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HOW TO USE THIS BOOK

a Introduction

First of all, welcome to Calculus!

This book is written as a companion to the CLP-2 Integral Calculus textbook.

» How to Work Questions

This book is organized into four sections: Questions, Hints, Answers, and Solutions. As
you are working problems, resist the temptation to prematurely peek at the back! It’s
important to allow yourself to struggle for a time with the material. Even professional
mathematicians don’t always know right away how to solve a problem. The art is in
gathering your thoughts and figuring out a strategy to use what you know to find out
what you don't.

If you find yourself at a real impasse, go ahead and look for a hint in the Hints section.
Think about it for a while, and don’t be afraid to read back in the notes to look for a key
idea that will help you proceed. If you still can’t solve the problem, well, we included the
Solutions section for a reason! As you're reading the solutions, try hard to understand
why we took the steps we did, instead of memorizing step-by-step how to solve that one
particular problem.

If you struggled with a question quite a lot, it’s probably a good idea to return to it in a few
days. That might have been enough time for you to internalize the necessary ideas, and
you might find it easily conquerable. Pat yourself on the back—sometimes math makes you
feel good! If you're still having troubles, read over the solution again, with an emphasis
on understanding why each step makes sense.

One of the reasons so many students are required to study calculus is the hope that it will
improve their problem-solving skills. In this class, you will learn lots of concepts, and
be asked to apply them in a variety of situations. Often, this will involve answering one
really big problem by breaking it up into manageable chunks, solving those chunks, then
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putting the pieces back together. When you see a particularly long question, remain calm
and look for a way to break it into pieces you can handle.

» Working with Friends

Study buddies are fantastic! If you don’t already have friends in your class, you can ask
your neighbours in lecture to form a group. Often, a question that you might bang your
head against for an hour can be easily cleared up by a friend who sees what you've missed.
Regular study times make sure you don’t procrastinate too much, and friends help you
maintain a positive attitude when you might otherwise succumb to frustration. Struggle
in mathematics is desirable, but suffering is not.

When working in a group, make sure you try out problems on your own before coming
together to discuss with others. Learning is a process, and getting answers to questions
that you haven’t considered on your own can rob you of the practice you need to master
skills and concepts, and the tenacity you need to develop to become a competent problem-
solver.

» Types of Questions

Q[1]: Questions outlined in blue make up the representative question set. This set of
questions is intended to cover the most essential ideas in each section. These questions
are usually highly typical of what you'd see on an exam, although some of them are
atypical but carry an important moral. If you find yourself unconfident with the idea
behind one of these, it’s probably a good idea to practice similar questions.

This representative question set is our suggestion for a minimal selection of questions to
work on. You are highly encouraged to work on more.

Q[2](*): In addition to original problems, this book contains problems pulled from quizzes
and exams given at UBC for Math 101 and 105 (second-semester calculus) and Math 121
(honours second-semester calculus). These problems are marked with a star. The authors
would like to acknowledge the contributions of the many people who collaborated to
produce these exams over the years.

Instructions and other comments that are attached to more than one question are written in this font. The
questions are organized into Stage 1, Stage 2, and Stage 3.

» Stage 1

The first category is meant to test and improve your understanding of basic underlying
concepts. These often do not involve much calculation. They range in difficulty from
very basic reviews of definitions to questions that require you to be thoughtful about the
concepts covered in the section.
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» Stage 2

Questions in this category are for practicing skills. It’s not enough to understand the philo-
sophical grounding of an idea: you have to be able to apply it in appropriate situations.
This takes practice!

» Stage 3

The last questions in each section go a little farther than Stage 2. Often they will combine
more than one idea, incorporate review material, or ask you to apply your understanding
of a concept to a new situation.

In exams, as in life, you will encounter questions of varying difficulty. A good skill to
practice is recognizing the level of difficulty a problem poses. Exams will have some easy
questions, some standard questions, and some harder questions.
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Chapter 1

INTEGRATION

1.1a Definition of the Integral

Exercises
Jump to HINTS, ANSWERS, SOLUTIONS or TABLE OF CONTENTS.

» Stage 1

For Questions 1 through 5, we want you to develop an understanding of the model we are using to define
an integral: we approximate the area under a curve by bounding it between rectangles. Later, we will learn
more sophisticated methods of integration, but they are all based on this simple concept.

Q[1]: Give a range of possible values for the shaded area in the picture below.

1.25 —
0.75 —




INTEGRATION 1.1 DEFINITION OF THE INTEGRAL

Q[2]: Give a range of possible values for the shaded area in the picture below.
Yy

2.25 —
1.75 -
1.25 -
0.75 —
0.25 —

3

Q[3]: Using rectangles, find a lower and upper bound for J zlxdx that differ by at most
1
0.2 square units.

QI4]: Let f(x) be a function that is decreasing from x = 0 to x = 5. Which Riemann sum

5
approximation of f f(x)dx is the largest-left, right, or midpoint?
0

QI5]: Give an example of a function f(x), an interval [a, b], and a number n such that the
midpoint Riemann sum of f(x) over [a, b] using n intervals is larger than both the left and
right Riemann sums of f(x) over |4, b] using n intervals.

In Questions 6 through 10, we practice using sigma notation. There are many ways to write a given sum in
sigma notation. You can practice finding several, and deciding which looks the clearest.

Q[6]: Express the following sums in sigma notation:
(@ 3+4+5+6+7

(b) 6+8+10+12+14

() 74+94+11+13+15

(d) 1+3+5+74+9+114+13+15




INTEGRATION

1.1 DEFINITION OF THE INTEGRAL

: Ex
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ress the following sums in sigma notation:

Q[8]: Express the following sums in sigma notation:

1 1 5 7 9
(a) §+§+ﬁ+ﬁ+m
1 1 1 1 1
(b) 5+ + 2+ 85+ us
1 3 7
(c) 1000 4200 +30 +4 + 5 + 55 + 1000

Q[9]: Evaluate the following sums. You might want to use the formulas from Theorems

1.1.5 and 1.1.6 in the CLP-2 text.

03
w80

i=50

10
© > (i2 _3i4 5)

i=1

b n
1
(d) E {(E) + enB} , where b is some integer greater than 1.

Q[10]: Evaluate the following sums. You might want to use the formulas from

Theorem 1.1.6 in the CLP-2 text.
100

(@) 2 (i —50) +21

i=50
100

b) > (i-5)

=10
11

© >.(-
n=1

11
(d) Z (_1)211—1—1
n=2

Questions 11 through 15 are meant to give you practice interpreting the formulas in Definition 1.1.11 of the
CLP-2 text. The formulas might look complicated at first, but if you understand what each piece means, they

are easy to learn.




INTEGRATION 1.1 DEFINITION OF THE INTEGRAL

Q[11]: In the picture below, draw in the rectangles whose (signed) area is being

4
T b—a . 1\ b—a
computed by the midpoint Riemann sum 1; 4 (a + (z - E) 1 ) .

! v = f(x)

| z | x

4
Q[12](»): Z f(1+k)-1is aleft Riemann sum for a function f(x) on the interval [a, b] with
k=1
n subintervals. Find the values of a, b and n.

Q[13]: Draw a picture illustrating the area given by the following Riemann sum.
3

2. (5+2i)

i=1

Q[14]: Draw a picture illustrating the area given by the following Riemann sum.

57 (752)

i=1

Q[15](+): Fill in the blanks with right, left, or midpoint; an interval; and a value of n.

3

> f(15+k)-1lisa Riemann sum for f on the interval [___, ] with
k:

n —=

Q[16]: Evaluate the following integral by interpreting it as a signed area, and using

geometry:
5
f xdx
0




INTEGRATION 1.1 DEFINITION OF THE INTEGRAL

Q[17]: Evaluate the following integral by interpreting it as a signed area, and using

geometry:
5
J xdx
-2

» Stage 2

Q[18](x): Use sigma notation to write the midpoint Riemann sum for f(x) = x8 on [5,15]
with n = 50. Do not evaluate the Riemann sum.

5
Q[19](+): Estimate f x3 dx using three approximating rectangles and left hand end points.
-1

7
Q[20](«): Let f be a function on the whole real line. Express J f(x) dx as a limit of
-1

Riemann sums, using the right endpoints.

QI21](*): The value of the following limit is equal to the area below a graph of y = f(x),
integrated over the interval [0, b]:

"4 4i\ 12
lim Z - lsin (2+ —l)]
n—>00i:11/l n

Find f(x) and b.

Q[22](x): For a certain function f(x), the following equation holds:

. "k k? 1
Jﬂo;mvl‘m—ﬁ)ﬂx) =

Find f(x).

n .
. . 3 —Z/Tl 31 .« . .
Q[23](+): Express 7}1_1)130 Z; Ee cos <;> as a definite integral.
1=

n o -i/n
QI241(x): Let R, = Y =

i=1

o Express lim R, as a definite integral. Do not evaluate this
n—o0

integral.

n
Q[25](x): Express nhngo ( Z e 172%/m . %) as an integral in three different ways.
i=1

Questions 26 and 27 use the formula for a geometric sum, Equation 1.1.3 in the CLP-2 text.

6




INTEGRATION 1.1 DEFINITION OF THE INTEGRAL

[ QI26]: Evaluate the sum 1 4+ 73+ + 7% + ... 43",

l QI27]: Evaluate the sum r° 4+ 7® 4+ #7 + ... 4 100,

Remember that a definite integral is a signed area between a curve and the x-axis. We’ll spend a lot of
time learning strategies for evaluating definite integrals, but we already know lots of ways to find area of
geometric shapes. In Questions 28 through 33, use your knowledge of geometry to find the signed areas
described by the integrals given.

2
QI28](*): Evaluatef |2x| dx.
~1

Q[29]: Evaluate the following integral by interpreting it as a signed area, and using

geometry:
5
J It —1|dt
-3

Q[30]: Evaluate the following integral by interpreting it as a signed area, and using

geometry:
b
f xdx
a

Q[31]: Evaluate the following integral by interpreting it as a signed area, and using

geometry:
b
f x dx
a

where 0 <a < b.

wherea < b < 0.

Q[32]: Evaluate the following integral by interpreting it as a signed area, and using
geometry:

4
f V16 — x2 dx
0

3
Q[33](#): Use elementary geometry to calculate J f(x) dx, where
0

) = {x, ifx<1,

1, ifx>1.




INTEGRATION 1.1 DEFINITION OF THE INTEGRAL

Q[34](+): A car’s gas pedal is applied at t = 0 seconds and the car accelerates
continuously until t = 2 seconds. The car’s speed at half-second intervals is given in the
table below. Find the best possible upper estimate for the distance that the car traveled
during these two seconds.

t(s) 0051015 2
v(m/s) | 0| 14 | 22 | 30 | 40

Q[35]: True or false: the answer you gave for Question 34 is definitely greater than or
equal to the distance the car travelled during the two seconds in question.

Q[36]: An airplane’s speed at one-hour intervals is given in the table below. Approximate
the distance travelled by the airplane from noon to 4pm using a midpoint Riemann sum.

time 12:00 pm | 1:00 pm | 2:00 pm | 3:00 pm | 4:00 pm
speed (km/hr) 800 700 850 900 750

» Stage 3

Q[37](+): (a) Express

n 7 2 2
lim 3 = 4—(—2+—1>
7’l—>00i:17/l n

as a definite integal.
(b) Evaluate the integral of part (a).

Q[38](*): Consider the integral:

3
f 7+ dx. (+)

0
(a) Approximate this integral using the left Riemann sum with n = 3 intervals.

(b) Write down the expression for the right Riemann sum with » intervals and calculate
the sum. Now take the limit # — oo in your expression for the Riemann sum, to
evaluate the integral () exactly.

You may use the identity

- 8 _ n* +2n3 + n?
=1 4
i=1

4

Q[39](*): Using a limit of right-endpoint Riemann sums, evaluate f x% dx.
2

n n
You may use the formulas )] i = @ and Y i? = w.
i=1 i=1

8



INTEGRATION 1.1 DEFINITION OF THE INTEGRAL

2
Q[40](*): Find J (x® 4 x) dx using the definition of the definite integral. You may use the
0

n n
; 3 _ n*42nd4n? : 4
summation formulas le = =% and le =
1= 1=

4
Q[41](+): Using a limit of right-endpoint Riemann sums, evaluate J (2x —1) dx. Do not

1
use anti-differentiation, except to check your answer.” You may use the formula

i i n(ntl)
~ 02
i=1

+  You'll learn about this method starting in Section 1.3 of the CLP-2 text. You can also check this answer
using geometry.

QI42]: Give a function f(x) that has the following expression as a right Riemann sum
whenn =10, A(x) =10 and a = -5:

10
> 3(7 4 2i)? sin(4i) .
i=1

Q[43]: Using the method of Example 1.1.2 in the CLP-2 text, evaluate

1
J 2% dx
0

Q[44]:
(a) Using the method of Example 1.1.2 in the CLP-2 text, evaluate
b
J 10" dx
a
(b)

Using your answer from above, make a guess for

b
J c® dx
a

where c is a positive constant. Does this agree with Question 43?

a
Q[45]: Evaluate f V1 — x? dx using geometry, if 0 < a < 1.
0




INTEGRATION 1.2 BASIC PROPERTIES OF THE DEFINITE INTEGRAL

QI46]: Suppose f(x) is a positive, decreasing function from x = a4 to x = b. You give an
upper and lower bound on the area under the curve y = f(x) using n rectangles and a
left and right Riemann sum, respectively, as in the picture below.

y y

/////

77
2702222222 7227272227] X L222222%22222270 2227277 //I/l/lE/////l X

(a) What is the difference between the lower bound and the upper bound? (That is, if we
subtract the smaller estimate from the larger estimate, what do we get?) Give your
answer in terms of f, a, b, and n.

(b) If you want to approximate the area under the curve to within 0.01 square units
using this method, how many rectangles should you use? That is, what should n be?

QI47]: Let f(x) be a linear function, leta < b be integers, and let n be a whole number. True

b
or false: if we average the left and right Riemann sums for J f(x) dx using n rectangles,
a

we get the same value as the midpoint Riemann sum using n rectang]les.

1.24 Basic properties of the definite integral

Exercises
Jump to HINTS, ANSWERS, SOLUTIONS or TABLE OF CONTENTS.

» Stage 1

Q[1]: For each of the following properties of definite integrals, draw a picture illustrating
the concept, interpreting definite integrals as areas under a curve.

For simplicity, you may assume that 2 < ¢ < b, and that f(x), g(x) give positive values.

(a) J f(x)dx =0 (Theorem 1.2.3.a in the CLP-2 text)
a
b ¢ b
(b) J f(x)dx = J f(x)dx + f f(x)dx  (Theorem 1.2.3.c in the CLP-2 text)

b b b
(c) J (f(x)+g(x)) dx = f f(x)dx + J g(x)dx (Theorem 1.2.1.a in the CLP-2
tgxt) ! ’

10



INTEGRATION 1.2 BASIC PROPERTIES OF THE DEFINITE INTEGRAL

b b
QI[2]: If J cos x dx = sin b, then what is J cos x dx?
0

a

Q[3](#): Decide whether each of the following statements is true or false. If false, provide
a counterexample. If true, provide a brief justification. (Assume that f(x) and g(x) are
continuous functions.)

-2 2
@ [ fdr=- [ fwax
-3 3

(b) If f(x) is an odd function, then _2f(x) dx = Jgf(x) dx.
-3 2

© [ 10 swax= [ s ax- [ gtx)ax

Q[4]: Suppose we want to make a right Riemann sum with 100 intervals to approximate
g f(x) dx, where f(x) is a function that gives only positive values.

Eza) What is Ax?

(b) Are the heights of our rectangles positive or negative?

(c) Is our Riemann sum positive or negative?

(d) Is the signed area under the curve y = f(x) from x = 0 to x = 5 positive or negative?
» Stage 2

3 3 3
Q[5](+): Suppose L f(x)dx = —1and L ¢(x) dx = 5. Evaluate L (6f(x) —3g(x)) dx.

2 2 2
Q[6](+): Iff0 f(x)dx =3 andJ0 ¢(x)dx = —4, calculate fo (2f(x) 4+ 3g(x)) dx.

QI7](+): The functions f(x) and g(x) obey
-1 2 0 2
L f(x)dx =1 Jof(x)dx:2 J_lg(x)dxzi% Lg(x)dxzzl

Find >, [3g(x) — f(x)] dx.

Q[8]: In Question 45, Section 1.1, we found that
a 1 1
f V1-—x2dx = g -5 arccos(a) + Ea\/l —a?
0

when (0 <a < 1.

Using this fact, evaluate the following:

11




INTEGRATION 1.2 BASIC PROPERTIES OF THE DEFINITE INTEGRAL

0
(a) J V1 —x2dx, where -1 <a <0
a

1
(b) J V1 —x2dx, where0 <a<1
a

2
QI[9](x): Evaluate f |2x| dx.
-1

b2 —4?

b
You may use the result from Example 1.2.5 in the CLP-2 text that { x dx = %5
a

5
Q[10]: Evaluate J x|x| dx.
-5

2 0
QI11]: Suppose f(x) is an even function and f f(x)dx = 10. What is J f(x)dx?
= =

» Stage 3

Q[12](+): Evaluate fz (5 /4 x2) dx.

+2012

QI[13](*): Evaluate J sinx X.

2012 log(3 + x2)

42012

Q[14](*): Evaluate J x1/3 cos x dx.
—2012

6

Q[15]: Evaluate f (x —3)%dx.
0

Q[16]: We want to compute the area of an ellipse, (ax)? + (by)? = 1 for some (let’s say
positive) constants a and b.

7

(a) Solve the equation for the upper half of the ellipse. It should have the form “y = - --

(b) Write an integral for the area of the upper half of the ellipse. Using properties of
integrals, make the integrand look like the upper half of a circle.

(c) Using geometry and your answer to part (b), find the area of the ellipse.

12




INTEGRATION 1.3 THE FUNDAMENTAL THEOREM OF CALCULUS

Q[17]:

Fill in the following table: the product of an (even/odd) function with an (even/odd)
function is an (even/odd) function. You may assume that both functions are defined for
all real numbers.

| x ][ even]odd |

even
odd

Q[18]: Suppose f(x) is an odd function and g(x) is an even function, both defined at
x = 0. What are the possible values of f(0) and g(0)?

