clearer picture.

an =
4n3 ´ 21
ne + 1

n

(
1
ne

1
ne

)
=

4n3´e ´ 21
ne

1 + 1
ne+1

Since e ă 3, we see 3´ e is positive, so lim
nÑ8

n3´e = 8.

lim
nÑ8

an = lim
nÑ8

4n3´e ´ 21
ne

1 + 1
ne+1

= lim
nÑ8

4n3´e ´ 0
1 + 0

= 8

S-12: This isn’t a rational sequence, but factoring out
?

n from the top and bottom will
still clear things up.

bn =
4
?

n + 1
?

9n + 3

( 1?
n

1?
n

)
=

1
4?n

+ 1?
n

b

9 + 3
n

lim
nÑ8

bn = lim
nÑ8

1
4?n

+ 1?
n

b

9 + 3
n

=
0 + 0
?

9 + 0
= 0

S-13: First, let’s start with a tempting fallacy.

The denominator grows without bound, so lim
nÑ8

cos(n + n2)

n
= 0.

It’s certainly true that if the limit of the numerator is a real number, and the denominator
grows without bound, then the limit of the sequence is zero. However, in our case, the
limit of the numerator does not exist. To apply the limit arithmetic rules from the CLP-2
text (Theorem 3.1.8), our limits must actually exist.

A better reasoning looks something like this:
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The denominator grows without bound, and the numerator never gets very

large, so lim
nÑ8

cos(n + n2)

n
= 0.

To quantify this reasoning more precisely, we use the squeeze theorem, Theorem 3.1.10 in
the CLP-2 text. There are two parts to the squeeze theorem: finding two bounding
functions, and making sure these functions have the same limit.

• Since ´1 ď cos(n + n2) ď 1 for all n, we choose functions an = ´1
n and bn = 1

n . Then
an ď cn ď bn for all n.

• Both lim
nÑ8

an = 0 and lim
nÑ8

bn = 0.

So, by the squeeze theorem, lim
nÑ8

cos(n + n2)

n
= 0.

S-14: The denominator of this sequence grows without bound. The numerator is
unpredictable: imagine that n is large. When sin n is close to ´1, nsin n puts a power of n
“in the denominator,” so we can have nsin n very close to 0. When sin n is close to 1, nsin n

is close to n, which is large.

To control for these variations, we’ll use the squeeze theorem.

• Since ´1 ď sin n ď 1 for all n, let bn = n´1

n2 = 1
n3 and cn = n

n2 = 1
n . Then bn ď an ď cn.

• Both lim
nÑ8

bn = 0 and lim
nÑ8

cn = 0.

So, by the squeeze theorem, lim
nÑ8

nsin n

n2 = 0 as well.

Remark: we also could have used bn = 0 for our lower bound, since an ě 0 for all n.

S-15:

dn = e´1/n =
1

e1/n

lim
nÑ8

dn = lim
nÑ8

1
e1/n =

1
e0 =

1
1
= 1

S-16:

Solution 1: Let’s use the squeeze theorem. Since sin(n2) and sin n are both between ´1
and 1 for all n, we note:

1 + 3(´1)´ 2(1) ď 1 + 3 sin(n2)´ 2 sin n ď 1 + 3(1)´ 2(´1)

´4 ď 1 + 3 sin(n2)´ 2 sin n ď 6

This allows us to choose suitable bounding functions for the squeeze theorem.

• Let bn = ´
4
n

and cn =
6
n

. From the work above, we see bn ď an ď cn for all n.

606



• Both lim
nÑ8

bn = 0 and lim
nÑ8

cn = 0.

So, by the squeeze theorem, lim
nÑ8

1 + 3 sin(n2)´ 2 sin n
n

= 0.

Solution 2: We simplify slightly to begin.

an =
1 + 3 sin(n2)´ 2 sin n

n
=

1
n
+ 3 ¨

sin(n2)

n
´ 2 ¨

sin n
n

We apply the squeeze theorem to the pieces
sin(n2)

n
and

sin n
n

.

• Let bn =
´1
n

and cn =
1
n

. Then bn ď
sin(n2)

n
ď cn, and bn ď

sin n
n

ď cn.

• Both lim
nÑ8

bn = 0 and lim
nÑ8

cn = 0.

So, by the squeeze theorem, lim
nÑ8

sin(n2)

n
= 0 and lim

nÑ8

sin n
n

= 0.

Now, using the arithmetic of limits from Theorem 3.1.8 in the CLP-2 text,

lim
nÑ8

an = lim
nÑ8

[
1
n
+ 3 ¨

sin(n2)

n
´ 2 ¨

sin n
n

]

= 0 + 3 ¨ 0´ 2 ¨ 0 = 0

S-17: First, we note that both numerator and denominator grow without bound. So, we
have to decide whether one outstrips the other, or whether they reach a stable ratio.

Solution 1: Let’s try dividing the numerator and denominator by 2n (the dominant term
in the denominator; this is the same idea behind factoring out the leading term in
rational expressions).

bn =
en

2n + n2

(
1

2n

1
2n

)
=

( e
2

)n

1 + n2

2n

Since e ą 2, we see
e
2
ą 1, and so lim

nÑ8

( e
2

)n
= 8. Since exponential functions grow

much, much faster than polynomial functions, we also see lim
nÑ8

n2

2n = 0. So,

lim
nÑ8

bn = lim
nÑ8

( e
2

)n

1 + n2

2n

= lim
nÑ8

( e
2

)n

1 + 0
= 8

Solution 2: Since the numerator and denominator both increase without bound, we
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apply l’Hôpital’s rule. Recall d
dxt2

xu = 2x log 2.

lim
nÑ8

bn = lim
nÑ8

en

2n + n2
looomooon

numÑ8
denÑ8

= lim
nÑ8

en

2n log 2 + 2n
looooooomooooooon

numÑ8
denÑ8

= lim
nÑ8

en

2n(log 2)2 + 2
looooooomooooooon

numÑ8
denÑ8

= lim
nÑ8

en

2n(log 2)3

=
1

(log 2)3 lim
nÑ8

( e
2

)n

= 8

Since e ą 2, we see
e
2
ą 1, and so lim

nÑ8

( e
2

)n
= 8.

S-18: First, we simplify. Remember n! = n(n´ 1)(n´ 2) ¨ ¨ ¨ (2)(1) for any whole number
n, so (k + 1)! = (k + 1)k! .

ak =
k! sin3 k
(k + 1)!

=
k! sin3 k
(k + 1)k!

=
sin3 k
k + 1

Now, we can use the squeeze theorem.

• ´1 ď sin k ď 1 for all k, so ´1 ď sin3 k ď 1. Let bk =
´1
k+1 and ck =

1
k+1 . Then

bk ď ak ď ck.

• Both lim
kÑ8

bk = 0 and lim
kÑ8

ck = 0.

So, by the squeeze theorem, also lim
kÑ8

ak = 0.

S-19: Note lim
nÑ8

(´1)n doesn’t exist, but ´1 ď (´1)n ď 1 for all n. Let’s use the squeeze
theorem.

• Let an = ´ sin
(

1
n

)
and bn = sin

(
1
n

)
. Then an ď (´1)n sin

(
1
n

)
ď bn.

• Both lim
nÑ8

´ sin
(

1
n

)
= 0 and lim

nÑ8
sin
(

1
n

)
= 0, since lim

nÑ8
1
n = 0 and sin 0 = 0.

By the squeeze theorem, the sequence
!

(´1)n sin 1
n

)

converges to 0.

608



S-20: First, we note that lim
nÑ8

6n2 + 5n
n2 + 1

= 6. We see this either by comparing the leading

terms in the numerator and denominator, or by factoring out n2 from the top and the
bottom.

Second, since lim
nÑ8

1
n2 = 0, we see lim

nÑ8
cos

(
1
n2

)
= cos 0 = 1.

Using arithmetic of limits, Theorem 3.1.8 in the CLP-2 text, we conclude

lim
nÑ8

[
6n2 + 5n

n2 + 1
+ 3 cos(1/n2)

]
= 6 + 3(1) = 9.

S-21: Let’s take stock: sin(1/n)Ñ sin(0) = 0 as n Ñ 8, so log (sin(1/n))Ñ ´8.
However, log(2n)Ñ 8. So, we have some tension here: the two pieces behave in ways
that pull the terms of the sequence in different directions. (Recall we cannot conclude
anything like “´8+8 = 0.”)

We try using logarithm rules to get a clearer picture.

log
(

sin
1
n

)
+ log(2n) = log

(
2n sin

(
1
n

))

Still, we have indeterminate behaviour: 2n sin(1/n) is the product of 2n, which grows
without bound, and sin(1/n), which approaches zero. In the past, we learned that we
can handle the indeterminate form 0 ¨ 8 with l’Hôpital’s rule (after a little algebra), but
there’s a slicker way. Note 1/n Ñ 0 as n Ñ 8. If we write 1

n = x, then this piece of our
limit resembles something familiar.

2n sin
(

1
n

)
= 2

(
sin x

x

)

If n Ñ 8, then x = 1
n Ñ 0.

lim
nÑ8

2n sin
(

1
n

)
= 2 lim

xÑ0

sin x
x

That limit is familiar:

= 2(1) = 2

Then:

lim
nÑ8

log
(

2n sin
(

1
n

))
= log 2

Note: if you have forgotten that lim
xÑ0

sin x
x

= 1, you can also evaluate this limit using

l’Hôpital’s rule:

lim
xÑ0

sin x
x

loooomoooon

numÑ0
denÑ0

= lim
xÑ0

cos x
1

= cos 0 = 1
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S-22: First, although this sequence is not defined for some small values of n, it is defined
as long as n ě 5, so it’s not a problem to take the limit as n Ñ 8. Second, we notice that
our limit has the indeterminate form8´8. Since this form is indeterminate, more work
is needed to find our limit, if it exists.

A standard trick we saw last semester with functions of this form was to multiply and
divide by the conjugate of the expression,

?
n2 + 5n +

?
n2 ´ 5n. Then the denominator

will be the sum of two similar things, rather than their difference. See the work below to
find out why that is helpful.

a

n2 + 5n´
a

n2 ´ 5n =
(a

n2 + 5n´
a

n2 ´ 5n
)
(?

n2 + 5n +
?

n2 ´ 5n
?

n2 + 5n +
?

n2 ´ 5n

)

=
(n2 + 5n)´ (n2 ´ 5n)
?

n2 + 5n +
?

n2 ´ 5n

=
10n

?
n2 + 5n +

?
n2 ´ 5n

Now, we’ll cancel out n from the top and the bottom. Note n =
?

n2.

=
10n

?
n2 + 5n +

?
n2 ´ 5n

(
1
n
1
n

)

=
10n

?
n2 + 5n +

?
n2 ´ 5n

(
1
n
1?
n2

)

=
10

b

1 + 5
n +

b

1´ 5
n

Now, the limit is clear.

lim
nÑ8

10
b

1 + 5
n +

b

1´ 5
n

=
10

?
1 + 0 +

?
1 + 0

=
10

1 + 1
= 5

S-23: First, although this sequence is not defined for some small values of n, it is defined
as long as n ě

?
2.5, so it’s not a problem to take the limit as n Ñ 8. Second, we notice

that our limit has the indeterminate form8´8. Since this form is indeterminate, more
work is needed to find our limit, if it exists.

In Question 22, we saw a similar limit, and made use of the conjugate. However, in this
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case, there’s an easier path: let’s factor out n from each term.

a

n2 + 5n´
a

2n2 ´ 5 =

d

n2
(

1 +
5
n

)
´

d

n2
(

2´
5
n2

)

= n

c

1 +
5
n
´ n

c

2´
5
n2

= n

(
c

1 +
5
n
´

c

2´
5
n2

)

Now, the limit is clear.

lim
nÑ8

[
a

n2 + 5n´
a

2n2 ´ 5
]
= lim

nÑ8

[
n

(
c

1 +
5
n
´

c

2´
5
n2

)]

= lim
nÑ8

[
n
(?

1 + 0´
?

2´ 0
)]

= lim
nÑ8

[n (´1)] = ´8

Remark: check Question 22 to see whether a similar trick would work there. Why or why
not?

S-24: First, we note that we have in indeterminate form: as n grows, 2 + 1
n Ñ 2, so

n
[(

2 + 1
n

)100
´ 2100

]
has the form8 ¨ 0. To overcome this difficulty, we could use some

algebra and l’Hôpital’s rule, but there’s a slicker way. If we let h = 1
n , then h Ñ 0 as

n Ñ 8, and our limit looks like:

lim
nÑ8

n

[(
2 +

1
n

)100

´ 2100

]
= lim

hÑ0

(2 + h)100
´ 2100

h

This reminds us of the definition of a derivative.

d
dx

!

x100
)

= lim
hÑ0

(x + h)100 ´ x100

h

So, if we set f (x) = x100, our limit is simply f 1(2). That is,
[
100x99]

x=2 = 100 ¨ 299.

S-25: Using the definition of a derivative,

f 1(a) = lim
hÑ0

f (a + h)´ f (a)
h

We want n Ñ 8, so we set h = 1
n .

= lim
1
nÑ0

f
(

a + 1
n

)
´ f (a)

1
n

= lim
nÑ8

n
[

f
(

a +
1
n

)
´ f (a)

]
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We also could have chosen h = ´ 1
n , which leads to the following:

lim
hÑ0

f (a + h)´ f (a)
h

= lim
´ 1

nÑ0

f
(

a´ 1
n

)
´ f (a)

´1/n

= lim
nÑ8

´n
(

f
(

a´
1
n

)
´ f (a)

)

= lim
nÑ8

n
(

f (a)´ f
(

a´
1
n

))

S-26: (a) To find the area An, note that the figure with n sides can be divided up into n
isosceles triangles, each with two sides of length 1 and angle between them of 2π

n :

1

1

2π
n

Each of these triangles has area 1
2 sin

(2π
n
)
:

2π
n

si
n

2π n

1

1

All together, the area of the n-sided figure is An =
n
2

sin
(

2π

n

)
.

(b) We will discuss two ways to find lim
nÑ8

An, which has the indeterminate form8ˆ 0.

First, note that as n Ñ 8, our figures look more and more like a circle of radius 1. So, we
see An is approaching the area of a circle of radius 1. That is, lim

nÑ8
An = π.

Alternately, we can make use of the limit lim
xÑ0

sin x
x = 1. Let x = 2π

n . Note if n Ñ 8, then

x Ñ 0.

lim
nÑ8

An = lim
nÑ8

n
2

sin
(

2π

n

)
= lim

nÑ8

π
2π
n

sin
(

2π

n

)

= lim
xÑ0

π
sin x

x
= π ˆ 1 = π
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S-27:

(a) f2(x) =

#

1 2 ď x ă 3
0 else

x

y

1

2 3

(b) f3(x) =

#

1 3 ď x ă 4
0 else

x

y

1

43

(c) For any n, fn(x) = 1 for an interval of length 1, and fn(x) = 0 for all other x. So, the
area under the curve is a square of side length one.

x

y

1

Then An =
ş8

0 fn(x)dx = 1 for all n. That is, the sequence tAnu is simply t1, 1, . . . , 1u,
a sequence of all 1s.

(d) Given the description above, lim
nÑ8

An = 1.

(e) For any fixed x, recall t fn(x)u = t0, . . . , 0, 1, 0, . . . 0, 0, 0, 0, 0, . . .u. In particular, there
are infinitely many zeroes at its end. So, lim

nÑ8
fn(x) = 0. Then g(x) = 0 for every x.

(f) Given the description above,
ż 8

0
g(x)dx =

ż 8

0
0 dx = 0.

Remark: what we’ve shown here is that, for this particular fn(x),

lim
nÑ8

ż 8

0
fn(x)dx ‰

ż 8

0
lim

nÑ8
fn(x)dx

That is, we can’t necessarily swap a limit with an integral (which is, in this case, another
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limit, since the integral is improper). The interested reader can look up “uniform
convergence” to learn about the conditions under which these can be swapped.

S-28: If we naively try to find the limit, we run up against the indeterminate form 18.
We’d like to use l’Hôpital’s rule, but we don’t have the form 8

8
or 0

0–we’ll need to use a
logarithm. Additionally, l’Hôpital’s rule applies to differentiable functions defined for
real numbers–so we’ll consider a function, rather than the sequence.

Note the terms of the sequence are all positive.

Solution 1: Define x = 1
n , and f (x) =

(
1 + 3x + 5x2)1/x. Then bn = f

(
1
n

)
= f (x), and

lim
nÑ8

f
(

1
n

)
= lim

xÑ0+
f (x).

If this limit exists, it is equal to lim
nÑ8

bn.

lim
xÑ0+

f (x) = lim
xÑ0+

(
1 + 3x + 5x2

)1/x

lim
xÑ0+

log[ f (x)] = lim
xÑ0+

log
[(

1 + 3x + 5x2
)1/x

]
= lim

xÑ0+

log
[
1 + 3x + 5x2]

x
loooooooooooooomoooooooooooooon

numÑ0
denÑ0

= lim
xÑ0+

3+10x
1+3x+5x2

1
= 3

lim
xÑ0+

f (x) = e3

Since the limit exists, lim
nÑ8

bn = e3.

Solution 2: If we didn’t see the nice simplifying trick of letting x = 1
n , we can still solve

the problem using g(x) =
(

1 + 3
x + 5

x2

)x
:

g(x) =
(

1 +
3
x
+

5
x2

)x

log[g(x)] = x log
[

1 +
3
x
+

5
x2

]
=

log
[
1 + 3

x + 5
x2

]

1/x
looooooooomooooooooon

numÑ0
denÑ0

lim
xÑ8

log[g(x)] = lim
xÑ8

´ 3
x2´

10
x3

1+ 3
x+

5
x2

´1
x2

= lim
xÑ8

x2
3
x2 +

10
x3

1 + 3
x + 5

x2

= lim
xÑ8

3 + 10
x

1 + 3
x + 5

x2

=
3 + 0

1 + 0 + 0
= 3

lim
xÑ8

f (x) = e3

Since the limit exists, lim
nÑ8

bn = e3
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S-29:

(a) When a1 = 4, we see a2 =
4 + 8

3
= 4, and so on. That is, an = 4 for every n. So,

lim
nÑ8

an = 4.

(b) Cross-multiplying, we see 3x = x + 8, hence x = 4.

(c) In order for our sequence to converge to 4, the terms should be getting infinitely close
to 4. So, we find the relationship between an+1 ´ 4 and an ´ 4.

an+1 =
an + 8

3

an+1 ´ 4 =
an + 8

3
´ 4 =

an ´ 4
3

So, the distance between our sequence terms and the number 4 is decreasing by a
factor of 3 each term. This implies that the terms get infinitely close to 4 as n grows.
That is, lim

nÑ8
an = 4.

S-30:

(a) Since w1 has the highest frequency, w2 has the next-highest frequency, and so on, we
know f1 is larger than the other members of its sequence, f2 is the next largest, etc.
So, t fnu is a decreasing sequence.

(b) The most-used word in a language is w1, while the n-th most used word in a
language is wn. So, we re-state the law as:

f1 = n fn

Then we can rewrite this fomula a little more naturally as fn = 1
n f1.

(c) Then f3 = 1
3 f1. In this case, we expect the third-most used word to account for

1
3(6%) = 2% of all words.

(d) From (b), we know f10 = 1
10 f1. Note f1 = 6 f6 = 6(0.3%). Then:

f10 =
1
10

f1 =
1

10
6 f6 =

1
10

(6)(0.3%) =
1.8
10

% = 0.18%

So, f10 should be 0.18% of all words.

(e) The use of the word “frequency” in the statement of Zipf’s law implies
fn = uses of wn

total number of words . The question asks for the total uses of wn. If we call this
quantity tn, and the total number of all words is T, then Zipf’s law tells us tn

T = 1
n

t1
T ,

hence tn = 1
n t1.

With this notation, the problem states t1 = 22, 038, 615, w1 = the, w2 = be, and
w3 = and.
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Following Zipf’s law, tn = 1
n t1. So, we expect t2 = t1

2 = 11, 019, 307.5; since this isn’t
an integer, let’s say we expect t2 « 11, 019, 308. Similarly, we expect
t3 = t1

3 = 7, 346, 205.

Remark: The 450-million-word source material that used “the” 22,038,615 times also
contained 12,545,825 instances of “be,” and 10,741,073 instances of “and.” While
Zipf’s Law might be a nice model for our data overall, in these few instances it does
not appear to be extremely accurate.

Solutions to Exercises 3.2 — Jump to TABLE OF CONTENTS

S-1: The Nth term of the sequence of partial sums, SN, is the sum of the first N terms of

the series
8
ÿ

n=1

1
n

.

N SN
1 1

2 1 + 1
2

3 1 + 1
2 +

1
3

4 1 + 1
2 +

1
3 +

1
4

5 1 + 1
2 +

1
3 +

1
4 +

1
5

S-2: If there were a total of 17 cookies before Student 11 came, and 20 cookies after, then
Student 11 brought 3 cookies.

C10

C11

1 2 3 4 5 6 7 8 9 10 11

S-3:

(a) We find tanu from tSNu using the same logic as Question 2. SN is the sum of the first
N terms of tanu, and SN´1 is the sum of all the same terms except aN. So,
aN = SN ´ SN´1 when N ě 2. Written another way:

SN = a1 + a2 + a3 + ¨ ¨ ¨+ aN´2 + aN´1 + aN

SN´1 = a1 + a2 + a3 + ¨ ¨ ¨+ aN´2 + aN´1
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So,

SN ´ SN´1 =
[

a1 + a2 + a3 + ¨ ¨ ¨+ aN´2 + aN´1 + aN

]

´

[
a1 + a2 + a3 + ¨ ¨ ¨+ aN´2 + aN´1

]

= aN

So, we calculate

aN = SN ´ SN´1 =

(
N

N + 1

)
´

(
N ´ 1

N ´ 1 + 1

)

=
N2

N(N + 1)
´

N2 ´ 1
N(N + 1)

=
1

N(N + 1)

Therefore,

an =
1

n(n + 1)

Remark: the formula given for SN has S0 = 0, which makes sense: the sum of no
terms at all should be 0. However, it is common for a sequence of partial sums to
start at N = 1. (This fits our definition of a partial sum–we don’t really define the
“sum of no terms.”) In this case, a1 must be calculated separately from the other
terms of tanu. To find a1, we simply set a1 = S1, which (to reiterate) might not be the
same as S1 ´ S0.

(b)

lim
nÑ8

an = lim
nÑ8

1
n(n + 1)

= 0.

That is, the terms we’re adding up are getting very, very small as we go along.

(c) By Definition 3.2.3 in the CLP-2 text,
8
ÿ

n=1

an = lim
NÑ8

SN = lim
NÑ8

N
N + 1

= 1

That is, as we add more and more terms of our series, our cumulative sum gets very,
very close to 1.

S-4: As in Question 3,

aN = SN ´ SN´1 =

[
(´1)N +

1
N

]
´

[
(´1)N´1 +

1
N ´ 1

]

= (´1)N
´ (´1)N´1 +

1
N
´

1
N ´ 1

= (´1)N + (´1)N +
N ´ 1

N(N ´ 1)
´

N
N(N ´ 1)

= 2(´1)N
´

1
N(N ´ 1)
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Note, however, that aN is only the same as SN ´ SN´1 when N ě 2: otherwise, we’re
trying to calculate S1 ´ S0, but S0 is not defined. So, we find a1 separately:

a1 = S1 = (´1)1 +
1
1
= 0

All together:

an =

#

0 if n = 1
2(´1)n ´ 1

n(n´1) else

S-5: If f 1(N) ă 0, that means f (N) is decreasing. So, adding more terms makes for a
smaller sum. That means the terms we’re adding are negative. That is, an ă 0 for all
n ě 2.

S-6: (a) To generate the pattern, we repeat the following steps:

• divide the top triangle into four triangles of equal area,

• colour the bottom two of them black, and

• leave the middle one white.

Every time we repeat this sequence, we divide up a triangle with an area one-quarter the
size of our previous triangle, and take two of the four resulting pieces. So, our area

should end up as a geometric sum with common ratio r =
1
4

, and coefficient a = 2. This
is shown more explicitly below.

Since the entire triangle (outlined in red) has area 1, the four smaller triangles below each

have area
1
4

. The two black triangles will be added to our total black area; the blue
triangle will be subdivided.

1
4

1
4

The blue triangle had area
1
4

, so each of the small black triangles below has area
(

1
4

)(
1
4

)
=

1
42 .
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1
4

1
4

1
42

1
42

Each time we make another subdivision, we add two black triangles, each with
1
4

the
area of the previous black triangles. So, our total black area is:

2
(

1
4

)
+ 2

(
1
42

)
+ 2

(
1
43

)
+ 2

(
1
44

)
+ ¨ ¨ ¨ =

8
ÿ

n=1

2
4n

(b) To evalutate the series, we imagine gathering up all our little triangles and sorting
them into three identical piles: the bottom three triangles go in three different piles, the
three triangles directly above them go in three different piles, etc. (In the picture below,
different colours correspond to different piles.)

Since the piles all have equal area, each pile has a total area of
1
3

. The black area shaded
in the problem corresponds to two piles (red and blue above), so

8
ÿ

n=1

2
4n =

2
3

S-7: (a) The pattern can be described as follows: divide the innermost square into 9 equal
parts (a 3ˆ 3 grid), choose one square to be black, and another square to subdivide.
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The area of the red (outermost) square is 1, so the area of the largest black square is
1
9

.

The area of the central, blue square below is also
1
9

.

1
9

1
9

When we subdivide the blue square, the subdivisions each have one-ninth its area, or
1
92 .

1
9

1
92

1
92

We continue taking squares that are one-ninth the area of the previous square. So, our
total black area is

1
9
+

1
92 +

1
93 + ¨ ¨ ¨ =

8
ÿ

n=1

1
9n

(b) If we cut up this square along the marks, we can easily share it equally among 8

friends: there are eight squares of area
1
9

along the outer ring, eight squares of area
1
92

along the next ring in, and so on.
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Since the eight friends all get the same total area, the area each friend gets is
1
8

. The area
shaded in black in the question corresponds to the pile given to one friend. So,

8
ÿ

n=1

1
9n =

1
8

S-8:

If we start with a shape of area 1, and iteratively divide it into thirds, taking one of the
three newly created pieces each time, then the area we take will be equal to the desired

series,
8
ÿ

n=1

1
3n .

One way to do this is to start with a rectangle, make three vertical strips, then keep the
left strip and subdivide the middle strip.

We see that the total area we take approaches one-half the total area of the figure, so
8
ÿ

n=1

1
3n =

1
2

.

Alternately, instead of always taking vertical strips, we could alternate vertical and
horizontal slices.
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In this setup, we notice that our strips come in pairs: two large vertical strips, two
smaller horizontal strips, two smaller vertical strips, etc. We shaed exactly one of each, so

the shaded area is one-half the total area:
8
ÿ

n=1

1
3n =

1
2

.

Other solutions are possible, as well.

S-9: Equation 3.2.1 in the CLP-2 text tells us
N
ÿ

n=0

arn = a
1´ rN+1

1´ r
, for r ‰ 1. Our

geometric sum has a = 1, r = 1
5 , and N = 100. So:

100
ÿ

n=0

1
5n =

1´ 1
5101

1´ 1
5

=
5101 ´ 1
4 ¨ 5100

S-10: After twenty students have brought their cookies, the pile numbers 53 cookies. 17
of these cookies were brought by students one through ten. So, the remainder
(53´ 17 = 36) is the number of cookies brought by students 11, 12, 13, 14, 15, 16, 17, 18,
19, and 20, together.
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C10

C20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

S-11:

Solution 1: Using the ideas of Question 10, we see:

100
ÿ

n=50

1
5n =

100
ÿ

n=0

1
5n ´

49
ÿ

n=0

1
5n

That is, we want start with the sum of all the terms up to
1

5100 , and then subtract off

the ones we actually don’t want, which is everything up to
1

549 . Now, both series
are in a form appropriate for Equation 3.2.1 in the CLP-2 text.