Q[19]: Suppose f(x) is a function defined on all real numbers that is both even and odd.
What could f(x) be?

QJ20]: Is the derivative of an even function even or odd? Is the derivative of an odd
function even or odd?

1.34 The Fundamental Theorem of Calculus

Exercises
Jump to HINTS, ANSWERS, SOLUTIONS or TABLE OF CONTENTS.

» Stage 1
Q[1](+): Suppose that f(x) is a function and F(x) = e(**~3) 4+ 1 is an antiderivative of f(x).

5
Evaluate the definite integral J f(x)dx.
1

Q[2](+): For the function f(x) = x> —sin2x, find its antiderivative F(x) that satisfies
F(0) = 1.

Q[3](*): Decide whether each of the following statements is true or false. Provide a brief
justification
(a) If f(x) is continuous on [1, 7r] and differentiable on (1, 77), then

jf )dx = f(m) - (1),
(b) Lpdx:o.

b b
(c) If f is continuous on [a, b] then J xf(x)dx =x| f(x)dx

a

13



INTEGRATION 1.3 THE FUNDAMENTAL THEOREM OF CALCULUS

Q[4]: True or false: an antiderivative of % is log(x?) (where by log x we mean logarithm

base e).

sin(e¥)

QI[5]: True or false: an antiderivative of cos(e*) is =

X

QI6]: Suppose F(x) = J sin(t?) dt. What is the instantaneous rate of change of F(x) with
7

respect to x?

X
QI7]: Suppose F(x) = J el/t dt. What is the slope of the tangent line to y = F(x) when

2
x = 3?

QI8]: Suppose F'(x) = f(x). Give two different antiderivatives of f(x).

Q[9]: In Question 45, Section 1.1, we found that

a 1 1
J Viextde="- 5 arccos(a) + 20V 1—a2.
0

(a) Verify that % {% — %arccos(a) + %u\/ 1- aZ} =+/1-a2
(b) Find a function F(x) that satisfies F/(x) = v/1 — x2 and F(0) = 7.

Q[10]: Evaluate the following integrals using the Fundamental Theorem of Calculus Part
2, or explain why it does not apply.

T
(@) f cos x dx.

7T
(b) J sec? x dx.
—7T

0 1
(©) J—z o dx.

Questions 11 through 14 are meant to help reinforce key ideas in the Fundamental Theorem of Calculus and
its proof.

QI11]: As in the proof of the Fundamental Theorem of Calculus, let F(x) = {7 () dt. In
the diagram below, shade the area corresponding to F(x + 1) — F(x).
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INTEGRATION 1.3 THE FUNDAMENTAL THEOREM OF CALCULUS

X
Q[12]: Let F(x) = J f(t)dt, where f(t) is shown in the graph below, and 0 < x < 4.
0

(a) Is F(0) positive, negative, or zero?
(b) Where is F(x) increasing and where is it decreasing?

y
y=f(t)
\ N
1 4

NeVZ

0
Q[13]: Let G(x) = f f(t)dt, where f(t) is shown in the graph below, and 0 < x < 4.
X

(a) Is G(0) positive, negative, or zero?

(b) Where is G(x) increasing and where is it decreasing?

15




INTEGRATION 1.3 THE FUNDAMENTAL THEOREM OF CALCULUS

_
N
W
N

X

Q[14]: Let F(x) = f t dt. Using the definition of the derivative, find F’(x).

a
X
QI15]: Give a continuous function f(x) so that F(x) = f f(t)dt is a constant.
0

So far, we have been able to guess many antiderivatives. Often, however, antiderivatives are very difficult
to guess. In Questions 16 through 19, we will find some antiderivatives that might appear in a table of
integrals. Coming up with the antiderivative might be quite difficult (strategies to do just that will form a
large part of this semester), but verifying that your antiderivative is correct is as simple as differentiating.

QI16]: Evaluate and simplify %{x log(ax) — x}, where a is some constant and log(x) is the
logarithm base e. What antiderivative does this tell you?

Q[17]: Evaluate and simplify %{ex (x> —3x% + 6x — 6) }. What antiderivative does this tell
you?

Q[18]: Evaluate and simplify 3 {log |x +Vx2 +a?
antiderivative does this tell you?

}, where a is some constant. What

Q[19]: Evaluate and simplify % {1/3((& + x) —alog (vx 4+ +/a + x) }, where a is some

constant. What antiderivative does this tell you?

» Stage 2

2
QI20](#): Evaluate J (x® + sinx) dx.
0

2,2
QI[21](x): Evaluate J il ;2— 2 dx.
1

1
Q[ZZ] Evaluate J mdx

16



INTEGRATION 1.3 THE FUNDAMENTAL THEOREM OF CALCULUS

F 1

Nrera

QI[23]: Evaluate

r

Q[24]: Evaluate | tan® x dx.

QI[25]: Evaluate | 3sin x cos x dx.

r

Q[26]: Evaluate | cos® x dx.

J
J
f
J

Q[27](»): If

X 0
F(x) = f log(2+sint)dt and G(y) = f log(2 4+ sint) dt
0 y

find F'(%) and G'(%).

X
Q[28](x): Let f(x) = f 100(#* — 3t + Z)e_t2 dt. Find the interval(s) on which f is
1

increasing.

QSN 1EF(x) = [ (x).

t2+6

1+x
QI[30](x): Compute f'(x) where f(x) = f . e dt.
0

Q[31](+): Evaluate % {Lsmx(t6 + 8)dt}.

3

QI[32](x): Let F(x) = Lx e fsin ( 5 ) dt. Calculate F'(1).

JO dt
cosu 1 + t3 .

Q[34](+): Find f(x)if x> =1+ fx £(t) dt.
1

Q[33](+): Find % {

X
QI35](x): If x sin(7rx) = f f(t) dt where f is a continuous function, find f(4).
0

z2

QI[36](+): Consider the function F(x) = J

0 2
e tdt + f et dt.
0 —X

(a) Find F/(x).

(b) Find the value of x for which F(x) takes its minimum value.

17




INTEGRATION 1.3 THE FUNDAMENTAL THEOREM OF CALCULUS

Q[37](»): If F(x) is defined by F(x) = Jx St dt, find F/(x).

A3

2

QI38](*): Evaluate %{ J_x

x5

cos (e') dt}.

ex
Q[39](): Differentiate f vsintdt for 0 < x < log 7.
X

3 ifx
x ifx

5
Q[40](»): Evaluatef f(x)dx, where f(x) = {
1

» Stage 3

2
QI41](+): If £/(1) = 2 and £'(2) = 3, find L F1(x) " (x) dx.

Q[42](#): A car traveling at 30 m/s applies its brakes at time ¢ = 0, its velocity (in m/s)
decreasing according to the formula v(t) = 30 — 10t. How far does the car go before it
stops?

2

2X—X
QI43](x): Compute f'(x) where f(x) = J log (1 +¢') dt. Does f(x) have an absolute
0

maximum? Explain.

x%—2x dt
Q[44](+): Find the minimum value of J Express your answer as an integral.

0 1+t4

2

QI45](): Define the function F(x) = J sin(v/t) dt on the interval 0 < x < 4. On this
0

interval, where does F(x) have a maximum?

n .
QI[46](*): Evaluate nlirgo % Z sin ( %) by interpreting it as a limit of Riemann sums.
j=1

1 1
Q[47](*): Use Riemann sums to evaluate the limit lim — 2

n—w 11 4 A
J=11+n

18



INTEGRATION 1.4 SUBSTITUTION

Q[48]: Below is the graph of y = f(t), =5 < t < 5. Define F(x) = f f(t) dt for any x in
0

[—5,5]. Sketch F(x).
Yy

¥ +1

QI[49](+): Define f(x) = x3j et dt.

0

(a) Find a formula for the derivative f’(x). (Your formula may include an integral sign.)

(b) Find the equation of the tangent line to the graph of y = f(x) at x = —1.

Q[50]: Two students calculate { f(x) dx for some function f(x).
e Student A calculates { f(x) dx = tan?x + x + C
e Student B calculates § f(x) dx = sec?x + x + C
e Itisa fact that & {tan?x} = f(x) — 1

Who ended up with the correct answer?

Q[51]: Let F(x) = J 8 sin(t) dt.
0

(a) Evaluate F(3).
(b) Whatis F/(x)?

QI52]: Let f(x) be an even function, defined everywhere, and let F(x) be an antiderivative
of f(x). Is F(x) even, odd, or not necessarily either one? (You may use your answer from
Section 1.2, Question 20. )

1.4a Substitution

Exercises
Jump to HINTS, ANSWERS, SOLUTIONS or TABLE OF CONTENTS.

Recall that we are using log x to denote the logarithm of x with base e. In other courses it
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INTEGRATION

1.4 SUBSTITUTION

is often denoted In x.

» Stage 1

QI1l:
(a) True or False: Jsin(ex) e dx = fsin(u) du

u=e*

1 1

sin(e¥) - e* dx = J sin(u) du =1 — cos(1)

(b) True or False: J
0

0

= —cos(e’)+C

Q[2]: Is the following reasoning sound? If not, fix it.
Problem: Evaluate J(Zx +1)2dx.

Work: We use the substitution # = 2x + 1. Then:

J(Zx +1)2dx = fuz du

QI3]: Is the following reasoning sound? If not, fix it.

7T
Problem: Evaluate J Mdt.
1

Work: We use the substitution u = logt, so du = %dt. Then:

J Mdt :J cos(u)du
1 1

= sin(7r) —sin(1) = —sin(1).

Q[4]: Is the following reasoning sound? If not, fix it.

/4
Problem: Evaluate J x tan(x?) dx.
0

Work: We begin with the substitution u = x?, du = 2xdx:

/4 /4 1
f xtan(x?) dx = J 5 tan(x?) - 2xdx
0 0

2/16 1
:J —tanu du
0 2
1 F2/16 sin u

du
2 Jo cos U

20




INTEGRATION 1.4 SUBSTITUTION

Now we use the substitution v = cosu, dv = —sinu du:

1 cos(712/16) 1

LOSO %
1 cos(7t2/16) 1
= ~d
ZL v ¢

]- Ccos 2
= — llog o™

— —% (log (COS(7’C2/16)> — 108(1)>
— —% log <cos(7T2/16))

Q[5](*): What is the integral that results when the substitution u# = sin x is applied to the
/2
integral f(sinx) dx?
0

Q[6]: Let f and g be functions that are continuous and differentiable everywhere.
Simplify

| 768/ ax - fgx)).

» Stage 2

1
Q[7](x): Use substitution to evaluate f xe® cos(exz) dx.
0

8 2
QI8](): Let f(t) be any function for whichf f(t)dt = 1. Calculate the integral J x2f(x%) dx.
1 1

2
Q[9](+): Evaluate fmdx.

o4

dx

QI[10](*): Evaluate J

. xlogx’

Ccos x

/2
Q[].].](*) Evaluate J;) m

/2
Q[12](x): Evaluate J cos x - (1 +sin” x) du.
0

3
Q[13](*): Evaluate J (2x — 1)ex2_x dx.
1
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INTEGRATION 1.4 SUBSTITUTION

Q[14](»): Evaluate J (XZ% dx.
— x2

log x

«/logx

QI15]: Evaluate

» Stage 3

2
Q[16](+): Calculate f xe* dx.
-2

n . 2
. - ]
17](+): Calculate lim Z P ( )

Questions 18 through 22 can be solved by substitution, but it may not be obvious which substitution will
work. In general, when evaluating integrals, it is not always immediately clear which methods are appropri-
ate. If this happens to you, don’t despair, and definitely don’t give up! Just guess a method and try it. Even

if it fails, you'll probably learn something that you can use to make a better guess.!

rl 8
Q[18] Evaluate ‘J L[2——|—1 du.
0

Q[19]: Evaluate J tan®6 do .

.
QI20]: Evaluate ,J e"—l—% dx

rl
Q[21]: Evaluate J (1—2x)v/1—x2dx
0

r

Q[22]: Evaluate J tan x - log (cos x) dx

n . 9
QI23](*): Evaluate nh_r)xgo Z # cos <]—2)
j=1

. >
Q[24](*): Calculate hm Jah + I

1  This is also pretty decent life advice.
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INTEGRATION 1.5 AREA BETWEEN CURVES

Q[25]: Using Riemann sums, prove that

b 2b
f 2f(2x)dx = N f(x)dx

a

1.54 Area between curves

Exercises
Jump to HINTS, ANSWERS, SOLUTIONS or TABLE OF CONTENTS.

» Stage 1

Q[1]: We want to approximate the area between the graphs of y = cos x and y = sinx
from x = 0 to x = 7t using a left Riemann sum with n = 4 rectangles.

(@) On the graph below, sketch the four rectangles.

(b) Calculate the Riemann approximation.

Yy
e

BN
N
W
RS
/:‘
<
I
%) =
@,
)
=

2
Q[2]: We want to approximate the bounded area between the curves y = arcsin (;x)

and y = , /% using n = 5 rectang]les.

(a) Draw the five (vertical) rectangles on the picture below corresponding to a right
Riemann sum.

(b) Draw five rectangles on the picture below we might use if we were using horizontal
rectangles.
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INTEGRATION 1.5 AREA BETWEEN CURVES

y = arcsin (&)

Ny —

QI[3](x): Write down a definite integral that represents the finite area bounded by the
curves y = x> — x and y = x for x > 0. Do not evaluate the integral explicitly.

Q[4](+): Write down a definite integral that represents the area of the region bounded by
the liney = —% and the parabola y> = 6 — SZx Do not evaluate the integral explicitly.
Q[5](+): Write down a definite integral that represents the area of the finite plane region

bounded by y? = 4ax and x? = 4ay, where a > 0 is a constant. Do not evaluate the integral
explicitly.

Q[6](+): Write down a definite integral that represents the area of the region bounded
between the line x + 12y + 5 = 0 and the curve x = 4y?. Do not evaluate the integral
explicitly.

» Stage 2

QI7](): Find the area of the region bounded by the graph of f(x) = ﬁ and the

x—axis between x = 0and x = 1.

QI[8](+): Find the area between the curves y = x and y = 3x — x2, by first identifying the
points of intersection and then integrating.

QI9](): Calculate the area of the region enclosed by y = 2* and y = /x + 1.

Q[10](*): Find the area of the finite region bounded between the two curves y = V2 cos (rtx/4)

and y = |x|.
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INTEGRATION 1.6 VOLUMES

Q[11](#): Find the area of the finite region that is bounded by the graphs of
f(x) = x*v/x3 + 1and g(x) = 3x%.

Q[12](*): Find the area to the left of the y—axis and to the right of the curve x = y* + y.

Q[13]: Find the area of the finite region below y = v/9 — x? and above both y = |x| and
y=v1—x2

» Stage 3

Q[14](+): The graph below shows the region between y = 4 + 77 sin x and
y=4+2m—2x.

y=4421 -2z

y =4+ msin(z)

N —
3
ol
>"°

Find the area of this region.

Q[15](+): Compute the area of the finite region bounded by the curves x = 0, x = 3,

y=x+2andy = x2.

Q[16](x): Find the total area between the curves y = xv/25 — x2 and y = 3x, on the interval

0<x<4
Q[17]: Find the area of the finite region below y = v9 —x? and y = x, and above y =
1—(x—1)>2

Q[18]: Find the area of the finite region bounded by the curve y = x(x? — 4) and the line
y=x-2.

1.64 Volumes

Exercises
Jump to HINTS, ANSWERS, SOLUTIONS or TABLE OF CONTENTS.

» Stage 1

Q[1]: Consider a right circular cone.

25



INTEGRATION 1.6 VOLUMES

What shape are horizontal cross-sections? Are the vertical cross-sections the same?

Q[2]: Two potters start with a block of clay / units tall, and identical square cookie
cutters. They form columns by pushing the square cookie cutter straight down over the
clay, so that its cross-section is the same square as the cookie cutter. Potter A pushes their
cookie cutter down while their clay block is sitting motionless on a table; Potter B pushes
their cookie cutter down while their clay block is rotating on a potter’s wheel, so their
column looks twisted. Which column has greater volume?

< >

\/

Column A Column B

QI3]: Let R be the region bounded above by the graph of y = f(x) shown below and
bounded below by the x-axis, from x = 0 to x = 6. Sketch the washers that are formed by
rotating R about the y-axis. In your sketch, label all the radii in terms of y, and label the
thickness.
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INTEGRATION 1.6 VOLUMES

y

Q[4](+): Write down definite integrals that represent the following quantities. Do not
evaluate the integrals explicitly.

(a) The volume of the solid obtained by rotating around the x—axis the region between
the x—axis and y = Ve for 0 < x < 3.

(b) The volume of the solid obtained by revolving the region bounded by the curves
g g
Y= xz and y=x +2 about the line x = 3.

Q[5](+): Write down definite integrals that represent the following quantities. Do not

evaluate the integrals explicitly.

(@) The volume of the solid obtained by rotating the finite plane region bounded by the
curves y = 1 — x? and y = 4 — 4x? about the line y = —1.

(b) The volume of the solid obtained by rotating the finite plane region bounded by the
curve y = x*> — 1 and the line y = 0 about the line x = 5.

Q[6](+): Write down a definite integral that represents the volume of the solid obtained by
rotating around the line y = —1 the region between the curves y = x?> and y = 8 — x2. Do
not evaluate the integrals explicitly.

Q[7]: A tetrahedron is a three-dimensional shape with four faces, each of which is an
equilateral triangle. (You might have seen this shape as a 4-sided die; think of a pyramid
with a triangular base.) Using the methods from this section, calculate the volume of a
tetrahedron with side-length /. You may assume without proof that the height of a

tetrahedron with side-length ¢ is \/gf .
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INTEGRATION 1.6 VOLUMES

» Stage 2

Q[8](+): Let a > 0 be a constant. Let R be the finite region bounded by the graph of

y=1+ \/Eexz, the line y = 1, and the line x = 4. Using vertical slices, find the volume
generated when R is rotated about the line y = 1.

Q[9](+): Find the volume of the solid generated by rotating the finite region bounded by
y = 1/x and 3x 4 3y = 10 about the x—axis.

Q[10](+): Let R be the region inside the circle x> + (y — 2)? = 1. Let S be the solid
obtained by rotating R about the x-axis.

(a) Write down an integral representing the volume of S.
(b) Evaluate the integral you wrote down in part (a).

Q[11](*): The region R is the portion of the first quadrant which is below the parabola
yz = 8x and above the hyperbola yz —x%? =15.

(a) Sketch the region R.

(b) Find the volume of the solid obtained by revolving R about the x axis.

Q[12](+): The region R is bounded by y = log x, y = 0, x = 1 and x = 2. (Recall that we
are using log x to denote the logarithm of x with base e. In other courses it is often
denoted In x.)

(a) Sketch the region R.

(b) Find the volume of the solid obtained by revolving this region about the y axis.

2 2

Q[13](+): The finite region between the curves y = cos(3) and y = x* — 71* is rotated
about the line y = —72. Using vertical slices (disks and/or washers), find the volume of
the resulting solid.

Q[14](*): The solid V is 2 meters high and has square horizontal cross sections. The

length of the side of the square cross section at height x meters above the base is ﬁ m.

Find the volume of this solid.

Q[15](+): Consider a solid whose base is the finite portion of the xy—plane bounded by the
curves y = x> and y = 8 — x2. The cross-sections perpendicular to the x—axis are squares
with one side in the xy—plane. Compute the volume of this solid.
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INTEGRATION 1.6 VOLUMES

Q[16](*): A frustrum of a right circular cone (as shown below) has height /. Its base is a
circular disc with radius 4 and its top is a circular disc with radius 2. Calculate the

volume of the frustrum.

» Stage 3

Q[17]: The shape of the earth is often approximated by an oblate spheroid, rather than a
sphere. An oblate spheroid is formed by rotating an ellipse about its minor axis (its shortest
diameter).

(a) Find the volume of the oblate spheroid obtained by rotating the upper (positive) half
of the ellipse (ax)? + (by)? = 1 about the x-axis, where a and b are positive constants
with a > b.

(b) Suppose? the earth has radius at the equator of 6378.137 km, and radius at the poles
of 6356.752 km. If we model the earth as an oblate spheroid formed by rotating the
upper half of the ellipse (ax)? + (by)? = 1 about the x-axis, what are a and b?

(c) What is the volume of this model of the earth? (Use a calculator.)

(d) Suppose we had calculated the volume of the earth by modelling it as a sphere with
radius 6378.137 km. What would our absolute and relative errors be, compared to
our oblate spheroid calculation?

Q[18](+): Let R be the bounded region that lies between the curve y = 4 — (x — 1)? and
the liney = x + 1.

(a) Sketch R and find its area.

(b) Write down a definite integral giving the volume of the region obtained by rotating R
about the line y = 5. Do not evaluate this integral.

Q[9](x): Let R = {(x,y) : (x—1)*+y*<landx*+(y—1)><1}.
(a) Sketch R and find its area.

(b) If R rotates around the y—axis, what volume is generated?

2 Earth Fact Sheet, NASA, https://nssdc.gsfc.nasa.gov/planetary/factsheet/
earthfact.html, accessed 2 July 2017
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INTEGRATION 1.7 INTEGRATION BY PARTS

Q[20](*): Let R be the plane region bounded by x =0, x =1, y=0and y = cv1 + x2,
where ¢ > 0 is a constant.

(a) Find the volume V; of the solid obtained by revolving R about the x—axis.

(b) Find the volume V; of the solid obtained by revolving R about the y—axis.

(c) If V1 = V;, what is the value of ¢?

Q[21](*): The graph below shows the region between y = 4 + 7 sin x and
y=4+2m—2x.

y=4+2r -2z

y =4+ msin(z)

N —l
™ 3m 2
2

INEREs

The region is rotated about the line y = —1. Express in terms of definite integrals the
volume of the resulting solid. Do not evaluate the integrals.

Q[22]:

On a particular, highly homogeneous® planet, we observe that the density of the

atmosphere / kilometres above the surface is given by the equation p(h) = 27/ %,

where c is the density on the planet’s surface.

(a) What is the mass of the atmosphere contained in a vertical column with radius one
metre, sixty kilometres high?

(b) What height should a column be to contain 3(1)(())2;71

kilograms of air?

+ This is clearly a simplified model: air density changes all the time, and depends on lots
of complicated factors aside from altitude. = However, the equation we're using is not so
far off from an idealized model of the earth’s atmosphere, taken from Pressure and the
Gas Laws by H.P. Schmid, http://www.indiana.edu/~geogl09/topics/10_Forcess&Winds/
GasPressWeb/PressGasLaws.html, accessed 3 July 2017.

1.7 Integration by parts

Exercises
Jump to HINTS, ANSWERS, SOLUTIONS or TABLE OF CONTENTS.

30



http://www.indiana.edu/~geog109/topics/10_Forces&Winds/GasPressWeb/PressGasLaws.html
http://www.indiana.edu/~geog109/topics/10_Forces&Winds/GasPressWeb/PressGasLaws.html

INTEGRATION 1.7 INTEGRATION BY PARTS

» Stage 1

Q[1]: The method of integration by substitution comes from the rule for
differentiation.

The method of integration by parts comes from the

rule for differentiation.

Q[2]: Suppose you want to evaluate an integral using integration by parts. You choose
part of your integrand to be u, and part to be dv. The part chosen as u will be: (differenti-
ated, antidifferentiated). The part chosen as dv will be: (differentiated, antidifferentiated).

QI3]: Let f(x) and g(x) be differentiable functions. Using the quotient rule for differenti-

F) o
g(x)

ation, give an equivalent expression to J

QI4]: Suppose we want to use integration by parts to evaluate Ju(x) -v'(x)dx for some

differentiable functions u and v. We need to find an antiderivative of v'(x), but there are
infinitely many choices. Show that every antiderivative of ¢'(x) gives an equivalent final
answer.

Q[5]: Suppose you want to evaluate J f(x)dx using integration by parts. Explain why
dv = f(x)dx, u = 11is generally a bad choice.

Note: compare this to Example 1.7.8 of the CLP-2 text, where we chose u = f(x), dv =
1dx.

» Stage 2

QI6](x): Evaluate J xlog x dx.

log x
7 dx.

QI[7](x): Evaluate J

T

QI8](x): Evaluate J x sin x dx.
0

s
2

Q[9](#): Evaluate J x cos x dx.
0

Q[10]: Evaluate Jx3exdx.

Q[11]: Evaluate fx log3 x dx.
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INTEGRATION

1.7 INTEGRATION BY PARTS

QI12]: Evaluate ,J

r

x2 sin x dx.

Q[13]: Evaluate J
Q[14]: Evaluate J

Q[15]: Evaluate J

r

(3t> — 5t +6) log t dt.
VseVids.

log? xdx.

Q[16]: Evaluate JP

2
2xe* Tldx.

Q[17](*): Evaluat

e J arccos y dy.

» Stage 3

Q[18](): Evaluat

e J4y arctan(2y) dy.

Q[19]: Evaluate J

r

x2 arctan x dx.

QJ[20]: Evaluate J
Q[21]: Evaluate J

Q[22]: Evaluate J

r

"/ cos(2x)dx.

r

sin(log x)dx.

.
2¥Hlog ¥y,

QI23]: Evaluate J

.
e“*** sin(2x)dx.

r —x
xe
dx.

Q[24]: Evaluate J

(1)

QI25](*): A reduction formula.

(a) Derive the reduction formula

fsin”(x) dx = — .




INTEGRATION 1.8 TRIGONOMETRIC INTEGRALS

/2
(b) Calculatef sin®(x) dx.
0

Q[26](*): Let R be the part of the first quadrant that lies below the curve y = arctan x and
between the lines x = 0 and x = 1.

(a) Sketch the region R and determine its area.
(b) Find the volume of the solid obtained by rotating R about the y—axis.

Q[27](+): Let R be the region between the curves T(x) = 1/xe>* and B(x) = v/x(1 + 2x) on
the interval 0 < x < 3. (It is true that T(x) > B(x) for all 0 < x < 3.) Compute the volume
of the solid formed by rotating R about the x-axis.

Q[28](+): Let f(0) =1, f(2) = 3 and f'(2) = 4. Calculate f; " (Vx) dx.

52 (2 2
QI[29]: Evaluate lim » — (—i — 1) eni 1
n—o0 &\ 11

1.84 Trigonometric Integrals

Exercises
Jump to HINTS, ANSWERS, SOLUTIONS or TABLE OF CONTENTS.

Recall that we are using log x to denote the logarithm of x with base e. In other courses it
is often denoted In x.

» Stage 1

/4
Q[1]: Suppose you want to evaluate sin x cos” x dx using the substitution u = cos x.

Which of the following need to be trug for your substitution to work?
(a) n must be even

(b) n must be odd

(c) n must be an integer

(d) n must be positive

(e) n can be any real number

Q[2]: Evaluate | sec” x tan xdx, where n is a strictly positive integer.
yp 8

Q[3]: Derive the identity tan? x + 1 = sec? x from the easier-to-remember identity sin® x +

cos?x =1.
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» Stage 2

Questions 4 through 10 deal with powers of sines and cosines. Review Section 1.8.1 in the CLP-2 text for
integration strategies.

QI[4](x): Evaluate Jcos3 x dx.

7T
QI5](x): Evaluate J cos? x dx.
0

QI6](*): Evaluate Jsin36 t cos® tdt.

sin’ x

X.
cost x

QI[7]: Evaluate f

/3

QI8]: Evaluate f sin* x dx.
0

QI9]: Evaluate fsin5 x dx.

QI10]: Evaluate f sin'? x cos x dx.

Questions 12 through 21 deal with powers of tangents and secants. Review Section 1.8.2 in the CLP-2 text
for strategies.

QI11]: Evaluate f tan x sec? xdx.

Q[12](*): Evaluate Jtam3 x sec® x dx.

Q[13](*): Evaluate Jsec4 x tan*® x dx.

r

Q[14]: Evaluate J tan® x sec!® x dx.

r

QI15]: Evaluate J tan® x sec? x dx.

r

QJ[16]: Evaluate J tan* x sec? x dx.
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1.8 TRIGONOMETRIC INTEGRALS

QI17]: Evaluate J

QI[18]: Evaluate J

.
tan> x sec %7 x dx.

r

tan® x dx.

Q[19]: Evaluate ,J

r7T/6

tan® x dx.
0

Q[20]: Evaluate J

Q[21]: Evaluate J

~7T/4
tan® x sec* x dx.
0

.
tan x+/sec x dx.

Q[22]: Evaluate J

.
sec® 0 tan® 6 do.

» Stage 3

QI23](*): A reduction formula.
(a) Let n be a positive integer with n > 2. Derive the reduction formula

(b) Calculate f
0

Jtan”(x) dx =

/4

tan®(x) dx.

tan" 1 (x)
n—1

— ftan”_z(x) dx.

Q[24]: Evaluate J

.
tan® x cos® x dx.

QI25]: Evaluate J

r 1
deé.
cos? 0

QJ26]: Evaluate J

.
cot x dx.

QI27]: Evaluate J

QI[28]: Evaluate J

r

e* sin(e*) cos(e*) dx.

.
sin(cos x) sin® x dx.
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INTEGRATION 1.9 TRIGONOMETRIC SUBSTITUTION

QI29]: Evaluate f xsin x cos x dx.

1.9+ Trigonometric Substitution

Exercises
Jump to HINTS, ANSWERS, SOLUTIONS or TABLE OF CONTENTS.

Recall that we are using log x to denote the logarithm of x with base e. In other courses it
is often denoted In x.

» Stage 1

Q[1](+): For each of the following integrals, choose the substitution that is most beneficial
for evaluating the integral.

2x2
@) J \/9ic2 - 16 dx
x*—3
(b) J V1 —4x?2 dx

(c) J (25 + xz)_S/2 dx

QI2]: For each of the following integrals, choose a trigonometric substitution that will
eliminate th(i roots.

@ | s

dx

Va2 —4x+1
(b)J
" 1

[ (x—l)6

(—x2 +2x +4)3/2
© J V4x2 +6x + 10 dx
(d) J\/xz—xdx

QI3]: In each part of this question, assume 6 is an angle in the interval [0, 77/2].

(@) Ifsinf = 21—0, what is cos 6 ?

(b) If tan6 = 7, whatis csc ?

vx—1
(c) Ifsech = xT, what is tan 6 ?
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INTEGRATION 1.9 TRIGONOMETRIC SUBSTITUTION

Q[4]: Simplify the following expressions.
(a) sin (arccos (%))

(b) sin (arctan (\%))
(c) sec (arcsin (1/x))

» Stage 2

QI5](x): Evaluate J (xz—l—lw dx.

4
dx. Your answer may not contain inverse trigonometric

Q[6](*) EvaluateL m

functions.
52 dx
7](+ :EvaluateJ _—
Q) 0 VB2
Q[8](*): Evaluate f \/% You may use that Jsec x dx = log | secx + tan x| + C.
X
x+1
9]: Evaluate | ——dx.
Q] V2x2 + 4x
dx
10](»): Evaluate | ————.
QI11](*): Evaluate L for x > 3. Do not include any inverse trigonometric func-
x24/x2 -9 Y &

tions in your answer.

/4

Q[12](»): (a) Show that f cos*0 do = (8 +3m)/32.
0

1
(b) Evaluate f La.
-1 (x2+1)
7Tt/12 15X3
13]: Evaluat dx.
Q[13]: Evaluate J—n/u CERCEEAEE x

Q[14](+): Evaluate J\/4 — x2dx.
\/25x2 — 4

X

QI[15](»): Evaluate f

dx for x > 2.
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x3

V17
Q[16]: Evaluate J dx.

V1o Vx2—1

dx

Q[17](*) Evaluate J m

QI18]: Evaluate f L dx for x > 2.

(2x —3)3v/4x2 —12x + 8

1 x2

Q[19] Evaluate J;) de

You may use that § sec xdx = log|sec x + tan x| + C.

1
Q[ZO] Evaluate f m dx.

» Stage 3

2

Y 4.
Vxz—2x+2

1 1
You may assume without proof that fsec3 0 do = 5 sec ftan 6 + 5 log|sect + tan 6| + C.

QJ21]: Evaluate J

1
22]: Evaluate f — dx.
Ql22] v/3x2 4 5x

You may use that § sec xdx = log|sec x 4 tan x| + C.

1 4 x2)3/2
QI[23]: Evaluate J%dx. You may use the fact that Jcsc@ df = log|cotf —
cscB| + C.
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Q[24]: Below is the graph of the ellipse (%) + (4)? = 1. Find the area of the shaded
region using the ideas from this section.

y
1 -
X
1 —
QI[25]: Let f(x) = \4/1|x_|7xz’ and let R be the region between f(x) and the x-axis over the

interval [—1, 1].
(a) Find the area of R.
(b) Find the volume of the solid formed by rotating R about the x-axis.

Q[26]: Evaluate J\/ 1+e* dx. You may use the antiderivative Jcsc 6d6 = log|cotf —
csch| + C.

Q[27]: Consider the following work.

1—x2 =
cos 6
= de
J cos? 6

= Jsec@ de

N = log|secO + tan 6| + C Example 1.8.19 in the CLP-2 text
X 1 X
‘ =lo + +C
N ] & \/1 — x? \/1 — x2

V1 — %2 - 1+x
V1 — x?

f 1 dx—f%cos@d@ using x = sinf), dx = cos6 df
1—sin“ 6

+C

1+x
V1= x2
9 1 1+x

(b) True or false:J ——dx = {log

(a) Differentiate log

x=3
21—x2 Vl_xz]x—Z

(c) Was the work in the question correct? Explain.

QI[28]:
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(a) Suppose we are evaluating an integral that contains the term va? — x2, where a is a
positive constant, and we use the substitution x = asinu (with inverse
u = arcsin(x/a)), so that

Va2 = x2 = /a2 cos?u = |acos u|

Under what circumstances is |a cos u| # a cos u?

(b) Suppose we are evaluating an integral that contains the term va? + x?, where a is a
positive constant, and we use the substitution x = a tan u (with inverse
u = arctan(x/a)), so that

Va2 +x2 = Va2sec?u = la sec u|

Under what circumstances is |a sec u| # asec u?

(c) Suppose we are evaluating an integral that contains the term v x2 — a2, where a is a
positive constant, and we use the substitution x = asec u (with inverse
u = arcsec(x/a) = arccos(a/x)), so that

Va2 —a2 = v/a2tan?u = |atanu|

Under what circumstances is |a tan u| # a tan u?

1.104 Partial Fractions

Exercises
Jump to HINTS, ANSWERS, SOLUTIONS or TABLE OF CONTENTS.

Recall that we are using log x to denote the logarithm of x with base e. In other courses it
is often denoted In x.

» Stage 1

Q[1]: Below are the graphs of four different quadratic functions. For each quadratic
function, decide whether it is: (i) irreducible, (ii) the product of two distinct linear
factors, or (iii) the product of a repeated linear factor (and possibly a constant).

Yy Yy L/ Yy

N\ |
N o

(a) (b) (©) (d)
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INTEGRATION 1.10 PARTIAL FRACTIONS

Q[2](*): Write out the general form of the partial-fractions decomposition of
x>+ 3
122+ 1)

You need not determine the values of any of the coefficients.

3x% —2x* 4+ 11
in the partial fraction decomposition of > .

+): Find th: ffici f .
QI3](*): Find the coefficient o 1 =12 1 3)

2

Q[4]: Re-write the following rational functions as the sum of a polynomial and a rational
function whose numerator has a strictly smaller degree than its denominator. (Remember
our method of partial fraction decomposition of a rational function only works when the
degree of the numerator is strictly smaller than the degree of the denominator.)

x>+ 2x +2
@ —5

xs+1

) 15x* + 6x° + 34x% + 4x + 20
(c)

5x2 +2x+ 8
2x% +9x3 + 12x2 + 10x + 30

2x2 45

Q[5]: Factor the following polynomials into linear and irreducible factors.
(@) 5x3 —3x2 —10x +6

(b) x* —3x> -5

(c) x* —4x3 —10x2 —11x — 6

(d) 2x* 4+ 12x3 — x* —52x + 15

QI6]: Here is a fact:

Suppose we have a rational function with a repeated linear factor (ax + b)" in
the denominator, and the degree of the numerator is strictly less than the
degree of the denominator. In the partial fraction decomposition, we can
replace the terms

Aq Ap Az An
ax+b+(ax—kb)2+(zzx+b)3+ +(ax—kb)” @
with the single term
By + Box + Bax? +--- + Byx"! ?