100
ÿ

n=0

1
5n ´

49
ÿ

n=0

1
5n =

1´ 1
5101

1´ 1
5

´
1´ 1

550

1´ 1
5

=
5101 ´ 1
4 ¨ 5100 ´

550 ´ 1
4 ¨ 549

(
551

551

)

=
5101 ´ 1
4 ¨ 5100 ´

5101 ´ 551

4 ¨ 5100

=
551 ´ 1
4 ¨ 5100

Solution 2: If we write out the first few terms of our series, we see we can factor out a
constant to change the starting index.

100
ÿ

n=50

1
5n =

1
550 +

1
551 +

1
552 +

1
553 + ¨ ¨ ¨+

1
5100

=
1

550

(
1
50 +

1
51 +

1
52 +

1
53 + ¨ ¨ ¨+

1
550

)

=
50
ÿ

n=0

1
550 ¨

1
5n
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Now, our sum is in the form of Equation 3.2.1 in the CLP-2 text with a =
1

550 , r =
1
5

,
and N = 50.

50
ÿ

n=0

1
550 ¨

1
5n =

1
550 ¨

1´ 1
551

1´ 1
5

=
1´ 1

551

4 ¨ 549

(
551

551

)

=
551 ´ 1
4 ¨ 5100

S-12: (a) The table below is a record of our account, with black entries representing the
money your friend gives you, and red entries representing the money you give them
(which is why the red entries are negative).

d ´ 1
d+1

1
d

total after
day d

1 ´1
2 1 1

2

2 ´1
3

1
2

2
3

3 ´1
4

1
3

3
4

4 ´1
5

1
4

4
5

5 ´1
6

1
5

5
6

6 ´1
7

1
6

6
7

After the exchange of day n, the amount you’re left with is $
(

1´ 1
n+1

)
. We see this by

the cancellation in the table: the $1
2 you gave your friend on day 1 was returned on day 2;

the $1
3 you gave your friend on day 2 was returned on day 3, etc.

So, after a long time, you’ll have gained close to (but always slightly less than) one dollar.

(b) The series
8
ÿ

d=1

(
1
d
´

1
(d + 1)

)
describes the scenario in (a), so by our reasoning there,

8
ÿ

d=1

(
1
d
´

1
(d + 1)

)
= lim

nÑ8

(
1´

1
n + 1

)
= 1

(c) Again, let’s set up an account book.
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d d + 1 ´(d + 2) total

1 2 ´3 ´1

2 3 ´4 ´2

3 4 ´5 ´3

4 5 ´6 ´4

5 6 ´7 ´5

6 7 ´8 ´6

By day d, you’ve lost $ d to your so-called friend. As time goes on, you lose more and
more.

(d) The series
8
ÿ

d=1

((d + 1)´ (d + 2)) exactly describes the scenario in part (c), so it

diverges to ´8. You can also see this by writing
8
ÿ

d=1

((d + 1)´ (d + 2)) =
8
ÿ

d=1

(´1) = ´1´ 1´ 1´ 1´ 1´ ¨ ¨ ¨ .

Be careful to avoid a common mistake with telescoping series: if we look back at our
account book, we see that every negative term will cancel with a positive term, with the
initial +2 as the only term that never cancels. Your friend takes $3, which they return the
next day; then they take $4, which they return the next day; then they take $5, which they
return the next day, and so on. It’s extremely tempting to say that the series adds up to
$2, since every other term cancels out eventually. This is where we lean on
Definition 3.2.3 in the CLP-2 text: we evaluate the partial sums, which always leave your
friend’s last withdrawal unreturned. This definition makes sense: saying “I gained two
bucks from this exchange” doesn’t really capture the reality of your increasing debt.

S-13: Using arithmetic of series, Theorem 3.2.8 in the CLP-2 text, we see

8
ÿ

n=1

(an + bn + cn+1) = A + B +
8
ÿ

n=1

cn+1

The question remaining is what do to with the last series. If we write out the terms, we

see the difference between
8
ÿ

n=1

cn and
8
ÿ

n=1

cn+1 is simply that the latter is missing c1:

8
ÿ

n=1

cn+1 = c2 + c3 + c4 + c5 + ¨ ¨ ¨

= ´c1 + c1 + c2 + c3 + c4 + c5 + ¨ ¨ ¨

= ´c1 +
8
ÿ

n=1

cn
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So,

8
ÿ

n=1

(an + bn + cn+1) = A + B + C´ c1

S-14: Theorem 3.2.8 in the CLP-2 text, arithmetic of series, doesn’t mention division,
because in general it doesn’t work the way the question suggests. For example, let
tanu = tbnu =

1
2n . Then:

•
ř8

n=0 an =
ř8

n=0 bn = 1
1´ 1

2
= 2, while

•
ř8

n=0
an

bn
=

ř8
n=0 1 = 8.

For the statement in the question, we can take tanu = tbnu =
1

2n , A = B = 2,
tcnu = t0, 0, 0, . . .u, and C = 0. We see the statement is false in this case.

So, in general, the statement given is false.

S-15: We recognize that this is a geometric series:

1 +
1
3
+

1
9
+

1
27

+
1

81
+

1
243

+ ¨ ¨ ¨ =
1
30 +

1
31 +

1
32 +

1
33 +

1
34 +

1
35 + ¨

=
8
ÿ

n=0

1
3n

Using Equation 3.2.2 in the CLP-2 text with r =
1
3

and a = 1,

=
1

1´ 1
3

=
3
2

.

S-16: This is a geometric series, with ratio r =
1
8

. However, it doesn’t start at k = 0, which
is what we’re used to.

Solution 1: We write out the first few terms of the series to figure out a convenient
constant to factor out.

8
ÿ

k=7

1
8k =

1
87 +

1
88 +

1
89 + ¨ ¨ ¨

=
1
87

(
1
80 +

1
81 +

1
82 + ¨ ¨ ¨

)

=
8
ÿ

k=0

1
87 ¨

1
8n
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We now evaluate the series using Equation 3.2.2 in the CLP-2 text with r =
1
8

,

a =
1
87 .

=
1
87 ¨

1
1´ 1

8

=
1

7ˆ 86

Solution 2: Using the idea of Question 10, we express the series we’re interested in as
the difference of two series that we can easily evaluate.

8
ÿ

k=7

1
8k =

8
ÿ

k=0

1
8k ´

6
ÿ

k=0

1
8k

Using Equations 3.2.2 and 3.2.1 in the CLP-2 text,

=
1

1´ 1
8

´
1´ 1

87

1´ 1
8

=
1

7ˆ 86

S-17: We recognize this as a telescoping series.

k 6
k2 ´ 6

(k+1)2 sk

1 6 ´6
4 6´ 6

4

2 6
4 ´6

9 6´ 6
9

3 6
9 ´ 6

16 6´ 6
16

4 6
16 ´ 6

25 6´ 6
25

5 6
25 ´ 6

36 6´ 6
36

6 6
36 ´ 6

47 6´ 6
47

...

When we compute the nth partial sum, i.e. the sum of of the first n terms, successive

terms cancel and only the first half of the first term,
(

6
k2 ´

6
(k+1)2

)ˇ
ˇ

ˇ

k=1
, and the second half

of the nth term,
(

6
k2 ´

6
(k+1)2

)ˇ
ˇ

ˇ

k=n
, survive. That is:

sn =
n
ÿ

k=1

(
6
k2 ´

6
(k + 1)2

)
=

6
12 ´

6
(n + 1)2

Therefore, we can see directly that the sequence of partial sums tsnu is convergent:

lim
nÑ8

sn = lim
nÑ8

(
6´

6
(n + 1)2

)
= 6
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By Definition 3.2.3 in the CLP-2 text the series is also convergent, with limit 6.

S-18: We recognize that this is a telescoping series, and set up a table to find the sequence
of partial sums.

n cos
(

ß
n

)
´ cos

(
ß

n+1

)
sn

3 cos
(

π
3

)
´ cos

(
π
4

) 1
2 ´ cos

(
π
4

)

4 cos
(

π
4

)
´ cos

(
π
5

) 1
2 ´ cos

(
π
5

)

5 cos
(

π
5

)
´ cos

(
π
6

) 1
2 ´ cos

(
π
6

)

6 cos
(

π
6

)
´ cos

(
π
7

) 1
2 ´ cos

(
π
7

)

7 cos
(

π
7

)
´ cos

(
π
8

) 1
2 ´ cos

(
π
8

)

8 cos
(

π
8

)
´ cos

(
π
9

) 1
2 ´ cos

(
π
9

)

...

The Nth partial sum sees every term cancel except the first part of the first term (1
2 ) and

the second part of the last term (´ cos( π
n+1)).

sN =
N
ÿ

n=3

(
cos

(π

n

)
´ cos

( π

n + 1

))

= cos
(π

3

)
´ cos

( π

N + 1

)

=
1
2
´ cos

( π

N + 1

)
.

As N Ñ 8, the argument π
N+1 converges to 0, and cos x is continuous at x = 0. By

Definition 3.2.3 in the CLP-2 text, the value of the series is

lim
NÑ8

sN = lim
NÑ8

[
1
2
´ cos

( π

N + 1

))]

=
1
2
´ cos(0) = ´

1
2

S-19: (a) As in Question 2, since

sn´1 = a1 + a2 + ¨ ¨ ¨+ an´1

sn = a1 + a2 + ¨ ¨ ¨+ an´1 + an
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we can find an by subtracting:

an = sn ´ sn´1

=
1 + 3n
5 + 4n

´
1 + 3(n´ 1)
5 + 4(n´ 1)

=
3n + 1
4n + 5

´
3n´ 2
4n + 1

=
(3n + 1)(4n + 1)´ (3n´ 2)(4n + 5)

(4n + 1)(4n + 5)

=
11

16n2 + 24n + 5

(b) Using Definition 3.2.3 in the CLP-2 text,

8
ÿ

n=1

an = lim
nÑ8

sn = lim
nÑ8

1 + 3n
5 + 4n

= lim
nÑ8

1/n + 3
5/n + 4

=
0 + 3
0 + 4

=
3
4

The series converges to
3
4

.

S-20: What we have is a geometric series, but we need to get it into the proper form
before we can evaluate it.

8
ÿ

n=2

3 ¨ 4n+1

8 ¨ 5n =
8
ÿ

n=2

3 ¨ 4 ¨ 4n

8 ¨ 5n =
3
2

8
ÿ

n=2

(4
5

)n

Solution 1: If we factor our
(

4
5

)2
, we can change our index to something more

convenient.

3
2

8
ÿ

n=2

(
4
5

)n
=

3
2

8
ÿ

n=2

(
4
5

)2 (4
5

)n´2

=
3
2

8
ÿ

n=0

(
4
5

)2 (4
5

)n

We use Equation 3.2.2 in the CLP-2 text with r =
4
5

.

=
3
2

(
4
5

)2

¨
1

1´ 4
5

=
24
5

Solution 2: Using the idea of Question 10, we view our series as a more convenient
series, minus a few initial terms.

3
2

8
ÿ

n=2

(
4
5

)n
=

3
2

([
8
ÿ

n=0

(
4
5

)n
]
´

(
4
5

)1

´

(
4
5

)0
)

=
3
2

(
8
ÿ

n=0

(
4
5

)n
´

9
5

)
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We use Equation 3.2.2 in the CLP-2 text with r =
4
5

.

=
3
2

(
1

1´ 4
5

´
9
5

)
=

24
5

S-21: The number is:

0.2 +
3

100
+

3
1000

+
3

10000
+ ¨ ¨ ¨ =

1
5
+

3
102 +

3
103 +

3
104 + ¨ ¨ ¨

=
1
5
+

3
102

(
1

100 +
1

101 +
1

102 + ¨ ¨ ¨

)

=
1
5
+

3
102

8
ÿ

n=0

1
10n

We use Equation 3.2.2 in the CLP-2 text with r =
1

10
.

=
1
5
+

3
102 ¨

1
1´ 1

10

=
1
5
+

1
30

=
7

30

S-22: The number is:

2 +
65
100

+
65

10000
+

65
1000000

+ ¨ ¨ ¨ = 2 +
65

100
+

65
1002 +

65
1003 + ¨ ¨ ¨

= 2 +
65

100

8
ÿ

n=0

1
100n

We use Equation 3.2.2 in the CLP-2 text with r =
1

100
.

= 2 +
65

100
¨

1
1´ 1

100

= 2 +
65
99

=
263
99

S-23: The number is:

0.321 = 0.321321321 . . .

=
321

1000
+

321
106 +

321
109 + ¨ ¨ ¨

=
321

1000

((
1

103

)0

+

(
1

103

)1

+

(
1

103

)2

+ ¨ ¨ ¨

)

=
321

1000

8
ÿ

n=0

(
1

103

)n
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We use Equation 3.2.2 in the CLP-2 text with r =
1

103 .

=
321

1000
¨

1
1´ 1

103

=
321
999

=
107
333

S-24: We split the sum into two parts.

8
ÿ

n=2

(
2n+1

3n +
1

2n´ 1
´

1
2n + 1

)
=

8
ÿ

n=2

2n+1

3n +
8
ÿ

n=2

(
1

2n´ 1
´

1
2n + 1

)

The first part is a geometric series.

8
ÿ

n=2

2n+1

3n =
8
ÿ

n=0

2n+3

3n+2 =
8
ÿ

n=0

23

32 ¨

(
2
3

)n

We use Equation 3.2.2 in the CLP-2 text with r =
2
3

and a =
8
9

.

=
8
9
¨

1
1´ 2

3
=

8
3

The second part is a telescoping series. Let’s make a table to see how it cancels.

n 1
2n´1 ´ 1

2n+1 sn

2 1
3 ´1

5
1
3 ´

1
5

3 1
5 ´1

7
1
3 ´

1
7

4 1
7 ´1

9
1
3 ´

1
9

5 1
9 ´ 1

11
1
3 ´

1
11

6 1
11 ´ 1

13
1
3 ´

1
13

7 1
13 ´ 1

15
1
3 ´

1
15

...

After adding terms n = 2 through n = N, the partial sum is

sN =
1
3
´

1
2N + 1
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because all the terms except the first part of the n = 2 term, and the last part of the n = N
term, cancel. Then:

8
ÿ

n=2

(
1

2n´ 1
´

1
2n + 1

)
= lim

NÑ8
sN = lim

NÑ8

1
3
´

1
2N + 1

=
1
3

All together,

8
ÿ

n=2

(
2n+1

3n +
1

2n´ 1
´

1
2n + 1

)
=

8
ÿ

n=2

2n+1

3n +
8
ÿ

n=2

(
1

2n´ 1
´

1
2n + 1

)

=
8
3
+

1
3
= 3

S-25: We split the sum into two parts.

8
ÿ

n=1

[(1
3

)n
+
(
´

2
5

)n´1]
=

8
ÿ

n=1

(1
3

)n
+

8
ÿ

n=1

(
´

2
5

)n´1

Both are geometric series.

=
8
ÿ

n=0

(1
3

)n+1
+

8
ÿ

n=0

(
´

2
5

)n

=
1
3

8
ÿ

n=0

(1
3

)n
+

8
ÿ

n=0

(
´

2
5

)n

We use Equation 3.2.2 in the CLP-2 text with a1 =
1
3

and r1 =
1
3

, then with a2 = 1 and

r2 = ´
2
5

.

=
1
3
¨

1
1´ 1

3

+
1

1 + 2
5

=
1
2
+

5
7
=

17
14

S-26: We split the sum into two parts.

8
ÿ

n=0

1 + 3n+1

4n =
8
ÿ

n=0

1
4n +

8
ÿ

n=0

3n+1

4n

=
8
ÿ

n=0

1
4n + 3

8
ÿ

n=0

(
3
4

)n
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Using Equation 3.2.2 in the CLP-2 text,

=
1

1´ 1
4

+
3

1´ 3
4

=
4
3
+ 12 =

40
3

S-27: Using logarithm rules, we see

8
ÿ

n=5

log
(

n´ 3
n

)
=

8
ÿ

n=5

[
log(n´ 3)´ log n

]

which looks like a telescoping series. Let’s make a table to figure out the partial sums.

n log(n´ 3) ´ log n sn

5 log 2 ´ log 5 log 2´ log 5

6 log 3 ´ log 6 log 2 + log 3´ log 5´ log 6

7 log 4 ´ log 7 log 2 + log 3 + log 4´ log 5´ log 6´ log 7

8 log 5 ´ log 8 log 2 + log 3 + log 4´ log 6´ log 7´ log 8

9 log 6 ´ log 9 log 2 + log 3 + log 4´ log 7´ log 8´ log 9

10 log 7 ´ log 10 log 2 + log 3 + log 4´ log 8´ log 9´ log 10

11 log 8 ´ log 11 log 2 + log 3 + log 4´ log 9´ log 10´ log 11

...

There is a “lag” before the terms cancel, which is why they “build up” more than we saw
in past examples. Still, we can clearly see the Nth partial sum:

N
ÿ

n=5

(
log(n´ 3)´ log(n)

)
= log 2 + log 3 + log 4´ log(N ´ 2)´ log(N ´ 1)´ log(N)

= log
(

24
N(N ´ 1)(N ´ 2)

)

when N ě 7. So,
8
ÿ

n=5

(
log(n´ 3)´ log(n)

)
= lim

NÑ8
sN

= lim
NÑ8

log
(

24
N(N ´ 1)(N ´ 2)

)

= ´8
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S-28: This is a telescoping series. Let’s investigate it in the usual way. To make the
pattern of cancellation clearer, we express 2

n ´
1

n+1 ´
1

n´1 = 1
n + 1

n ´
1

n+1 ´
1

n´1 , and leave
the fractions in the middle of the table unsimplified. Then every fraction has numerator
one and two terms with the same denominator and opposite sign cancel.

n
1
n

1
n

´
1

n + 1
´

1
n´ 1

sn

2
1
2

1
2

´
1
3

´
1
1

1
2
+

1
2
´

1
3
´

1
1

3
1
3

1
3

´
1
4

´
1
2

1
2
+

1
3
´

1
4
´

1
1

4
1
4

1
4

´
1
5

´
1
3

1
2
+

1
4
´

1
5
´

1
1

5
1
5

1
5

´
1
6

´
1
4

1
2
+

1
5
´

1
6
´

1
1

6
1
6

1
6

´
1
7

´
1
5

1
2
+

1
6
´

1
7
´

1
1

7
1
7

1
7

´
1
8

´
1
6

1
2
+

1
7
´

1
8
´

1
1

8
1
8

1
8

´
1
9

´
1
7

1
2
+

1
8
´

1
9
´

1
1

...

Concentrate on any row n, except the very first row and the very last row. The first 1
n in

that row cancels the ´ 1
n in the middle of the row above it, and the second 1

n in that row
cancels the ´ 1

n at the end of the row below it. As far as the first (n = 2) row is concerned,
the first 1

2 and the last ´1
1 never get cancelled out because there is no row above the first

one. And as far as the very last row is concerned, the two middle terms never get
cancelled out because there is no row after the last one. So the partial sum is

sN =
N
ÿ

n=2

(
2
n
´

1
n + 1

´
1

n´ 1

)
=

from the first row
hkkikkj

1
2
´

1
1

+

from the last row
hkkkkkikkkkkj

1
N
´

1
N + 1

There is another purely algebraic way to find the same sN, motivated by the above
discussion.

sN =
N
ÿ

n=2

(
2
n
´

1
n + 1

´
1

n´ 1

)

=
N
ÿ

n=2

(
1
n
´

1
n + 1

)
+

N
ÿ

n=2

(
1
n
´

1
n´ 1

)
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The first half

N
ÿ

n=2

(
1
n
´

1
n + 1

)
=

(
1
2
´

1
3

)
+

(
1
3
´

1
4

)
+

(
1
4
´

1
5

)
+ ¨ ¨ ¨+

(
1
N
´

1
N + 1

)

=

[
1
2
´

1
N + 1

]

and the second half

N
ÿ

n=2

(
1
n
´

1
n´ 1

)
=

(
1
2
´

1
1

)
+

(
1
3
´

1
2

)
+

(
1
4
´

1
3

)
+ ¨ ¨ ¨+

(
1
N
´

1
N ´ 1

)

=

"

´
1
1
+

1
N

*

So

sN =

[
1
2
´

1
N + 1

]
+

"

´
1
1
+

1
N

*

= ´
1
2
+

1
N
´

1
N + 1

and the limit

8
ÿ

n=2

(
2
n
´

1
n + 1

´
1

n´ 1

)
= lim

NÑ8
sN

= lim
NÑ8

[
´

1
2
+

1
N
´

1
N + 1

]

= ´
1
2

S-29: The stone at position x has mass
1
4x kg, and we have to pull it a distance of 2x

metres, so the work involved in moving that one stone is
(

1
4x kg

)
(2x m)

(
9.8

m
sec2

)
=

9.8
2x J

Therefore, the work to move all the stones is:

8
ÿ

x=1

9.8
2x =

8
ÿ

x=0

9.8
2x+1

=
8
ÿ

x=0

9.8
2
¨

1
2x =

9.8
2
¨

1
1´ 1

2

= 9.8 J
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S-30: The volume of a sphere of radius
1

πn is

vn =
4
3

π

(
1

πn

)3

=
4π

3

(
1

π3

)n

So, the volume of all the spheres together is:

8
ÿ

n=1

vn =
8
ÿ

n=1

4π

3

(
1

π3

)n

=
8
ÿ

n=0

4π

3

(
1

π3

)n+1

=
8
ÿ

n=0

4
3π2

(
1

π3

)n

We use Equation 3.2.2 in the CLP-2 text with a =
4

3π2 and r =
1

π3 .

=
4

3π2 ¨
1

1´ 1
π3

=
4π

3 (π3 ´ 1)

S-31: Let’s make a table. Keep in mind cos2 θ + sin2 θ = 1.

n
sin2 n

2n
cos2(n + 1)

2n+1 sn

3
sin2 3

23
cos2 4

24
sin2 3

23 +
cos2 4

24

4
sin2 4

24
cos2 5

25
sin2 3

23 +
1
24 +

cos2 5
25

5
sin2 5

25
cos2 6

26
sin2 3

23 +
1
24 +

1
25 +

cos2 6
26

6
sin2 6

26
cos2 7

27
sin2 3

23 +
1
24 +

1
25 +

1
26 +

cos2 7
27

7
sin2 7

27
cos2 8

28
sin2 3

23 +
1
24 +

1
25 +

1
26 +

1
27 +

cos2 8
28

...

This gives us an equation for the partial sum sN, when N ě 4:

sN =
N
ÿ

n=3

(
sin2 n

2n +
cos2(n + 1)

2n+1

)

=
sin2 3

23 +

(
N
ÿ

n=4

1
2n

)
+

cos2(N + 1)
2N+1
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Using Definition 3.2.3 in the CLP-2 text, our series evaluates to:

lim
NÑ8

sN = lim
NÑ8

[
sin2 3

23 +

(
N
ÿ

n=4

1
2n

)
+

cos2(N + 1)
2N+1

]

=
sin2 3

8
+

[
lim

NÑ8

cos2(N + 1)
2N+1

]
+

8
ÿ

n=4

1
2n

We evaluate the limit using the squeeze theorem; the series is geometric.

=
sin2 3

8
+ 0 +

8
ÿ

n=0

1
2n+4

=
sin2 3

8
+

1
24

8
ÿ

n=0

1
2n

Using Equation 3.2.2 in the CLP-2 text,

=
sin2 3

8
+

1
24

1
1´ 1

2

=
sin2 3

8
+

1
8
« 0.1275

S-32: Since tSMu is the sequence of partial sums of
8
ÿ

N=1

SN, we can find tSNu from tSMu

as in Question 3:

SN = SN ´SN´1 =
N + 1

N
´

N
N ´ 1

= ´
1

N(N ´ 1)
if N ě 2,

S1 = S1 = 2

Similarly, we find tanu from tSNu. Do be careful: SN only follows the formula we found
above when N ě 2. In the next line, we use an expression containing Sn´1; in order for
the subscript to be at least two (so the formula fits), we need n ě 3.

an = Sn ´ Sn´1 = ´
1

n(n´ 1)
´

´1
(n´ 1)(n´ 2)

=
2

n(n´ 1)(n´ 2)
if n ě 3,

a2 = S2 ´ S1 = ´
1

2(2´ 1)
´ 2 = ´

5
2

,

a1 = S1 = 2

All together,

an =

$

’

&

’

%

2
n(n´1)(n´2) if n ě 3,

´5
2 if n = 2,

2 if n = 1
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S-33: We consider a circle of radius R, with an “inner ring” from R
3 to 2R

3 and an “outer
ring” from 2R

3 to R.

The area of the outer ring is:

πR2
´ π

(
2R
3

)2

=
5
9

πR2

The area of the inner ring is:

π

(
2R
3

)2

´ π

(
R
3

)2

=
3
9

πR2

So, the ratio of the inner ring’s area to the outer ring’s area is 3
5 .

In our bullseye diagram, if we pair up any red ring with the blue ring just inside it, the
blue ring has 3

5 the area of the red ring. So, the blue portion of the bullseye has 3
5 the area

of the red portion.

Since the circle has area 1, if we let the red portion have area A, then

1 = A +
3
5

A =
8
5

A

So, the red portion has area 5
8 .

Solutions to Exercises 3.3 — Jump to TABLE OF CONTENTS

S-1:

(A) lim
nÑ8

1
n
= 0, so the divergence test is inconclusive. It’s true that this series diverges,

but we can’t show it using the divergence test.

(B) lim
nÑ8

n2

n + 1
= 8, which is not zero, so the divergence test tells us this series diverges.

(C) We’ll show below that lim
nÑ8

sin n does not exist at all. In particular, it is not zero.
Therefore, the divergence test tells us this series diverges.

Now we’ll show that lim
nÑ8

sin n does not exist. Suppose that it does exist and takes
the value S. We will now see that this assumption leads to a contradiction. Add
together the two trig identities (see Appendix A.8 in the CLP-2 text)

sin(n + 1) = sin(n) cos(1) + cos(n) sin(1)
sin(n´ 1) = sin(n) cos(1)´ cos(n) sin(1)

This gives
sin(n + 1) + sin(n´ 1) = 2 sin(n) cos(1)
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Taking the limit n Ñ 8 gives 2S = 2S cos(1). Since cos(1) ‰ 1, this forces S = 0.
Now the first trig identity above gives

cos(n) =
sin(n + 1)´ sin(n) cos(1)

sin(1)

Taking the limit as n Ñ 8 of that gives

lim
nÑ8

cos(n) =
S´ S cos(1)

sin(1)
= 0

But that provides the contradiction. Because sin2(n) + cos2(n) = 1, we can’t have
both sin(n) and cos(n) converging to zero. So lim

nÑ8
sin n does not exist.

(D) For all whole numbers n, sin(πn) = 0, so lim
nÑ8

sin(πn) = 0 and the divergence test is
inconclusive.

S-2: Let f (x) be a function with f (n) = an for all whole numbers n. In order to apply the
integral test (Theorem 3.3.5 in the CLP-2 text) we need f (x) to be positive and decreasing
for all sufficiently large values of n.

(A) f (x) = 1
x , which is positive and decreasing for all x ě 1, so the integral test does

apply here.

(B) f (x) = x2

x+1 , which is not decreasing–in fact, it goes to infinity. So, the integral test
does not apply here. (The divergence test tells us the series diverges, though.)

(C) f (x) = sin x, which is neither consistently positive nor consistently decreasing, so
the integral test does not apply. (The divergence test tells us the series diverges,
though.)

(D) f (x) = sin x+1
x2 is positive for all whole numbers n. To determine whether it is

decreasing, we consider its derivative.

f 1(x) =
x2(cos x)´ (sin x + 1)(2x)

x4 =
x cos x´ 2 sin x´ 2

x3

This is sometimes positive, and sometimes negative. (For example, if x = 100π,
f 1(x) = 100π´0´2

(100π)3 ą 0, but if x = 101π then f 1(x) = 101π(´1)´0´2
(101π)3 ă 0.) Then f (x) is

not a decreasing function, so the integral test does not apply.

S-3: (a) If Olaf is old, and I am even older, then I am old as well.
(b) If Olaf is old, and I am not as old, then perhaps I am old as well (just slightly less so),
or perhaps I am young. There is not enough information to tell.
(c) If Yuan is young, and I am older, then perhaps I am much older and I am old, or
perhaps I am only a little older, and I am young. There is not enough information to tell.
(d) If Yuan is young, and I am even younger, then I must also be young.

Another way to think about this is with a timeline of birthdates. People born before the
threshold are old, and people born after it are young.

639



threshold YuanOlaf

If I’m born before (older than) Olaf, I’m born before the threshold, so I’m old.
If I’m born after (younger than) Yuan I’m born after the threshold, so I’m young.

threshold Yuan

definitely young

Olaf

definitely old

If I’m born after Olaf or before Yuan, I don’t know which side of the threshold I’m on. I
could be old or I could be young.

threshold Yuan

older than Yuanalso older than Yuan

S-4: The comparison test is Theorem 3.3.8 in the CLP-2 text. However, rather than trying
to memorize which way the inequalities go in all cases, we use the same reasoning as
Question 3.

If a sequence has positive terms, it either converges, or it diverges to infinity, with the
partial sums increasing and increasing without bound. If one sequence diverges, and the
other sequence is larger, then the other sequence diverges–just like being older than an
old person makes you old.

If
ř

an converges, and tanu is the red (larger) series, then
ř

bn converges: it’s smaller
than a sequence that doesn’t add up to infinity, so it too does not add up to infinity.

If
ř

an diverges, and tanu is the blue (smaller) series, then
ř

bn diverges: it’s larger than a
sequence that adds up to infinity, so it too adds up to infinity.

In the other cases, we can’t say anything. If tanu is the red (larger) series, and
ř

an
diverges, then perhaps tbnu behaves similarly to tanu and

ř

bn diverges, or perhaps tbnu

is much, much smaller than tanu and
ř

bn converges.

Similarly, if tanu is the blue (smaller) series, and
ř

an converges, then perhaps tbnu

behaves similarly to tanu and
ř

bn converges, or perhaps tbnu is much, much bigger than
tanu and

ř

bn diverges.

if
ř

an converges if
ř

an diverges

and if tanu is the red series then
ř

bn CONVERGES inconclusive

and if tanu is the blue series inconclusive then
ř

bn DIVERGES
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S-5: (a) Since
ř 1

n is divergent, we can only use it to prove series with larger terms are
divergent. This is the case here, since 1

n´1 ą
1
n . So, the direct comparison test is valid.

For the limit comparison test, we calculate:

lim
nÑ8

an

bn
= lim

nÑ8

1
n´1

1
n

= lim
nÑ8

1
1´ 1

n
= 1

Since the limit exists and is not zero, the limit comparison test is also valid.

(b) Since the series
ř 1

n2 converges, we can only use the direct comparison test to show
the convergence of a series if its terms have smaller absolute values. Indeed,

ˇ

ˇ

ˇ

ˇ

sin n
n2 + 1

ˇ

ˇ

ˇ

ˇ

=
| sin n|
n2 + 1

ă
1
n2

so the series are set for a direct comparison.

To check whether a limit comparison will work, we compute:

lim
nÑ8

an

bn
= lim

nÑ8

sin n
n2+1

1
n2

= lim
nÑ8

n2

n2 + 1
sin n = lim

nÑ8
(1) sin n

The limit does not exist, so the limit comparison test is not a valid test to compare these
two series.

(c) Since the series
ř 1

n3 converges, we can only use the direct comparison test to
conclude something about a series with smaller terms. However,

n3 + 5n + 1
n6 ´ 2

ą
n3

n6 =
1
n3 .

Therefore the direct comparison test does not apply to this pair of series.

For the limit comparison test, we calculate:

lim
nÑ8

an

bn
= lim

nÑ8

n3+5n+1
n6´2

1
n3

= lim
nÑ8

n3 + 5n + 1
n3 ´ 2

n3

(
1

n3

1
n3

)

= lim
nÑ8

1 + 5
n2 +

1
n3

1´ 2
n6

= 1

Since the limit is a nonzero real number, we can use the limit comparison test to compare
this pair of series.

(d) Since the series
ř 1

4?n
diverges, we can only use the direct comparison test to show

that a series with larger terms diverges. However,

1
?

n
ă

1
4
?

n
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so the direct comparison test isn’t valid with this pair of series.

For the limit comparison test, we calculate:

lim
nÑ8

an

bn
= lim

nÑ8

1?
n

1
4?n

= lim
nÑ8

1
4
?

n
= 0

Since the limit is zero, the limit comparison test doesn’t apply.

S-6: It diverges by the divergence test, because lim
nÑ8

an ‰ 0.

S-7: The divergence test (Theorem 3.3.1 in the CLP-2 text) is inconclusive when
lim

nÑ8
an = 0. We cannot use the divergence test to show that a series converges.

S-8: The integral test does not apply because f (x) is not decreasing.

S-9: The inequality goes the wrong way, so the direct comparison test (with this
comparison series) is inconclusive.

S-10: Although the terms of (A) are sometimes negative and sometimes positive, they are
not strictly alternating in a positive-negative-positive-negative pattern. For instance, sin 1
and sin 2 are both postive. So, (A) is not an alternating series.

When n is a whole number, cos(πn) = (´1)n, so (B) is alternating.

Since the exponent of (´n) in (C) is even, the terms are always positive. Therefore (C) is
not alternating.

(D) is an alternating series.

S-11: One possible answer:
8
ÿ

n=1

1
n2 . This series converges (it’s a p–series with p = 2 ą 1),

but if we take the ratio of consecutive terms:

lim
nÑ8

an+1

an
= lim

nÑ8

n2

(n + 1)2 = 1

The limit of the ratio is 1, so the ratio test is inconclusive.

S-12: By the divergence test, for a series
ř

an to converge, we need lim
nÑ8

an = 0. That is, the

magnitude (absolute value) of the terms needs to be getting smaller. If lim
nÑ8

ˇ

ˇ

ˇ

ˇ

an

an+1

ˇ

ˇ

ˇ

ˇ

ă 1 or

(equivalently) lim
nÑ8

ˇ

ˇ

ˇ

ˇ

an+1

an

ˇ

ˇ

ˇ

ˇ

ą 1, then |an+1| ą |an| for sufficiently large n, so the terms are

actually growing in magnitude. That means the series diverges, by the divergence test.

642



S-13: The terms of the series only see a small portion of the domain of the integral. We
can try to think of a function f (x) that behaves “nicely” when x is a whole number (that
is, it produces a sequence whose sum converges), but is more unruly when x is not a
whole number.

For example, suppose f (x) = sin(πx). Then f (x) = 0 for every integer x, but this is not
representative of the function as a whole. Indeed, our corresponding series has terms
tanu = t0, 0, 0, . . .u.

•
ż 8

1
sin(πx)dx = lim

RÑ8

[
´

1
π

cos(πx)
]R

1
= lim

RÑ8

[
´ cos(πR)

]
´

1
π

Since the limit does not exist, the integral diverges.

•
8
ÿ

n=1

sin(πn) =
8
ÿ

n=1

0 = 0. The series converges.

S-14: When n is very large, the term 2n dominates the numerator, and the term 3n

dominates the denominator. So when n is very large an «
2n

3n . Therefore we should take

bn =
2n

3n . Note that, with this choice of bn,

lim
nÑ8

an

bn
= lim

nÑ8

2n + n
3n + 1

3n

2n = lim
nÑ8

1 + n/2n

1 + 1/3n = 1

as desired.

S-15: (a) In general false. The harmonic series
8
ř

n=1

1
n diverges by the p–test with p = 1.

(b) Be careful. You were not told that the an’s are positive. So this is false in general. If

an = (´1)n 1
n , then

8
ř

n=1
(´1)nan is again the harmonic series

8
ř

n=1

1
n , which diverges.

(c) In general false. Take, for example, an = 0 and bn = 1.

S-16: First, we’ll check the divergence test. It doesn’t always work, but if it does, it’s
likely the easiest path.

lim
nÑ8

n2

3n2 +
?

n

(
1

n2

1
n2

)
= lim

nÑ8

1
3 + 1

n
?

n

=
1
3
‰ 0

Since the limit of the terms being added is not zero, the series diverges by the divergence
test.

S-17: This precise question was asked on a 2014 final exam. Note that the nth term in the
series is an = 5k

4k+3k and does not depend on n! There are two possibilities. Either this was
intentional (and the instructor was being particularly nasty) or it was a typo and the
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intention was to have an = 5n

4n+3n . In both cases, the limit

lim
nÑ8

an = lim
nÑ8

5k

4k + 3k =
5k

4k + 3k ‰ 0

lim
nÑ8

an = lim
nÑ8

5n

4n + 3n = lim
nÑ8

(5/4)n

1 + (3/4)n = +8 ‰ 0

is nonzero, so the series diverges by the divergence test.

S-18: We usually check the divergence test first, to look for low-hanging fruit. The limit
of the terms being added is zero:

lim
nÑ8

1
n + 1

2

= 0

so the divergence test is inconclusive. That is, we need to look harder.

Next, we might consider a comparison test–these can also provide us (if we’re lucky)
with an easy path. The terms we’re adding look somewhat like 1

n , but our terms are
smaller than these terms, which form the terms of the divergent harmonic series. So, a
direct comparison seems unlikely. Now we search for more exotic tests.

Let f (x) =
1

x + 1
2

. Note f (x) is positive and decreases as x increases. So, by the integral

test, which is Theorem 3.3.5 in the CLP-2 text, the given series converges if and only if the
integral

ş8

0
1

x+ 1
2

dx converges. Since

ż 8

0

1
x + 1

2

dx = lim
RÑ8

ż R

0

1
x + 1

2

dx = lim
RÑ8

[
log
(

x +
1
2

)]x=R

x=0

= lim
RÑ8

[
log
(

R +
1
2

)
´ log

1
2

]

diverges, the series diverges.

S-19: The terms of the series tend to 0, so we can’t use the divergence test.

To generate a guess about its convergence, we do the following:

ÿ 1
?

k
?

k + 1
=

ÿ 1
?

k2 + k
«
ÿ 1
?

k2
=

ÿ 1
k

We guess that our series behaves like the harmonic series, and the harmonic series
diverges (which can be demonstrated by p-test or integral test). So, we guess that our
series diverges. However, in order to directly compare our series to the harmonic series
and show our series diverges, our terms would have to be bigger than the terms in the
harmonic series, and this is not the case. So, we use limit comparison.
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1
k
1?

k2+k

=

?
k2 + k

k
=

?
k2 + k
?

k2
=

c

k2 + k
k2 =

c

1 +
1
k

, so

lim
kÑ8

1
k
1?

k2+k

= lim
kÑ8

c

1 +
1
k
= 1

Since 1 is a real number greater than 0, by the Limit Comparison Test,
ř 1?

k
?

k+1
diverges,

like
ř 1

k .

S-20: This is a geometric series with r = 1.001. Since |r| ą 1, it is divergent.

S-21: This is a geometric series with r = ´1
5 . Since |r| ă 1, it is convergent.

We want to use the formula
ř8

n=0 rn = 1
1´r , but our series does not start at 0, so we

re-write it:

8
ÿ

n=3

(
´1
5

)n
=

8
ÿ

n=0

(
´1
5

)n
´

2
ÿ

n=0

(
´1
5

)n
=

1
1´ (´1/5)

´

(
1´

1
5
+

1
25

)

=
1

6/5
´ 1 +

1
5
´

1
25

=
5
6
+
´25 + 5´ 1

25
= ´

1
150

S-22: For any integer n, sin(πn) = 0, so
ř

sin(πn) =
ř

0 = 0. So, this series converges.

S-23: For any integer n, cos(πn) = ˘1, so lim
nÑ8

cos(πn) ‰ 0.
By the divergence test, this series diverges.

S-24: Factorials grow super fast. Like, wow, really fast. Even faster than exponentials. So
the terms are going to zero, and the divergence test won’t help us. Let’s use ratio–it’s a
good go-to test with factorials.

ak+1

ak
=

ek+1

(k+1)!
ek

k!

=
ek+1

ek ¨
k!

(k + 1)!
= e ¨

k(k´ 1) ¨ ¨ ¨ (1)
(k + 1)(k)(k´ 1) ¨ ¨ ¨ (1)

= e ¨
1

k + 1
=

e
k + 1

Since e is a constant,

lim
kÑ8

ak+1

ak
= lim

kÑ8

e
k + 1

= 0

Since 0 ă 1, by the ratio test, the series converges.
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S-25: This is close to being in the form of a geometric series. First, we should have our
powers be k, not k + 2, but we notice 3k+2 = 3k32 = 9 ¨ 32, so:

8
ÿ

k=0

2k

3k+2 =
8
ÿ

k=0

2k

9 ¨ 3k =
1
9

8
ÿ

k=0

2k

3k =
1
9

8
ÿ

k=0

(
2
3

)k

Now it looks like a geometric series with r = 2
3

=
1
9

(
1

1´ (2/3)

)
=

1
3

In conclusion: this (geometric) series is convergent, and its sum is
1
3

.

S-26: Usually with factorials, we want to use the divergence test or the ratio test. Since
the terms are indeed tending towards zero, we are left with the ratio test.

an+1

an
=

(n+1)!(n+1)!
(2n+2)!

n!n!
(2n)!

=
(n + 1)!(n + 1)!

n!n!
¨

(2n)!
(2n + 2)!

= (n+1)(n)(n´1)¨¨¨(1)
n(n´1)¨¨¨(1) ¨

(n+1)(n)(n´1)¨¨¨(1)
n(n´1)¨¨¨(1) ¨

(2n)(2n´1)(2n´2)¨¨¨(1)
(2n+2)(2n+1)(2n)(2n´1)(2n´2)¨¨¨(1)

= (n + 1)(n + 1) ¨
1

(2n + 2)(2n + 1)
, so

lim
nÑ8

an+1

an
= lim

nÑ8

(n + 1)(n + 1)
(2n + 2)(2n + 1)

= lim
nÑ8

(n + 1)(n + 1)
2(n + 1)(2n + 1)

= lim
nÑ8

n + 1
4n + 2

=
1
4

Since the limit is a number less than 1, the series converges by the ratio test.

S-27: We want to make an estimation, when n gets big:

n2 + 1
2n4 + n

«
n2

2n4 =
1

2n2

Since
ř 1

2n2 is a convergent series (by p-test, or integral test), we guess that our series is
convergent as well. If we wanted to use comparison test, we should have to show
n2+1

2n4+n ă
1

2n2 , which seems unpleasant, so let’s use limit comparison.

lim
nÑ8

n2+1
2n4+n

1
2n2

= lim
nÑ8

(n2 + 1)2n2

2n4 + n
= lim

nÑ8

2n4 + 2n2

2n4 + n

(
1/n4

1/n4

)
= lim

nÑ8

2 + 2
n2

2 + 1
n3

= 1

Since the limit is a positive finite number, by the Limit Comparison Test,
ř n1+1

2n4+n does
the same thing

ř 1
2n2 does: it converges.

646



S-28: First, we rule out some of the easier tests. The limit of the terms being added is
zero, so the divergence test is inconclusive. The terms being added are smaller than the
terms of the (divergent) harmonic series,

ř 1
n , so we can’t directly compare these two

series, and there isn’t another obvious series to compare ours to. However, the terms
being added seem like a function we could integrate.

Let f (x) =
5

x(log x)3/2 . Then f (x) is positive and decreases as x increases. So the sum

8
ÿ

3

f (n) and the integral
ż 8

3
f (x)dx either both converge or both diverge, by the integral

test, which is Theorem 3.3.5 in the CLP-2 text. For the integral, we use the substitution
u = log x, du = dx

x to get

ż 8

3

5 dx
x(log x)3/2 =

ż 8

log 3

5 du
u3/2

which converges by the p–test (which is Example 1.12.8 in the CLP-2 text) with
p = 3

2 ą 1.

S-29: Let f (x) = 1
x(log x)p . Then f (x) is positive for n ě 3, and f (x) decreases as x

increases. So, we can use the integral test, Theorem 3.3.5 in the CLP-2 text.

ż 8

2

1
x(log x)p dx = lim

RÑ8

ż R

2

1
(log x)p

dx
x

= lim
RÑ8

ż log R

log 2

1
up du with u = log x, du =

dx
x

Using the results about p-series, Example 3.3.6 in the CLP-2 text, we know this integral
converges if and only if p ą 1, so the same is true for the series by the integral test.

S-30: As usual, let’s see whether the “easy” tests work. The terms we’re adding converge
to zero:

lim
nÑ8

e´
?

n
?

n
= lim

nÑ8

1
?

ne
?

n
= 0

so the divergence test is inconclusive. Our series isn’t geometric, and it doesn’t seem
obvious how to compare it to a geometric series. However, the terms we’re adding seem
like they would make an integrable function.

Set f (x) = e´
?

x
?

x . For x ě 1, this function is positive and decreasing (since it is the product

of the two positive decreasing functions e´
?

x and 1?
x ). We use the integral test with this
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function. Using the substitution u =
?

x, so that du = 1
2
?

x dx, we see that

ż 8

1
f (x)dx = lim

RÑ8

ż R

1

(
e´
?

x
?

x
dx
)

= lim
RÑ8

(
ż

?
R

1
e´u

¨ 2 du
)

= lim
RÑ8

(
´2e´u

ˇ

ˇ

ˇ

?
R

1

)

= lim
RÑ8

(
´2e´

?
R + 2e´

?
1
)
= 0 + 2e´1,

and so this improper integral converges. By the integral test, the given series also
converges.

S-31: We first develop some intuition. For very large n, 3n2 dominates 7 so that
?

3n2 ´ 7
n3 «

?
3n2

n3 =

?
3

n2

The series
8
ÿ

n=2

1
n2 converges by the p–test with p = 2, so we expect the given series to

converge too.

To verify that our intuition is correct, it suffices to observe that

0 ă an =

?
3n2 ´ 7

n3 ă

?
3n2

n3 =

?
3

n2 = cn

for all n ě 2. As the series
8
ř

n=2
cn converges, the comparison test says that

8
ř

n=2
an

converges too.

S-32: We first develop some intuition. For very large k, k4 dominates 1 so that the
numerator 3

?
k4 + 1 « 3

?
k4 = k4/3, and k5 dominates 9 so that the denominator?

k5 + 9 «
?

k5 = k5/2 and the summand
3
?

k4 + 1
?

k5 + 9
«

k4/3

k5/2 =
1

k7/6

The series
8
ÿ

n=1

1
k7/6 converges by the p–test with p = 7

6 ą 1, so we expect the given series

to converge too.

To verify that our intuition is correct, we apply the limit comparison test with

ak =
3
?

k4 + 1
?

k5 + 9
and bk =

1
k7/6 =

k4/3

k5/2
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which is valid since

lim
kÑ8

ak
bk

= lim
kÑ8

3
?

k4 + 1/k4/3
?

k5 + 9/k5/2
= lim

kÑ8

3
a

1 + 1/k4
a

1 + 9/k5
= 1

exists. Since the series
8
ř

k=1
bk is a convergent p–series (with ratio p = 7

6 ą 1), the given

series converges.

Note: to apply the direct comparison test with our chosen comparison series, we would
need to show that

3
?

k4 + 1
?

k5 + 9
ď

1
k7/6

for all k sufficiently large. However, this is not true: the opposite inequality holds when k
is large.

S-33:

Solution 1: Let’s see whether the divergence test works here.

lim
nÑ8

n42n/3

(2n + 7)4

(
1

n4

1
n4

)
= lim

nÑ8

2n/3

(2 + 7/n)4 = lim
nÑ8

2n/3

(2 + 0)4 = 8

The summands of our series do not converge to zero. By the divergence test, the
series diverges.

Solution 2: Let’s develop some intuition for a comparison. For very large n, 2n
dominates 7 so that

n42n/3

(2n + 7)4 «
n42n/3

(2n)4 =
1

16
2n/3

The series
8
ÿ

n=1

2n/3 is a geometric series with ratio r = 21/3 ą 1 and so diverges. (It

also fails the divergence test.) We expect the given series to diverge too.

To verify that our intuition is correct, we apply the limit comparison test with

an =
n42n/3

(2n + 7)4 and bn = 2n/3

which is valid since

lim
nÑ8

an

bn
= lim

nÑ8

n4

(2n + 7)4 = lim
nÑ8

1

(2 + 7/n)4 =
1
24

exists and is nonzero. Since the series
8
ř

n=1
bn is a divergent geometric series (with

ratio r = 21/3 ą 1), the given series diverges.

(It is possible to use the plain comparison test as well. One needs to show
something like an = n42n/3

(2n+7)4 ě
n42n/3

(2n+7n)4 = 1
94 bn.)
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Solution 3: Alternately, one can apply the ratio test:

lim
nÑ8

ˇ

ˇ

ˇ

ˇ

an+1

an

ˇ

ˇ

ˇ

ˇ

= lim
nÑ8

ˇ

ˇ

ˇ

ˇ

(n + 1)42(n+1)/3/(2(n + 1) + 7)4

n42n/3/(2n + 7)4

ˇ

ˇ

ˇ

ˇ

= lim
nÑ8

(n + 1)4(2n + 7)4

n4(2n + 9)4
2(n+1)/3

2n/3

= lim
nÑ8

(1 + 1/n)4(2 + 7/n)4

(2 + 9/n)4 ¨ 21/3 = 1 ¨ 21/3
ą 1.

Since the ratio of consecutive terms is greater than one, by the ratio test, the series
diverges.

S-34: (a) For large n, n2 " 1 and so
?

n2 + 1 «
?

n2 = n. This suggests that we apply the
limit comparison test with an = 1?

n2+1
and bn = 1

n . Since

lim
nÑ8

an

bn
= lim

nÑ8

1/
?

n2 + 1
1/n

= lim
nÑ8

1
a

1 + 1/n2
= 1

and since
8
ř

n=1

1
n diverges, the given series diverges.

(b) Since cos(nπ) = (´1)n, the given series converges by the alternating series test. To
check that an = n

2n decreases to 0 as n tends to infinity, note that

an+1

an
=

(n + 1)2´(n+1)

n2´n =
(

1 +
1
n

)1
2

is smaller than 1 (so that an+1 ď an) for all n ě 1, and is smaller than 3
4 (so an+1 ď

3
4 an) for

all n ě 2.

S-35: For large k, k4 " 2k3 ´ 2 and k5 " k2 + k so

k4 ´ 2k3 + 2
k5 + k2 + k

«
k4

k5 =
1
k

.

This suggests that we apply the limit comparison test with ak =
k4´2k3+2
k5+k2+k and bk =

1
k .

Since

lim
kÑ8

ak
bk

= lim
kÑ8

k4 ´ 2k3 + 2
k5 + k2 + k

¨
k
1
= lim

kÑ8

k5 ´ 2k4 + k2

k5 + k2 + k
= lim

kÑ8

1´ 2/k + 1/k3

1 + 1/k3 + 1/k4

= 1

and since
8
ř

k=1

1
k diverges (by the p–test with p = 1), the given series diverges.
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S-36: (a) For large n, n2 " n + 1 and so the numerator n2 + n + 1 « n2. For large n, n5 " n
and so the denominator n5 ´ n « n5. So, for large n,

n2 + n + 1
n5 ´ n

«
n2

n5 =
1
n3 .

This suggests that we apply the limit comparison test with an = n2+n+1
n5´n and bn = 1

n3 .
Since

lim
nÑ8

an

bn
= lim

nÑ8

(n2 + n + 1)/(n5 ´ n)
1/n3 = lim

nÑ8

n5 + n4 + n3

n5 ´ n
= lim

nÑ8

1 + 1/n + 1/n2

1´ 1/n4

= 1

exists and is nonzero, and since
8
ř

n=1

1
n3 converges (by the p–test with p = 3 ą 1), the given

series converges.

(b) For large m, 3m " | sin
?

m| and so

3m + sin
?

m
m2 «

3m
m2 =

3
m

.

This suggests that we apply the limit comparison test with am = 3m+sin
?

m
m2 and bm = 1

m .
(We could also use bm = 3

m .) Since

lim
mÑ8

am

bm
= lim

mÑ8

(3m + sin
?

m)/m2

1/m
= lim

mÑ8

3m + sin
?

m
m

= lim
mÑ8

3 +
sin
?

m
m

= 3

exists and is nonzero, and since
8
ř

m=1

1
m diverges (by the p–test with p = 1), the given

series diverges.

S-37:
8
ÿ

n=5

1
en =

8
ÿ

n=5

(
1
e

)n

=
8
ÿ

n=0

(
1
e

)n
´

4
ÿ

n=0

(
1
e

)n

=
1

1´ 1
e
´

1´
(

1
e

)5

1´ 1
e

=

(
1
e

)5

1´ 1
e
=

1

e5
(

1´ 1
e

)

=
1

e5 ´ e4
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S-38: This is a geometric series.

8
ÿ

n=2

6
7n =

8
ÿ

n=0

6
7n+2 =

8
ÿ

n=0

6
72 ¨

1
7n

We use Equation 3.2.2 in the CLP-2 text with a = 6
72 and r = 1

7 .

=
6
72 ¨

1
1´ 1

7

=
6

42
=

1
7

S-39: (a)

Solution 1: The given series is

1 +
1
3
+

1
5
+

1
7
+

1
9
+ ¨ ¨ ¨ =

8
ÿ

n=1

an with an =
1

2n´ 1

First we’ll develop some intuition by observing that, for very large n, an «
1

2n . We

know that the series
8
ř

n=1

1
n diverges by the p–test with p = 1. So let’s apply the limit

comparison test with bn = 1
n . Since

lim
nÑ8

an

bn
= lim

nÑ8

n
2n´ 1

= lim
nÑ8

1
2´ 1

n
=

1
2

the series
8
ř

n=1
an converges if and only if the series

8
ř

n=1
bn converges. So the given

series diverges.

Solution 2: The series

1 +
1
3
+

1
5
+

1
7
+

1
9
+ ¨ ¨ ¨ ě

1
2
+

1
4
+

1
6
+

1
8
+

1
10

+ ¨ ¨ ¨

=
1
2

(
1 +

1
2
+

1
3
+

1
4
+

1
5
+ ¨ ¨ ¨

)

The series in the brackets is the harmonic series which we know diverges, by the
p–test with p = 1. So the series on the right hand side diverges. By the direct
comparison test, the series on the left hand side diverges too.

(b) We’ll use the ratio test with an =
(2n + 1)

22n+1 . Since

an+1

an
=

(2n + 3)
22n+3

22n+1

(2n + 1)
=

1
4
(2n + 3)
(2n + 1)

=
1
4
(2 + 3/n)
(2 + 1/n)

Ñ
1
4
ă 1 as n Ñ 8

the series converges.
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S-40: (a) For very large k, k ! k2 so that

an =
3
?

k
k2 ´ k

«

3
?

k
k2 =

1
k5/3 .

We apply the limit comparison test with bk =
1

k5/3 . Since

lim
kÑ8

ak
bk

= lim
kÑ8

3
?

k/(k2 ´ k)
1/k5/3 = lim

kÑ8

k2

k2 ´ k
= lim

kÑ8

1
1´ 1/k

= 1

exists and is nonzero, and
8
ř

k=1

1
k5/3 converges (by the p–test with p = 5

3 ą 1), the given

series converges by the limit comparison test.

(b) The kth term in this series is ak =
k1010k(k!)2

(2k)! . Factorials often work well with the ratio
test, because they simplify so nicely in quotients.

ak+1

ak
=

(k + 1)1010k+1((k + 1)!)2

(2k + 2)!
¨

(2k)!
k1010k(k!)2 = 10

(k + 1
k

)10 (k + 1)2

(2k + 2)(2k + 1)

= 10
(

1 +
1
k

)10 (1 + 1/k)2

(2 + 2/k)(2 + 1/k)

As k tends to8, this converges to 10ˆ 1ˆ 1
2ˆ2 ą 1. So the series diverges by the ratio test.

(c) We’ll use the integal test. The kth term in the series is ak =
1

k(log k)(log log k) = f (k) with

f (x) = 1
x(log x)(log log x) , which is continuous, positive and decreasing for x ě 3.