(ax +b)"

and still be guaranteed to find a solution.

Why do we use the sum in (1), rather than the single term in (2), in partial fraction decom-
position?
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INTEGRATION 1.10 PARTIAL FRACTIONS

» Stage 2

dx
+ x2

2
QI71(#): Evaluatef 2
1

1
QI8](x): Calculate fmdx.

QI[9](»): Calculate f T _12; (1_24_'_ 0 dx.

Q[10](+): Evaluate the following indefinite integral using partial fraction:

3x% —4
F(x) = J 22+ 1) dx.

x—13
Q[].].](*) Evaluate J xz——x—6dx

5x +1

Q[lZ](*) Evaluate J m X.

r 2 _ _
Q[13]: Evaluate J % dx.

[ 4x* 4 1452 +2
Q[14]: Evaluatej i 4—;4 +xx2+ dx.

A2 2% — 1
QI15]: Evaluate J % dx.

[ 3x? —4x—10
Q[16]: Evaluate J T - v— dx.

1 10x2 +24x + 8 N
0 2x3+11x2+6x+5

Q[17]: Evaluate j

» Stage 3

In Questions 18 and 19, we use partial fraction to find the antiderivatives of two important functions:
cosecant, and cosecant cubed.

Q[18]: Using the method of Example 1.10.5 in the CLP-2 text, integrate Jcsc x dx.

Q[19]: Using the method of Example 1.10.6 in the CLP-2 text, integrate Jcsc3 x dx.
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INTEGRATION 1.10 PARTIAL FRACTIONS

The purpose of performing a partial fraction decomposition is to manipulate an integrand into a form that
is easily integrable. These “easily integrable” forms are rational functions whose denominator is a power
of a linear function, or of an irreducible quadratic function. In Questions 20 through 23, we explore the
integration of rational functions whose denominators involve irreducible quadratics.

(2 3x3 + 15x% + 35x + 10
Q[20]: Evaluate Jl A 153 11022 dx.

i 3 -3
QI[21]: Evaluate J (x2 3 + (xazc n 2)2> dx.

QJ22]: Evaluate J (1—|-1—xz)3 dx.

[ 3x+1 3x
23]: Evaluate | | 3x dx.
Q23] J ( +x2+5+(x2+5)2)
In Questions 24 through 26, we use substitution to turn a non-rational integrand into a rational integrand,
then evaluate the resulting integral using partial fraction. Till now, the partial fraction problems you ve seen
have all looked largely the same, but keep in mind that a partial fraction decomposition can be a small step
in a larger problem.

i cosf
Q[24]: Evaluate J 3sin0 + cos20 3 de.

[ 1
Q[ZS] Evaluate J m dt.

QI[26]: Evaluate J V1 4+ e* dx using partial fraction.

Q[27](*): The region R is the portion of the first quadrant where 3 < x < 4 and
10

V25 —x2
(a) Sketch the region R.

O<y<

(b) Determine the volume of the solid obtained by revolving R around the x—axis.

(c) Determine the volume of the solid obtained by revolving R around the y-axis.

4 2

Q[28]: Find the area of the finite region bounded by the curves y = 372 Y= 1)

1
x:ZL,andx:3.

Q[29]: Let F(x) — L - L 5

(a) Give a formula for F(x) that does not involve an integral.
(b) Find F'(x).

dt.
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INTEGRATION 1.11 NUMERICAL INTEGRATION

1.114 Numerical Integration

Exercises
Jump to HINTS, ANSWERS, SOLUTIONS or TABLE OF CONTENTS.

Recall that we are using log x to denote the logarithm of x with base e. In other courses it
is often denoted In x.

» Stage 1

Q[1]: Suppose we approximate an object to have volume 1.5m?, when its exact volume is
1.387m3. Give the relative error, absolute error, and percent error of our approximation.

10
QI2]: Consider approximating | f(x) dx, where f(x) is the function in the graph below.
2

(a) Draw the rectangles associated with the midpoint rule approximation and n = 4.
(b) Draw the trapezoids associated with the trapezoidal rule approximation and n = 4.

You don’t have to give an approximation.

Q[3]: Let f(x) = —%x‘l + gx?’ — 342,
(a) Find a reasonable value M such that |f”(x)| < M forall 1 < x

< <x <6
(b) Find a reasonable value L such that [f(*)(x)| < L forall 1 < x < 6.

QI4]: Let f(x) = xsinx + 2 cos x. Find a reasonable value M such that |f”(x)| < M for all
-3<x<2
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INTEGRATION 1.11 NUMERICAL INTEGRATION

7T
Q[5]: Consider the quantity A = J cos x dx.

(a) Find the upper bound on the errT)r using Simpson’s rule with n = 4 to approximate A
using Theorem 1.11.12 in the CLP-2 text.

(b) Find the Simpson’s rule approximation of A using n = 4.

(c) What is the (actual) absolute error in the Simpson’s rule approximation of A with
n=4?

QI6]: Give a function f(x) such that:

e f"(x) <3forevery x in [0,1], and
1
¢ the error using the trapezoidal rule approximating f f(x) dx with n = 2 intervals
0
is exactl 1
Y16

Q[7]: Suppose my mother is under 100 years old, and I am under 200 years old.> Who is
older?
Q[8]:

(a) True or False: for fixed positive constants M, n, a, and b, with b > g,

M(b—-a)® M((b—-a)
_—g_—
24 n2 12 n?

(b) True or False: for a function f(x) and fixed constants 1, a, and b, with b > a, the

n-interval midpoint approximation of f f(x) dx is more accurate than the n-interval
a

trapezoidal approximation.

Q[9](#): Decide whether the following statement is true or false. If false, provide a
counterexample. If true, provide a brief justification.
When f(x) is positive and concave up, any trapezoidal rule approximation

b b
for f f(x) dx will be an upper estimate for f f(x)dx.
a a

QI10]: Give a polynomial f(x) with the property that the Simpson’s rule approximation
b

of J f(x) dx is exact for all a, b, and n.
a

» Stage 2

Questions 11 and 12 ask you to approximate a given integral using the formulas in Equations 1.11.2,1.11.6,
and 1.11.9 in the CLP-2 text.

3 We're going somewhere with this.
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INTEGRATION 1.11 NUMERICAL INTEGRATION

30

Q[11]: Write out all three approximations of f P dx with n = 6. (That is: midpoint,
0

trapezoidal, and Simpson’s.) You do not need to simplify your answers.

7T

Q[12](*): Find the midpoint rule approximation to J sin x dx with n = 3.
0

Questions 13 though 17 ask you to approximate a quantity based on observed data.

Q[13](#): The solid V is 40 cm high and the horizontal cross sections are circular disks.
The table below gives the diameters of the cross sections in centimeters at 10 cm
intervals. Use the trapezoidal rule to estimate the volume of V.

height 0 |10(20 |30 |40
diameter |24 |16 | 10| 6 | 4

Q[14](#): A 6 metre long cedar log has cross sections that are approximately circular. The
diameters of the log, measured at one metre intervals, are given below:

metres from leftendoflog | 0 |1 2 | 3 |4 |5]| 6
diameter in metres 121708081112

Use Simpson’s Rule to estimate the volume of the log.

Q[15](*): The circumference of an 8 metre high tree at different heights above the ground
is given in the table below. Assume that all horizontal cross—sections of the tree are
circular disks.

height (metres) 0| 2] 4| 6| 8
circumference (metres) | 1.2 | 1.1 | 1.3 | 0.9 | 0.2

Use Simpson’s rule to approximate the volume of the tree.

Q[16](*): By measuring the areas enclosed by contours on a topographic map, a geologist
determines the cross sectional areas A in m? of a 60 m high hill. The table below gives the
cross sectional area A(h) at various heights /. The volume of the hill is V = Sgo A(h)dh.
h 0 10 20 30 40 50 | 60
A | 10,200 | 9,200 | 8,000 | 7,100 | 4,500 | 2,400 | 100
(a) If the geologist uses the Trapezoidal Rule to estimate the volume of the hill, what will
be their estimate, to the nearest 1,000m3?
(b) What will be the geologist’s estimate of the volume of the hill if they use Simpson’s
Rule instead of the Trapezoidal Rule?
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INTEGRATION 1.11 NUMERICAL INTEGRATION

Q[17](*): The graph below applies to both parts (a) and (b).

(@) Use the Trapezoidal Rule, with nn = 4, to estimate the area under the graph between
x = 2 and x = 6. Simplify your answer completely.

(b) Use Simpson’s Rule, with n = 4, to estimate the area under the graph between x = 2
and x = 6.

In Questions 18 through 24, we practice finding error bounds for our approximations.

1
Q[18](*): The integral J sin(x?) dx is estimated using the Midpoint Rule with 1000
-1

intervals. Show that the absolute error in this approximation is at most 2 - 107°.

You may use the fact that when approximating Sg f(x) dx with the Midpoint Rule using n

points, the absolute value of the error is at most M(b — a)3/24n? when |f”(x)| < M for all
x € [a,b].

Q[19](*): The total error using the midpoint rule with n subintervals to approximate the
_ ;)3
integral of f(x) over [a, b] is bounded by %, if [f"(x)] < Mforalla < x <b.

Using this bound, if the integral J 2x* dx is approximated using the midpoint rule with

60 subintervals, what is the largesgpossible error between the approximation Mgy and
the true value of the integral?

2

Q[20](*): Both parts of this question concern the integral I = f (x —3)°dx.
0

(a) Write down the Simpson’s Rule approximation to I with n = 6. Leave your answer in
calculator-ready form.

(b) Which method of approximating I results in a smaller error bound: the Midpoint
Rule with n = 100 intervals, or Simpson’s Rule with n = 10 intervals? You may use
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INTEGRATION 1.11 NUMERICAL INTEGRATION

the formulas

M(b —a)?
24n?

L(b —a)®

Eyl < kit
[Enl 180n4

and |Es| <

where M is an upper bound for |f”(x)| and L is an upper bound for |f#)(x)|, and Ej
and Eg are the absolute errors arising from the midpoint rule and Simpson’s rule,
respectively.

5
Q[21](*): Find a bound for the error in approximating f % dx using Simpson’s rule with
1

n = 4. Do not write down the Simpson’s rule approximation Sy.

In general the error in approximating Ss f(x) dx using Simpson’s rule with n steps is

bounded by %(Ax)4 where Ax = b-a and L > |f®)(x)| foralla < x < b.

Q[22](+): Find a bound for the error in approximating

1
e~2¥ 4+ 3x3) dx
(
0

using Simpson’s rule with n = 6. Do not write down the Simpson’s rule approximation
Sn.
In general, the error in approximating Ss f(x) dx using Simpson’s rule with 7 steps is

bounded by L(i)g_()a) (Ax)* where Ax = b-a

and L > |f#(x)| foralla < x < b.

2

Q[23](+): Let I = J (1/x) dx.

1

(a) Write down the trapezoidal approximation Ty for 1. You do not need to simplify your
answer.

(b) Write down the Simpson’s approximation Sy for I. You do not need to simplify your
answer.

(c) Without computing I, find an upper bound for |I — S4|. You may use the fact that if
f (4) (x)| < L on the interval [a, b], then the error in using S, to approximate Ss f(x)dx
has absolute value less than or equal to L(b — a)°/180n*.

1

Since 5 is a decreasing function when x > 0, look for its maximum value when x is as

small as possible.

Q[24](+): A function s(x) satisfies s(0) = 1.00664, s(2) = 1.00543, s(4) = 1.00435,

s(6) = 1.00331, 5(8) = 1.00233. Also, it is known to satisfy [s() (x)| < ﬁ for0 <x <8
and all positive integers k.
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(a) Find the best Trapezoidal Rule and Simpson’s Rule approximations that you can for

I= Jo s(x) dx.

(b) Determine the maximum possible sizes of errors in the approximations you gave in
part (a). Recall that if a function f(x) satisfies [f*)(x)| < K¢ on [a, b], then

Kz(b — ll)

3 5
Ky(b—a)
15,2 and

b
L f(x)dx—T, 18078

< <

Lbf(x) dx — S,

Q[25](+): Consider the trapezoidal rule for making numerical approximations to
M(b—a)?
p 12n2

|f"(x)| < Mfora<x<b.If -2 < f"(x) < 0for1 < x <4, find a value of n to guarantee

f(x) dx. The error for the trapezoidal rule satisfies |E7| < , where

4
the trapezoidal rule will give an approximation for J f(x) dx with absolute error, |E7|,
1
less than 0.001.

» Stage 3

Q[26](*): A swimming pool has the shape shown in the figure below. The vertical
cross—sections of the pool are semi—circular disks. The distances in feet across the pool
are given in the figure at 2—foot intervals along the sixteen—foot length of the pool. Use
Simpson’s Rule to estimate the volume of the pool.
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Q[27](x): A piece of wire 1m long with radius 1mm is made in such a way that the
density varies in its cross—section, but is radially symmetric (that is, the local density g(r)
inkg/ m?3 depends only on the distance r in mm from the centre of the wire). Take as
given that the total mass W of the wire in kg is given by

1
W= 27t10_6J rg(r)dr
0

Data from the manufacturer is given below:

r 0 1/4 | 1/2 | 3/4 1
g(r) | 8051 | 8100 | 8144 | 8170 | 8190
(a) Find the best Trapezoidal Rule approximation that you can for W based on the data

in the table.
(b) Suppose that it is known that |¢’(r)| < 200 and |¢” ()| < 150 for all values of r.

Determine the maximum possible size of the error in the approximation you gave in
part (a). Recall that if a function f(x) satisfies |f”(x)| < M on [a, b], then

M(b—a)?

1-T,| <
| d 1262

where [ = SZ f(x)dx and Ty, is the Trapezoidal Rule approximation to I using n
subintervals.

2
1
Q[28](*): Simpson’s rule can be used to approximate log 2, since log2 = J p dx.
1

(a) Use Simpson’s rule with 6 subintervals to approximate log 2.
(b) How many subintervals are required in order to guarantee that the absolute error is
less than 0.00001?
o . . L(b—a)®
Note that if E, is the error using n subintervals, then |E,| < 180k

maximum absolute value of the fourth derivative of the function being integrated
and a and b are the end points of the interval.

where L is the

2
Q[29](*): Let I = J cos(x?) dx and let S, be the Simpson’s rule approximation to I using
0

n subintervals.
(a) Estimate the maximum absolute error in using Sg to approximate I.
(b) How large should n be in order to ensure that | — S,| < 0.0001?

Note: The graph of f”(x), where f(x) = cos(x?), is shown below. The absolute error in

)
L(b—a) when |f"”(x)| < L on the

the Simpson’s rule approximation is bounded by 180k

interval [a, b].
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100+
O__I_I_l—l—"rlllllllllllllx
] 0.5 1.0 1.5 2.0
~100
—200
—300 -

QI30](*): Define a function f(x) and an integral I by

X 1
flx) = fo sin(vh)dt, = L £(b) dt

Estimate how many subdivisions are needed to calculate I to five decimal places of
accuracy using the trapezoidal rule.

2

M(b —a)?

I where M is the
n

Note that if E, is the error using n subintervals, then |E,| <

maximum absolute value of the second derivative of the function being integrated and a
and b are the limits of integration.

2

QI[31]: Let f(x) be a function* with f”(x) = xi T
(a) Show that |f”(x)| < 1 whenever x is in the interval [0, 1].

(b) Find the maximum value of |f”(x)| over the interval [0, 1].

1
(c) Assuming M = 1, how many intervals should you use to approximate J f(x)dxto
0
within 10722
(d) Using the value of M you found in (b), how many intervals should you use to

1
approximate f f(x) dx to within 107°?
0

Q[32]: Approximate the function log x with a rational function by approximating the

X
1
integral f H dt using Simpson’s rule. Your rational function f(x) should approximate
1

log x with an error of not more than 0.1 for any x in the interval [1, 3].

1
Q[33]: Using an approximation of the area under the curve 251 show that the

constant arctan 2 is in the interval % +0.321, % + 0.323} .

4 For example, f(x) = tx® — 1x% + (1 + x)log|x + 1| will do, but you don’t need to know what f(x) is

£ i 11
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INTEGRATION 1.12 IMPROPER INTEGRALS

da* (1 24(5x* —10x* 4 1
You may assume use without proof that Frl el i ( szz n 135 = + ) You may

use a calculator, but only to add, subtract, multiply, and divide.

1.124 Improper Integrals

Exercises
Jump to HINTS, ANSWERS, SOLUTIONS or TABLE OF CONTENTS.

» Stage 1
b
QI1]: For which values of b is the integral J 21 dx improper?
0 X2 —
b
QI[2]: For which values of b is the integral J ——— dx improper?
0 X —+ 1

o0
QI3]: Below are the graphs y = f(x) and y = g(x). Suppose f f(x) dx converges, and
0

o0
¢(x) dx diverges. Assuming the graphs continue on as shown as x — <, which graph

0
is f(x), and which is g(x)?
y

S :

Q[4](#): Decide whether the following statement is true or false. If false, provide a
counterexample. If true, provide a brief justification. (Assume that f(x) and g(x) are
continuous functions.)

0 e¢]
If J f(x) dx converges and g(x) > f(x) = 0 for all x, then J ¢(x) dx converges.
1 1

QI5]: Let f(x) = e *and g(x) = xL—I-l Note {;” f(x) dx converges while {; g(x) dx
diverges.

For each of the functions h(x) described below, decide whether {;’ (x) dx converges or
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diverges, or whether there isn’t enough information to decide. Justify your decision.
(a) h(x), continuous and defined for all x > 0, h(x) < f(x).

(b) h(x), continuous and defined for all x > 0, f(x) < h(x) < g(x).

(c) h(x), continuous and defined for all x > 0, —2f(x) < h(x) < f(x).

» Stage 2

4

1
Q[6](+): Evaluate the integral j 5x dx or state that it diverges.
0

x> —1

2
1
Q[7](+): Determine whether the integral J ( dx is convergent or divergent. If it
-2

x +1)4/3
is convergent, find its value.

QI[8](*): Does the improper integral dx converge? Justify your answer.

0 1
L Vax2 — x

QI[9](*): Does the integral foo _dx
. & 0 X2++/x

converge or diverge? Justify your claim.

0
Q[10]: Does the integral J cos x dx converge or diverge? If it converges, evaluate it.
—o0

Q0

Q[11]: Does the integral f sin x dx converge or diverge? If it converges, evaluate it.
—00

(© x* —5x3 4 2x -7
10 xX°+3x+8

Q[12]: Evaluate J dx, or state that it diverges.

r10 x—1

0 ¥2—11x+10

Q[13]: Evaluate J dx, or state that it diverges.

Q[14](+): Determine (with justification!) which of the following applies to the integral

+00
X
f_oo 21 1dx.

10 X
(1) J_OO xz——i—ldx diverges
3 r+0 X +0 x )
(ii) J—oo mdx converges but J_OO x2—+1‘ dx diverges
00 X 400 X
(iii) | I 1dx converges, as does f_oo xz——l—l‘ dx
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INTEGRATION 1.12 IMPROPER INTEGRALS

Remark: these options, respectively, are that the integral diverges, converges condition-
ally, and converges absolutely. You'll see this terminology used for series in Section 3.4.1
of the CLP-2 text.

Q0

QI15](*): Decide whether I = M dx converges or diverges. Justify.
0 X324 x1/2 & & Y
®© x+1

Q[16](x): Does the integral J

dx converge or diverge?
o x¥1/3(x24+x+41) E 4

» Stage 3

1
Q[17]: We craft a tall, vuvuzela-shaped solid by rotating the line y = — from x = a to
x

x = 1 about the y-axis, where a is some constant between 0 and 1.
Y

Q=

2
-1 a 1

True or false: No matter how large a constant M is, there is some value of a that makes a
solid with volume larger than M.

o0

Q[18](*): What is the largest value of g for which the integral f

1 .
57 dx diverges?
1 X

Q0

Q[19]: For which values of p does the integral fo m dx converge?

0

1
QI20]: Evaluate J ﬂdt, or state that it diverges.
) _

1, 1
Vix=11 " y/Ix -2
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Q0

Q[22]: Evaluate f e *sinx dx, or state that it diverges.
0

sin® x

0
Q[23](*): Is the integral J dx convergent or divergent? Explain why.
0

xz

X

eX 4+ \/x

Q0
Q[24]: Does the integral f dx converge or diverge?
0

t ,—x
Q[25](*): Let M,, + be the Midpoint Rule approximation for J 1e+ "
0

subintervals. Find a value of t and a value of n such that M,,; differs from SSO % dx by at

dx with n equal

most 107, Recall that the error E, introduced when the Midpoint Rule is used with 7
subintervals obeys

M(b—a)?

E,|l <
[Exl 24n?

where M is the maximum absolute value of the second derivative of the integrand and a
and b are the end points of the interval of integration.

Q0
QI26]: Suppose f(x) is continuous for all real numbers, and J f(x) dx converges.
1

-1
(a) If f(x) is odd, does J f(x) dx converge or diverge, or is there not enough
—0Q0

information to decide?OO

(b) If f(x) is even, does f f(x) dx converge or diverge, or is there not enough
information to decide?

X

1
QI[27]: True or false: There is some real number x, with x > 1, such that J 3 dt = 1.
0

1.134 More Integration Examples

Exercises
Jump to HINTS, ANSWERS, SOLUTIONS or TABLE OF CONTENTS.

Recall that we are using log x to denote the logarithm of x with base e. In other courses it
is often denoted In x.

» Stage 1

Q[1]: Match the integration method to a common kind of integrand it’s used to
antidifferentiate.

55



INTEGRATION 1.13 MORE INTEGRATION EXAMPLES

(A) u = f(x) substitution (I) a function multiplied by its derivative
(B) trigonometric substitution  (II) a polynomial function times an exponential function
(C) integration by parts (IIT)  a rational function
(D) partial fractions (IV) the square root of a quadratic function
» Stage 2
~7T/2
QJ[2]: Evaluate J sin* x cos® x dx.
0

Q[3]: Evaluate J V3 —5x2 dx.

r‘OOx_l

o ¢€f

i -2
—dx.
3x2+4x+1 X

r2

QI6]: Evaluate ,J x? log x dx.
1

dx.

QI[4]: Evaluate J

QI[5]: Evaluate J

QI7](x): Evaluate J dx.

X
x2 -3
Q[8](+): Evaluate the following integrals.

4
x

a —dx
(a) e

/2
(b) J cos® x sin? x dx
0

(4
(©) J x3 log x dx
1

Q[9](#): Evaluate the following integrals.

/2
(@) J xsinx dx
0

/2
(b) J cos® x dx
0
Q[10](*): Evaluate the following integrals.
2
(a) J xe* dx
0

1

1
b —d
(b) AT

5 4x
(© L (x2—1)(x2+1) dx
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Q[11](#): Calculate the following integrals.

(a) JS V9 — x2dx
0
1

©) | tog(1 -+ dx
0

0 X
(©) L (x—1)2(x—2) dx

Q[12]: Evaluatefsm 0 —5sin® 0 + 4sin®0 + 10sin O c0s0 do.
sin®0 —5sinf + 6

Q[13](*): Evaluate the following integrals. Show your work.

(a) J4 sin?(2x) cos®(2x) dx
0
(b) J(9+x2)3 dx

© j xz =

(d) J x arctan x dx

Q[14](+): Evaluate the following integrals.
/4
(a) J sin®(2x) cos(2x) dx
0
(b) J\/4 — x2dx
x+1
(c) J —xz(x Y dx
Q[15](+): Calculate the following integrals.

€)) J ¥sin(2x) d

@© 1
@ || coipeg @
Q[16](*): Evaluate the following integrals.
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(@) Jxlogxdx

®) Jx2+4x+5
x

(©) Jx2—4x+3

x2 dx
@ |15

Q[17](+): Evaluate the following integrals.

1
(a) J arctan x dx.

2x —1
®) sz 2x+5

Q[18](+):

2

X
(a) Evaluate f m dx.

(b) Evaluate fcos3x sin*x dx.

T cosx
19]: Evaluate J dx.
QL19] /2 V/sinx

Q[20](x): Evaluate the following integrals.

dx

ex
@ J eX+1)(e* —3)

x2 —4x+4
dx
(b) J V12 4+ 4x — x2

Q[21](x): Evaluate these integrals.

sin°x
(@) Jcos3
x4
) L T

QI22]: Evaluate fx\/ x—1dx.

VxZ =2
2

QI[23]: Evaluate f dx for x > /2.

You may use that { sec x dx = log|secx + tan x| + C.

t/4
QJ24]: Evaluate f sec* x tan® x dx.
0
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(3x2+4x+6

QI[25]: Evaluate J ———dx.

(x+1)°
Fo1

Q[26] Evaluate J m dx

r

Q[27]: Evaluate J sin x cos x tan x dx.

QI[28]: Evaluate J 3{3;_1_1 dx.

Q[29]: Evaluate J (3x)? arcsin x dx.

» Stage 3

/2

QI[30]: Evaluate vcost+1dt.

0
e

QI[31]: Evaluate f @ dx
1

0.2
QI[32]: Evaluate J _fanx dx.
o1 log(cosx)

Q[33](*): Evaluate these integrals.

(a) Jsin(log x) dx

! 1
b —d
( )JO 2 —Bx+6 "

Q[34](+): Evaluate (with justification).

(a) J3(x +1)vV9 —x2dx

4x—|—8
(b) J 22 1 4) dx

()Jw€x+€x

QI[35]: Evaluate J

r

QI36]: Evaluate J e dx.

QI37]: Evaluate J m dx.
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X sin x

QI38]: Evaluate J >— dx.
Cos® x

You may use that { sec xdx = log|secx + tan x| + C.

Q[39]: Evaluate fx(x + a)" dx, where a and 7 are constants.

Q[40]: Evaluate f arctan(x?) dx.
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Chapter 2

APPLICATIONS OF INTEGRATION

2.14a Work

Exercises
Jump to HINTS, ANSWERS, SOLUTIONS or TABLE OF CONTENTS.

» Stage 1

Q[1]: Find the work (in joules) required to lift a 3-gram block of matter a height of 10
centimetres against the force of gravity (with ¢ = 9.8 m/sec?).

QI[2]: A rock exerts a force of 1 N on the ground where it sits due to gravity. Use g = 9.8
m/sec?.

What is the mass of the rock?

How much work (in joules) does it take to lift that rock one metre in the air?

Q[3]: Consider the equation
b
W= f F(x)dx
a

where x is measured in metres and F(x) is measured in kilogram-metres per second
squared (newtons).

For some large n, we might approximate

n
W~ Y F(x;)Ax
i=1
where Ax = -4 and x; is some number in the interval [a + (i — 1)Ax,a + iAx]. (This is
just the general form of a Riemann sum).

(a) What are the units of Ax?
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APPLICATIONS OF INTEGRATION 2.1 WORK

(b) What are the units of F(x;)?
(c) Using your answers above, what are the units of W?

Remark: we already know the units of W from the text, but the Riemann sum illustrates
why they make sense arising from this particular integral.

QI4]: Suppose f(x) has units LOJ[,, and x is measured in barns*. What are the
megaFonzie ~
units of the quantity S(l) f(x)dx?
° °

+  For this problem, it doesn’t matter what the units measure, but a smoot is a silly measure of
length; a megaFonzie is an apocryphal measure of coolness; and a barn is a humorous (but actu-
ally used) measure of area. For explanations (and entertainment) see https://en.wikipedia.
org/wiki/List_of_ humorous_units_of measurement and https://en.wikipedia.org/
wiki/List_of_unusual_units_of_measurement (accessed 27 July 2017).

Q[5]: You want to weigh your luggage before a flight. You don’t have a scale or balance,
but you do have a heavy-duty spring from your local engineering-supply store. You nail
it to your wall, marking where the bottom hangs. You hang a one-litre bag of water (with
mass one kilogram) from the spring, and observe that the spring stretches 1 cm. Where
on the wall should you mark the bottom of the spring corresponding to a hanging mass
of 10kg?

«— bottom of unloaded spring

«— bottom of spring with 10kg mass

You may assume that the spring obeys Hooke’s law.

Q[6]: The work done by a force in moving an object from position x = 1tox = b is
W(b) = —b® + 6b> — 9b + 4 for any b in [1,3]. At what position x in [1, 3] is the force the
strongest?

» Stage 2

QI[7](%): A variable force F(x) = \% Newtons moves an object along a straight line when
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APPLICATIONS OF INTEGRATION 2.1 WORK

it is a distance of x meters from the origin. If the work done in moving the object from
x = 1 meters to x = 16 meters is 18 joules, what is the value of a? Don’t worry about the
units of a.

QI[8]: A tube of air is fitted with a plunger that compresses the air as it is pushed in. If the
natural length of the tube of air is £, when the plunger has been pushed x metres past its
natural position, the force exerted by the air is ﬁ N, where c is a positive constant
(depending on the particulars of the tube of air) and x < .

14

(\ l/\ )
/Y,

—_
X

(a) What are the units of ¢?
ow much work does 1t take to push the plunger from 1 metre past its natura
b) H h work does it take to push the plunger f 1 past i 1
position to 1.5 metres past its natural position? (You may assume ¢ > 1.5.)

Questions 9 through 16 offer practice on two broad types of calculations covered in the text: lifting things
against gravity, and stretching springs. You may make the same physical assumptions as in the text: that is,
springs follow Hooke’s law, and the acceleration due to gravity is a constant —9.8 metres per second squared.

Q[9](#): Find the work (in joules) required to stretch a string 10 cm beyond equilibrium, if
its spring constant is k = 50 N/m.

Q[10](*): A force of 10 N (newtons) is required to hold a spring stretched 5 cm beyond its
natural length. How much work, in joules (J), is done in stretching the spring from its
natural length to 50 cm beyond its natural length?

Q[11](#): A 5-metre-long cable of mass 8 kg is used to lift a bucket off the ground. How
much work is needed to raise the entire cable to height 5 m? Ignore the mass of the
bucket and its contents.

Q[12]: A tank 1 metre high has pentagonal cross sections of area 3 m? and is filled with
water. How much work does it take to pump out all the water?

You may assume the density of water is 1 kg per 1000 cm®.
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Q[13](*): A sculpture, shaped like a pyramid 3m high sitting on the ground, has been
made by stacking smaller and smaller (very thin) iron plates on top of one another. The
iron plate at height z m above ground level is a square whose side length is (3 —z) m. All
of the iron plates started on the floor of a basement 2 m below ground level.

Write down an integral that represents the work, in joules, it took to move all of the iron
from its starting position to its present position. Do not evaluate the integral. (You can
use 9.8 m/s? for the acceleration due to gravity and 8000 kg/m?3 for the density of iron.)

Q[14]: Suppose a spring extends 5 cm past its natural length when one kilogram is hung
from its end. How much work is done to extend the spring from 5 cm past its natural
length to 7 cm past its natural length?

Q[15]: Ten kilograms of firewood are hoisted on a rope up a height of 4 metres to a
second-floor deck. If the total work done is 400 joules, what is the mass of the 4 metres of
rope?

You may assume that the rope has the same density all the way along.

Q[16]: A 5 kg weight is attached to the middle of a 10-metre long rope, which dangles out
a window. The rope alone has mass 1 kg. How much work does it take to pull the entire
rope in through the window, together with the weight?

Q[17]: A box is dragged along the floor. Friction exerts a force in the opposite direction of
motion from the box, and that force is equal to p x m x g, where y is a constant, m is the
mass of the box and g is the acceleration due to gravity. You may assume g = 9.8 m/sec?.

(a) How much work is done dragging a box of mass 10 kg along the floor for three
metres if y = 0.4?

(b) Suppose the box contains a volatile substance that rapidly evaporates. You pull the
box at a constant rate of 1 m/sec for three seconds, and the mass of the box at ¢
seconds (0 < t < 3) is (10 — +/t) kilograms. If 4 = 0.4, how much work is done
pulling the box for three seconds?

For Questions 18 and 19, use the principle (introduced after Definition 2.1.1 in the CLP-2 text and utilized
in Example 2.1.5) that the work done on a particle by a force over a distance is equal to the change in kinetic
energy of that particle.

Q[18]: A ball of mass 1 kg is attached to a spring, and the spring is attached to a table.
The ball moves with some initial velocity, and the spring slows it down. At its farthest,
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the spring stretches 10 cm past its natural length. If the spring constant is 5 N/m, what
was the initial velocity of the ball?

SIOIIIAS |

You may assume that the ball starts moving with initial velocity vy, and that the only
force slowing it down is the spring. You may also assume that the spring started out at its
natural length, it follows Hooke’s law, and when it is stretched its farthest, the velocity of
the ball is 0 m/sec.

Q[19]: A mild-mannered university professor who is definitely not a spy notices that
when their car is on the ground, it is 2 cm shorter than when it is on a jack. (That is: when
the car is on a jack, its struts are at their natural length; when on the ground, the weight
of the car causes the struts to compress 2 cm.) The university professor calculates that if
they were to jump a local neighborhood drawbridge, their car would fall to the ground
with a speed of 4 m/sec. If the car can sag 20 cm before important parts scrape the
ground, and the car has mass 2000 kg unoccupied (2100 kg with the professor inside),
can the professor, who is certainly not involved in international intrigue, safely jump the
bridge?

Assume the car falls vertically, the struts obey Hooke’s law, and the work done by the
struts is equal to the change in kinetic energy of the car + professor. Use 9.8 m/sec? for
the acceleration due to gravity.

» Stage 3

Q[20]: A disposable paper cup has the shape of a right circular cone with radius 5 cm
and height 15 cm, and is completely filled with water. How much work is done sucking
all the water out of the cone with a straw?

You may assume that 1 m® of water has mass 1000 kilograms, the acceleration due to
gravity is —9.8 m/sec?, and that the water moves as high up as the very top of the cup
and no higher.
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Q[21](*): A spherical tank of radius 3 metres is half—full of water. It has a spout of length
1 metre sticking up from the top of the tank. Find the work required to pump all of the
water in the tank out the spout. The density of water is 1000 kilograms per cubic metre.
The acceleration due to gravity is 9.8 metres per second squared.

Q[22]: A 5-metre cable is pulled out of a deep hole, where it was dangling straight down.
The cable has density p(x) = (10 — x) kg/m, where x is the distance from the bottom end
of the rope. (So, the bottom of the cable is denser than the top.) How much work is done

pulling the cable out of the hole?

Q[23]: A rectangular tank is fitted with a plunger that can raise and lower the water level
by decreasing and increasing the length of its base, as in the diagrams below. The tank
has base width 1 m (which does not change) and contains 3 m? of water.

T VAN

& &

3m

The force of the water acting on any tiny piece of the plunger is PA, where P is the
pressure of the water, and d A is the area of the tiny piece. The pressure varies with the
depth of the piece (below the surface of the water). Specifically, P = c¢D, where D is the
depth of the tiny piece and c is a constant, in this case ¢ = 9800 N/m?.

(a) If the length of the base is 3 m, give the force of the water on the entire plunger. (You
can do this with an integral: it’s the sum of the force on all the tiny pieces of the
plunger.)

(b) If the length of the base is x m, give the force of the water on the entire plunger.

(c) Give the work required to move the plunger in so that the base length changes from 3
mto1m.
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Q[24]: A leaky bucket picks up 5 L of water from a well, but drips out 1 L every ten
seconds. If the bucket was hauled up 5 metres at a constant speed of 1 metre every two
seconds, how much work was done?

Assume the rope and bucket have negligible mass and one litre of water has 1 kg mass,
and use 9.8 m/sec? for the acceleration due to gravity.