ż 8

3
f (x) dx =

ż 8

3

dx
x(log x)(log log x)

= lim
RÑ8

ż R

3

dx
x(log x)(log log x)

= lim
RÑ8

ż log R

log 3

dy
y log y

with y = log x, dy =
dx
x

= lim
RÑ8

ż log log R

log log 3

dt
t

with t = log y, dt =
dy
y

= lim
RÑ8

[
log t

]log log R

log log 3
= 8

Since the integral is divergent, the series is divergent as well by the integral test.

S-41: For large n, the numerator n3 ´ 4 « n3 and the denominator 2n5 ´ 6n « 2n5, so the
nth term is approximately n3

2n5 = 1
2n2 . So we apply the limit comparison test with

an = n3´4
2n5´6n and bn = 1

n2 . Since

lim
nÑ8

an

bn
= lim

nÑ8

(n3 ´ 4)/(2n5 ´ 6n)
1/n2 = lim

nÑ8

1´ 4
n3

2´ 6
n4

=
1
2
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exists and is nonzero, the given series
8
ř

n=1
an converges if and only if the series

8
ř

n=1
bn

converges. Since the series
8
ř

n=1
bn =

8
ř

n=1

1
n2 is a convergent p-series (with p = 2), both

series converge.

S-42: By the alternating series test, the error introduced when we approximate the series
8
ÿ

n=1

(´1)n

n ¨ 10n by
N
ÿ

n=1

(´1)n

n ¨ 10n is at most the magnitude of the first omitted term,

1
(N + 1)10(N+1)

. By trial and error, we find that this expression becomes smaller than

10´6 when N + 1 ě 6. So the smallest allowable value is N = 5.

S-43: The sequence t 1
n2 u decreases to zero as n increases to infinity. So, by the alternating

series error bound, which is given in Theorem 3.3.14 in the CLP-2 text, π2

12 ´ SN lies

between zero and the first omitted term, (´1)N

(N+1)2 . We therefore need 1
(N+1)2 ď 10´6, which

is equivalent to N + 1 ě 103 and N ě 999.

S-44: The error introduced when we approximate S by the Nth partial sum

SN =
řN

n=1
(´1)n+1

(2n+1)2 lies between 0 and the first term dropped, which is
(´1)n+1

(2n+1)2

ˇ

ˇ

ˇ

n=N+1
= (´1)N+2

(2N+3)2 . So we need the smallest positive integer N obeying

1
(2N + 3)2 ď

1
100

(2N + 3)2
ě 100

2N + 3 ě 10

N ě
7
2

So we need N = 4 and then

S4 =
1
32 ´

1
52 +

1
72 ´

1
92

S-45: (a) There are plenty of powers/factorials. So let’s try the ratio test with an = nn

9nn! .

lim
nÑ8

an+1

an
= lim

nÑ8

(n + 1)n+1

9n+1(n + 1)!
9nn!
nn = lim

nÑ8

(n + 1)n+1

nn 9 (n + 1)
= lim

nÑ8

(1 + 1/n)n

9
=

e
9

Here we have used that lim
nÑ8

(1 + 1/n)n = e. See Example 3.7.20 in the CLP-1 text, with

x = 1
n and a = 1. As e ă 9, our series converges.

(b) We know that the series
ř8

n=1
1

n2 converges, by the p–test with p = 2, and also that
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log n ě 2 for all n ě e2. So let’s use the limit comparison test with an = 1
nlog n and bn = 1

n2 .

lim
nÑ8

an

bn
= lim

nÑ8

1
nlog n ¨

n2

1
= lim

nÑ8

1
nlog n´2 = 0

So our series converges, by the limit comparison test.

S-46: (a)

Solution 1: • Our first task is to identify the potential sources of impropriety for this
integral.

• The domain of integration extends to +8. On the domain of integration the
denominator is never zero so the integrand is continuous. Thus the only
problem is at +8.

• Our second task is to develop some intuition about the behavior of the
integrand for very large x. When x is very large:

– | sin x| ď 1 ! x, so that the numerator x + sin x « x, and

– 1 ! x2, so that denominator 1 + x2 « x2, and

– the integrand
x + sin x

1 + x2 «
x
x2 =

1
x

• Now, since
ż 8

2

dx
x

diverges, we would expect
ż 8

2

x + sin x
1 + x2 dx to diverge too.

• Our final task is to verify that our intuition is correct. To do so, we set

f (x) =
x + sin x

1 + x2 g(x) =
1
x

and compute

lim
xÑ8

f (x)
g(x)

= lim
xÑ8

x + sin x
1 + x2 ˜

1
x

= lim
xÑ8

(1 + sin x/x)x
(1/x2 + 1)x2 ˆ x

= lim
xÑ8

1 + sin x/x
1/x2 + 1

= 1

• Since
ż 8

2
g(x) dx =

ż 8

2

dx
x

diverges, by Example 1.12.8 in the CLP-2 text10,

with p = 1, Theorem 1.12.22(b) in the CLP-2 text now tells us that
ż 8

2
f (x) dx =

ż 8

2

x + sin x
1 + x2 dx diverges too.

10 To change the lower limit of integration from 1 to 2, just apply Theorem 1.12.20 in the CLP-2 text.
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Solution 2: Let’s break up the integrand as
x + sin x

1 + x2 =
x

1 + x2 +
sin x

1 + x2 . First, we

consider the integral
ż 8

2

sin x
1 + x2 dx.

•
| sin x|
1 + x2 ď

1
1 + x2 , so if we can show

ż

1
1 + x2 dx converges, we can conclude

that
ż

| sin x|
1 + x2 dx converges as well by the comparison test.

•
ż 8

2

1
1 + x2 dx ď

ż 8

2

1
x2 dx

•
ż 8

2

1
x2 dx converges (by the p–test with p = 2)

• So the integral
ż 8

2

sin x
1 + x2 dx converges by the comparison test, and hence

•
ż 8

2

sin x
1 + x2 dx converges as well.

Therefore,
ż 8

2

x + sin x
1 + x2 dx converges if and only if

ż 8

2

x
1 + x2 dx converges. But

ż 8

2

x
1 + x2 dx = lim

rÑ8

ż r

2

x
1 + x2 dx = lim

rÑ8

[
1
2 log(1 + x2)

]r

2
= 8

diverges, so
ż 8

2

x + sin x
1 + x2 dx diverges.

(b) The problem is that f (x) =
x + sin x

1 + x2 is not a decreasing function. To see this,

compute the derivative:

f 1(x) =
(1 + cos x)(1 + x2)´ (x + sin x)(2x)

(1 + x2)2 =
(cos x´ 1)x2 ´ 2x sin x + 1 + cos x

(1 + x2)2

If x = 2mπ, the numerator is 0´ 0 + 1 + 1 ą 0.

Therefore, the integral test does not apply.

(c)

Solution 1: Set an = n+sin n
1+n2 . We first try to develop some intuition about the behaviour

of an for large n and then we confirm that our intuition was correct.

• Step 1: Develop intuition. When n " 1, the numerator n + sin n « n, and the
denominator 1 + n2 « n2 so that an «

n
n2 = 1

n and it looks like our series
should diverge by the p–test (Example 3.3.6 in the CLP-2 text) with p = 1.

• Step 2: Verify intuition. To confirm our intuition we set bn = 1
n and compute

the limit

lim
nÑ8

an

bn
= lim

nÑ8

n+sin n
1+n2

1
n

= lim
nÑ8

n[n + sin n]
1 + n2 = lim

nÑ8

1 + sin n
n

1
n2 + 1

= 1
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We already know that the series
8
ř

n=1
bn =

8
ř

n=1

1
n diverges by the p–test with

p = 1. So our series diverges by the limit comparison test, Theorem 3.3.11 in
the CLP-2 text.

Solution 2: Since
ˇ

ˇ

sin n
1+n2

ˇ

ˇ ď 1
n2 and the series

8
ř

n=1

1
n2 converges by the p–test with p = 2, the

series
8
ř

n=1

sin n
1+n2 converges. Hence

8
ř

n=1

n+sin n
1+n2 converges if and only if the series

8
ř

n=1

n
1+n2 converges. Now f (x) = x

1+x2 is a continuous, positive, decreasing function

on [1,8) since

f 1(x) =
(1 + x2)´ x(2x)

(1 + x2)2 =
1´ x2

(1 + x2)2

is negative for all x ą 1. We saw in part (a) that the integral
ş8

2
x

1+x2 dx diverges. So

the integral
ş8

1
x

1+x2 dx diverges too and the sum
8
ř

n=1

n
1+n2 diverges by the integral

test. So
8
ř

n=1

n+sin n
1+n2 diverges.

S-47: Note that
e´
?

x
?

x
=

1
?

xe
?

x
decreases as x increases. Hence, for every n ě 1,

e´
?

x
?

x
ě

e
?

n
?

n
for x in the interval [n´ 1, n]

So,
ż n

n´1

e´
?

x
?

x
dx ě

ż n

n´1

e´
?

n
?

n
dx

=

[
e´
?

n
?

n
x

]x=n

x=n´1

=
e´
?

n
?

n

Then, for every N ě 1,

EN =
8
ÿ

n=N+1

e´
?

n
?

n
ď

8
ÿ

n=N+1

ż n

n´1

e´
?

x
?

x
dx

=

ż N+1

N

e´
?

x
?

x
dx +

ż N+2

N+1

e´
?

x
?

x
dx + ¨ ¨ ¨

=

ż 8

N

e´
?

x
?

x
dx
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Substituting y =
?

x, dy = 1
2

dx?
x ,

ż 8

N

e´
?

x
?

x
dx = 2

ż 8

?
N

e´y dy = ´2e´y
ˇ

ˇ

ˇ

8

?
N
= 2e´

?
N

This shows that
ř8

n=N+1
e´
?

n
?

n converges and is between 0 and 2e´
?

N. Since

E14 = 2e´
?

14 = 0.047, we may truncate the series at n = 14.

8
ÿ

n=1

e´
?

n
?

n
=

14
ÿ

n=1

e´
?

n
?

n
+ E14

= 0.3679 + 0.1719 + 0.1021 + 0.0677 + 0.0478
+ 0.0352 + 0.0268 + 0.0209 + 0.0166 + 0.0134
+ 0.0109 + 0.0090 + 0.0075 + 0.0063 + E14

= 0.9042 + E14

The sum is between 0.9035 and 0.9535. (This even allows for a roundoff error of 0.00005
in each term as we were calculating the partial sum.)

S-48: Let’s get some intuition to guide us through a proof. Since
8
ř

n=1
an, converges an

must converge to zero as n Ñ 8. So, when n is quite large, an
1´an

«
an

1´0 = an
1 , and we

know
ř

an converges. So, we want to separate the “large” indices from a finite number
of smaller ones.

Since lim
nÑ8

an = 0, there must be11 some integer N such that 1
2 ą an ě 0 for all n ą N.

Then, for n ą N,
an

1´ an
ď

an

1´ 1/2
= 2an

From the information in the problem statement, we know
8
ÿ

n=N+1

2an = 2
8
ÿ

n=N+1

an converges.

So, by the direct comparison test,
8
ÿ

n=N+1

an

1´ an
converges as well.

Since the convergence of a series is not affected by its first N terms, as long as N is finite,
we conclude

8
ÿ

n=1

an

1´ an
converges.

11 We could have chosen any positive number strictly less than 1, not only 1
2 .
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S-49: By the divergence test, the fact that
8
ř

n=0
(1´ an) converges guarantees that

lim
nÑ8

(1´ an) = 0, or equivalently, that lim
nÑ8

an = 1. So, by the divergence test, a second
time, the fact that

lim
nÑ8

2nan = +8

guarantees that
8
ř

n=0
2nan diverges too.

S-50: By the divergence test, the fact that
8
ÿ

n=1

nan ´ 2n + 1
n + 1

converges guarantees that

lim
nÑ8

nan ´ 2n + 1
n + 1

= 0, or equivalently, that

0 = lim
nÑ8

n
n + 1

an ´ lim
nÑ8

2n´ 1
n + 1

= lim
nÑ8

an ´ 2 ðñ lim
nÑ8

an = 2

The series of interest can be written ´ log a1 +
8
ř

n=1

[
log(an)´ log(an+1)

]
which looks like

a telescoping series. So we’ll compute the partial sum

SN = ´ log a1 +
N
ÿ

n=1

[
log(an)´ log(an+1)

]

= ´ log a1 +
[

log(a1)´ log(a2)
]
+
[

log(a2)´ log(a3)
]
+ ¨ ¨ ¨+

[
log(aN)´ log(aN+1)

]

= ´ log(aN+1)

and then take the limit N Ñ 8

´ log a1 +
8
ÿ

n=1

[
log(an)´ log(an+1)

]
= lim

NÑ8
SN = ´ lim

NÑ8
log(aN+1) = ´ log 2 = log

1
2

S-51: We are told that
ř8

n=1 an converges. Thus we must have that lim
nÑ8

an = 0. In
particular, there is an index N such that 0 ď an ď 1 for all n ě N. Then:

0 ď a2
n ď an for n ą N

By the direct comparison test,
8
ÿ

n=N+1

a2
n converges.

Since convergence doesn’t depend on the first N terms of a series for any finite N,
8
ÿ

n=1

a2
n converges as well.
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S-52: The most-commonly used word makes up α percent of all the words. So, we want
to find α.

If we add together the frequencies of all the words, they should amount to 100%. That is,

20,000
ÿ

n=1

α

n
= 100

We can approximate the sum (with α left as a parameter) using the ideas behind the
integral test. (See Example 3.3.4.)

x

y

1 2 3 4

α

5

f (x) = α
x

As we see in the diagram above,
N
ÿ

n=1

α

n
(which is the sum of the areas of the rectangles) is

greater than
ż N+1

1

α

x
dx (the area under the curve). That is,

ż N+1

1

α

x
dx ă

N
ÿ

n=1

α

n
.

Using the fact that our language’s 20,000 words make up 100% of the words used, we can
find a lower bound for α.

100 =
20,000
ÿ

n=1

α

n
ą

ż 20,001

1

α

x
dx =

[
α log(x)

]20,001

1
= α log(20, 001)

α ă
100

log(20, 001)

We can find an upper bound for α in a similar manner.

x

y

1 2 3 4

α

5

f (x) = α
x
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From the diagram, we see
N
ÿ

n=2

α

n
(which is the sum of the areas of the rectangles,

excluding the first) is less than
ż N

1

α

x
dx. (The reason for excluding the first rectangle is to

avoid comparing our series to an integral that diverges.) That is,

N
ÿ

n=2

α

n
ă

ż N

1

α

x
dx .

Therefore,

100 =
20,000
ÿ

n=1

α

n
= α +

20,000
ÿ

n=2

α

n

ă α +

ż 20,00

1

α

x
dx = α + α log(20, 000) = α

[
1 + log(20, 000)

]

α ą
100

1 + log(20, 000)

Using a calculator, we see

9.17 ă α ă 10.01

So, the most-commonly used word makes up about 9-10 percent of the total words.

S-53: Generalizing our work in Question 52, we find the approximations:

ż b+1

a

1
x

dx ă
b
ÿ

n=a

1
n
ă

ż b

a´1

1
x

dx

when a ě 2. The inequality
b+1
ş

a

1
x dx ă

b
ř

n=a

1
n can be read off of the sketch

x

y

a´ 1 b + 1a b

1

f (x) = 1
x

and the inequality
b
ř

n=a

1
n ă

b
ş

a´1

1
x dx can be read off of the sketch
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x

y

a´ 1 b + 1a b

1

f (x) = 1
x

We will evaluate the total population by writing

2ˆ106
ÿ

n=1

2ˆ 106

n
=

a´1
ÿ

n=1

2ˆ 106

n
+

2ˆ106
ÿ

n=a

2ˆ 106

n

and applying the above integral approximations to the second sum. We want our error to
be less than one million, so we need to choose a value of a such that:

2ˆ 106
ż 2ˆ106

a´1

1
x

dx
looooooooooomooooooooooon

upper bound

´ 2ˆ 106
ż 2ˆ106+1

a

1
x

dx
loooooooooooomoooooooooooon

lower bound

ă 106

ż 2ˆ106

a´1

1
x

dx´
ż 2ˆ106+1

a

1
x

dx ă
1
2

[
log
(

2ˆ 106
)
´ log(a´ 1)

]
´

[
log
(

2ˆ 106 + 1
)
´ log(a)

]
ă

1
2[

log
(

2ˆ 106
)
´ log

(
2ˆ 106 + 1

)]
+ [log(a)´ log(a´ 1)] ă

1
2

log
(

2ˆ 106

2ˆ 106 + 1

)
+ log

(
a

a´ 1

)
ă

1
2

The first term is extremely close to 0, so we ignore it.

log
(

a
a´ 1

)
ă

1
2

a
a´ 1

ă e1/2 =
?

e

a ă a
?

e´
?

e
?

e ă a(
?

e´ 1)
?

e
?

e´ 1
ă a

Since
?

e
?

e´ 1
« 2.5, we use a = 3. That is, we will approximate the value of

2ˆ106
ÿ

n=3

1
n

using

an integral. Then, we will use that approximation to estimate our total population.
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ż 2ˆ106+1

3

1
x

dx ă
2ˆ106
ÿ

n=3

1
n

ă

ż 2ˆ106

2

1
x

dx

log
(

2ˆ 106 + 1
)
´ log(3) ă

2ˆ106
ÿ

n=3

1
n

ă log
(

2ˆ 106
)
´ log(2)

1 +
1
2
+ log

(
2ˆ 106 + 1

)
´ log(3) ă

2ˆ106
ÿ

n=1

1
n

ă 1 +
1
2
+ log

(
2ˆ 106

)
´ log(2)

3
2
+ log

(
2ˆ 106 + 1

3

)
ă

2ˆ106
ÿ

n=1

1
n

ă
3
2
+ 6 log(10)

2ˆ 106
(3

2
+ log

(
2
3 ˆ 106 + 1

3

) )
ă

2ˆ106
ÿ

n=1

2ˆ 106

n
ă 2ˆ 106

(3
2
+ 6 log (10)

)

29, 820, 091 ă population ă 30, 631, 021

Solutions to Exercises 3.4 — Jump to TABLE OF CONTENTS

S-1: False. For example if bn = 1
n , then

8
ř

n=1
(´1)n+1bn =

8
ř

n=1
(´1)n+1 1

n converges by the

alternating series test, but
8
ř

n=1

1
n diverges by the p–test.

Remark: if we had added that tbnu is a sequence of alternating terms, then by
Theorem 3.4.2 in the CLP-2 text, the statement would have been true. This is because
8
ÿ

n=1

(´1)n+1bn would either be equal to
8
ÿ

n=1

|bn| or ´
8
ÿ

n=1

|bn|.

S-2: Absolute convergence describes the situation where
ř

|an| converges (see
Definition 3.4.1 in the CLP-2 text). By Theorem 3.4.2 in the CLP-2 text, this guarantees
that also

ř

an converges.

Conditional convergence describes the situation where
ř

|an| diverges but
ř

an
converges (see again Definition 3.4.1 in the CLP-2 text).

If
ř

an diverges, we just say it diverges. The reason is that if
ř

an diverges, we
automatically know

ř

|an| diverges as well, so there’s no need for a special name.
ř

an converges
ř

an diverges

ř

|an| converges converges absolutely not possible

ř

|an| diverges converges conditionally diverges
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S-3: The series
8
ř

n=1

(´1)n

9n+5 converges by the alternating series test. On the other hand the

series
8
ř

n=1

ˇ

ˇ

(´1)n

9n+5

ˇ

ˇ =
ř8

n=1
1

9n+5 diverges by the limit comparison test with bn = 1
n . So the

given series is conditionally convergent.

S-4: Note that (´1)2n+1 = (´1) ¨ (´1)2n = ´1. So we can simplify

8
ÿ

n=1

(´1)2n+1

1 + n
= ´

8
ÿ

n=1

1
1 + n

Since
1

1 + n
ě

1
n + n

=
1

2n
,

8
ÿ

n=1

1
1 + n

diverges by the comparison test with the

divergent harmonic series
8
ř

n=1

1
n . The extra overall factor of ´1 in the original series does

not change the conclusion of divergence.

S-5: Since

lim
nÑ8

1 + 4n

3 + 22n = lim
nÑ8

1 + 4n

3 + 4n = 1

the alternating series test cannot be used. Indeed, lim
nÑ8

(´1)n´1 1 + 4n

3 + 22n does not exist (for

very large n, (´1)n´1 1+4n

3+22n alternates between a number close to +1 and a number close
to ´1) so the divergence test says that the series diverges. (Note that “none of the above”
cannot possibly be the correct answer — every series either converges absolutely,
converges conditionally, or diverges.)

S-6: First, we’ll develop some intuition. For very large n

ˇ

ˇ

ˇ

ˇ

?
n cos(n)
n2 ´ 1

ˇ

ˇ

ˇ

ˇ

«

ˇ

ˇ

ˇ

ˇ

?
n cos(n)

n2

ˇ

ˇ

ˇ

ˇ

=

ˇ

ˇ

ˇ

ˇ

cos(n)
n3/2

ˇ

ˇ

ˇ

ˇ

ď
1

n3/2

since |cos(n)| ď 1 for all n. By the p-test, which is in Example 3.3.6 in the CLP-2 text, the

series
8
ÿ

n=5

1
np converges for all p ą 1. So we would expect the given series to converge

absolutely.

Now, to confirm that our intuition is correct, we’ll first try the limit comparison theorem,
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which is Theorem 3.3.11 in the CLP-2 text, with an =
ˇ

ˇ

ˇ

?
n cos(n)
n2´1

ˇ

ˇ

ˇ
and bn = 1

n3/2 .

lim
nÑ8

an

bn
= lim

nÑ8

ˇ

ˇ

ˇ

?
n cos(n)
n2´1

ˇ

ˇ

ˇ

1
n3/2

= lim
nÑ8

?
n ¨
?

n3
| cos n|

n2 ´ 1

= lim
nÑ8

n2| cos n|
n2 ´ 1

= lim
nÑ8

(
1

1´ 1/n2

)
| cos n|

= lim
nÑ8

1 ¨ | cos n|

Unfortunately, this limit doesn’t exist, so this attempt to use the limit comparison
theorem has failed. Fortunately, having seen that the cos n caused the failure, it is not
hard to adjust our strategy to get a successful proof of absolute convergence. First, in
step 1 below, we use the comparison test to eliminate the cos n and then, in step 2 below,
we apply the limit comparison test.

Step 1: Since | cos n| ď 1, we have
ˇ

ˇ

ˇ

ˇ

?
n cos(n)
n2 ´ 1

ˇ

ˇ

ˇ

ˇ

ď

?
n

n2 ´ 1

for all n ą 1. So, by part (a) of the comparison test, which is Theorem 3.3.8 in the

CLP-2 text, if the series
8
ÿ

n=5

?
n

n2 ´ 1
converges, then we will have that the series

8
ÿ

n=5

ˇ

ˇ

ˇ

ˇ

?
n cos(n)
n2 ´ 1

ˇ

ˇ

ˇ

ˇ

also converges, and hence that the series
8
ÿ

n=5

?
n cos(n)
n2 ´ 1

converges

absolutely.

Step 2: Now, to prove that the series
8
ÿ

n=5

?
n

n2 ´ 1
converges, we apply the limit

comparison test with an =
?

n
n2´1 and bn = 1

n3/2 (for n ě 5). Since

lim
nÑ8

an

bn
= lim

nÑ8

?
n

n2´1
1

n3/2

= lim
nÑ8

?
n ¨
?

n3

n2 ´ 1

= lim
nÑ8

n2

n2 ´ 1
= lim

nÑ8

1
1´ 1/n2

= 1

and since
8
ÿ

n=5

1
n3/2 converges by the p-test, the limit comparison test tells us that the

series
8
ÿ

n=5

?
n

n2 ´ 1
converges. So, by step 1,

8
ÿ

n=5

?
n cos(n)
n2 ´ 1

converges absolutely.

S-7: We first develop some intuition about
8
ÿ

n=1

ˇ

ˇ

ˇ

ˇ

n2 ´ sin n
n6 + n2

ˇ

ˇ

ˇ

ˇ

, where we take the absolute

value of the summands to consider whether the series converges absolutely. For very
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large n, n2 dominates sin n and n6 dominates n2 so that
ˇ

ˇ

ˇ

ˇ

n2 ´ sin n
n6 + n2

ˇ

ˇ

ˇ

ˇ

«
n2

n6 =
1
n4

The series
8
ÿ

n=1

1
n4 converges by the p–test with p = 4 ą 1. We expect the given series to

converge too.

To verify that our intuition is correct, we apply the limit comparison test with

an =
n2 ´ sin n
n6 + n2 and bn =

1
n4

which is valid since

lim
nÑ8

an

bn
= lim

nÑ8

ˇ

ˇ

ˇ

ˇ

(n2 ´ sin n)
n6 + n2

ˇ

ˇ

ˇ

ˇ

¨
n4

1
= lim

nÑ8

|n6 ´ n4 sin n|
n6 + n2 = lim

nÑ8

1´ n´2 sin n
1 + n´4 = 1

exists and is nonzero. Since the series
8
ř

n=1
bn converges, the series

8
ř

n=1

|n2 ´ sin n|
n6 + n2

converges too. Therefore, the series
8
ř

n=1

n2 ´ sin n
n6 + n2 converges absolutely.

S-8: You might think that this series converges by the alternating series test. But you
would be wrong. The problem is that tanu does not converge to zero as n Ñ 8, so that
the series actually diverges by the divergence test. To verify that the nth term does not
converge to zero as n Ñ 8 let’s write an = (2n)!

(n2+1)(n!)2 (i.e. an is the nth term without the
sign) and check to see whether an+1 is bigger than or smaller than an.

an+1

an
=

(2n + 2)!
((n + 1)2 + 1)((n + 1)!)2

(n2 + 1)(n!)2

(2n)!
=

(2n + 2)(2n + 1)
(n + 1)2

n2 + 1
(n + 1)2 + 1

=
2(2n + 1)
(n + 1)

1 + 1/n2

(1 + 1/n)2 + 1/n2 = 4
1 + 1/2n
1 + 1/n

1 + 1/n2

(1 + 1/n)2 + 1/n2

So
lim

nÑ8

an+1

an
= 4

and, in particular, for large n, an+1 ą an. Thus, for large n, an increases with n and so
cannot converge to 0. So the series diverges by the divergence test.

S-9: This series converges by the alternating series test. We want to know whether it

converges absolutely, so we consider the seris
8
ÿ

n=2

ˇ

ˇ

ˇ

ˇ

(´1)n

n(log n)101

ˇ

ˇ

ˇ

ˇ

=
8
ÿ

n=2

1
n(log n)101 .

We’ve seen similar function before (e.g. Example 3.3.7 in the CLP-2 text, with
p = 101 ą 1) and it yields nicely to the integral test. Let f (x) = 1

x(log x)101 . Note f (x) is
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positive and decreasing for n ě 3. Then by the integral test, the series
ř8

n=2
1

n(log n)101

converges if and only if the integral
ş8

2
1

x(log x)101 dx does. We evaluate the integral using

the substitution u = log x, du = 1
x dx.

ż 8

2

1
x(log x)101 dx = lim

bÑ8

ż b

2

1
x(log x)101 dx

= lim
bÑ8

ż log b

log 2

1
u101 du

= lim
bÑ8

[
´1

100u100

]log b

log 2

=
1

100(log 2)100

Since the integral converges, the series
8
ř

n=2

1
n(log n)101 converges, and therefore the series

8
ř

n=2

(´1)n

n(log n)101 converges absolutely.

S-10: The sequence has some positive terms and some negative terms, which limits the

tests we can use. However, if we consider the series
8
ÿ

n=1

ˇ

ˇ

ˇ

ˇ

sin n
n2

ˇ

ˇ

ˇ

ˇ

, we can use the direct

comparison test.

For every n, | sin n| ă 1, so 0 ď
ˇ

ˇ

ˇ

ˇ

sin n
n2

ˇ

ˇ

ˇ

ˇ

ă
1
n2 . Since

8
ÿ

n=1

1
n2 converges, then by the direct

comparison test,
8
ÿ

n=1

ˇ

ˇ

ˇ

ˇ

sin n
n2

ˇ

ˇ

ˇ

ˇ

converges as well. Then
8
ÿ

n=1

sin n
n2 converges absolutely– in

particular, it converges.

S-11: The terms of this series are sometimes negative (for odd values of n where
sin n ă 1

2 ) and sometimes positive. But, they are not strictly alternating, so we can’t use
the alternating series test. Instead, we use a direct comparison test to show the series
converges absolutely.

667



´
1
4
ď

sin n
4

ď
1
4

ñ

(
´

1
4
´

1
8

)
ď

(
sin x

4
´

1
8

)
ă

(
1
4
´

1
8

)

ñ ´
3
8
ď

(
sin x

4
´

1
8

)
ă

1
8

ñ 0 ď
ˇ

ˇ

ˇ

ˇ

sin x
4

´
1
8

ˇ

ˇ

ˇ

ˇ

ă
3
8

ñ 0 ď
ˇ

ˇ

ˇ

ˇ

(
sin x

4
´

1
8

)nˇ
ˇ

ˇ

ˇ

ă

(
3
8

)n

Since
8
ÿ

n=1

(
3
8

)n
converges (it’s a geometric sum with |r| ă 1), by the direct comparison

test,
8
ÿ

n=1

ˇ

ˇ

ˇ

ˇ

(
sin x

4
´

1
8

)nˇ
ˇ

ˇ

ˇ

converges as well.

Then
8
ÿ

n=1

(
sin x

4
´

1
8

)n
converges absolutely–and so it converges.

S-12: The terms of this series are sometimes negative and sometimes positive. But, they
are not strictly alternating, so we can’t use the alternating series test. Instead, we use a
direct comparison test to show the series converges absolutely.

ˇ

ˇ

ˇ

ˇ

ˇ

sin2 n´ cos2 n + 1
2

2n

ˇ

ˇ

ˇ

ˇ

ˇ

ď
1 + 1 + 1

2
2n =

5
2n+1

The series
8
ÿ

n=1

5
2n+1 converges, because it’s a geometric series with r = 1

2 . By the direct

comparison test,
8
ÿ

n=1

ˇ

ˇ

ˇ

ˇ

ˇ

sin2 n´ cos2 n + 1
2

2n

ˇ

ˇ

ˇ

ˇ

ˇ

converges as well. Then
8
ÿ

n=1

sin2 n´ cos2 n + 1
2

2n

converges absolutely, so it converges.

S-13: (a)

Solution 1: We need to show that
8
ř

n=1
24n2e´n3

converges. If we replace n by x in the

summand, we get f (x) = 24x2e´x3
, which we can integate. (Just substitute u = x3.)

So let’s try the integral test. First, we have to check that f (x) is positive and
decreasing. It is certainly positive. To determine if it is decreasing, we compute

d f
dx

= 48xe´x3
´ 24ˆ 3x4e´x3

= 24x(2´ 3x3)e´x3
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which is negative for x ě 1. Therefore f (x) is decreasing for x ě 1, and the integral
test applies. The substitution u = x3, du = 3x2 dx, yields

ż

f (x)dx =

ż

24x2e´x3
dx =

ż

8e´u du = ´8e´u + C = ´8e´x3
+ C.

Therefore
ż 8

1
f (x)dx = lim

RÑ8

ż R

1
f (x)dx = lim

RÑ8

[
´8e´x3

]R

1

= lim
RÑ8

(´8e´R3
+ 8e´1) = 8e´1

Since the integral is convergent, the series
8
ř

n=1
24n2e´n3

converges and the series

8
ÿ

n=1

(´1)n´124n2e´n3
converges absolutely.

Solution 2: Alternatively, we can use the ratio test with an = 24n2e´n3
. We calculate

lim
nÑ8

ˇ

ˇ

ˇ

ˇ

an+1

an

ˇ

ˇ

ˇ

ˇ

= lim
nÑ8

ˇ

ˇ

ˇ

ˇ

ˇ

24(n + 1)2e´(n+1)3

24n2e´n3

ˇ

ˇ

ˇ

ˇ

ˇ

= lim
nÑ8

(
(n + 1)2

n2
en3

e(n+1)3

)

= lim
nÑ8

(
1 +

1
n

)2

e´(3n2+3n+1) = 1 ¨ 0 = 0 ă 1,

and therefore the series converges absolutely.

Solution 3: Alternatively, alternatively, we can use the limiting comparison test. First a

little intuition building. Recall that we need to show that
8
ř

n=1
24n2e´n3

converges.

The nth term in this series is

an = 24n2e´n3
=

24n2

en3

It is a ratio with both the numerator and denominator growing with n. A good rule
of thumb is that exponentials grow a lot faster than powers. For example, if n = 10
the numerator is 2400 = 2.4ˆ 103 and the denominator is about 2ˆ 10434. So we
would guess that an tends to zero as n Ñ 8. The question is “does an tend to zero
fast enough with n that our series converges?”. For example, we know that

ř8
n=1

1
n2

converges (by the p–test with p = 2). So if an tends to zero faster than 1
n2 does, our

series will converge. So let’s try the limiting convergence test with
an = 24n2e´n3

= 24n2

en3 and bn = 1
n2 .

lim
nÑ8

an

bn
= lim

nÑ8

24n2e´n3

1/n2 = lim
nÑ8

24n4

en3
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By l’Hôpital’s rule, twice,

lim
xÑ8

24x4

ex3 = lim
xÑ8

4ˆ 24x3

3x2ex3 by l’Hôpital

= lim
xÑ8

32x
ex3 just cleaning up

= lim
xÑ8

32
3x2ex3 by l’Hôpital, again

= 0

That’s it. The limit comparison test now tells us that
ř8

n=1 an converges.

(b) In part (a) we saw that 24n2e´n3
is positive and decreasing. The limit of this sequence

equals 0 (as can be shown with l’Hôpital’s Rule, just as we did at the end of the third
solution of part (a)). Therefore, we can use the alternating series test, so that the error

made in approximating the infinite sum S =
8
ř

n=1
an =

8
ř

n=1
(´1)n´124n2e´n3

by the sum of

its first N terms, SN =
N
ř

n=1
an, lies between 0 and the first omitted term, aN+1. If we use 5

terms, the error satisfies

|S´ S5| ď |a6| = 24ˆ 36e´63
« 1.3ˆ 10´91

S-14: The error in our approximation using through term N is at most 1
(2(N+1))! . We want

1
(2(N+1))! ă

1
1000 . By checking small values of N, we see that 8! = 40320 ą 1000, so if

N = 3, then 1
2(N+1)! =

1
40320 ă

1
1000 . So, for our approximation, it suffices to consider the

first four terms of our series.

cos(1) «
3
ÿ

N=0

(´1)n

(2n)!
=

1
0!
´

1
2!

+
1
4!
´

1
6!

= 1´
1
2
+

1
24
´

1
720

=
720´ 360 + 30´ 1

720
=

379
720

When we use a calculator, we see

389
720

= 0.540277

cos(1) « 0.540302

cos(1)´
389
720

« 0.000024528 «
1

40770

So, our error is reasonably close to our bound of 1
40320 , and far smaller than 1

1000 .
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S-15: The terms of this series are sometimes negative and sometimes positive. But, they
are not strictly alternating, so we can’t use the alternating series test. Instead, we use a
direct comparison test to show the series converges absolutely.

If n is prime, then
ˇ

ˇ

ˇ

an

en

ˇ

ˇ

ˇ
=

ˇ

ˇ

ˇ

ˇ

ˇ

´
en/2

en

ˇ

ˇ

ˇ

ˇ

ˇ

=
1

en/2 =

(
1
?

e

)n

If n is not prime, then
ˇ

ˇ

ˇ

an

en

ˇ

ˇ

ˇ
=

ˇ

ˇ

ˇ

ˇ

´
n2

en

ˇ

ˇ

ˇ

ˇ

=
n2

en

For n sufficiently large, n2 ă en/2, so for n sufficiently large,

n2

en ď

(
1
?

e

)n
.

Since e ą 1, then
?

e ą 1, so the geometric series
ÿ

(
1
?

e

)n
has |r| = r = 1?

e ă 1, so it

converges. By the direct comparison test,
8
ÿ

n=1

ˇ

ˇ

ˇ

an

en

ˇ

ˇ

ˇ
converges as well. Then

8
ÿ

n=1

an

en

converges absolutely, so it converges.

Solutions to Exercises 3.5 — Jump to TABLE OF CONTENTS

S-1:

f (1) =
8
ÿ

n=0

(
3´ 1

4

)n

=
8
ÿ

n=0

(
1
2

)n

This is a geometric series with r = 1
2 , so we know that it converges and

=
1

1´ 1
2

= 2

The question does not ask us to find the interval of convergence of the series defining
f (x). But we will do so anyway, to get a bit more practice. We may rewrite the nth term
of the series defining f (x) as

(
3´ x

4

)n
= arn with a = 1 and r =

3´ x
4
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That is, for every fixed x, we have a geometric series with r = 3´x
4 . So, by (3.2.2) in the

CLP-2 text, the series converges if and only if

|r| =
ˇ

ˇ

ˇ

ˇ

3´ x
4

ˇ

ˇ

ˇ

ˇ

ă 1

ðñ ´ 1 ă
3´ x

4
ă 1

ðñ ´ 4 ă 3´ x ă 4
ðñ ´ 4 ă 3´ x and 3´ x ă 4
ðñ ´ 1 ă x ă 7

S-2: By Theorem 3.5.13 in the CLP-2 text, we may differentiate our function term-by-term
for all x obeying |x´ 5| ă R, where R is the radius of convergence of the power series.
The series defining f (x) is reminiscent of the exponential series

ř8
n=0

Xn

n! of Example 3.5.5
in the CLP-2 text. In that example, we showed that

ř8
n=0

Xn

n! has radius of convergence8.
Since

ˇ

ˇ

ˇ

ˇ

(x´ 5)n

n! + 2

ˇ

ˇ

ˇ

ˇ

ď
Xn

n!
with X = |x´ 5|

the comparison test, Theorem 3.3.8 in the CLP-2 text, tells us that
ř8

n=1
(x´5)n

n!+2 converges
for all x. So we may differentiate our function term-by-term.

f (x) =
8
ÿ

n=1

(x´ 5)n

n! + 2

f 1(x) =
8
ÿ

n=1

d
dx

"

(x´ 5)n

n! + 2

*

=
8
ÿ

n=1

n(x´ 5)n´1

n! + 2

Keep in mind that x is our variable, and for each term, n is constant.

S-3: If x = c, then

f (x) = Aa(c´ c)a + Aa+1(c´ c)a+1 + Aa+2(c´ c)a+2 + ¨ ¨ ¨

= Aa ¨ 0 + Aa+1 ¨ 0 + Aa+2 ¨ 0 + ¨ ¨ ¨
= 0

So, f (x) converges (to the constant 0) when x = c. (Had we allowed a = 0, it would be
possible for f (x) to converge to a nonzero number A0, because we use the convention
00 = 1.)

Depending on the sequence tAnu, it’s possible that f (x) diverges for all x ‰ c. For

example, suppose An = n!, so f (x) =
8
ÿ

n=0

n!(x´ c)n. If x ‰ c, then the limit
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lim
nÑ8

ˇ

ˇ

ˇ

ˇ

(n + 1)!(x´ c)n+1

n!(x´ c)n

ˇ

ˇ

ˇ

ˇ

= lim
nÑ8

(n + 1)|x´ c| is infinity, since x´ c ‰ 0. So, the series

diverges.

We’ve now shown that the series definitely converges at x = c, but at any other point, it
may fail to converge.

S-4: According to Theorem 3.5.9 in the CLP-2 text, because f (x) diverges somewhere,
and because it converges at a point other than its centre, f (x) has a positive radius of
convergence R. That is, f (x) converges whenever |x´ 5| ă R, and it diverges whenever
|x´ 5| ą R.

If R ą 6, then |11´ 5| ă R, so f (x) converges at x = 11; since we are told f (x) diverges at
x = 11, we see R ď 6.

If R ă 6, then | ´ 1´ 5| ą R, so f (x) diverges at x = ´1; since we are told f (x) converges
at x = ´1, we see R ě 6.

Therefore, R = 6.

S-5: (a) We apply the ratio test for the series whose kth term is ak = (´1)k2k+1xk. Then

lim
kÑ8

ˇ

ˇ

ˇ

ˇ

ak+1

ak

ˇ

ˇ

ˇ

ˇ

= lim
kÑ8

ˇ

ˇ

ˇ

ˇ

(´1)k+12k+2xk+1

(´1)k2k+1xk

ˇ

ˇ

ˇ

ˇ

= lim
kÑ8

|2x| = |2x|

Therefore, by the ratio test, the series converges for all x obeying |2x| ă 1, i.e. |x| ă 1
2 , and

diverges for all x obeying |2x| ą 1, i.e. |x| ą 1
2 . So the radius of convergence is R = 1

2 .

Alternatively, one can set Ak = (´1)k2k+1 and compute

A = lim
kÑ8

ˇ

ˇ

ˇ

ˇ

Ak+1

Ak

ˇ

ˇ

ˇ

ˇ

= lim
kÑ8

ˇ

ˇ

ˇ

ˇ

(´1)k+12k+2

(´1)k2k+1

ˇ

ˇ

ˇ

ˇ

= lim
kÑ8

2 = 2

so that R = 1
A = 1

2 , again.

(b) The series is

8
ÿ

k=0

(´1)k2k+1xk = 2
8
ÿ

k=0

(´2x)k = 2
8
ÿ

k=0

rk
ˇ

ˇ

ˇ

r=´2x
= 2ˆ

1
1´ r

=
2

1 + 2x

for all |r| = |2x| ă 1, i.e. all |x| ă 1
2 .
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S-6: We apply the ratio test for the series whose kth term is ak =
xk

10k+1(k+1)! . Then

lim
kÑ8

ˇ

ˇ

ˇ

ˇ

ak+1

ak

ˇ

ˇ

ˇ

ˇ

= lim
kÑ8

ˇ

ˇ

ˇ

ˇ

xk+1

10k+2(k + 2)!
¨

10k+1(k + 1)!
xk

ˇ

ˇ

ˇ

ˇ

= lim
kÑ8

ˇ

ˇ

ˇ

ˇ

ˇ

10k+1

10k+2

ˇ

ˇ

ˇ

ˇ

ˇ

¨

ˇ

ˇ

ˇ

ˇ

(k + 1)!
(k + 2)!

ˇ

ˇ

ˇ

ˇ

¨

ˇ

ˇ

ˇ

ˇ

ˇ

xk+1

xk

ˇ

ˇ

ˇ

ˇ

ˇ

= lim
kÑ8

1
10(k + 2)

|x| = 0 ă 1

for all x. Therefore, by the ratio test, the series converges for all x and the radius of
convergence is R = 8.

Alternatively, one can set Ak =
1

10k+1(k + 1)!
and compute A = lim

kÑ8

ˇ

ˇ

ˇ

ˇ

Ak+1

Ak

ˇ

ˇ

ˇ

ˇ

= 0, so that

R is again +8.

S-7: We apply the ratio test with an = (x´2)n

n2+1 .

lim
nÑ8

ˇ

ˇ

ˇ

an+1

an

ˇ

ˇ

ˇ
= lim

nÑ8

ˇ

ˇ

ˇ

ˇ

(x´ 2)n+1

(n + 1)2 + 1
¨

n2 + 1
(x´ 2)n

ˇ

ˇ

ˇ

ˇ

= lim
nÑ8

n2 + 1
(n + 1)2 + 1

|x´ 2|

= lim
nÑ8

1 + 1/n2

(1 + 1/n)2 + 1/n2 |x´ 2|

= |x´ 2|

So, the series converges if |x´ 2| ă 1 and diverges if |x´ 2| ą 1. That is, the radius of
convergence is 1.

S-8: We apply the ratio test for the series whose nth term is an =
(´1)n(x + 2)n

?
n

. Then

lim
nÑ8

ˇ

ˇ

ˇ

ˇ

an+1

an

ˇ

ˇ

ˇ

ˇ

= lim
nÑ8

ˇ

ˇ

ˇ

ˇ

(x + 2)n+1
?

n + 1

?
n

(x + 2)n

ˇ

ˇ

ˇ

ˇ

= lim
nÑ8

|x + 2|
?

n
?

n + 1

= lim
nÑ8

|x + 2|
1

?
1 + 1/n

= |x + 2|

So the series must converge when |x + 2| ă 1 and must diverge when |x + 2| ą 1. When
x + 2 = 1, the series reduces to

8
ÿ

n=1

(´1)n
?

n
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which converges by the alternating series test. When x + 2 = ´1, the series reduces to

8
ÿ

n=1

1
?

n

which diverges by the p–series test with p = 1
2 . So the interval of convergence is

´1 ă x + 2 ď 1 or (´3,´1].

S-9: We apply the ratio test for the series whose nth term is an = (´1)n

n+1

(
x+1

3

)n
.

lim
nÑ8

ˇ

ˇ

ˇ

ˇ

an+1

an

ˇ

ˇ

ˇ

ˇ

= lim
nÑ8

ˇ

ˇ

ˇ

ˇ

(´1)n+1

n+2

(
x+1

3

)n+1

(´1)n

n+1

(
x+1

3

)n

ˇ

ˇ

ˇ

ˇ

= lim
nÑ8

ˇ

ˇ

ˇ

ˇ

(´1)n+1

(´1)n

ˇ

ˇ

ˇ

ˇ

¨

ˇ

ˇ

ˇ

ˇ

n + 1
n + 2

ˇ

ˇ

ˇ

ˇ

¨

ˇ

ˇ

ˇ

ˇ

(x + 1)n+1

(x + 1)n

ˇ

ˇ

ˇ

ˇ

¨

ˇ

ˇ

ˇ

ˇ

3n

3n+1

ˇ

ˇ

ˇ

ˇ

= lim
nÑ8

(
n + 1
n + 2

)
¨

ˇ

ˇ

ˇ

ˇ

x + 1
3

ˇ

ˇ

ˇ

ˇ

=
|x + 1|

3

Therefore, by the ratio test, the series converges when |x+1|
3 ă 1 and diverges when

|x+1|
3 ą 1. In particular, it converges when

|x + 1| ă 3 ðñ ´3 ă x + 1 ă 3 ðñ ´4 ă x ă 2

and the radius of convergence is R = 3. (Alternatively, one can set An = (´1)n

(n+1)3n and

compute A = limnÑ8
ˇ

ˇ

An+1
An

ˇ

ˇ = 1
3 , so that R = 1

A = 3.)

Next, we consider the endpoints 2 and ´4. At x = 2, i.e. x + 1 = 3, the series is simply
ř8

n=0
(´1)n

n+1 , which is an alternating series: the signs alternate, and the unsigned terms
decrease to zero. Therefore the series converges at x = 2 by the alternating series test.

At x = ´4 the series is

8
ÿ

n=0

(´1)n

n + 1

(
´4 + 1

3

)n
=

8
ÿ

n=0

(´1)n

n + 1
(´1)n =

8
ÿ

n=0

1
n + 1

,

since (´1)n ¨ (´1)n = (´1)2n =
(
(´1)2)n

= 1. This series diverges, either by comparison
or limit comparison with the harmonic series (the p-series with p = 1). (For that matter, it
is exactly equal to the standard harmonic series

ř8
n=1

1
n , re-indexed to start at n = 0.)

In summary, the interval of convergence is ´4 ă x ď 2, or simply (´4, 2].

S-10: We first apply the ratio test with an = (x´2)n

n4/5(5n´4) .

675



lim
nÑ8

ˇ

ˇ

ˇ

an+1

an

ˇ

ˇ

ˇ
= lim

nÑ8

ˇ

ˇ

ˇ

ˇ

(x´ 2)n+1

(n + 1)4/5(5n+1 ´ 4)
¨

n4/5(5n ´ 4)
(x´ 2)n

ˇ

ˇ

ˇ

ˇ

= lim
nÑ8

n4/5(5n ´ 4)
(n + 1)4/5(5n+1 ´ 4)

|x´ 2|

= lim
nÑ8

(1´ 4/5n)

(1 + 1/n)4/5(5´ 4/5n)
|x´ 2|

=
|x´ 2|

5

Therefore the series converges if |x´ 2| ă 5 and diverges if |x´ 2| ą 5. When x´ 2 = +5,

i.e. x = 7, the series reduces to
8
ř

n=1

5n

n4/5(5n´4) =
8
ř

n=1

1
n4/5(1´4/5n)

which diverges by the

limit comparison test with bn = 1
n4/5 . When x´ 2 = ´5, i.e. x = ´3, the series reduces to

8
ř

n=1

(´5)n

n4/5(5n´4) =
8
ř

n=1

(´1)n

n4/5(1´4/5n)
which converges by the alternating series test. So the

interval of convergence is ´3 ď x ă 7 or [´3, 7).

S-11: We apply the ratio test with an = (x+2)n

n2 . Since

lim
nÑ8

ˇ

ˇ

ˇ

an+1

an

ˇ

ˇ

ˇ
= lim

nÑ8

ˇ

ˇ

ˇ

ˇ

ˇ

(x+2)n+1

(n+1)2

(x+2)n

n2

ˇ

ˇ

ˇ

ˇ

ˇ

= lim
nÑ8

n2

(n + 1)2 |x + 2| = lim
nÑ8

1

(1 + 1/n)2 |x + 2| = |x + 2|

we have convergence for

|x + 2| ă 1 ðñ ´1 ă x + 2 ă 1 ðñ ´3 ă x ă ´1

and divergence for |x + 2| ą 1. For |x + 2| = 1, i.e. for x + 2 = ˘1, i.e. for x = ´3,´1, the

series reduces to
8
ř

n=1

(˘1)n

n2 , which converges absolutely, because
8
ř

n=1

1
np converges for

p = 2 ą 1. So the given series converges if and only if ´3 ď x ď ´1.

S-12: We apply the ratio test with an = 4n

n (x´ 1)n. Since

lim
nÑ8

ˇ

ˇ

ˇ

ˇ

an+1

an

ˇ

ˇ

ˇ

ˇ

= lim
nÑ8

ˇ

ˇ

ˇ

ˇ

4n+1(x´ 1)n+1/(n + 1)
4n(x´ 1)n/n

ˇ

ˇ

ˇ

ˇ

= lim
nÑ8

4|x´ 1|
n

n + 1

= 4|x´ 1| lim
nÑ8

n
n + 1

= 4|x´ 1| ¨ 1.

the series converges if

4|x´ 1| ă 1 ðñ ´1 ă 4(x´ 1) ă 1 ðñ ´
1
4
ă x´ 1 ă

1
4
ðñ

3
4
ă x ă

5
4
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and diverges if 4|x´ 1| ą 1. Checking the right endpoint x = 5
4 , we see that

8
ÿ

n=1

4n

n

(
5
4
´ 1
)n

=
8
ÿ

n=1

1
n

is the divergent harmonic series. At the left endpoint x = 3
4 ,

8
ÿ

n=1

4n

n

(
3
4
´ 1
)n

=
8
ÿ

n=1

(´1)n

n

converges by the alternating series test. Therefore the interval of convergence of the
original series is 3

4 ď x ă 5
4 , or

[3
4 , 5

4

)
.

S-13: We apply the ratio test with an = (´1)n (x´1)n

2n(n+2) . Since

lim
nÑ8

ˇ

ˇ

ˇ

ˇ

an+1

an

ˇ

ˇ

ˇ

ˇ

= lim
nÑ8

ˇ

ˇ

ˇ

ˇ

(x´ 1)n+1

2n+1(n + 3)
2n(n + 2)
(x´ 1)n

ˇ

ˇ

ˇ

ˇ

= lim
nÑ8

|x´ 1|
2

n + 2
n + 3

=
|x´ 1|

2
lim

nÑ8

1 + 2/n
1 + 3/n

=
|x´ 1|

2

the series converges if

|x´ 1|
2

ă 1 ðñ |x´ 1| ă 2 ðñ ´2 ă (x´ 1) ă 2 ðñ ´1 ă x ă 3

and diverges if |x´ 1| ą 2. So the series has radius of convergence 2. Checking the left
endpoint x = ´1, so that x´1

2 = ´1, we see that

8
ÿ

n=0

(´1)n (´1´ 1)n

2n(n + 2)
=

8
ÿ

n=0

1
n + 2

is the divergent harmonic series. At the right endpoint x = 3, so that x´1
2 = +1 and

8
ÿ

n=0

(´1)n (3´ 1)n

2n(n + 2)
=

8
ÿ

n=0

(´1)n

n + 2

converges by the alternating series test. Therefore the interval of convergence of the
original series is ´1 ă x ď 3, or

(
´ 1, 3

]
.

S-14: We apply the ratio test with an = (´1)nn2(x´ a)2n. Since

lim
nÑ8

ˇ

ˇ

ˇ

ˇ

an+1

an

ˇ

ˇ

ˇ

ˇ

= lim
nÑ8

ˇ

ˇ

ˇ

ˇ

(´1)n+1(n + 1)2(x´ a)2(n+1)

(´1)nn2(x´ a)2n

ˇ

ˇ

ˇ

ˇ

= lim
nÑ8

|x´ a|2
(n + 1)2

n2

= |x´ a|2 lim
nÑ8

(
1 + 1/n

)2
= |x´ a|2 ¨ 1.
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the series converges if

|x´ a|2 ă 1 ðñ |x´ a| ă 1 ðñ ´1 ă x´ a ă 1 ðñ a´ 1 ă x ă a + 1

and diverges if |x´ a| ą 1. Checking both endpoints x´ a = ˘1, we see that
8
ÿ

n=1

(´1)nn2(x´ a)2n
ˇ

ˇ

ˇ

ˇ

x´a=˘1
=

8
ÿ

n=1

(´1)nn2

fails the divergence test — the nth term does not converge to zero as n Ñ 8. Therefore
the interval of convergence of the original series is a´ 1 ă x ă a + 1, or

(
a´ 1, a + 1

)
.

S-15: (a) We apply the ratio test for the series whose kth term is Ak =
(x+1)k

k29k . Then

lim
kÑ8

ˇ

ˇ

ˇ

ˇ

Ak+1

Ak

ˇ

ˇ

ˇ

ˇ

= lim
kÑ8

ˇ

ˇ

ˇ

ˇ

(x + 1)k+1

(k + 1)29k+1
k29k

(x + 1)k

ˇ

ˇ

ˇ

ˇ

= lim
kÑ8

|x + 1|
1
9

k2

(k + 1)2

= lim
kÑ8

|x + 1|
1
9

1
(1 + 1/k)2

=
|x + 1|

9
So the series must converge when |x + 1| ă 9 and must diverge when |x + 1| ą 9. When
x + 1 = ˘9, the series reduces to

8
ÿ

k=1

(˘9)k

k29k =
8
ÿ

k=1

(˘1)k

k2

which converges (since, by the p–test,
ř8

k=1
1
kp converges for any p ą 1). So the interval of

covnergence is |x + 1| ď 9 or ´10 ď x ď 8 or [´10, 8].

(b) The partial sum

N
ÿ

k=1

( ak
ak+1

´
ak+1

ak+2

)
=
( a1

a2
´

a2

a3

)
+
( a2

a3
´

a3

a4

)
+ ¨ ¨ ¨+

( aN

aN+1
´

aN+1

aN+2

)
=

a1

a2
´

aN+1

aN+2

We are told that
8
ÿ

k=1

( ak
ak+1

´
ak+1

ak+2

)
=

a1

a2
. This means that the above partial sum

converges to a1
a2

as N Ñ 8, or equivalently, that

lim
NÑ8

aN+1

aN+2
= 0

and hence that

lim
kÑ8

|ak+1(x´ 1)k+1|

|ak(x´ 1)k|
= |x´ 1| lim

kÑ8

|ak+1|

|ak|

is infinite for any x ‰ 1. So, by the ratio test, this series converges only for x = 1.
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S-16: Using the geometric series
8
ř

n=0
xn = 1

1´x ,

x3

1´ x
= x3

8
ÿ

n=0

xn =
8
ÿ

n=0

xn+3 =
8
ÿ

n=3

xn

S-17: We can find f (x) by differentiating its integral, or antidifferentiating its derivative.
In the latter case, we’ll have to solve for the arbitrary constant of integration; in the
former case, we do not. (Remember that many different functions have the same
derivative, but a single function has only one derivative.) To avoid the necessity of
finding the arbitrary constant, we can ignore the given equation for f 1(x), which makes
the problem much simpler. This is the method used in Solution 1.