Q[25]: The force of gravity between two objects, one of mass m; and another of mass my,
is F = Gl—zz, where r is the distance between them and G is the gravitational constant.
r

How much work is required to separate the earth and the moon far enough apart that the
gravitational attraction between them is negligible?

Assume the mass of the earth is 6 x 10** kg and the mass of the moon is 7 x 10?? kg,
and that they are currently 400000 km away from each other. Also, assume G = 6.7 x

10~ 1 kgI:ZCZ , and the only force acting on the earth and moon is the gravity between them.

Q[26]: True or false: the work done pulling up a dangling cable of length ¢ and mass m
(with uniform density) is the same as the work done lifting up a ball of mass m a height
of £/2.

el T /2

Q[27]: A tank one metre high is filled with watery mud that has settled to be denser at
the bottom than at the top.

At height h metres above the bottom of the tank, the cross-section of the tank has the
shape of the finite region bounded by the two curves y = x> and y = 2 — h — 3x%. At
height 1 metres above the bottom of the tank, the density of the liquid is 1000v/2 — h
kilograms per cubic metre.

How much work is done to pump all the liquid out of the tank?
You may assume the acceleration due to gravity is 9.8 m/sec?.

Q[28]: An hourglass is 0.2 m tall and shaped such that that y metres above or below its
vertical centre it has a radius of 4> + 0.01 m. It is exactly half-full of sand, which has mass
M = 1 kilograms.

How much work is done on the sand by quickly flipping the hourglass over?

67




APPLICATIONS OF INTEGRATION 2.2 AVERAGES

/b”\

Assume that the work done is only moving against gravity, with ¢ = 9.8 m/sec?, and the
sand has uniform density. Also assume that at the instant the hourglass is flipped over,
the sand has not yet begun to fall, as in the picture above.

Q[29]: Suppose at position x a particle experiences a force of F(x) = v1 — x4 N.
Approximate the work done moving the particle from x = 0 to x = 1/2, accurate to
within 0.01 J.

2.2a Averages

Exercises
Jump to HINTS, ANSWERS, SOLUTIONS or TABLE OF CONTENTS.

Recall that we are using log x to denote the logarithm of x with base e. In other courses it
is often denoted In x.

» Stage 1

QI1]: Below is the graph of a function y = f(x). Its average value on the interval [0, 5] is
A. Draw a rectangle on the graph with area Sg f(x)dx.
y
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QI[2]: Suppose a car travels for 5 hours in a straight line, with an average velocity of 100
kph. How far did the car travel?

QI3]: A force F(x) acts on an object from position x = a metres to position x = b metres,
for a total of W joules of work. What was the average force on the object?

QI4]: Suppose we want to approximate the average value of the function f(x) on the
interval [g, b]. To do this, we cut the interval [4, b] into n pieces, then take 1 samples by
finding the function’s output at the left endpoint of each piece, starting with a. Then, we
average those n samples. (In the example below, n = 4.)

y  average these y-values

7

(a) Using n samples, what is the distance between two consecutive sample points x; and

Xit1?
(b) Assuming n > 4, what is the x-coordinate of the fourth sample?
(c) Assuming n > 4, what is the y-value of the fourth sample?

(d) Write the approximation of the average value of f(x) over the interval [, b] using
sigma notation.

QI5]: Suppose f(x) and g(x) are functions that are defined for all numbers in the interval

[0, 10].

(@) If f(x) < g(x) for all x in [0,10], then is the average value of f(x) is less than or equal
to the average value of g(x) on the interval [0, 10], or is there not enough information
to tell?

(b) Suppose f(x) < g(x) for all x in [0.01, 10]. Is the average value of f(x) less than or
equal to the average value of g(x) over the interval [0, 10], or is there not enough
information to tell?

Q[6]: Suppose f is an odd function, defined for all real numbers. What is the average of f
on the interval [-10, 10]?

» Stage 2

QI7](+): Find the average value of f(x) = sin(5x) + 1 over the interval —7r/2 < x < 71/2.

QI[8](+): Find the average value of the function y = x?log x on the interval 1 < x < e.
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Q[9](+): Find the average value of the function f(x) = 3cos® x 4+ 2 cos? x on the interval
O0<x<7.
QI[10](x): Let k be a positive constant. Find the average value of the function f(x) =

sin(kx) on the interval 0 < x < 7t/k.

Q[11](#): The temperature in Celsius in a 3 m long rod at a point x metres from the left
end of the rod is given by the function T(x) = Determine the average temperature
in the rod.

16 x2

log

QI[12](x): What is the average value of the function f(x) = on the interval [1, ¢]?

Q[13](+): Find the average value of f(x) = cos?(x) over 0 < x < 27.

Q[14]: The carbon dioxide concentration in the air at a particular location over one year is
approximated by C(t) = 400 + 50 cos (1577) + 200 cos (135577) parts per million, where ¢
is measured in hours.
(a) What is the average carbon dioxide concentration for that location for that year?
(b) What is the average over the first day?
(c) Suppose measurements were only made at noon every day: that is, when

t = 12 + 24n, where n is any whole number between 0 and 364. Then the daily

(12:+24m) 7T> = 50 cos (71 + 27tn) = 50 cos T = —50. So,

the approximation for the concentration of carbon dioxide in the atmosphere might
be given as

variation would cease: 50 cos (

t
N(t) = 350 + 200 cos (4380 ) ppm

What is the relative error in the yearly average concentration of carbon dioxide
involved in using N(t), instead of C(#)?
You may assume a day has exactly 24 hours, and a year has exactly 8760 hours.

Q[15]: Let S be the solid formed by rotating the parabola y = x? from x = 0 to x = 2
about the x-axis.

(a) What is the average area of the circular cross-sections of S? Call this value A.
(b) What is the volume of S?

(c) What is the volume of a cylinder with circular cross-sectional area A and length 2?

f f2(x) dx. This is the

For Questions 16 through 18, let the root mean square of f(x) on [a, b] b \/ —

formula used in Example 2.2.6 in the CLP-2 text.

Q[16]: Let f(x) =
(a) Calculate the average of f(x) over [—3,3].
(b) Calculate the root mean square of f(x) over [—3,3].
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QI[17]: Calculate the root mean square of f(x) = tanx over [, F].

QI18]: A force acts on a spring, and the spring stretches and contracts. The distance
beyond its natural length at time ¢ is f(t) = sin (t7r) cm, where ¢ is measured in seconds.

The spring constant is 3 N/cm.

(a) What is the force exerted by the spring at time ¢, if it obeys Hooke’s law?

(b) Find the average of the force exerted by the spring fromt =0tot = 6.

(c) Find the root mean square of the force exerted by the spring from t = 0 to t = 6.

» Stage 3

Q[19](*): A car travels two hours without stopping. The driver records the car’s speed
every 20 minutes, as indicated in the table below:

time in hours 0

1/3

2/3

1

4/3

5/3

2

speed in km/hr | 50

70

80

55

60

80

40

(a) Use the trapezoidal rule to estimate the total distance traveled in the two hours.
(b) Use the answer to part (a) to estimate the average speed of the car during this period.

Q[20]: Let s(t) = e'.

(a) Find the average of s(t) on the interval [0, 1]. Call this quantity A.

(b) For any point t, the difference between s(t) and A is s(¢) — A. Find the average value

of s(t) — A on the interval [0, 1].

(c) For any point ¢, the absolute difference between s(t) and A is [s(t) — A|. Find the

average value of |s(t) — A| on the interval [0, 1].

QI21]: Consider the two functions f(x) and g(x) below, both of which have average A on

[0,4].

Y
y = f(x)
A — y:g(x)
4‘1 ;

(a) Which function has a larger average on [0,4]: f(x) — A or g(x) — A?
(b) Which function has a larger average on [0,4]: |f(x) — A or |g(x) — A|?
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QI22]: Suppose the root mean square of a function f(x) on the interval [a, D] is R. What is
the volume of the solid formed by rotating the portion of f(x) from a to b about the
x-axis?

y = f(x)

b
Asin Example 2.2.6 of the CLP-2 text, let the root mean square of f(x) on [a, b] be \/ 5 1 . J F2(x) dx.
o a

Q[23]: Suppose f(x) = ax? + bx + ¢, and the average value of f(x) on the interval [0,1] is
the same as the average of f(0) and f(1). What is a?

Q[24]: Suppose f(x) = ax? + bx + ¢, and the average value of f(x) on the interval [s, t] is
the same as the average of f(s) and f(t). Is it possible that a # 0?

That is— does the result of Question 23 generalize?

QI25]: Let f(x) be a function defined for all numbers in the interval [a, b], with average
value A over that interval. What is the average of f(a + b — x) over the interval [a, b]?

QI26]: Suppose f(t) is a continuous function, and A(x) is the average of f(t) on the
interval from O to x.

(a) What is the average of f(t) on [a, ], where a < b? Give your answer in terms of A.

(b) Whatis f(t)? Again, give your answer in terms of A.

Q[27]:

(a) Find a function f(x) with average 0 over [—1,1] but f(x) # 0 for all x in [-1,1], or
show that no such function exists.

(b) Find a continuous function f(x) with average 0 over [—1,1] but f(x) # 0 for all x in
[—1,1], or show that no such function exists.

QI28]: Suppose f(x) is a positive, continuous function with lim f(x) =0, and let A(x)

X—00

be the average of f(x) on [0, x].

True or false: lim A(x) = 0.
X—00

QI29]: Let A(x) be the average of the function f(t) = e~ on the interval [0, x]. What is
lim A(x)?

X—00
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2.3a Centre of Mass and Torque

Exercises
Jump to HINTS, ANSWERS, SOLUTIONS or TABLE OF CONTENTS.

» Stage 1

Q[1]: Using symmetry, find the centroid of the finite region between the curves
y=(x—1)2andy = x> +2x + 1.
Yy

y=(x—-1)

/ T
y=—x>+2x+1

Q[2]: Using symmetry, find the centroid of the region inside the unit circle, centred on the
origin, and outside a rectangle, also centred on the origin, with width 1 and height 0.5.

y

Q[3]: A long, straight, thin rod has a number of weights attached along it. True or false: if
it balances at position x, then the mass to the right of x is the same as the mass to the left
of x.

Q[4]: A straight rod with negligible mass has the following weights attached to it:
* A weight of mass 1 kg, Im from the left end,
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* a weight of mass 2 kg, 3m from the left end,

¢ a weight of mass 2 kg, 4m from the left end, and

* a weight of mass 1 kg, 6m from the left end.

Where is the centre of mass of the weighted rod?

QI[5]: For each picture below, determine whether the centre of mass is to the left of, to the
right of, or along the line x = a, or whether there is not enough information to tell. The
shading of a region indicates density: darker shading corresponds to a denser area. In
part (d), the right hand side of the right hand B x A rectangle has x = 2a.

y y

(©)

Q[6]: Tank A is spherical, of radius 1 metre, and filled completely with water. The bottom
of tank A is three metres above the ground, where Tank B sits. Tank B is tall and
rectangular, with base dimensions 2 metres by 1 metre, and empty. Calculate the work
done by gravity to drain all the water from Tank A to Tank B by modelling the situation
as a point mass, of the same mass as the water, being moved from the height of the centre
of mass of A to the height of the centre of mass of the water after it has been moved to B.
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Im

,{0
2m A

You may use 1000 kg/m? for the density of water, and ¢ = 9.8 m/sec? for the acceleration
due to gravity.

Q[7]: Let S be the region bounded above by y = % and and below by the x-axis,
1 =1

< x < 3. Let R be a rod with density p(x) = ; at position x, 1 < x < 3.
(a) What is the area of a thin slice of S at position x with width dx?
(b) What is the mass of a small piece of R at position x with length dx?
(¢) What is the total area of S?
(d) What is the total mass of R?
(e) What is the x-coordinate of the centroid of S?

(f) What is the centre of mass of R?

In Questions 8 through 10, you will derive the formulas for the centre of mass of a rod of variable density, and
the centroid of a two-dimensional region using vertical slices (Equations 2.3.2 and 2.3.3 in the CLP-2 text).
Knowing the equations by heart will allow you to answer many questions in this section; understanding
where they came from will you allow to generalize their ideas to answer even more questions.
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QI8]: Suppose R is a straight, thin rod with density p(x) at a position x. Let the left

endpoint of R lie at x = 4, and the right endpoint lie at x = b.

(a) To approximate the centre of mass of R, imagine chopping it into n pieces of equal
length, and approximating the mass of each piece using the density at its midpoint.
Give your approximation for the centre of mass in sigma notation.

R T 1 S

a mq mny my b

(b) Take the limit as n goes to infinity of your approximation in part (a), and express the
result using a definite integral.

QI[9]: Suppose S is a two-dimensional object and at (horizontal) position x its height is
T(x) — B(x). Its leftmost point is at position x = 4, and its rightmost point is at position
x =D

To approximate the x-coordinate of the centroid of S, we imagine it as a straight, thin rod
R, where the mass of R from a < x < b is equal to the area of S from a < x < b.

(a) If S is the sheet shown below, sketch R as a rod with the same horizontal length,
shaded darker when R is denser, and lighter when R is less dense.

| o
a b

(b) If we cut S into strips of very small width dx, what is the area of the strip at position
x?

(c) Using your answer from (b), what is the density p(x) of R at position x?

(d) Using your result from Question 8(b), give the x-coordinate of the centroid of S. Your

answer will be in terms of a, b, T(X), and B(x).

Q[10]: Suppose S is flat sheet with uniform density, and at (horizontal) position x its
height is T(x) — B(x). Its leftmost point is at position x = 4, and its rightmost point is at
position x = b.

To approximate the y-coordinate of the centroid of S, we imagine it as a straight, thin,
vertical rod R. We slice S into thin, vertical strips, and model these as weights on R with:

* position y on R, where y is the centre of mass of the strip, and
* mass in R equal to the area of the strip in S.

(a) If S is the sheet shown below, slice it into a number of vertical pieces of equal length,
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approximated by rectangles. For each rectangle, mark its centre of mass. Sketch R as
a rod with the same vertical height, with weights corresponding to the slices you
made of S.

y T(x)

| | | .
! T X

a a 4 b

(b) Imagine a thin strip of S at position x, with thickness dx. What is the area of the
strip? What is the y-value of its centre of mass?

(c) Recall the centre of mass of a rod with n weights of mass M; at position y; is given by
n

‘;(Mi X Vi)

Considering the limit of this formula as n goes to infinity, give the y-coordinate of the
centre of mass of S.

QI11](): Express the x—coordinate of the centroid of the triangle with vertices (-1, —3),
(—1,3), and (0,0) in terms of a definite integral. Do not evaluate the integral.

» Stage 2

Use Equations 2.3.2 and 2.3.3 in the CLP-2 text to find centroids and centres of mass in Questions 12
through 23.

Q[12]: A long, thin rod extends from x = 0 to x = 7 metres, and its density at position x is
given by p(x) = x kg/m. Where is the centre of mass of the rod?

Q[13]: A long, thin rod extends from x = —3 to x = 10 metres, and its density at position

x is given by p(x) = 1137 kg/m. Where is the centre of mass of the rod?

Q[14](*): Find the y-coordinate of the centroid of the region bounded by the curves y =1,
y = —e*, x = 0and x = 1. You may use the fact that the area of this region equals e.

Q[15](*): Consider the region bounded by y = \/16172, y=0x=0and x = 2.
—x

(a) Sketch this region.
(b) Find the y—coordinate of the centroid of this region.
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QI16](x): Find the centroid of the finite region bounded by y = sin(x), y = cos(x), x =0,
and x = /4.

Q[17](+): Let A denote the area of the plane region bounded by x =0, x =1,y = 0 and

= V1 + x2

(a) Find the coordinates of the centroid of this region in terms of k and A.
(b) For what value of k is the centroid on the line y = x?

, where k is a positive constant.

Q[18](+): The region R is the portion of the plane which is above the curve y = x> — 3x
and below the curve y = x — x2.
(a) Sketch the region R

(b) Find the area of R.

(c) Find the x coordinate of the centroid of R.

Q[19](#): Let R be the region where 0 < x < land 0 < y < 1437 Find the x—coordinate of
the centroid of R.

Q[20](*): Find the centroid of the region below, which consists of a semicircle of radius 3
on top of a rectangle of width 6 and height 2.

Q[21](): Let D be the region below the graph of the curve y = v/9 — 4x? and above the

x-axis.

(a) Using an appropriate integral, find the area of the region D; simplify your answer
completely.

(b) Find the centre of mass of the region D; simplify your answer completely. (Assume it
has constant density p.)

QI22]: The finite region S is bounded by the lines y = arcsinx, y = arcsin(2 — x), and
y = —7%. Find the centroid of S.

QI23]: Calculate the centroid of the figure bounded by the curves y = ¢*, y = 3(x — 1),
y=0,x=0and x = 2.
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» Stage 3

Q[24](+): Find the y-coordinate of the centre of mass of the (infinite) region lying to the
right of the line x = 1, above the x-axis, and below the graph of y = 8/x>.

QI[25](*): Let A be the region to the right of the y-axis that is bounded by the graphs of
y=x’andy =6—x.

22
(a) Find the centroid of A, assuming it has constant density p = 1. The area of A is 3

(you don’t have to show this).
(b) Write down an expression, using horizontal slices (disks), for the volume obtained

when the region A is rotated around the y-axis. Do not evaluate any integrals; simply
write down an expression for the volume.

Q[26](+): (a) Find the y—coordinate of the centroid of the region bounded by y = e,
x=0,x=1andy = -1

(b) Calculate the volume of the solid generated by rotating the region from part (a) about
the liney = —1.

Q[27]: Suppose a rectangle has width 4 m, height 3 m, and its density x metres from its
left edge is x> kg/m?. Find the centre of mass of the rectangle.

y

Q[28]: Suppose a circle of radius 3 m has density (2 + y) kg/m? at any point y metres
above its bottom. Find the centre of mass of the circle.
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Q[29]: A right circular cone of uniform density has base radius * m and height # m. We
want to find its centre of mass. By symmetry, we know that the centre of mass will occur
somewhere along the straight vertical line through the tip of the cone and the centre of its
base. The only question is the height of the centre of mass.