Solution 1 Using the Fundamental Theorem of Calculus Part 1:

d
dx

"
ż x

5
f (t)dt

*

= f (x)

So, f (x) =
d
dx

#

3x +
8
ÿ

n=0

(x´ 1)n+1

n(n + 1)2

+

= 3 +
8
ÿ

n=1

(n + 1)(x´ 1)n

n(n + 1)2

= 3 +
8
ÿ

n=1

(x´ 1)n

n(n + 1)

Solution 2 Suppose we had used f 1(x) instead. We would antidifferentiate to find:

f (x) =
ż

(
8
ÿ

n=0

(x´ 1)n

n + 2

)
dx

=

(
8
ÿ

n=0

(x´ 1)n+1

(n + 1)(n + 2)

)
+ C

=

(
8
ÿ

n=1

(x´ 1)n

n(n + 1)

)
+ C

Notice f (1) = 0 + C. So, to find C, we must find f (1). We can’t get that information
from f 1(x), so our only option is to consider the given formula for

şx
5 f (t)dt. Using
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the Fundamental Theorem of Calculus Part 1:

f (1) =
d
dx

"
ż x

5
f (t)dt

*
ˇ

ˇ

ˇ

ˇ

x=1

=
d
dx

#

3x +
8
ÿ

n=1

(x´ 1)n+1

n(n + 1)2

+ˇ

ˇ

ˇ

ˇ

ˇ

x=1

=

[
3 +

8
ÿ

n=1

(n + 1)(x´ 1)n

n(n + 1)2

]

x=1

=

[
3 +

8
ÿ

n=1

(x´ 1)n

n(n + 1)

]

x=1

= 3 +
8
ÿ

n=1

0n

n(n + 1)

= 3

So, f (x) = 3 +
8
ÿ

n=1

(x´ 1)n

n(n + 1)
.

Note that in Solution 2, we did the same calculation as Solution 1, and more.

S-18: We apply the ratio test for the series whose nth term is either an = xn

32n log n or

an =
ˇ

ˇ

xn

32n log n

ˇ

ˇ. For both series

lim
nÑ8

ˇ

ˇ

ˇ

ˇ

an+1

an

ˇ

ˇ

ˇ

ˇ

= lim
nÑ8

ˇ

ˇ

ˇ

ˇ

xn+1

32(n+1) log(n + 1)
32n log n

xn

ˇ

ˇ

ˇ

ˇ

= lim
nÑ8

ˇ

ˇ

ˇ

ˇ

x log n
32 log(n + 1)

ˇ

ˇ

ˇ

ˇ

= lim
nÑ8

ˇ

ˇ

ˇ

ˇ

x log n
32[log(n) + log(1 + 1/n)]

ˇ

ˇ

ˇ

ˇ

= lim
nÑ8

ˇ

ˇ

ˇ

ˇ

x
32[1 + log(1 + 1/n)/ log(n)]

ˇ

ˇ

ˇ

ˇ

=
|x|
9

Therefore, by the ratio test, our series converges absolutely when |x| ă 9 and diverges
when |x| ą 9.

For x = ´9,
8
ÿ

n=2

xn

32n log n
=

8
ÿ

n=2

(´1)n

log n
which converges by the alternating series test.

For x = +9,
8
ÿ

n=2

xn

32n log n
=

8
ÿ

n=2

1
log n

which is the same series as
8
ÿ

n=2

ˇ

ˇ

ˇ

(´1)n

log n

ˇ

ˇ

ˇ
. We shall

shortly show that n ě log n, and hence 1
log n ě

1
n for all n ě 1. This implies that the series

8
ÿ

n=2

1
log n

diverges by comparison with the divergent series
8
ÿ

n=2

1
np

ˇ

ˇ

ˇ

ˇ

p=1
. This yelds both

divergence for x = 9 and also the failure of absolute convergence for x = ´9.
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Finally, we show that n´ log n ą 0, for all n ě 1. Set f (x) = x´ log x. Then f (1) = 1 ą 0
and

f 1(x) = 1´
1
x
ě 0 for all x ě 1

So f (x) is (strictly) positive when x = 1 and is increasing for all x ě 1. So f (x) is (strictly)
positive for all x ě 1.

S-19: (a) Applying
1

1 + r
=

8
ÿ

n=0

(´1)nrn with r = x3 gives

ż

1
1 + x3 dx =

8
ÿ

n=0

(´1)n
ż

x3n dx =
8
ÿ

n=0

(´1)n x3n+1

3n + 1
+ C

(b) By part (a),

ż 1/4

0

1
1 + x3 dx =

8
ÿ

n=0

(´1)n x3n+1

3n + 1

ˇ

ˇ

ˇ

ˇ

1/4

0
=

8
ÿ

n=0

(´1)n 1
(3n + 1)43n+1

This is an alternating series with successively smaller terms that converge to zero as
n Ñ 8. So truncating it introduces an error no larger than the magnitude of the first
dropped term. We want that first dropped term to obey

1
(3n + 1)43n+1 ă 10´5 =

1
105

So let’s check the first few terms.

1
(3n + 1)43n+1

ˇ

ˇ

ˇ

ˇ

n=0
=

1
4
ą

1
105

1
(3n + 1)43n+1

ˇ

ˇ

ˇ

ˇ

n=1
=

1
45 ą

1
105

1
(3n + 1)43n+1

ˇ

ˇ

ˇ

ˇ

n=2
=

1
7ˆ 47 =

1
7ˆ 214 =

1
7ˆ 16ˆ 1024

=
1

112ˆ 1024
ă

1
105

So we need to keep two terms (the n = 0 and n = 1 terms).

S-20: (a) Differentiating both sides of

8
ÿ

n=0

xn =
1

1´ x

gives
8
ÿ

n=0

nxn´1 =
1

(1´ x)2
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Now multiplying both sides by x gives

8
ÿ

n=0

nxn =
x

(1´ x)2

as desired.

(b) Differentiating both sides of the conclusion of part (a) gives

8
ÿ

n=0

n2xn´1 =
(1´ x)2 ´ 2x(x´ 1)

(1´ x)4 =
(1´ x)(1´ x + 2x)

(1´ x)4 =
1 + x

(1´ x)3

Now multiplying both sides by x gives

8
ÿ

n=0

n2xn =
x(1 + x)
(1´ x)3

We know that differentiation preserves the radius of convergence of power series. So this
series has radius of convergence 1 (the radius of convergence of the original geometric
series). At x = ˘1 the series diverges by the divergence test. So the series converges for
´1 ă x ă 1.

S-21: By the divergence test, the fact that
8
ř

n=0
(1´ bn) converges guarantees that

lim
nÑ8

(1´ bn) = 0, or equivalently, that lim
nÑ8

bn = 1. So, by equation (3.5.2) in the CLP-2
text, the radius of convergence is

R =

[
lim

nÑ8

ˇ

ˇ

ˇ

bn+1

bn

ˇ

ˇ

ˇ

]´1

=

[
1
1

]´1

= 1 (3.7)

S-22: (a) We know that the radius of convergence R obeys

1
R

= lim
nÑ8

an+1

an
= lim

nÑ8

n
n + 1

(n + 1)an+1

nan
= 1

C
C

= 1

because we are told that lim
nÑ8

nan = C. So R = 1.

(b) Just knowing that the radius of convergence is 1, we know that the series converges
for |x| ă 1 and diverges for |x| ą 1. That leaves x˘ 1.

When x = +1, the series reduces to
8
ř

n=1
an. We are told that nan decreases to C ą 0. So

an ě
C
n . By the comparison test with the harmonic series

8
ř

n=1

1
n , which diverges by the

p–test with p = 1, our series diverges when x = 1.
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When x = ´1, the series reduces to
8
ř

n=1
(´1)nan. We are told that nan decreases to C ą 0.

So an ą 0 and an converges to 0 as n Ñ 8. Consequently
8
ř

n=1
(´1)nan converges by the

alternating series test.

In conclusion
8
ř

n=1
anxn converges when ´1 ď x ă 1.

S-23: Equation 2.3.1 in the CLP-2 text tells us the centre of mass of a rod with weights

tmnu at positions txnu is x̄ =

ř

mnxn
ř

mn
.

We find the combined mass of our weights using Equation 3.2.2 in the CLP-2 text with
r = 1

2 and r = 1
3 , respectively.

8
ÿ

n=1

1
2n +

8
ÿ

n=1

1
3n =

8
ÿ

n=0

1
2
¨

1
2n +

8
ÿ

n=0

1
3
¨

1
3n

=
1
2
¨

1
1´ 1

2

+
1
3
¨

1
1´ 1

3

= 1 +
1
2
=

3
2

Now, we want to calculate the sum of the products of the masses and their positions.

8
ÿ

n=1

1
2n ¨ n +

8
ÿ

n=1

1
3n ¨ (´n)

We don’t have such a nice formula for this, but we can make one by differentiating.

The following formula is true for any x with |x| ă 1:

8
ÿ

n=0

xn =
1

1´ x

Differentiating both sides with respect to x:

8
ÿ

n=0

nxn´1 =
1

(1´ x)2

8
ÿ

n=1

nxn´1 =
1

(1´ x)2

Multiplying both sides by x:

8
ÿ

n=1

nxn =
x

(1´ x)2
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This allows us to evaluate our series.
8
ÿ

n=1

n
2n ´

8
ÿ

n=1

n
3n =

1
2(

1´ 1
2

)2 ´
1
3(

1´ 1
3

)2

= 2´
3
4
=

5
4

Therefore,

x̄ =
5/4
3/2

=
5
6
= 0.833

Remark: we can check that this makes some sense. Since the weights to the right of x = 0
are heavier than those to the left, but spaced the same, we would expect our rod to
balance to the right of x = 0.

S-24: First, we differentiate.

f (x) =
8
ÿ

n=0

An(x´ c)n

f 1(x) =
8
ÿ

n=0

nAn(x´ c)n´1

=
8
ÿ

n=1

nAn(x´ c)n´1

f 1(c) =
8
ÿ

n=1

nAn ¨ 0n´1

= A1 ¨ 1 + 2A2 ¨ 0 + 3A3 ¨ 0 + ¨ ¨ ¨
= A1

So, if A1 = 0, then f 1(c) = 0. That is, f (x) has a critical point at x = c.

To determine the behaviour of this critical point, we use the second derivative test.

f 1(x) =
8
ÿ

n=1

nAn(x´ c)n´1

f 2(x) =
8
ÿ

n=1

n(n´ 1)An(x´ c)n´2

=
8
ÿ

n=2

n(n´ 1)An(x´ c)n´2

f 2(c) =
8
ÿ

n=2

n(n´ 1)An ¨ 0n´2

= 2(1)A2 ¨ 00 + 3(2)A3 ¨ 01 + 4(3)A4 ¨ 02 + ¨ ¨ ¨

= 2A2
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Following the second derivative test, x = c is the location of a local maximum if A2 ă 0,
and it is the location of a local minimum if A2 ą 0. (If A2 = 0, the critical point may or
may not be a local extremum.)

S-25: We recognize
8
ÿ

n=3

n
5n´1 as f (x) =

8
ÿ

n=3

n ¨ xn´1, evaluated at x =
1
5

. We should figure

out what f (x) is in equation form (as opposed to power series form). Notice that this
looks similar to the derivative of the geometric series

ÿ

xn.

1
1´ x

=
8
ÿ

n=0

xn when |x| ă 1

d
dx

"

1
1´ x

*

=
d
dx

#

8
ÿ

n=0

xn

+

1
(1´ x)2 =

8
ÿ

n=1

nxn´1

= 1x0 + 2x1 +
8
ÿ

n=3

nxn´1

= 1 + 2x +
8
ÿ

n=3

nxn´1

So,
1

(1´ x)2 ´ 1´ 2x =
8
ÿ

n=3

nxn´1

Setting x =
1
5

:
1

(1´ 1/5)2 ´ 1´
2
5
=

8
ÿ

n=3

n
(

1
5

)n´1

(
5
4

)2

´ 1´
2
5
=

8
ÿ

n=3

n
5n´1

So, our series evaluates to
25
16
´ 1´

2
5
=

13
80

.

S-26: As we saw in in Example 3.5.20 of the CLP-2 text,

log(1 + x) =
8
ÿ

n=0

(´1)n xn+1

n + 1

which is an alternating series when x is positive. If we use its partial sum SN to
approximate log(1 + x), the absolute error involved is no more than

x(N+1)+1

(N + 1) + 1
=

xN+2

N + 2
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We want this error to be at most 10´5 whenever 0 ă x ă 1
10 . For this range of x values,

xN+2

N + 2
ă

1
(N + 2)10N+2 , so we want N that satisfies the inequality:

1
(N + 2)10N+2 ď

1
105

ñ (N + 2)10N+2
ě 105

We see N = 3 suffices.

So, the partial sum
3
ÿ

n=0

(´1)n xn+1

n + 1
= x´

x2

2
+

x3

3
´

x4

4

approximates log(1 + x) to within an error of
x5

5
.

When x is between 0 and 1
10 , that error is at most

1
5 ¨ 105 ă 10´5, as desired.

Now we can approximate log(1.05).

log(1.05) = log
(

1 +
1

20

)

«

(
1

20

)
´

(
1

20

)2

2
+

(
1
20

)3

3
´

(
1

20

)4

4

=
12ˆ 203 ´ 6ˆ 202 + 4ˆ 20´ 3

12ˆ 204 =
93677

1920000

We note that a computer approximates 93677
1920000 « 0.04879010 and log(1.05) « 0.04879016.

So, our actual error is around 6ˆ 10´8.

S-27: As we saw in in Example 3.5.21 of the CLP-2 text,

arctan x =
8
ÿ

n=0

(´1)n x2n+1

2n + 1

which is an alternating series when x is nonzero. If we use its partial sum SN to
approximate arctan x, the absolute error involved is no more than

|x|2(N+1)+1

N(n + 1) + 1
=
|x|2N+3

2N + 3

We want this error to be at most 10´6 whenever ´1
4 ă x ă 1

4 . For this range of x values,
|x|2N+3

2N + 3
ă

1
(2N + 3)42N+3 , so we want N that satisfies the inequality:

1
(2N + 3)42N+3 ď

1
105
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A quick check with a calculator shows that N = 2 suffices.

So, the partial sum
2
ÿ

n=0

(´1)n x2n+1

2n + 1
= x´

x3

3
+

x5

5

approximates arctan x to within an error of
x7

7
.

When x is between ´1
4 and 1

4 , that error is at most
1

7 ¨ 47 =
1

114688
ă

1
100000

= 10´5, as
desired. (When x = 0, our approximation is 0, the exact value of arctan 0.)

Solutions to Exercises 3.6 — Jump to TABLE OF CONTENTS

S-1: All functions A, B, and C intersect the function y = f (x) when x = 2. B is a constant
function, so this is the constant approximation. A is the tangent line, so A is the linear
approximation. C is a tangent parabola, so C is the quadratic approximation.

S-2: Following how a Taylor series is constructed, the Taylor series and the function agree
at the point chosen as the centre. So, T(5) = arctan3 (e5 + 7

)
.

If we were evaluating a Taylor series at a point other than its centre, we would generally
need to check that (a) the series converges, and (b) it converges to the same value as the
function we used to create it.

S-3: These are listed in Theorem 3.6.5 in the CLP–2 text. However, it’s possible to figure
out many of them without a lot of memorization. For example, e0 = cos(0) = 1

1´0 = 1,
while sin(0) = log(1 + 0) = arctan(0) = 0. So by plugging in x = 0 to the series listed,
we can divide them into these two categories.

The derivative of sine is cosine, so we can also look for one series that is the derivative of
another. The derivative of ex is ex, so we can look for a series that is its own derivative.

Furthermore, sine and arctangent are odd functions and only II and IV are odd. Cosine is
an even function and only III is even.

Alternately, we can find the first few terms of each series using the definition of a Taylor
series, and match them up.

In any event, here is what Theorem 3.6.5 in the CLP–2 text gives.

(A) The Taylor series representation of 1
1´x is given in V. The series converges for

´1 ă x ă 1. So by Definition 3.5.3 in the CLP–2 text, the series has radius of
convergence 1.

(B) The Taylor series representation of log(1 + x) is given in I. The series converges for
´1 ă x ď 1. In particular, it converges for all |x| ă 1 and diverges for all |x| ą 1. So
by Definition 3.5.3 in the CLP–2 text, the series has radius of convergence 1.
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(C) The Taylor series representation of arctan x is given in IV. The series converges for
´1 ď x ď 1. In particular, it converges for all |x| ă 1 and diverges for all |x| ą 1. So it
has radius of convergence 1.

(D) The Taylor series representation of ex is given in VI. The series converges for all x. So
it has infinite radius of convergence.

(E) The Taylor series representation of sin x is given in II. The series converges for all x.
So it has infinite radius of convergence.

(F) The Taylor series representation of cos x is given in III. The series converges for all x.
So it has infinite radius of convergence.

S-4:

(a) Using the definition of a Taylor series, we know

8
ÿ

n=0

n2

(n! + 1)
(x´ 3)n =

8
ÿ

n=0

f (n)(3)
n!

(x´ 3)n

So, the coefficient of (x´ 3)20 is f (20)(3)
20! (using the definition). Using the given series,

the coefficient of (x´ 3)20 is 202

20!+1 . So,

f (20)(3)
20!

=
202

20! + 1

ñ f (20)(3) = 202
(

20!
20! + 1

)

(which is extremely close to 202).

(b) Using the definition of a Taylor series, we know

8
ÿ

n=0

n2

(n! + 1)
(x´ 3)2n =

8
ÿ

k=0

g(k)(3)
k!

(x´ 3)k

So, the coefficient of (x´ 3)20 is g(20)(3)
20! (using the definition). Looking at the given

series, the coefficient of (x´ 3)20 occurs when n = 10, so it is 102

10!+1 . So,

g(20)(3)
20!

=
102

10! + 1

ñ g(20)(3) = 102
(

20!
10! + 1

)

(c) With the previous two examples in mind, we find the Maclaurin series for h(x).
(Using the series representation will be much easier than differentiating h(x) directly

688



twenty times.) Recall from the text that we know the Maclaurin series for arctan x.

arctan(x) =
8
ÿ

n=0

(´1)n x2n+1

2n + 1

arctan(5x2) =
8
ÿ

n=0

(´1)n (5x2)2n+1

2n + 1
=

8
ÿ

n=0

(´1)n 52n+1

2n + 1
x4n+2

arctan(5x2)

x4 =
8
ÿ

n=0

(´1)n 52n+1

2n + 1
x4n´2

8
ÿ

k=0

h(k)(0)
k!

xk =
8
ÿ

n=0

(´1)n 52n+1

2n + 1
x4n´2

Using the definition of a Maclaurin series, the coefficient of x22 is
h(22)(0)

22!
. This

occurs in the given series when n = 6, so

h(22)(0)
22!

= (´1)6 52ˆ6+1

2ˆ 6 + 1
=

513

13

ñ h(22)(0) =
22! ¨ 513

13

Similarly, the coefficient of x20 in the Maclaurin series is
h(20)(0)

20!
. Since no term x20

occurs in our series, that coefficient is 0, so h(20)(0) = 0.

S-5: The definition of a Taylor series tells us we will be computing the coefficients in the
series

8
ÿ

n=0

f (n)(1)
n!

(x´ 1)n

That is, we need a general description of f (n)(1). To find this, we take a few derivatives,
and look for a pattern.

f (x) = log(x) f (1) = 0

f 1(x) = x´1 f 1(1) = 1

f 2(x) = (´1)x´2 f 2(1) = ´1

f (3)(x) = (´2)(´1)x´3 f (3)(1) = 2!

f (4)(x) = (´3)(´2)(´1)x´4 f (4)(1) = ´3!

f (5)(x) = (´4)(´3)(´2)(´1)x´5 f (5)(1) = 4!

f (6)(x) = (´5)(´4)(´3)(´2)(´1)x´6 f (6)(1) = ´5!
...

...

f (n)(x) = (´1)n´1(n´ 1)! x´n f (n)(1) = (´1)n´1(n´ 1)!
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Using the convention 0! = 1, our pattern for f (n)(1) begins when n = 1.

8
ÿ

n=0

f (n)(1)
n!

(x´ 1)n = 0 +
8
ÿ

n=1

(´1)n´1(n´ 1)!
n!

(x´ 1)n =
8
ÿ

n=1

(´1)n´1

n
(x´ 1)n

S-6: To find the Taylor series for sine, centred at a = π, we’ll need to know the various
derivatives of sine at π.

f (x) = sin x f (π) = 0
f 1(x) = cos x f 1(π) = ´1
f 2(x) = ´ sin x f 2(π) = 0
f3(x) = ´ cos x f3(π) = 1

f (4)(x) = sin x = f (x) f (4)(π) = 0

Even derivatives are 0; odd derivatives alternate between ´1 and +1. (If you’re
following along with the derivation of the Maclaurin series for sine in the text, note
f (n)(π) = ´ f (n)(0).)

In our Taylor series, every even-indexed term will be zero, and we will be left with only
odd-indexed terms. If we let n be our index, then the term 2n + 1 will capture all the odd
numbers. Since the signs alternate, f (2n+1)(π) = (´1)n+1. So, our Taylor series is:

8
ÿ

k=0

f (k)(π)

k!
(x´ π)k =

8
ÿ

n=0

f (2n+1)(π)

(2n + 1)!
(x´ π)2n+1 (since the even terms are all zero)

=
8
ÿ

n=0

(´1)n+1

(2n + 1)!
(x´ π)2n+1

S-7: The definition of a Taylor series tells us we will be computing the coefficients in the
series

8
ÿ

n=0

g(n)(10)
n!

(x´ 10)n

That is, we need a general description of g(n)(10). To find this, we take a few derivatives,
and look for a pattern.
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g(x) = x´1 g(10) =
1

10

g1(x) = (´1)x´2 g1(10) =
´1
102

g2(x) = (´2)(´1)x´3 g2(10) =
(´1)22!

103

g(3)(x) = (´3)(´2)(´1)x´4 g(3)(10) =
(´1)33!

104

g(4)(x) = (´4)(´3)(´2)(´1)x´5 g(4)(10) =
(´1)44!

105

g(5)(x) = (´5)(´4)(´3)(´2)(´1)x´6 g(5)(10) =
(´1)55!

106

...
...

g(n)(x) = (´1)nn!x´(n+1) g(n)(10) =
(´1)nn!
10n+1

Using the convention 0! = 1, our pattern for g(n)(10) begins when n = 0.

8
ÿ

n=0

g(n)(1)
n!

(x´ 10)n =
8
ÿ

n=0

(´1)nn!
n!10n+1 (x´ 10)n

= ´

8
ÿ

n=0

(x´ 10)n

(´10)n+1

=
1

10

8
ÿ

n=0

(
10´ x

10

)n

For fixed x, we recognize this as a geometric series with r = 10´x
10 . So it converges

precisely when |r| ă 1, i.e.
ˇ

ˇ

ˇ

ˇ

10´ x
10

ˇ

ˇ

ˇ

ˇ

ă 1

|10´ x| ă 10
´10 ă x´ 10 ă 10

0 ă x ă 20

So, its interval of convergence is (0, 20).

S-8: The definition of a Taylor series tells us we will be computing the coefficients in the
series

8
ÿ

n=0

h(n)(a)
n!

(x´ a)n
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That is, we need a general description of h(n)(a). To find this, we take a few derivatives,
and look for a pattern.

h(x) = e3x h(a) = e3a

h1(x) = 3e3x h1(a) = 3e3a

h2(x) = 32e3x h2(a) = 32e3a

h3(x) = 33e3x h3(a) = 33e3a

...
...

h(n)(x) = 3ne3x h(n)(a) = 3ne3a

The pattern for h(n)(a) holds for all (whole numbers) n ě 0. So, our Taylor series for h(x)
is

8
ÿ

n=0

3ne3a

n!
(x´ a)n

To find its radius of convergence, we use the ratio test.
ˇ

ˇ

ˇ

ˇ

an+1

an

ˇ

ˇ

ˇ

ˇ

=

ˇ

ˇ

ˇ

ˇ

3n+1e3a(x´ a)n+1

(n + 1)!
¨

n!
3ne3a(x´ a)n

ˇ

ˇ

ˇ

ˇ

=

ˇ

ˇ

ˇ

ˇ

3n+1

3n ¨
e3a

e3a ¨
n!

(n + 1)!
¨
(x´ a)n+1

(x´ a)n

ˇ

ˇ

ˇ

ˇ

= 3 ¨
1

n + 1
¨ |x´ a|

lim
nÑ8

ˇ

ˇ

ˇ

ˇ

an+1

an

ˇ

ˇ

ˇ

ˇ

= lim
nÑ8

[
3

n + 1
¨ |x´ a|

]
= 0

Our series converges for every value of x, so its radius of convergence is8.

S-9: Substituting y = 2x into
1

1´ y
=

8
ÿ

n=0

yn (which is valid for all ´1 ă y ă 1) gives

f (x) =
1

2x´ 1
= ´

1
1´ 2x

= ´

8
ÿ

n=0

(2x)n = ´

8
ÿ

n=0

2nxn for all ´1
2 ă x ă 1

2

S-10: Substituting first y = ´x and then y = 2x into
1

1´ y
=

8
ÿ

n=0

yn (which is valid for all

´1 ă y ă 1) gives

1
1´ (´x)

=
8
ÿ

n=0

(´x)n =
8
ÿ

n=0

(´1)nxn for all ´1 ă x ă 1

1
1´ (2x)

=
8
ÿ

n=0

(2x)n =
8
ÿ

n=0

2nxn for all ´1
2 ă x ă 1

2
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Hence, for all ´1
2 ă x ă 1

2 ,

f (x) =
3

x + 1
´

1
2x´ 1

=
3

1´ (´x)
+

1
1´ 2x

= 3
8
ÿ

n=0

(´1)nxn +
8
ÿ

n=0

2nxn

=
8
ÿ

n=0

(
3(´1)n + 2n)xn

So bn = 3(´1)n + 2n.

S-11: We found the Taylor series for e3x from scratch in Question 8. If we hadn’t just done
that, we could easily find it by modifying the series for ex.

Substituting y = 3x into the exponential series

ey =
8
ÿ

n=0

yn

n!

gives

e3x =
8
ÿ

n=0

(3x)n

n!
=

8
ÿ

n=0

3n xn

n!

so that c5, the coefficient of x5, which appears only in the n = 5 term, is c5 =
35

5!

S-12: Since

f 1(t) =
d
dt

log(1 + 2t) =
2

1 + 2t
= 2

8
ÿ

n=0

(´2t)n if |2t| ă 1 i.e. |t| ă
1
2

and f (0) = 0, we have

f (x) =
ż x

0
f 1(t)dt = 2

8
ÿ

n=0

ż x

0
(´1)n2ntn dt =

8
ÿ

n=0

(´1)n2n+1 xn+1

n + 1
for all |x| ă

1
2

S-13: We just need to substitute y = x3 into the known Maclaurin series for sin y, to get
the Maclaurin series for sin(x3), and then multiply the result by x2.

sin y = y´
y3

3!
+ ¨ ¨ ¨

sin(x3) = x3
´

x9

3!
+ ¨ ¨ ¨

x2 sin(x3) = x5
´

x11

3!
+ ¨ ¨ ¨

so a = 1 and b = ´ 1
3! = ´1

6 .
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S-14: Recall that

ey =
8
ÿ

n=0

yn

n!
= 1 + y +

y2

2
+

y3

3!
+ ¨ ¨ ¨

Setting y = ´x2, we have

e´x2
= 1´ x2 +

x4

2
´

x6

3!
+ ¨ ¨ ¨

e´x2
´ 1 = ´x2 +

x4

2
´

x6

6
+ ¨ ¨ ¨

e´x2
´ 1

x
= ´x +

x3

2
´

x5

6
+ ¨ ¨ ¨

ż

e´x2
´ 1

x
dx = C´

x2

2
+

x4

8
´

x6

36
+ ¨ ¨ ¨

S-15: Recall that

arctan(y) =
8
ÿ

n=0

(´1)n y2n+1

2n + 1

Setting y = 2x, we have

ż

x4 arctan(2x)dx =

ż

(
x4

8
ÿ

n=0

(´1)n (2x)2n+1

2n + 1

)
dx

=

ż

(
8
ÿ

n=0

(´1)n 22n+1x2n+5

2n + 1

)
dx

=
8
ÿ

n=0

(´1)n 22n+1x2n+6

(2n + 1)(2n + 6)
+ C

=
8
ÿ

n=0

(´1)n 22nx2n+6

(2n + 1)(n + 3)
+ C

S-16: Substituting y = ´3x3 into
1

1´ y
=

8
ř

n=0
yn gives

d f
dx

= x ¨
1

1 + 3x3 = x
8
ÿ

n=0

(
´ 3x3)n

=
8
ÿ

n=0

(´1)n3nx3n+1

Now integrating,

f (x) =
8
ÿ

n=0

(´1)n3n x3n+2

3n + 2
+ C
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To have f (0) = 1, we need C = 1. So, finally

f (x) = 1 +
8
ÿ

n=0

(´1)n 3n

3n + 2
x3n+2

S-17: We’re given a big hint: that our series resembles the Taylor series for arctangent.

The terms of arctangent are (´1)n x2n+1

2n + 1
. Our terms resemble those terms, with x2n+1

replaced by
1
3n .

Since 3n =
(?

3
)2n

= 1?
3

(?
3
)2n+1:

8
ÿ

n=0

(´1)n

(2n + 1)3n =
?

3
8
ÿ

n=0

(´1)n

(2n + 1)
(?

3
)2n+1 =

?
3
8
ÿ

n=0

(´1)n x2n+1

2n + 1

ˇ

ˇ

ˇ

ˇ

x= 1?
3

=
?

3 arctan
1
?

3

=
?

3
π

6
=

π

2
?

3

S-18: Recall that ex =
8
ÿ

n=0

xn

n!
. So

8
ÿ

n=0

(´1)n

n!
=
[ 8
ÿ

n=0

xn

n!

]
x=´1

=
[
ex
]

x=´1
= e´1

S-19: Recall that ex =
8
ÿ

k=0

xk

k!
. So

8
ÿ

k=0

1
ekk!

=
[ 8
ÿ

k=0

xk

k!

]
x=1/e

=
[
ex
]

x=1/e
= e1/e

S-20: Recall that ex =
8
ÿ

k=0

xk

k!
. So

8
ÿ

k=0

1
πkk!

=
[ 8
ÿ

k=0

xk

k!

]
x=1/π

=
[
ex
]

x=1/π
= e1/π

This series differs from the given one only in that it starts with k = 0 while the given
series starts with k = 1. So

8
ÿ

k=1

1
πkk!

=
8
ÿ

k=0

1
πkk!

´ 1
loomoon

k=0

= e1/π
´ 1

695



S-21: Recall, from Theorem 3.6.5 in the CLP-2 text, that, for all ´1 ă x ď 1,

log(1 + x) =
8
ÿ

k=0

(´1)k xk+1

k + 1
=

8
ÿ

n=1

(´1)n´1 xn

n

(To get from the first sum to the second sum we substituted n = k + 1. If you don’t see
why the two sums are equal, write out the first few terms of each.) So

8
ÿ

n=1

(´1)n´1

n 2n =
[ 8
ÿ

n=1

(´1)n´1 xn

n

]
x=1/2

=
[

log(1 + x)
]

x=1/2
= log(3/2)

S-22: Write
8
ÿ

n=1

n + 2
n!

en =
8
ÿ

n=1

n
n!

en +
8
ÿ

n=1

2
n!

en

=
8
ÿ

n=1

en

(n´ 1)!
+ 2

8
ÿ

n=1

en

n!

= e
8
ÿ

n=1

en´1

(n´ 1)!
+ 2

8
ÿ

n=1

en

n!

= e
8
ÿ

n=0

en

n!
+ 2

8
ÿ

n=1

en

n!

Recall that ex =
8
ÿ

n=0

xn

n!
. So

8
ÿ

n=1

n + 2
n!

en = e
[ 8
ÿ

n=0

xn

n!

]
x=e

+ 2
[ 8
ÿ

n=1

xn

n!

]
x=e

= e
[
ex
]

x=e
+ 2
[
ex
´ 1
]

x=e
= ee+1 + 2(ee

´ 1)

= (e + 2)ee
´ 2

S-23: Let’s use the ratio test:

lim
nÑ8

ˇ

ˇ

ˇ

ˇ

an+1

an

ˇ

ˇ

ˇ

ˇ

= lim
nÑ8

ˇ

ˇ

ˇ

ˇ

ˇ

2n+1

n+1
2n

n

ˇ

ˇ

ˇ

ˇ

ˇ

= lim
nÑ8

2
n

n + 1
= 2 ą 1

So, the series diverges.

Remark: it’s tempting to note that log(1 + y) =
8
ÿ

n=0

(´1)n yn+1

n + 1
= ´

8
ÿ

n=1

(´y)n

n
, and try to

substitute in y = ´2. But, the Maclaurin series for log(1 + y) has radius of convergence
R = 1, so it doesn’t converge at y = ´2. Furthermore, log(1 + (´2)) = log(´1), but this
is undefined.
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S-24: Our series looks something like the Taylor series for sine,

sin x =
8
ÿ

n=0

(´1)n

(2n + 1)!
x2n+1.

8
ÿ

n=0

(´1)n

(2n + 1)!

(π

4

)2n+1 (
1 + 22n+1

)
=

8
ÿ

n=0

(´1)n

(2n + 1)!

[(π

4

)2n+1
+
(π

2

)2n+1
]

=
8
ÿ

n=0

(´1)n

(2n + 1)!

(π

4

)2n+1
+

8
ÿ

n=0

(´1)n

(2n + 1)!

(π

2

)2n+1

= sin
(π

4

)
+ sin

(π

2

)

=
1
?

2
+ 1 =

1 +
?

2
?

2

S-25: (a)

Solution 1: The naive strategy is to set an =
x2n

(2n)!
and apply the ratio test.

lim
nÑ8

ˇ

ˇ

ˇ

an+1

an

ˇ

ˇ

ˇ
= lim

nÑ8

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

x2n+2

(2n+2)!
x2n

(2n)!

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

=

ˇ

ˇ

ˇ

ˇ

x2n+2

x2n ¨
(2n)!

(2n + 2)(2n + 1)(2n)!

ˇ

ˇ

ˇ

ˇ

= lim
nÑ8

x2

(2n + 2)(2n + 1)
= 0

This is smaller than 1 no matter what x is. So the series converges for all x.

Solution 2: Alternatively, the sneaky way is to observe that both ex =
8
ÿ

n=0

xn

n!
and

e´x =
8
ÿ

n=0

(´x)n

n!
are known to converge for all x. So

1
2
(
ex + e´x) =

ÿ

n even

xn

n!
=

8
ÿ

n=0

x2n

(2n)!

also converges for all x.
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(b) Recall that ex =
8
ÿ

n=0

xn

n!
. Then:

e =
8
ÿ

n=0

1
n!

e´1 =
8
ÿ

n=0

(´1)n

n!

e + e´1 =
8
ÿ

n=0

1 + (´1)n

n!
= 2

8
ÿ

n even

1
n!

= 2
8
ÿ

n=0

1
(2n)!

Hence
8
ÿ

n=0

1
(2n)!

=
1
2

(
e +

1
e

)
.

S-26: All three series we’re adding up are alternating, so we can bound the absolute error
in the approximation SN (the N-th partial sum) by |aN+1|.

The Taylor series for arctangent is

arctan(x) =
8
ÿ

n=0

(´1)n x2n+1

2n + 1

for every real x.

(a) Using the Taylor series for arctangent when x = 1, we see

π

4
= arctan(1) =

8
ÿ

n=0

(´1)n 1
2n + 1

π =
8
ÿ

n=0

(´1)n 4
2n + 1

The error involved in approximating π with the partial sum SN is at most
|aN+1| =

4
2N+3 . In order for this to be at most 4ˆ 10´5, we need:

4
2N + 3

ď 4ˆ 10´5

2N + 3 ě 105

N ě
105 ´ 3

2
= 5ˆ 104

´
3
2
= 50, 000´ 1.5

Since n must be an integer, we need to add up the terms from n = 0 to n = 49, 999.
That is, we add up the first 50,000 terms.

(b) Using the Taylor series for arctangent:

π = 16 arctan
1
5
´ 4 arctan

1
239

= 16
8
ÿ

n=0

(´1)n 1
(2n + 1)52n+1 ´ 4

8
ÿ

n=0

(´1)n 1
(2n + 1) ¨ 2392n+1

=
8
ÿ

n=0

(´1)n

2n + 1

(
16

52n+1 ´
4

2392n+1

)
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This is an alternating sum, so the absolute error in using the partial sum SN is at most:

|aN+1| =
1

2N + 3

(
16

52N+3 ´
4

2392N+3

)

So, we want to find a value of N that makes this at most 4ˆ 10´5. Several values of N
are given below.

N |aN+1|

1
1
5

(
16
55 ´

4
2395

)
« 0.001

2
1
7

(
16
57 ´

4
2397

)
« 0.000029 ă 4ˆ 10´5

So, it suffices to add up the first three terms (n = 0, n = 1, and n = 2) of the series.

(c) Again, we use the Taylor series for arctangent.

arctan
1
2
+ arctan

1
3
= arctan

(
3 + 2

2 ¨ 3´ 1

)
= arctan(1) =

π

4

π = 4
(

arctan
1
2
+ arctan

1
3

)

= 4
8
ÿ

n=0

(´1)n 1
(2n + 1)22n+1 + 4

8
ÿ

n=0

(´1)n 1
(2n + 1)32n+1

=
8
ÿ

n=0

(´1)n 4
2n + 1

(
1

22n+1 +
1

32n+1

)

If we use the partial sum SN, our absolute error is at most

|aN+1| =
4

2N + 3

(
1

22N+3 +
1

32N+3

)
.

Several of these values are given below.

N |aN+1|

1
4
5

(
1
25 +

1
35

)
« 0.028

2
4
7

(
1
27 +

1
37

)
« 0.0047

3
4
9

(
1
29 +

1
39

)
« 0.00089

4
4
11

(
1

211 +
1

311

)
« 0.00018

5
4

13

(
1

213 +
1

313

)
« 0.000038 ă 4ˆ 10´5

So, it suffices to add the first six terms (n = 0 to n = 5) of the series.

Remark: if we actually wanted to approximate π this way, the series from part (a) is
probably not ideal–adding 50,000 terms sounds rough. The series from (b) and (c) seem
much more practical.
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S-27: Using the Taylor series for log(1 + x):

log(1 + x) =
8
ÿ

n=1

(´1)n+1 xn

n

log(1.5) = log
(

1 +
1
2

)
=

8
ÿ

n=1

(´1)n+1 1
n2n

Since this is an alternating series, the error involved in using the partial sum SN is at most

|aN+1| =
1

(N + 1)2N+1 .

We want this to be at most 5ˆ 10´11.

N |aN+1|

10
1

11 ¨ 211 « 4ˆ 10´5

15
1

16 ¨ 216 « 9.5ˆ 10´7

20
1

21 ¨ 221 « 2ˆ 10´8

25
1

26 ¨ 226 « 6ˆ 10´10

26
1

27 ¨ 227 « 3ˆ 10´10

27
1

28 ¨ 228 « 1ˆ 10´10

28
1

29 ¨ 229 « 6ˆ 10´11

29
1

30 ¨ 230 « 3ˆ 10´11

So, it suffices to add up the first 29 terms.

S-28: The Taylor Series for ex is not alternating, so we’ll use Theorem 3.6.1-b in the CLP-2
text to bound the error in a partial-sum approximation. The error in the partial-sum
approximation SN is

EN =
f (N+1)(c)
(N + 1)!

(x´ a)N+1

for some c strictly between a and x. In our case, a = 0 and x = 1. So, we want to find a
value of N such that

ˇ

ˇ

ˇ

ˇ

ˇ

f (N+1)(c)
(N + 1)!

(1´ 0)N+1

ˇ

ˇ

ˇ

ˇ

ˇ

=
ec

(N + 1)!
ă 5ˆ 10´11

for all c in (0, 1).

If c is between 0 and 1, then ec is between 1 and e. However, since the purpose of this
problem is to approximate e precisely, it doesn’t make much sense to use e in our bound.
Since e is less than 3, then ec ă 3 for all c in (0, 1). Now we can search for an appropriate
value of N.
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N
3

(N + 1)!

10
3

11!
=

1
910 « 8ˆ 10´8

11
3

12!
« 6ˆ 10´9

12
3

13!
« 5ˆ 10´10

13
3

14!
« 3ˆ 10´11

So, it suffices to use the partial sum S13.

S-29: The Taylor Series for log(1´ x) is not alternating, so we’ll use Theorem 3.6.1-b in
the CLP-2 text to bound the error in a partial-sum approximation. The error in the
partial-sum approximation SN is

EN =
f (N+1)(c)
(N + 1)!

(x´ a)N+1

for some c strictly between a and x. In our case, a = 0 and x =
1
10

. So, we want to find a
value of N such that

ˇ

ˇ

ˇ

ˇ

ˇ

f (N+1)(c)
(N + 1)!

(
1
10

)N+1
ˇ

ˇ

ˇ

ˇ

ˇ

ă 5ˆ 10´11

for all c in (0, 1
10).

To find this N, we to know f (N+1)(x). Just like when we create a Taylor polynomial from
scratch, we’ll differentiate f (x) several times, and look for a pattern.

f (x) = log(1´ x) f (6)(x) =
´2(3)(4)(5)
(1´ x)6

f 1(x) =
´1

1´ x
f (7)(x) =

´2(3)(4)(5)(6)
(1´ x)7

f 2(x) =
´1

(1´ x)2
...

f3(x) =
´2

(1´ x)3 f (N+1)(x) =
´N!

(1´ x)N+1

f (4)(x) =
´2(3)
(1´ x)4

f (5)(x) =
´2(3)(4)
(1´ x)5

Now we want a reasonable bound on f (N+1)(c), when c is in (0, 1
10). Note that in this
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range, 1´ c ą 0.

0 ă c ă
1

10

ñ
9

10
ă 1´ c ă 1

ñ

(
9
10

)N+1

ă (1´ c)N+1
ă 1

ñ 1 ă
1

(1´ c)N+1 ă

(
10
9

)N+1

ñ N! ă
N!

(1´ c)N+1 ă N!
(

10
9

)N+1

This bound provides us with a “worst-case scenario” error. We don’t know exactly what
c is, but we don’t need to–the bound above holds for all c between 0 and 1

10 .

Now we’re ready to choose an N that results in a sufficiently small error bound.

ˇ

ˇ

ˇ

ˇ

ˇ

f (N+1)(c)
(N + 1)!

(
1

10

)N+1
ˇ

ˇ

ˇ

ˇ

ˇ

ă

N!
(

10
9

)N+1

(N + 1)!

(
1

10

)N+1

=
1

9N+1 ¨ (N + 1)

So, we want:
1

9N+1 ¨ (N + 1)
ă 5ˆ 10´11

To find an appropriate N, we test several values.

N
1

9N+1 ¨ (N + 1)

8
1

9 ¨ 99 =
1

910 « 3ˆ 10´10

9
1

10 ¨ 910 « 3ˆ 10´11

So, it suffices to use the partial sum S9.

S-30: We’ll use Theorem 3.6.1-b in the CLP-2 text to bound the error of a partial-sum
approximation. The error in the partial-sum approximation SN is

EN =
f (N+1)(c)
(N + 1)!

(x´ a)N+1

for some c strictly between a and x. In our case, a = 0 and x is in (´2, 1). So, we want to
find a value of N such that

ˇ

ˇ

ˇ

ˇ

ˇ

f (N+1)(c)
(N + 1)!

(x)N+1

ˇ

ˇ

ˇ

ˇ

ˇ

ă 5ˆ 10´11
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for all x in (´2, 1), and all c in (´2, 1).

To find this N, we to know f (N+1)(x). Just like when we create a Taylor polynomial from
scratch, we’ll differentiate f (x) several times, and look for a pattern.

f (x) = sinh(x) =
ex ´ e´x

2

f 1(x) =
ex + e´x

2

f 2(x) =
ex ´ e´x

2

f3(x) =
ex + e´x

2

That is, even derivatives of f (x) are f (x), and odd derivatives of f (x) are ex+e´x

2 (which,
incidentally, is the function called cosh x).

Now we want a reasonable bound on f (N+1)(c), when c is in (´2, 1). Since powers of e
are always positive, we begin by noting that 0 ă ex´e´x

2 ă ex+e´x

2 . So, all derivatives of
f (x) are bounded above by ex+e´x

2 .

´2 ă c ă 1

ñ e´2
ă ec

ă e and e´1
ă e´c

ă e2

ñ f (N+1)(c) ă
ec + e´c

2
ă

e2 + e2

2
= e2

ă 9

This bound provides us with a “worst-case scenario” error. We don’t know exactly what
c is, but we don’t need to–the bound above holds for all c between ´2 and 1.

We also don’t know exactly what x will be, only that it’s between ´2 and 1. So, we note
|x|N+1 ă 2N+1.

Now we’re ready to choose an N that results in a sufficiently small error bound.

ˇ

ˇ

ˇ

ˇ

ˇ

f (N+1)(c)
(N + 1)!

(x)N+1

ˇ

ˇ

ˇ

ˇ

ˇ

ă
9 ¨ 2N+1

(N + 1)!

So, we want:
9 ¨ 2N+1

(N + 1)!
ă 5ˆ 10´11

To find an appropriate N, we test several values.
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N
9 ¨ 2N+1

(N + 1)!

10
9 ¨ 211

(11)!
« 5ˆ 10´4

15
9 ¨ 216

(16)!
« 3ˆ 10´8

17
9 ¨ 218

(18)!
« 4ˆ 10´10

18
9 ¨ 219

(19)!
« 4ˆ 10´11

ă 5ˆ 10´11

So, it suffices to use the partial sum S18.

S-31: We’ll use Theorem 3.6.1-b in the CLP-2 text to bound the error in a partial-sum
approximation. The error in the partial-sum approximation SN is

EN =
f (N+1)(c)
(N + 1)!

(x´ a)N+1

for some c strictly between a and x. In our case, a =
1
2

, x = ´
1
3

, and we are given the nth

derivative of f (x):

E6 =
f (7)(c)

7!

(
´

1
3
´

1
2

)7

=
1
7!
¨

6!
2

[
(1´ c)´7 + (´1)6 (1 + c)´7

] (
´

5
6

)7

=
´57

14 ¨ 67 ¨
[
(1´ c)´7 + (1 + c)´7

]
=

for some c in (´1
3 , 1

2).

We want to provide actual numeric bounds for this expression. That is, we want to find
the absolute max and min of

E(c) =
´57

14 ¨ 67 ¨
[
(1´ c)´7 + (1 + c)´7

]

over the interval
(
´1

3 , 1
2

)
. Absolute extrema occur at endpoints and critical points. So,

we’ll start by differentiating E(c), and finding its critical points (if any) in the interval(
´1

3 , 1
2

)
.
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E(c) =
´57

14 ¨ 67 ¨
[
(1´ c)´7 + (1 + c)´7

]

E1(c) =
´57

14 ¨ 67 ¨
[
7 (1´ c)´8

´ 7 (1 + c)´8
]
= 0

(1´ c)´8 = (1 + c)´8

1´ c = 1 + c
c = 0

Since E1(c) is defined over our entire interval, its only critical point is c = 0.

• E(0) =
´57

14 ¨ 67 [2]

• E
(
´1

3

)
=

´57

14 ¨ 67

[(
4
3

)´7
+
(2

3

)´7
]
=

´57

14 ¨ 67

[(3
4

)7
+
(3

2

)7
]

• E
(

1
2

)
=

´57

14 ¨ 67

[(
1
2

)´7
+
(3

2

)´7
]
=

´57

14 ¨ 67

[
27 +

(2
3

)7
]

We want to decide which of these numbers is biggest, and which smallest. Note that 27 is
much, much bigger than (3/2)7, and both (3/4)7 and (2/3)7 are less than one.
Furthermore, (3/2)7 is much larger than 2. So:

[
27 + (2/3)7] ą

[
(3/2)7 + (3/4)7] ą 2.

Therefore,

´57

14 ¨ 67

[
27 +

(
2
3

)7
]
ă

´57

14 ¨ 67

[(
3
4

)7

+

(
3
2

)7
]
ă

´57

14 ¨ 67 [2]

We conclude that the error E6 is in the interval

(
´57

14 ¨ 67

[
27 +

(
2
3

)7
]

,
´57

14 ¨ 67 [2]

)

or, equivalently,

(
´57

14 ¨ 37

[
1 +

1
37

]
,

´57

7 ¨ 67

)

which is approximately (´0.199,´0.040).
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S-32: Using the Maclaurin series expansions of cos x and ex,

cos x = 1´
x2

2!
+

x4

4!
+ ¨ ¨ ¨

1´ cos x =
x2

2!
´

x4

4!
+ ¨ ¨ ¨

ex = 1 + x +
x2

2!
+

x3

3!
+ ¨ ¨ ¨

1 + x´ ex = ´
x2

2!
´

x3

3!
+ ¨ ¨ ¨

1´ cos x
1 + x´ ex =

x2

2! ´
x4

4! + ¨ ¨ ¨

´ x2

2! ´
x3

3! + ¨ ¨ ¨
=

1
2! ´

x2

4! + ¨ ¨ ¨

´ 1
2! ´

x
3! + ¨ ¨ ¨

we have

lim
xÑ0

1´ cos x
1 + x´ ex = lim

xÑ0

1
2! ´

x2

4! + ¨ ¨ ¨

´ 1
2! ´

x
3! + ¨ ¨ ¨

=
1
2!

´ 1
2!

= ´1

S-33: Using the Maclaurin series expansion of sin x,

sin x = x´
x3

3!
+

x5

5!
´

x7

7!
+ ¨ ¨ ¨

sin x´ x +
x3

6
=

x5

5!
´

x7

7!
+ ¨ ¨ ¨

sin x´ x + x3

6
x5 =

1
5!
´

x2

7!
+ ¨ ¨ ¨

we have

lim
xÑ0

sin x´ x + x3

6
x5 = lim

xÑ0

( 1
5!
´

x2

7!
+ ¨ ¨ ¨

)
=

1
5!

=
1

120

Remark: to solve this using l’Hôpital’s rule we would differentiate five times, making
series a practical alternative.

S-34: Our limit has the indeterminate form 18; as with l’Hôpital’s rule, we can change it
to a friendlier form using the natural logarithm.

f (x) =
(

1 + x + x2
)2/x

log( f (x)) = log
[(

1 + x + x2
)2/x

]
=

2
x

log
(

1 + x + x2
)

Recall log(1 + y) =
8
ÿ

n=1

(´1)n+1yn

n
, and set y = x + x2. The series converges when

|y| ă 1, and since we only consider values of x that are very close to 0, we can assume

706



|x + x2| ă 1.

log( f (x)) =
2
x

log
(

1 + (x + x2)
)
=

2
x

8
ÿ

n=1

(´1)n+1(x + x2)n

n

=
2
x

[
(x + x2)´

(x + x2)2

2
+

(x + x2)3

3
´ ¨ ¨ ¨

]

= 2 + 2x´
(x + x2)2

2x
+

(x + x2)3

3x
´ ¨ ¨ ¨

= 2 + 2x´
(x2 + x)(1 + x)

2
+

(x2 + x)2(1 + x)
3

´ ¨ ¨ ¨

lim
xÑ0

log( f (x)) = lim
xÑ0

[
2 + 2x´

(x2 + x)(1 + x)
2

+
(x2 + x)2(1 + x)

3
´ ¨ ¨ ¨

]

= 2 + 0 + 0 ¨ ¨ ¨ = 2

lim
xÑ0

f (x) = lim
xÑ0

elog f (x) = e2

S-35: We have an indeterminate form 18. We can use a natural logarithm to change this

to a friendlier form. Furthermore, to avoid negative powers, we substitute y =
1

2x
. As x

grows larger and larger, y gets closer and closer to zero, while staying positive.

log
[(

1 +
1

2x

)x]
= x log

(
1 +

1
2x

)
=

1
2y

log(1 + y)

=
1

2y

8
ÿ

n=1

(´1)n+1

n
yn

=
1

2y

[
y´

y2

2
+

y3

3
´

y4

4
+ ¨ ¨ ¨

]

=

[
1
2
´

y
4
+

y2

6
´

y3

8
+ ¨ ¨ ¨

]

lim
xÑ8

log
[(

1 +
1

2x

)x]
= lim

yÑ0+

[
1
2
´

y
4
+

y2

6
´

y3

8
+ ¨ ¨ ¨

]
=

1
2

lim
xÑ8

[(
1 +

1
2x

)x]
= e1/2 =

?
e

707



S-36: The factor (n + 1)(n + 2) reminds us of a derivative. Start with the geometric series.

1
1´ x

=
8
ÿ

n=0

xn

d
dx

"

1
1´ x

*

=
d
dx

#

8
ÿ

n=0

xn

+

1
(1´ x)2 =

8
ÿ

n=0

nxn´1 =
8
ÿ

n=1

nxn´1

d
dx

"

1
(1´ x)2

*

=
d
dx

#

8
ÿ

n=1

nxn´1

+

2
(1´ x)3 =

8
ÿ

n=1

n(n´ 1)xn´2 =
8
ÿ

n=2

n(n´ 1)xn´2

=
8
ÿ

n=0

(n + 2)(n + 1)xn

Let x = 1
7 . Then |x| ă 1, so our series converges.

2
(1´ 1/7)3 =

8
ÿ

n=0

(n + 2)(n + 1)
(

1
7

)n

2
(6/7)3 =

8
ÿ

n=0

(n + 2)(n + 1)
7n

S-37: Recall the Taylor series for arctangent is:

arctan x =
8
ÿ

n=0

(´1)n x2n+1

2n + 1

There are similarities between this and our given series: skipping powers of x, and a
denominator that’s not factorial. We’ll try to manipulate it to look like our series. First,
we antidifferentiate, to get a factor of (2n + 2) on the bottom.

ż

arctan x dx =
8
ÿ

n=0

(´1)n x2n+2

(2n + 1)(2n + 2)
+ C

We can find the antiderivative of arctangent using integration by parts. Let u = arctan x
and dv = dx; then du = 1

1+x2 dx and v = x.

ż

arctan x dx = x arctan x´
ż

x
1 + x2 dx + C
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Now, we use the substitution w = 1 + x2, dw = 2xdx.

= x arctan x´
1
2

log(1 + x2) + C

So,
8
ÿ

n=0

(´1)n x2n+2

(2n + 1)(2n + 2)
= x arctan x´

1
2

log(1 + x2) + C

To find C, we evaluate both sides of the equation at x = 0.

0 = 0 arctan 0´
1
2

log(1) + C = C

Therefore,
8
ÿ

n=0

(´1)n x2n+2

(2n + 1)(2n + 2)
= x arctan x´

1
2

log(1 + x2)

Multiplying both sides by x2,

8
ÿ

n=0

(´1)n x2n+4

(2n + 1)(2n + 2)
= x3 arctan x´

x2

2
log(1 + x2)

S-38:

(a) We’ll start, as we usually do, by finding a pattern for f (n)(0).

f (x) = (1´ x)´1/2

f 1(x) =
1
2
(1´ x)´3/2

f 2(x) =
1 ¨ 3
22 (1´ x)´5/2

f3(x) =
1 ¨ 3 ¨ 5

23 (1´ x)´7/2

f (4)(x) =
1 ¨ 3 ¨ 5 ¨ 7

24 (1´ x)´9/2

...

f (n)(x) =
1 ¨ 3 ¨ 5 ¨ . . . ¨ (2n´ 1)

2n (1´ x)´(2n+1)/2

f (n)(0) =
1 ¨ 3 ¨ 5 ¨ . . . ¨ (2n´ 1)

2n

We could leave it like this, but we simplify, to make our work cleaner later on.