Yy

We will model the cone as a rod R with height /, such that the mass of the section of the
rod from position a to position b is the same as the volume of the cone from height a to
height b. (You can imagine that the cone is an umbrella, and we’ve closed it up to look
like a cane.”)

Yy

(a) Using this model, calculate how high above the base of the cone its centre of mass is.
(b) If we cut off the top 1 — k metres of the cone (leaving an object of height k), how high
above the base is the new centre of mass?

+  This analogy isn’t exact: if the cone were an umbrella, closing it would move the outside fabric verti-
cally. A more accurate, but less familiar, image might be vacuum-wrapping an umbrella, watching it
shrivel towards the middle but not move vertically.

Q[30]: An hourglass is shaped like two identical truncated cones attached together. Their
base radius is 5 cm, the height of the entire hourglass is 18 cm, and the radius at the
thinnest point is .5 cm. The hourglass contains sand that fills up the bottom 6 cm when
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it’s settled, with mass 600 grams and uniform density. We want to know the work done
flipping the hourglass smoothly, so the sand settles into a truncated, inverted-cone shape
before it starts to fall down.

Ul
=

8.8 cm

18 cm .

6 cm

Using the methods of Section 2.1 to calculate the work done would be quite tedious.
Instead, we will model the sand as a point of mass 0.6 kg, being lifted from the centre of
mass of its original position to the centre of mass of its upturned position. Using the
results of Question 29, how much work was done on the sand?

To simplify your calculation, you may assume that the height of the upturned sand (that
is, the distance from the skinniest part of the hourglass to the top of the sand) is 8.8 cm.
(Actually, it's v/937 — 1 ~ 8.7854 cm.) So, the top 0.2 cm of the hourglass is empty.
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Q[31]: Tank A is in the shape of half a sphere of radius 1 metre, with its flat face resting
on the ground, and is completely filled with water. Tank B is empty and rectangular,
with a square base of side length 1 m and a height of 3 m.

B

Im 1m

(a) To pump the water from Tank A to Tank B, we need to pump all the water from Tank
A to a height of 3 m. How much work is done to pump all the water from Tank A to a
height of 3 m? You may model the water as a point mass, originally situated at the
centre of mass of the full Tank A.

(b) Suppose we could move the water from Tank A directly to its final position in Tank B
without going over the top of Tank B. (For example, maybe tank A is elastic, and
Tank B is just Tank A after being smooshed into a different form.) How much work is
done pumping the water? (That is, how much work is done moving a point mass
from the centre of mass of Tank A to the centre of mass of Tank B?)

(c) What percentage of work from part (a) was “wasted” by pumping the water over the
top of Tank B, instead of moving it directly to its final position?

You may assume that the only work done is against the acceleration due to gravity,

¢ = 9.8 m/sec?, and that the density of water is 1000 kg/m?.

Remark: the answer from (b) is what you might think of as the net work involved in

pumping the water from Tank A to Tank B. When work gets “wasted,” the pump does

some work pumping water up, then gravity does equal and opposite work bringing the
water back down.

Q[32]: Let R be the region bounded above by y = 2x sin(x?) and below by the x-axis,

0<x< \/g . Give an approximation of the x-value of the centroid of R with error no

1
more than 100

You may assume without proof that ‘% {2x? sin(x?) }‘ < 415 over the interval [0, \/g} :

2.4a Separable Differential Equations

Exercises
Jump to HINTS, ANSWERS, SOLUTIONS or TABLE OF CONTENTS.

Recall that we are using log x to denote the logarithm of x with base e. In other courses it
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is often denoted In x.

» Stage 1

QI1]: Below are pairs of functions y = f(x) and differential equations. For each pair,
decide whether the function is a solution of the differential equation.

function differential equation
(@) | y =5(e¥ —3x> — 6x —6) %:y—{—wxz
— —2 ! — oy
d d
_ .3/2 = & _
© |y=2"2+x (Z) +&-v

QI[2]: Following Definition 2.4.1 in the CLP-2 text, a separable differential equation has

the form P
(%) = f(x) g(y(x)).

Show that each of the following equations can be written in this form, identifying f(x)
and g(y).
(a) 3y% = xsiny

d
OF Sl
(© & +% =x

d d

@ (§) -2xF+22=0

Q[3]: Suppose we have the following functions:
¢ yis a differentiable function of x
e fisa function of x, with { f(x) dx = F(x)
e ¢is anonzero function of y, with { ﬁ dy = G(y) = G(y(x)).

In the work below, we set up a solution to the separable differential equation

Y = Fsy) = Fsly()

without using the mnemonic of Equation 2.4.1 in the CLP-2 text.

By deleting some portion of our work, we can create the solution as it would look using
the mnemonic. What portion can be deleted?

Remark: the purpose of this exercise is to illuminate what, exactly, the mnemonic is a
shortcut for. Despite its peculiar look, it agrees with what we already know about
integration.
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dy _
ar — S sy(x))
Since ¢(y(x)) is a nonzero function, we can divide both sides by it.
1 dy _
g(y(x)) dx

If these functions of x are the same, then they have the same antiderivative

with respect to x.
1 dy J
——— - dx = x)dx
Jswy aa= e

The left integral is in the correct form for a change of variables to y. To make
this easier to see, we’ll use a u-substitution, since it’s a little more familiar
than a y-substitution. If u = y, then % = %, sodu = %dx.

fg(%)duzjf(x)dx

Since u was just the same as y, again for cosmetic reasons, we can swap it
back. (Formally, you could have skipped the step above-we just included it to
be extra clear that we’re not using any integration techniques we haven’t seen
before.)

f(x)

Jﬁdysz(x)dx

We're given the antiderivatives in question.

G(y) +Cy = F(x) + Cp
G(y) = F(x) + (G2 — 1)

where C; and C; are arbitrary constants. Then also C; — Cj is an arbitrary
constant, so we might as well call it C.

QI4]: Suppose y = f(x) is a solution to the differential equation j—x = xy.
True or false: f(x) + C is also a solution, for any constant C.

QI5]: Suppose a function y = f(x) satisfies |y| = Cx, for some constant C > 0.
(a) What is the largest possible domain of f(x), given the information at hand?

(b) Give an example of function y = f(x) with the following properties, or show that
none exists:
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* |yl =Cx,

J % exists for all x > 0, and

* y > 0 for some values of x, and y < 0 for others.

Q[6]: Express the following sentence! as a differential equation. You don’t have to solve

the equation.

About 0.3 percent of the total quantity of morphine in the bloodstream is
eliminated every minute.

QI[7]: Suppose a particular change is occurring in a language, from an old form to a new
form.” Let p(t) be the proportion (measured as a number between 0, meaning none, and
1, meaning all) of the time that speakers use the new form. Piotrowski’s law' predicts the
following. -

Use of the new form over time spreads at a rate that is proportional to the

product of the proportion of the new form and the proportion of the old form.
Express this as a differential equation. You do not need to solve the differential equation.

+  An example is the change in German from “wollt” to “wollst” for the second-person conjugation of
the verb “wollen.” This example is provided by the site Laws in Quantitative Linguistics, “Change in
Language” http://lgl.uni-trier.de/index.php/Change_in_language accessed 18 August
2017.

t  Piotrowski’s law is paraphrased from the page Piotrowski-Gesetz on Glottopedia, http://www.
glottopedia.org/index.php/Piotrowski-Gesetz, accessed 18 August 2017. According to this
source, the law was based on work by the married couple R. G. Piotrowski and A. A. Piotrowskaja,
later generalized by G. Altmann.

1  The sentence is paraphrased from the Pharmakokinetics website of Université de Lausanne, “Elimina-
tion Kinetics,” at https://sepia.unil.ch/pharmacology/index.php?id=94. The half-life of
morphine is given on the same websiteat https://sepia.unil.ch/pharmacology/index.php?
id=85. Accessed 12 August 2017.
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APPLICATIONS OF INTEGRATION 2.4 SEPARABLE DIFFERENTIAL EQUATIONS

Q[8]: Consider the differential equation y’ = 5 — 1.

(a) When y = 0, what is y/?

(b) When y = 2, whatis y'?

(c) When y = 3, whatis y?

(d) On the axes below, interpret the marks we have made, and use them to sketch a
possible solution to the differential equation.

Y

¥
/
/
/
/
/
/

P e a2
S
~
~
%
¥

Q[9]: Consider the differential equation y’ =y — 3.
(@) Ify(1) = 0, whatis y/(1)?

(b) If y(1) = 2, whatis y/(1)?

(c) If y(1) = —2, whatis y'(1)?

(d) Draw a sketch similar to that of Question 8(d) showing the derivatives of y at the
points with integer values for x in [0, 6] and y in [-3, 3].

(e) Sketch a possible graph of y.

» Stage 2

Q[10](*): Find the solution to the separable initial value problem:

%_Zx

= y(0) =log2

Express your solution explicitly as y = y(x).

. . d X
QI11](+): Find the solution y(x) of d—z =2 —iy— T y(0) = 3.

QI12](x): Solve the differential equation y'(t) = e3 cost. You should express the solution
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y(t) in terms of ¢ explicitly.

Q[13](x): Solve the differential equation

)

x?—log(y?)
= Xe
dx

QI[14](): Let y = y(x). Find the general solution of the differential equation iy’ = xe?.

/

Q[15](+): Find the solution to the differential equation % = i that satisfies y(0) = 3.

Solve completely for y as a function of x.

QI16](+): Find the function y = f(x) that satisfies

dy _ 3 _ 1
E and  f(0) = 1

QI[17](): Find the function y = y(x) that satisfies y(1) = 4 and

dy _ 15x* +4x+3
dx y

Q[18](+): Find the solution y(x) of y’ = x3y with y(0) = 1.

Q[19](*): Solve the initial value problem

dy _ .2 _
xpty=y oy =1

QI[20](*): A function f(x) is always positive, has f(0) = e and satisfies f'(x) = x f(x) for
all x. Find this function.

Q[21](*): Solve the following initial value problem:

dy 1

- @iy YW=?

14++/y2—4
Q[22](*): Find the solution of the differential equation +ta ri/ . y = seyc i that satisfies

y(0) = 2. You don't have to solve for y in terms of x.
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Q[23](*): The fish population in a lake is attacked by a disease at time t = 0, with the
result that the size P(t) of the population at time ¢ > 0 satisfies

dp
— = —kvV'P

where k is a positive constant. If there were initially 90,000 fish in the lake and 40,000
were left after 6 weeks, when will the fish population be reduced to 10,000?

Q[24](+): An object of mass m is projected straight upward at time ¢t = 0 with initial speed
vg. While it is going up, the only forces acting on it are gravity (assumed constant) and a
drag force proportional to the square of the object’s speed v(t). It follows that the
differential equation of motion is

av _ 2
ma = (mg + kv”)

where ¢ and k are positive constants. At what time does the object reach its highest point?

Q[25](*): A motor boat is traveling with a velocity of 40 ft/sec when its motor shuts off at
time t = 0. Thereafter, its deceleration due to water resistance is given by

dv 5
a——kv

where k is a positive constant. After 10 seconds, the boat’s velocity is 20 ft/sec.
(a) What is the value of k?
(b) When will the boat’s velocity be 5 ft/sec?

Q[26](+): Consider the initial value problem % = k(3 — x)(2 — x), x(0) = 1, where k is a
positive constant. (This kind of problem occurs in the analysis of certain chemical
reactions.)

(a) Solve the initial value problem. That is, find x as a function of t.

(b) What value will x(t) approach as t approaches +co.

QI[27](): The quantity P = P(t), which is a function of time ¢, satisfies the differential
equation

dP 5

— =4P—-P

dt

and the initial condition P(0) = 2.
(a) Solve this equation for P(t).
(b) Whatis P when t = 0.5? What is the limiting value of P as t becomes large?

Q[28](*): An object moving in a fluid has an initial velocity v of 400 m/min. The velocity
is decreasing at a rate proportional to the square of the velocity. After 1 minute the
velocity is 200 m/min.
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(a) Give a differential equation for the velocity v = v(t) where ¢ is time.
(b) Solve this differential equation.
(c) When will the object be moving at 50 m/min?

» Stage 3

Q[29](*): An investor places some money in a mutual fund where the interest is
compounded continuously and where the interest rate fluctuates between 4% and 8%.
Assume that the amount of money B = B(t) in the account in dollars after ¢ years
satisfies the differential equation

dB

@ = (0.06 + 0.02 sin t) B

(a) Solve this differential equation for B as a function of .

(b) If the initial investment is $1000, what will the balance be at the end of two years?

Q[30](*): An endowment is an investment account in which the balance ideally remains

constant and withdrawals are made on the interest earned by the account. Such an

account may be modeled by the initial value problem B'(t) = aB — m for t > 0, with

B(0) = By . The constant a reflects the annual interest rate, m is the annual rate of

withdrawal, and By is the initial balance in the account.

(a) Solve the initial value problem with a = 0.02 and B(0) = By = $30,000. Note that
your answer depends on the constant m.

(b) If a = 0.02 and B(0) = By = $30,000, what is the annual withdrawal rate m that
ensures a constant balance in the account?

QI31](*): A certain continuous function y = y(x) satisfies the integral equation

y(x) =3+ Lx (y(t)* —3y(t) +2) sint dt (+)

for all x in some open interval containing 0. Find y(x) and the largest interval for which
(+) holds.

Q[32](#): A cylindrical water tank, of radius 3 meters and height 6 meters, is full of water
when its bottom is punctured. Water drains out through a hole of radius 1 centimeter. If
* J(t) is the height of the water in the tank at time ¢ (in meters) and
* o(t) is the velocity of the escaping water at time ¢ (in meters per second) then
e Torricelli’s law states that v(t) = 1/2gh(t) where ¢ = 9.8 m/sec?. Determine how
long it takes for the tank to empty.

QI[33](): A spherical tank of radius 6 feet is full of mercury when a circular hole of radius
1 inch is opened in the bottom. How long will it take for all of the mercury to drain from
the tank?
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Use the value ¢ = 32 feet/sec?. Also use Torricelli’s law, which states when the height of
mercury in the tank is &, the speed of the mercury escaping from the tank is v = /2gh.

Q[34](+): Consider the equation

(a) Whatis f(0)?
(b) Find the differential equation satisfied by f(x).

(c) Solve the initial value problem determined in (a) and (b).

QI35](+):

A tank 2 m tall is to be made with circular cross-sections with radius » = y”. Here y
measures the vertical distance from the bottom of the tank and p is a positive constant to
be determined. You may assume that when the tank drains, it obeys Torricelli’s law, that
is
dy
Aly) g, =~V

for some constant ¢ where A(y) is the cross—sectional area of the tank at height y. It is
desired that the tank be constructed so that the top half (y = 2 to y = 1) takes exactly the
same amount of time to drain as the bottom half (y = 1 to y = 0). Determine the value of
p so that the tank has this property. Note: it is not possible or necessary to find c for this
question.

QI36]: Suppose f(t) is a continuous, differentiable function and the root mean square of
f(t) on [a, x| is equal to the average of f(f) on [a, x] for all x. That is,

[ rwan \/ [ ro )

(a) Guess a function f(t) for which the average of f(t) is the same as the root mean
square of f(t) on any interval.

You may assume x > 4.

(b) Differentiate both sides of the given equation.

() Slmphfy your answer from (b) by using Equation (¥) to replace all terms containing
§; f2(t) dt with terms containing { f(t)

(d) LetY(x) = S f(t)dt, so the equation from (c) becomes a differential equation. Find
all functlons that satisty it.

(e) Whatis f(#)?
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APPLICATIONS OF INTEGRATION 2.4 SEPARABLE DIFFERENTIAL EQUATIONS

QI37]: Find the function y(x) such that

d’y 2 dy

dx? ~ 3 dx

and if x = — log 3, theny = 1 and % = 3.
You do not need to solve for y explicitly.
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Chapter 3

SEQUENCES AND SERIES

3.1 Sequences

Exercises
Jump to HINTS, ANSWERS, SOLUTIONS or TABLE OF CONTENTS.
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» Stage 1

Q[1]: Assuming the sequences continue as shown, estimate the limit of each sequence
from its graph.

(a) 0 L

(b) L ® e e e e e

© o0

Q[2]: Suppose a,, and b, are sequences, and a4, = b, for all n > 100, but a,, # b, for
n < 100.

True or false: lim a,, = lim b,,.
n—0o0 n—00

QI3]: Let {a,};" 4, {bn};_q, and {c,}; ., be sequences with ’}1_{1010 a, = A, nh—I»%o b, = B, and

lim ¢;;, = C. Assume A, B, and C are nonzero real numbers.
n—00

Evaluate the limits of the following sequences.

ay — by
Cn

(a)
Cn
o) <

a2n+45
© 2

Q[4]: Give an example of a sequence {a,}, _; with the following properties:
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® 1, > 1000 for all n < 1000,
® q,.1 < ay forall n,and

L4 lim an — _2
n—ao0

Q[5]: Give an example of a sequence {a,}; _; with the following properties:
e g, > 0 forall even n,
® q, <0forall oddn,

lim a, does not exist.
n—o0

Q[6]: Give an example of a sequence {a,}; _; with the following properties:
e g, > 0 forall even n,

® q, <0forall odd n,

[ ]

lim a,, exists.
n—oo

Q[7]: The limits of the sequences below can be evaluated using the squeeze theorem. For
each sequence, choose an upper bounding sequence and lower bounding sequence that

will work with the squeeze theorem.
sinn

(@) an =

n2

(b) by = e"(7 4+ sinn —5cosn)
(c) cn = (_n)—n

Q[8]: Below is a list of sequences, and a list of functions.

(a) Match each sequence {an}zoz1 to any and all functions f(x) such that f(n) = a, for all
positive whole numbers n.

(b) Match each sequence { an}zozl to any and all functions f(x) such that
nlingo il = xhn&f(x)

ap =1+ % f(x) = cos(mx)
B 1 _cos(mx)
by =1+ ] g(x) = »

x+1 ¥ is a whole number

a
N
I
m|
N
=
—~
=
SN—
I
T
=
®

1 else

x+1 ¥ is a whole number
d — _1 n ] = 2
n ( ) l(x) {O else
—1)" ) 1
e, = n) jx) = %

94




SEQUENCES AND SERIES 3.1 SEQUENCES

QI9]: Let {a,};”_; be a sequence defined by a,, = cosn.