=
1
2n ¨

(2n)!
2 ¨ 4 ¨ 6 ¨ . . . ¨ (2n)

=
1
2n ¨

(2n)!
2n ¨ n!

=
(2n)!
22n n!

709



This pattern holds for n ě 0. Now, we can write our Maclaurin series for f (x).

(1´ x)´1/2 =
8
ÿ

n=0

f (n)(0)
n!

xn =
8
ÿ

n=0

(2n)!
22n (n!)2 xn

To find the radius of convergence, we use the ratio test.

ˇ

ˇ

ˇ

ˇ

an+1

an

ˇ

ˇ

ˇ

ˇ

=
(2n + 2)!

22n+2((n + 1)!)2 ¨
22n (n!)2

(2n)!
¨ |x|

=
(2n + 2)!
(2n)!

(
n!

(n + 1)!

)2

¨
22n

22n+2 |x|

= (2n + 2)(2n + 1)
(

1
n + 1

)2

¨
1
4
|x|

=
4n2 + 4n + 2
4n2 + 8n + 4

|x|

lim
nÑ8

ˇ

ˇ

ˇ

ˇ

an+1

an

ˇ

ˇ

ˇ

ˇ

= lim
nÑ8

[
4n2 + 4n + 2
4n2 + 8n + 4

|x|
]
= |x|

So, the radius of convergence is R = 1.

(b) We note the derivative of the arcsine function is
1

?
1´ x2

= f (x2). With this insight,

we can manipulate our Taylor series for f (x) into a Taylor series for arcsine.

1
?

1´ x
=

8
ÿ

n=0

(2n)!
22n (n!)2 xn

1
?

1´ x2
=

8
ÿ

n=0

(2n)!
22n (n!)2 x2n

ż

1
?

1´ x2
dx =

ż

(
8
ÿ

n=0

(2n)!
22n (n!)2 x2n

)
dx

arcsin x =
8
ÿ

n=0

(2n)!
22n (n!)2(2n + 1)

x2n+1 + C

arcsin x =
8
ÿ

n=0

(2n)!
22n (n!)2(2n + 1)

x2n+1

where we found the value of C by setting x = 0. Its radius of convergence is also 1,
by Theorem 3.5.13.

S-39: We use that

log(1 + y) =
8
ÿ

n=1

(´1)n´1 yn

n
for all ´ 1 ă y ď 1

710



with y =
x´ 2

2
to give

log(x) = log(2 + x´ 2) = log
[

2
(

1 +
x´ 2

2

)]

= log 2 + log
(

1 +
x´ 2

2

)
= log 2 +

8
ÿ

n=1

(´1)n´1

n 2n (x´ 2)n

It converges when ´1 ă y ď 1, or equivalently, 0 ă x ď 4.

S-40: (a) Using the geometric series expansion with r = ´t4,

1
1´ r

=
8
ÿ

n=0

rn
ùñ

1
1 + t4 =

8
ÿ

n=0

(´t4)
n
=

8
ÿ

n=0

(´1)nt4n

Substituting this into our integral,

I(x) =
ż x

0

1
1 + t4 dt

=

ż x

0

(
8
ÿ

n=0

(´1)nt4n

)
dt

=

[
8
ÿ

n=0

(´1)n t4n+1

4n + 1

]t=x

t=0

=
8
ÿ

n=0

(´1)n x4n+1

4n + 1

(b) Substituting in x = 1
2 ,

I(1/2) =
8
ÿ

n=0

(´1)n 1
(4n + 1)24n+1

=
1
2
´

1
5ˆ 25 +

1
9ˆ 29 ´

1
13ˆ 213 + ¨ ¨ ¨

= 0.5´ 0.00625 + 0.000217´ 0.0000094 + ¨ ¨ ¨ = 0.493967 ´ 0.0000094 + ¨ ¨ ¨

See part (c) for the error analysis.

(c) The series for I(x) is an alternating series (that is, the sign alternates) with
successively smaller terms that converge to zero. So the error introduced by truncating
the series is between zero and the first omitted term. In this case, the first omitted term
was negative (´0.0000094). So the exact value of I(1/2) is the approximate value found
in part (b) plus a negative number whose magnitude is smaller than 0.00001 = 10´5. So
the approximate value of part (b) is larger than the true value of I(1/2).
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S-41: Expanding the exponential using its Maclaurin series,

I =
ż 1

0
x4e´x2

dx =
8
ÿ

n=0

ż 1

0
x4 (´x2)

n

n!
dx =

8
ÿ

n=0

(´1)n

n!

ż 1

0
x2n+4 dx

=
8
ÿ

n=0

(´1)n

n!(2n + 5)
=

1
5

loomoon

n=0

´
1
7

loomoon

n=1

+
1

18
loomoon

n=2

´
1

3!(11)
loomoon

n=3

+ ¨ ¨ ¨

The signs of successive terms in this series alternate. Futhermore the magnitude of the
nth term decreases with n. Hence, by the alternating series test, I lies between 1

5 ´
1
7 +

1
18

and 1
5 ´

1
7 +

1
18 ´

1
3!(11) . So

|I ´ a| ď
1

3!(11)
=

1
66

S-42: Expanding the exponential using its Taylor series,

I =
ż 1

2

0
x2e´x2

dx =
8
ÿ

n=0

ż 1
2

0
x2 (´x2)

n

n!
dx =

8
ÿ

n=0

(´1)n

n!

ż 1
2

0
x2n+2 dx

=
8
ÿ

n=0

(´1)n

n!(2n + 3)
1

22n+3

The signs of successive terms in this series alternate. Futhermore the magnitude of the
nth term decreases with n. Hence, by the alternating series test, I lies between

N
ř

n=0

(´1)n

n!(2n+3)
1

22n+3 and
N+1
ř

n=0

(´1)n

n!(2n+3)
1

22n+3 , for every N. The first few terms are, to five decimal

places,

n 0 1 2 3
(´1)n

n!(2n + 3)
1

22n+3 0.04167 -0.00625 0.00056 -0.00004

Allowing for a roundoff error of 0.000005 in each of these, I must be between

0.04167´ 0.00625 + 0.00056 + 0.000005ˆ 3 = 0.035995

and
0.04167´ 0.00625 + 0.00056´ 0.00004´ 0.000005ˆ 4 = 0.035920

where the multiples of 0.000005 are the maximum possible accumulated roundoff errors
in the added terms.

S-43: (a) Using the Taylor series expansion of ex with x = ´t,

e´t =
8
ÿ

n=0

(´t)n

n!
ùñ e´t

´ 1 =
8
ÿ

n=1

(´1)n tn

n!
ùñ

e´t ´ 1
t

=
8
ÿ

n=1

(´1)n tn´1

n!

712



Substituting this into our integral,

I(x) =
ż x

0

e´t ´ 1
t

dt =
8
ÿ

n=1

(´1)n
ż x

0

tn´1

n!
dt =

8
ÿ

n=1

(´1)n xn

n ¨ n!

(b) Substituting in x = 1,

I(1) =
8
ÿ

n=1

(´1)n 1
n ¨ n!

= ´1 +
1

2 ¨ 2!
´

1
3 ¨ 3!

+
1

4 ¨ 4!
´

1
5 ¨ 5!

+ ¨ ¨ ¨

= ´1 + 0.25´ 0.0556 + 0.0104´ 0.0017 + ¨ ¨ ¨ = ´0.80

See part (c) for the error analysis.

(c) The series for I(x) is an alternating series (that is, the sign alternates) with
successively smaller terms that converge to zero. So the error introduced by truncating
the series is no larger than the first omitted term. So the magnitude of ´ 1

5 5! + ¨ ¨ ¨ is no
larger than 0.0017. Allowing for a roundoff error of at most 0.0001 in each of the two
terms ´0.0556 + 0.0104

I(1) = ´1 + 0.25´ 0.0556 + 0.0104˘ 0.0019 = ´0.7952˘ 0.0019

S-44: (a) Using the Taylor series expansion of sin x with x = t,

sin t =
8
ÿ

n=0

(´1)n t2n+1

(2n + 1)!
ùñ

sin t
t

=
8
ÿ

n=0

(´1)n t2n

(2n + 1)!

So

Σ(x) =
ż x

0

sin t
t

dt =
8
ÿ

n=0

(´1)n
ż x

0

t2n

(2n + 1)!
dt =

8
ÿ

n=0

(´1)n x2n+1

(2n + 1)(2n + 1)!

(b) The critical points of Σ(x) are the solutions of Σ1(x) = 0. By the fundamental theorem
of calculus Σ1(x) = sin x

x , so the critical points of Σ(x) are x = ˘π,˘2π, ¨ ¨ ¨ . The absolute
maximum occurs at x = π.

(c) Substituting in x = π,

Σ(π) =
8
ÿ

n=0

(´1)n π2n+1

(2n + 1)(2n + 1)!

= π ´
π3

3 ¨ 3!
+

π5

5 ¨ 5!
´

π7

7 ¨ 7!
+ ¨ ¨ ¨

= 3.1416´ 1.7226 + 0.5100´ 0.0856 + 0.0091´ 0.0007 + ¨ ¨ ¨
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The series for Σ(π) is an alternating series (that is, the sign alternates) with successively
smaller terms that converge to zero. So the error introduced by truncating the series is no
larger than the first omitted term. So

Σ(π) = 3.1416´ 1.7226 + 0.5100´ 0.0856 + 0.0091 = 1.8525

with an error of magnitude at most 0.0007 + 0.0005 (the 0.0005 is the maximum possible
accumulated roundoff error in all five retained terms).

S-45: (a) Using the Taylor series expansion of cos t,

cos t = 1´
t2

2!
+

t4

4!
´

t6

6!
+ ¨ ¨ ¨ =

8
ÿ

n=0

(´1)n t2n

(2n)!

cos t´ 1
t2 = ´

1
2!

+
t2

4!
´

t4

6!
+ ¨ ¨ ¨ =

8
ÿ

n=1

(´1)n t2n´2

(2n)!

I(x) =
ż x

0

cos t´ 1
t2 dt = ´

x
2!

+
x3

4!3
´

x5

6!5
+ ¨ ¨ ¨ =

8
ÿ

n=1

(´1)n x2n´1

(2n)!(2n´ 1)

(b), (c) Substituting in x = 1,

I(1) = ´
1
2
+

1
4!3

´
1

6!5
+ ¨ ¨ ¨

= ´0.5 + 0.0139´ 0.0003´ ¨ ¨ ¨
= ´0.486˘ 0.001

The series for I(1) is an alternating series with decreasing successive terms that converge
to zero. So approximating I(1) by ´1

2 +
1

4!3 introduces an error between 0 and ´ 1
6!5 .

Hence I(1) ă ´1
2 +

1
4!3 .

S-46: (a) Using the Taylor series expansions of sin x and cos x with x = t,

sin t =
8
ÿ

n=0

(´1)n t2n+1

(2n + 1)!
=t´

t3

3!
+

t5

5!
´

t7

7!
+ ¨ ¨ ¨

t sin t =
8
ÿ

n=0

(´1)n t2n+2

(2n + 1)!
= t2

´
t4

3!
+

t6

5!
´

t8

7!
+ ¨ ¨ ¨

= ´

8
ÿ

n=1

(´1)n t2n

(2n´ 1)!

cos t =
8
ÿ

n=0

(´1)n t2n

(2n)!
=1´

t2

2!
+

t4

4!
´

t6

6!
+

t8

8!
+ ¨ ¨ ¨

cos t´ 1 =
8
ÿ

n=1

(´1)n t2n

(2n)!
=´

t2

2!
+

t4

4!
´

t6

6!
+

t8

8!
+ ¨ ¨ ¨
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cos t + t sin t´1 =
8
ÿ

n=1

(´1)n t2n

(2n)!
´

8
ÿ

n=1

(´1)n t2n

(2n´ 1)!

=
8
ÿ

n=1

(´1)nt2n
(

1
(2n)!

´
1

(2n´ 1)!

)
=
(

1´
1
2!

)
t2
´

( 1
3!
´

1
4!

)
t4 + ¨ ¨ ¨

=
8
ÿ

n=1

(´1)nt2n
(

1
(2n)!

´
2n

(2n)!

)

=
8
ÿ

n=1

(´1)nt2n
(

1´ 2n
(2n)!

)
=
( 2

2!
´

1
2!

)
t2
´

( 4
4!
´

1
4!

)
t4 + ¨ ¨ ¨

=
8
ÿ

n=1

(´1)n+1t2n
(

2n´ 1
(2n)!

)
=

1
2!

t2
´

3
4!

t4 +
5
6!

t6
´

7
8!

t8 + ¨ ¨ ¨

cos t + t sin t´ 1
t2 =

8
ÿ

n=1

(´1)n+1t2n´2
(

2n´ 1
(2n)!

)
=

1
2!

t´
3
4!

t2 +
5
6!

t4
´

7
8!

t6 + ¨ ¨ ¨

Now, we’re ready to integrate.

I(x) =
ż x

0

(
cos t + t sin t´ 1

t2

)
=

ż x

0

(
8
ÿ

n=1

(´1)n+1t2n´2
(

2n´ 1
(2n)!

))
dt

=

[
8
ÿ

n=1

(´1)n+1 t2n´1

(2n)!

]x

0

=
8
ÿ

n=1

(´1)n+1 x2n´1

(2n)!

(b) I(1) = 1
2! ´

1
4! +

1
6! ´

1
8! + ¨ ¨ ¨ = 0.5´ 0.0416̇ + 0.00139´ 0.000024 + ¨ ¨ ¨ = 0.460 . The

error analysis is in part (c).

(c) The series for I(1) is an alternating series with decreasing successive terms that
convege to zero. So approximating I(1) by 1

2! ´
1
4! +

1
6! introduces an error between 0 and

´ 1
8! . So I(1) ă 1

2! ´
1
4! +

1
6! ă 0.460.

S-47: (a) Substituting x = ´t into the known power series ex = 1 + x + x2

2! +
x3

3! +
x4

4! + ¨ ¨ ¨ ,
we see that:

e´t = 1´ t +
t2

2!
´

t3

3!
+

t4

4!
´ ¨ ¨ ¨

1´ e´t = t´
t2

2!
+

t3

3!
´

t4

4!
+ ¨ ¨ ¨

1´ e´t

t
= 1´

t
2!

+
t2

3!
´

t3

4!
+ ¨ ¨ ¨

ż

1´ e´t

t
dt = C + x´

x2

2 ¨ 2!
+

x3

3 ¨ 3!
´

x4

4 ¨ 4!
+ ¨ ¨ ¨
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Finally, f (0) = 0 (since f (0) is an integral from 0 to 0) and so C = 0. Therefore

f (x) =
ż x

0

1´ e´t

t
dt = x´

x2

2 ¨ 2!
+

x3

3 ¨ 3!
´

x4

4 ¨ 4!
+ ¨ ¨ ¨ .

We can also do this calculation entirely in summation notation: ex =
8
ÿ

n=0

xn

n!
, and so

e´t =
8
ÿ

n=0

(´t)n

n!
= 1 +

8
ÿ

n=1

(´1)ntn

n!

1´ e´t = ´

8
ÿ

n=1

(´1)ntn

n!
=

8
ÿ

n=1

(´1)n´1tn

n!

1´ e´t

t
=

8
ÿ

n=1

(´1)n´1tn´1

n!

f (x) =
ż x

0

1´ e´t

t
dt =

8
ÿ

n=1

(´1)n´1xn

n ¨ n!

(b) We set an = Anxn =
(´1)n´1

n ¨ n!
xn and apply the ratio test.

lim
nÑ8

ˇ

ˇ

ˇ

an+1

an

ˇ

ˇ

ˇ
= lim

nÑ8

ˇ

ˇ

ˇ

ˇ

(´1)nxn+1/((n + 1) ¨ (n + 1)!)
(´1)n´1xn/(n ¨ n!)

ˇ

ˇ

ˇ

ˇ

= lim
nÑ8

(
|x|n+1

|x|n
n ¨ n!

(n + 1) ¨ (n + 1)!

)

= lim
nÑ8

(
|x|

n
(n + 1)2

)
since (n + 1)! = (n + 1) n!

= 0

This is smaller than 1 no matter what x is. So the series converges for all x.

S-48:

ex = 1 + x +
x2

2!
+

x3

3!
+ ¨ ¨ ¨ ě 1 + x for all x ě 0

ùñ ex
´ 1 ě x

ùñ
x3

ex ´ 1
ď

x3

x
= x2

ùñ

ż 1

0

x3

ex ´ 1
dx ď

ż 1

0
x2 dx =

1
3
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S-49: (a) We know that ex =
8
ř

n=0

xn

n! for all x. Replacing x by ´x, we also have

e´x =
8
ř

n=0

(´x)n

n! for all x and hence

cosh(x) =
1
2
[
ex + e´x] = 1

2

[ 8
ÿ

n=0

xn

n!
+

8
ÿ

n=0

(´x)n

n!

]
=

8
ÿ

n=0
n even

xn

n!
=

8
ÿ

n=0

x2n

(2n)!

for all x. In particular, the interval of convergence is all real numbers.

(b) Using the power series expansion of part (a),

cosh(2) = 1 +
22

2!
+

24

4!
+

8
ÿ

n=3

22n

(2n)!
= 3

2
3
+

8
ÿ

n=3

22n

(2n)!

So it suffices to show that
ř8

n=3
22n

(2n)! ď 0.1. Let’s write bn = 22n

(2n)! . The first term in
ř8

n=3
22n

(2n)! is

b3 =
26

6!
=

26

6ˆ 5ˆ 4ˆ 3ˆ 2
=

4
45

The ratio between successive terms in
ř8

n=3
22n

(2n)! is

bn+1

bn
=

22n+2/22n

(2n + 2)!/(2n)!
=

4
(2n + 2)(2n + 1)

ď
4

8ˆ 7
=

1
14

for all n ě 3

Hence

8
ÿ

n=3

22n

(2n)!
ď

b3
hkkikkj

4
45

+

b4ď
hkkkikkkj

4
45
ˆ

1
14

+

b5ď
hkkkkikkkkj

4
45
ˆ

1
142 +

b6ď
hkkkkikkkkj

4
45
ˆ

1
143 + ¨ ¨ ¨

=
4

45
1

1´ 1
14

=
4

45
14
13

=
56

585
ă

1
10

(c) Comparing

cosh(t) =
8
ÿ

n=0

t2n

(2n)!
=

8
ÿ

n=0

(t2)
n

(2n)!
and e

1
2 t2

=
8
ÿ

n=0

(1
2 t2)

n

n!
=

8
ÿ

n=0

(t2)
n

2nn!

we see that it suffices to show that (2n)! ě 2nn!. Now. for all n ě 1,

(2n)! =

n factors
hkkkkkkkikkkkkkkj

1ˆ 2ˆ ¨ ¨ ¨ ˆ n

n factors
hkkkkkkkkkkkkkkkkkikkkkkkkkkkkkkkkkkj

(n + 1)ˆ (n + 2)ˆ ¨ ¨ ¨ ˆ 2n

ě

n factors
hkkkkkkkikkkkkkkj

1ˆ 2ˆ ¨ ¨ ¨ ˆ n

n factors
hkkkkkkkikkkkkkkj

2ˆ 2ˆ ¨ ¨ ¨ ˆ 2
= 2n n!

717



S-50:

(a) For Newton’s method, recall we approximate a root of the function g(x) in iterations:

given an approximation xn, our next approximation is xn+1 = xn ´
g(xn)

g1(xn)
. In our

case,

xn+1 = xn ´
x3

n ´ 2
3x2

n
=

2
3

(
xn +

1
x2

n

)
.

We want to start somewhere reasonably close to the actual root we want, so let’s set
x0 = 1. (Your starting point may vary.)

x0 = 1 ùñ x1 =
2
3

(
1 +

1
1

)
=

4
3

«1.3333

x1 =
4
3

ùñ x2 =
2
3

(
4
3
+

9
16

)
=

91
72

«1.2639

x2 =
91
72

ùñ x3 =
2
3

(
91
72

+
722

912

)
=

1126819
894348

«1.2599

x3 =
1126819
894348

ùñ x4 =
2
3

(
1126819
894348

+
8943482

11268192

)
«1.2599

So, 3
?

2 « 1.26.

(b) We’ll evaluate the given series at x = 2. This yields the series

3
?

2 = 1 +
1
6
+

8
ÿ

n=2

(´1)n´1 (2)(5)(8) ¨ ¨ ¨ (3n´ 4)
3n n!

.

This series is alternating, so if we use the partial sum SN, our absolute error is at most

|aN+1| =
(2)(5)(8) ¨ ¨ ¨ (3N ´ 1)

3N+1 (N + 1)!

(if N ě 2). We want to know which value of N makes this at most 0.01. We test
several values.
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N |aN+1|

3 (2)(5)(8)
34 ¨ 4!

« 0.04

4 (2)(5)(8)(11)
35 5!

« 0.03

5 (2)(5)(8)(11)(14)
36 6!

« 0.023

6 (2)(5)(8)(11)(14)(17)
37 7!

« 0.019

7 (2)(5)(8)(11)(14)(17)(20)
38 8!

« 0.016

8 (2)(5)(8)(11)(14)(17)(20)(23)
39 9!

« 0.013

9 (2)(5)(8)(11)(14)(17)(20)(23)(26)
310 10!

« 0.012

10 (2)(5)(8)(11)(14)(17)(20)(23)(26)(29)
311 11!

« 0.0103

11 (2)(5)(8)(11)(14)(17)(20)(23)(26)(29)(32)
312 12!

« 0.009

So, the approximation S11 has a sufficiently small error. That is, we would add up the
first twelve terms.

S-51:

Our plan is as follows:

• Make a Taylor series for f (x)

• Calculate the tenth derivative of the Taylor series of f (x).

• Decide how many terms we need to add to achieve the desired accuracy.

• Approximate f (10)
(

1
5

)
with a partial sum.

We know that the Taylor series for arctan x is
8
ÿ

n=0

(´1)n x2n+1

2n + 1
, which converges for

´1 ď x ď 1. So, the Taylor series for arctan(x3) is

f (x) = arctan(x3) =
8
ÿ

n=0

(´1)n (x3)2n+1

2n + 1
=

8
ÿ

n=0

(´1)n x6n+3

2n + 1

It is much easier to differentiate this series many times than it is to differentiate
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arctan(x3) directly many times.

f 1(x) =
8
ÿ

n=0

(´1)n (6n + 3)x6n+2

2n + 1

f 2(x) =
8
ÿ

n=0

(´1)n (6n + 3)(6n + 2)x6n+1

2n + 1

f3(x) =
8
ÿ

n=0

(´1)n (6n + 3)(6n + 2)(6n + 1)x6n

2n + 1

...

f (10)(x) =
8
ÿ

n=0

(´1)n (6n + 3)(6n + 2)(6n + 1) ¨ ¨ ¨ (6n´ 6)x6n´7

2n + 1

=
8
ÿ

n=2

(´1)n (6n + 3)(6n + 2)(6n + 1) ¨ ¨ ¨ (6n´ 6)x6n´7

2n + 1

=
8
ÿ

n=2

(´1)n (6n + 3)!
(2n + 1)(6n´ 7)!

x6n´7

f (10)
(

1
5

)
=

8
ÿ

n=2

(´1)n (6n + 3)!
(2n + 1)(6n´ 7)! ¨ 56n´7

(Notice, after ten differentiations, the terms a0 and a1 are both zero.)

Since this is an alternating series, the absolute error involved in using the approximation
SN is at most

|aN+1| =
(6N + 9)!

(2N + 3)(6N ´ 1)! ¨ 56N´1

By testing a few values of N, we find

|a6| = |a5+1| =
39!

(13)(29!) ¨ 529 « 0.00000095 ă 10´6

So, S5 is a sufficient approximation. That is,

f (10)
(

1
5

)
«

5
ÿ

n=2

(´1)n (6n + 3)!
(2n + 1)(6n´ 7)! ¨ 56n´7

= (´1)2 15!
5 ¨ 5! ¨ 55 + (´1)3 21!

7! ¨ 11! ¨ 511 + (´1)4 27!
9! ¨ 17! ¨ 517 + (´1)5 33!

11! ¨ 23! ¨ 523

=
15!

5! ¨ 56 ´
21!

7! ¨ 11! ¨ 511 +
27!

9! ¨ 17! ¨ 517 ´
33!

11! ¨ 23! ¨ 523

Remark: if we had calculated f (10)(1/5) directly, using derivative rules instead of series,
we would have found an exact value; however, our value here is easier to find, and is
highly accurate (if not exact).
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S-52:

(a) To sketch y = f (x), we note the following:

• f (x) is never negative.

• lim
xÑ˘8

f (x) = e0 = 1, so the curve has horizontal asymptotes in both directions at

y = 1.

• lim
xÑ˘0

f (x) = lim
xÑ˘0

1
e1/x2 = lim

uÑ+8

1
eu = 0 = f (0), so the curve is continuous at

x = 0.

• For x ‰ 0, f 1(x) = 2
x3 e´1/x2

, so our curve is decreasing on (´8, 0) and increasing
on (0,8)

• For x ‰ 0, f 2(x) = 2x´6(2´ 3x2)e´1/x2
, so our curve is concave up on

(´
?

2/3,
?

2/3), and concave down elsewhere.

x

y

1

´
?

2/3
?

2/3

y = f (x)

(b) Since f (n)(0) = 0 for all whole n (that is, the graph is really quite flat at the origin),

and since f (0) = 0, the Maclaurin series for f (x) is
8
ÿ

n=0

0
n!

xn = 0.

(c) The Maclaurin series converges for all real values of x (to the constant 0).

(d) Since ey ą 0 for any real y, we see f (x) = 0 only when x = 0. So, f (x) is only equal to
its Maclaurin series at the single point x = 0.

Remark: the function f (x) is an example of a function whose Maclaurin series converges,
but not to f (x)! To describe this behaviour, we say f (x) is non-analytic.

S-53:

Solution 1: Since f (x) is odd, f (´x) = ´ f (x) for all x in its domain. We plug this into
our power series, then consider the even-indexed terms and the odd-indexed terms
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separately.

f (´x) = ´ f (x)
8
ÿ

n=0

f (n)(0)
n!

(´x)n = ´

8
ÿ

n=0

f (n)(0)
n!

xn

8
ÿ

n=0

f (2n+1)(0)
(2n + 1)!

(´x)2n+1 +
8
ÿ

n=0

f (2n)(0)
(2n)!

(´x)2n = ´

8
ÿ

n=0

f (2n+1)(0)
n!

x2n+1
´

8
ÿ

n=0

f (2n)(0)
n!

x2n

´

8
ÿ

n=0

f (2n+1)(0)
(2n + 1)!

x2n+1 +
8
ÿ

n=0

f (2n)(0)
(2n)!

x2n = ´

8
ÿ

n=0

f (2n+1)(0)
n!

x2n+1
´

8
ÿ

n=0

f (2n)(0)
n!

x2n

8
ÿ

n=0

f (2n)(0)
(2n)!

x2n = ´

8
ÿ

n=0

f (2n)(0)
n!

x2n

2
8
ÿ

n=0

f (2n)(0)
(2n)!

x2n = 0

8
ÿ

n=0

f (2n)(0)
(2n)!

x2n = 0

Solution 2: Alternately, we could note the following:

• Since all derivative of f (x) exist, all its derivatives are continuous.

• The derivative of an odd function is even, and the derivative of an even
function is odd.

• So, the even-indexed derivatives of f (x) are continuous, odd functions.

• Every continuous, odd function passes through the origin. That is,
f (2n)(0) = 0.

• So, every term in the series is 0.
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