(a) Give three different whole numbers n that are within 0.1 of an odd integer multiple
of 71, and find the corresponding values of a;,.

(b) Give three different whole numbers 1 such that a, is close to 0. Justify your answers.
(c) Give three different whole numbers n such that a, is close to 1. Justify your answers.

Remark: this demonstrates intuitively, though not rigorously, why linolO cos n is undefined.
n—

We consistently find terms in the sequence that are close to —1, and also consistently find
terms in the sequence that are close to 0. Contrast this to a sequence like { cos(27n)},
whose terms are always 1, and whose limit therefore is 1. It is possible to turn the ideas of

this question into a rigorous proof that lim cosn is undefined. See the solution.
n—aoo

» Stage 2
Q[10]: Determine the limits of the following sequences.
(@) 4, = 3n* —2n+5
" 2471 +3
3nc—2n+5
b) b, = ——5——
() b 4n? +3
© o = 3n®—2n+5
" 4n3+3
. . 4nd —21
Q[11]: Determine the limit of the sequence a,, = ﬁ
n —
n
: o vn+1
12]: Determine the limit of the sequence b, = ———.
2
Q[13]: Determine the limit of the sequence ¢, = w.
nsinn
Q[14]: Determine the limit of the sequence a, = 7
1/n .

Q[15]: Determine the limit of the sequence d,, = e~

1+ 3sin(n?) —2sinn
- :

Q[16]: Determine the limit of the sequence a, =

n
Q[17]: Determine the limit of the sequence b, = 2713_—712.
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Q[18](+): Find the limit, if it exists, of the sequence {ak}, where

_ k!'sink
(k+1)!

Q[19](+): Consider the sequence {(—1)” sin (1) } State whether this sequence converges
or diverges, and if it converges give its limit.

QI20](*): Evaluate lim

n—0o0o

{6112 +5n

2
21 +3cos(1/n )}

» Stage 3

QI21](#): Find the limit of the sequence {log <sin %) + log(2n) }

l Q[22]: Evaluate T}mc}o [\/nZ +5n —\/n2 — Sn] )

l Q[23]: Evaluate lim [\/ "2 4 51 —/2n2 — 5] :

Q0

100
Q[24]: Evaluate the limit of the sequence {n {(2 + %) — 2100} }

n=1

Q[25]: Write a sequence {a,,},° ; whose limit is f’(a) for a function f(x) that is
differentiable at the point a.
Your answer will depend on f and a.

Q[26]: Let {A,};_5 be the area of a regular polygon with 7 sides, with the distance from
the centroid of the polygon to each corner equal to 1.

A(B) =3 A(4) =2 A(5) = 2.5sin(0.477)

(a) By dividing the polygon into n triangles, give a formula for A,.
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(b) Whatis lim A,?
n—aoo

QI[27]: Suppose we define a sequence {f,}, which depends on some constant x, as the
following;:

fn(x):{l n<x<n+l1

0 else

For a fixed constant x > 1, {f,} is the sequence {0,0,0,...,0,1,0,...,0,0,0,...}. The sole
nonzero element comes in position k, where k is what we get when we round x down to a
whole number. If x < 1, then the sequence consists of all zeroes.

Since we can plug in different values of x, we can think of f,(x) as a function of
sequences: a different x gives you a different sequence. On the other hand, if we imagine
fixing n, then f,,(x) is just a function, where f,(x) gives the nth term in the sequence
corresponding to x.

(a) Sketch the curve y = fo(x).
(b) Sketch the curve y = f3(x).
(c) Define A, = §;” fu(x) dx. Give a simple description of the sequence {A,}_;.

(d) Evaluate lim A,,.
n—aoo

(e) Evaluate nhrrolO fn(x) for a constant x, and call the result g(x).

0
(f) Evaluatef g(x) dx.
0

n
Q[28]: Determine the limit of the sequence b,, = (1 + % + %) .

a, +8
3

Q[29]: A sequence {an }Zo:1 of real numbers satisfies the recursion relation a, | =
forn > 1.

(a) Suppose a; = 4. What is h% a,?
n—

(b) Find x if x = X;LS.

(c) Suppose a; = 1. Show that linolo a, = L, where L is the solution to equation above.
n—

QI[30]: Zipf’s Law applied to word frequency can be phrased as follows:

The most-used word in a language is used 7 times as frequently as the n-th
most word used in a language.

(a) Suppose the sequence {w;, wy, w3, ...} is a list of all words in a language, where w;, is
the word that is the nth most frequently used. Let f,, be the frequency of word w;,. Is
{f1, f2, f3, ...} an increasing sequence or a decreasing sequence?

(b) Give a general formula for f,, treating f; as a constant.
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(c) Suppose in a language, w; (the most frequently used word) has frequency 6%. If the
language follows Zipf’s Law, then what frequency does w3 have?

(d) Suppose fs = 0.3% for a language following Zipf’s law. What is f1?

(e) The word “the” is the most-used word in contemporary American English. In a
collection of about 450 million words, “the” appeared 22,038,615 times. The
second-most used word is “be,” followed by “and.” About how many usages of these
words do you expect in the same collection of 450 million words?

Sources: Zipf’s word frequency law in natural language: A critical review and future directions,
Steven T. Piantadosi. Psychon Bull Rev. 2014 Oct; 21(5): 1112-1130. Accessed online 11
October 2017

Word Frequency Data, https: //www.wordfrequency.info/free.asp?s=y Accessed
online 11 October 2017

3.24 Series

Exercises
Jump to HINTS, ANSWERS, SOLUTIONS or TABLE OF CONTENTS.

» Stage 1

Q0
1
Q[1]: Write out the first five partial sums corresponding to the series Z .

n=1

You don’t need to simplify the terms.

Q[2]: Every student who comes to class brings their instructor cookies, and leaves them
on the instructor’s desk. Let Cj be the total number of cookies on the instructor’s desk
after the kth student comes.

If C11 = 20, and Cy9 = 17, how many cookies did the 11th student bring to class?

[e¢]
Q[3]: Suppose the sequence of partial sums of the series Z an is {Sn} = {NLH }

n=1
(a) Whatis {a,}?
(b) Whatis ;11111010 a,?

o0
(c) Evaluate Z Ay .-

n=1

oe]

Q[4]: Suppose the sequence of partial sums of the series Z an is {Sn} = {(—1)N + %}

n=1

What is {a,}?
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[e¢]
QI5]: Let f(N) be a formula for the Nth partial sum of Z an. (Thatis, f(N) = Sn.) If
n=1

f'(N) < 0forall N > 1, what does that say about a,,?

Questions 6 through 8 invite you to explore geometric sums in a geometric way. This is complementary to
than the algebraic method discussed in the text.

Q[6]: Suppose the triangle outlined in red in the picture below has area one.

(a) Express the combined area of the black triangles as a series, assuming the pattern
continues forever.

(b) Evaluate the series using the picture (not the formula from your book).

Q[7]: Suppose the square outlined in red in the picture below has area one.

(a) Express the combined area of the black squares as a series, assuming the pattern
continues forever.
(b) Evaluate the series using the picture (not the formula from your book).
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oe]

1
QI[8]: In the style of Questions 6 and 7, draw a picture that represents Z 3 3 an area.
— — n=1
100
QI[9]: Evaluate =
n=0

Q[10]: Every student who comes to class brings their instructor cookies, and leaves them
on the instructor’s desk. Let C; be the total number of cookies on the instructor’s desk
after the kth student comes.

If Cyp = 53, and Cyp = 17, what does Cyp — C19 = 36 represent?

100
1
Q[11]: Evaluate 2 =k (Note the starting index.)
n=>50

Q[12]:

(a) Starting on day d = 1, every day you give your friend $ﬁ, and they give $% back to
you. After a long time, how much money have you gained by this arrangement?

o (1 1
(b) Evaluate (— — —>
2\ @y

(c) Starting on day d = 1, every day your friend gives you $(d + 1), and they take
$(d + 2) from you. After a long time, how much money have you gained by this
arrangement?

(d) Evaluate i ((d+1)—(d+2)).
d=1

o0 o0 o]
Q[13]: Suppose Z a, = A, Z b, =B, and Z ¢, = C.
n=1 n=1

n=1

0
Evaluate Z (an + by + cpy1).

n=1

[0 0] 00] 00]
Q[14]: Suppose Z a, = A, Z b, =B#0, and Z ¢, = C.
n=1 n=1 n=1
E [ an A
True or false: Z <E + cn> =3 + C.

n=1
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» Stage 2

1 1 1 1 1
*): 1 — — _ _ _ c e ?
Q[15](*): To what value does the series 1 + 3 + 9 + Vi + 31 + 13 + --- converge

Q[16](+): Evaluate ) %
k=7

6 6

a0
Q[17](*): Show that the series ,;1 (k_z — m

) converges and find its limit.

. 1 < 45 T
QI18](x): Find the sum of the convergent series ’;3 <cos (Z) — cos (n ] ) ) .

o0
Q[19](+): The nth partial sum of a series Z a, is known to have the formula s,, =

n=1

1+ 3n
54+4n

(a) Find an expression for a,, valid for n > 2.

0
(b) Show that the series Z a, converges and find its value.
n=1

n+1

og]
Q[20](*): Find the sum of the series Z Simplify your answer completely.
n=2

8.5m "

Q[21](*): Relate the number 0.23 = 0.233333... to the sum of a geometric series, and use
that to represent it as a rational number (a fraction or combination of fractions, with no
decimals).

Q[22](*): Express 2.656565 . .. as a rational number, i.e. in the form p/q where p and g are
integers.

Q[23](+): Express the decimal 0.321 = 0.321321321 ... as a fraction.

Q[24](+): Find the value of the convergent series

i 2n+1+ 11
3" 2n—1 2n+1

n=2

Simplify your answer completely.
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QI[25](*): Evaluate

S+ ()"

n=1

1+3"+1

o0
QI26](*): Find the sum of the series Z i

n=0

Q[27]: Evaluate Z log (n — 3).

n
n=>5

QI[28]: Evaluate Z (% St >

= \n n+1 n-1

» Stage 3

Q[29]: An infinitely long, flat cliff has stones hanging off it, attached to thin wire of
negligible mass. Starting at position x = 1, every metre (at position x, where x is some

whole number) the stone has mass YE; kg and is hanging 2* metres below the top of the
cliff.

1 2 3 4 5 6
| | |
)
How much work in joules does it take
to pull up all the stones to the top of the cliff? @)
You may use ¢ = 9.8 m/sec?.
O
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Q[30]: Find the combined volume of an infinite collection of spheres, where for each whole

1
number n =1, 2, 3, ... there is exactly one sphere of radius —.
7-[1/1

Q0 ) ’
Q[31] Evaluate Z (Sll’l n 4 COS (7’1 + 1))

om 2n+1
n=>3

0 0
Q[32]: Suppose a series Z a, has sequence of partial sums {Sy}, and the series Z SN
-1 N=1
" M
has sequence of partial sums {71} = { 2 S N}.
N=1
If S = %, what is a,?

Q[33]: Create a bullseye using the following method:

Starting with a red circle of area 1, divide the radius into thirds, creating two rings and a
circle. Colour the middle ring blue.

Continue the pattern with the inside circle: divide its radius into thirds, and colour the
middle ring blue.

Step 1 Step 2

Continue in this way indefinitely: dividing the radius of the innermost circle into thirds,
creating two rings and another circle, and colouring the middle ring blue.
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What is the area of the red portion?

3.34 Convergence Tests

Exercises
Jump to HINTS, ANSWERS, SOLUTIONS or TABLE OF CONTENTS.

» Stage 1

Q[1]: Select the series below that diverge by the divergence test.
© 4 02 0 . oo} .
A) Y - B) > : (C) ), sinn (D) ) sin(mn)
n=1 n n=1 nt

n=1 n=1

Q[2]: Select the series below whose terms satisfy the conditions to apply the integral test.

o0 - ) e s ‘
(A) Z—:l% (B) Z_:l nr_li_ 1 © 2_31 sinn (D) Z w

n=1 n

Q[3]: Suppose there is some threshold after which a person is considered old, and before
which they are young.

Let Olaf be an old person, and let Yuan be a young person.
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(a) Suppose I am older than Olaf. Am I old?

(b) Suppose I am younger than Olaf. Am I old?

(c) Suppose I am older than Yuan. Am I young?
(d) Suppose I am younger than Yuan. Am I young?

Q[4]: Below are graphs of two sequences with positive terms. Assume the sequences
continue as shown. Fill in the table with conclusions that can be made from the direct
comparison test, if any.

Y

°

°
e o

° e, °

®eceecso s 3 n
if >’ a, converges if > a, diverges
and if {a,} is the red series | then > b, — | then> b, —

and if {a,} is the blue series | then > b, then > b,

Q[5]: For each pair of series below, decide whether the second series is a valid
comparison series to determine the convergence of the first series, using the direct
comparison test and/or the limit comparison test.

Q0
(a) 2 compared to the divergent series Z =
n 10 n=10 n

0
sinn 1
(b) E poy | compared to the convergent series E
n= 1

5 Q0
(c) Z L + ! + , compared to the convergent series Z pc
n=>5
1

Q0
(d) 25 , compared to the divergent series 25 7
= n

%\

0
. Does Z a, converge or diverge, or is it

n=7
not possible to determine this from the information given? Why?

Q[6]: Suppose a, is a sequence with r}mg) an = 5
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Q[7]: What flaw renders the following reasoning invalid?

e8]
: sinn
Q: Determine whether Z

n=1

converges or diverges.

sinn

A: First, we will evaluate lim
n—aoo n

. No’ce_—1 <2< 1forn = 1.
n n ]
* Note also that lim — = lim — = 0.
n—oo Mn n—oo n .
¢ Therefore, by the Squeeze Theorem, lim SIZ T = 0as well.
n—ao0
Q0 .
So, by the divergence test, Z SIZ ! converges.
n=1
Q[8]: What flaw renders the following reasoning invalid?
o0
Q: Determine whether Z (sin(7tn) 4 2) converges or diverges.
n=1

A: We use the integral test. Let f(x) = sin(7tx) + 2. Note f(x) is always
positive, since sin(x) +2 > —1 42 = 1. Also, f(x) is continuous.

JOO [sin(7tx) + 2]dx = blim (b [sin(7tx) + 2]dx

1 —®0 J1
e )
= lim | ——= cos(7tx) + 2x
b—oo 7T

1

= lim 1 cos(7th) + 2b + l(—1) - 2}
T T

b—owo |
=
[e¢]
By the integral test, since the integral diverges, also Z (sin(7tn) + 2)
n=1

diverges.

Q[9]: What flaw renders the following reasoning invalid?

o 2n+1n2
Q: Determine whether the series
= e+ 2n

converges or diverges.

D Ant1
Note both this series

A: We want to compare this series to the series —.
e

n=1

and the series in the question have positive terms.

2n+1n2 2n+1

First, we find that > when 7 is sufficiently large. The
e+ 2n e

justification for this claim is as follows:

e We note that e (n? — 1) > n? — 1 > 2n for n sufficiently large.
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e Therefore, e - n%2 > e + 2n
e Therefore, 2"+ . " . n? > 2"+ (e" + 2n)

¢ Since e" + 2n and e" are both expressions that work out to be positive for
the values of n under consideration, we can divide both sides of the
inequality by these terms without having to flip the inequality. So,
on+1,2 on+l

> .
e+ 2n e

L on+l
Now, we claim Z —— converges.
n=1 €
Q0 2n+1 0 2” 0 2 n
Note Z ke 2 Z i 2 Z (E) . This is a geometric series with r = %
n=1 n=1 n=1

Since 2/e < 1, the series converges.

L Hn+1,,2

: . n

Now, by the Direct Comparison Test, we conclude that Z
e+ 2n

converges.

Q[10]: Which of the series below are alternating?

(&) Y sinn ® COST(I—;T”) © Y ﬁ Y %
n=1 n=1

n=1 n=1 3

Q[11]: Give an example of a convergent series for which the ratio test is inconclusive.

Q[12]: Imagine you're taking an exam, and you momentarily forget exactly how the
inequality in the ratio test works. You remember there’s a ratio, but you don’t remember
which term goes on top; you remember there’s something about the limit being greater
than or less than one, but you don’t remember which way implies convergence.

Explain why
. a
lim |1 > 1
n—oo al’l
or, equivalently,
. a
lim " l<1
n=90 |Ap+1

0
should mean that the sum )’ a, diverges (rather than converging).
n=1
0

QI[13]: Give an example of a series Z an, with a function f(x) such that f(n) = a, for all
n—=a
whole numbers 1, such that:

o0
i f f(x) dx diverges, while
a
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0
. Z a, converges.
n=a
0
Q[14](x): Suppose that you want to use the Limit Comparison Test on the series Z ay
n=0
where
2" +n

ay
ay, = Write down a sequence {b,} such that lim -— exists and is nonzero. (You
3” + 1 n—ao0 bn

don’t have to carry out the Limit Comparison Test)

Q[15](*): Decide whether each of the following statements is true or false. If false,
provide a counterexample. If true provide a brief justification.
o0

(a) If nhngo a, =0, then >, a, converges.

n=1
0
(b) If lim a, =0, then ) (—1)"a, converges.
n=0 n= 1
(c) If0<a, <b,and Z b, diverges, then Z a, diverges.
n= n=1

» Stage 2

® 2

n
16](x): Does th i T Bra—— ?
Q[16](x): Does the series nz_]z 321 converge

e k
Q[17](x): Determine, with explanation, whether the series Z >

———— converges or di-
k k
1443

verges.

1

e}

Q[18](*): Determine whether the series Z ey
n =

2

n=0

is convergent or divergent. If it is

convergent, find its value.

1

Q[19]: Does the following series converge or diverge? Z
 VkvE+1

og]
Q[20]: Evaluate the following series, or show that it diverges: Z 3(1.001).
k=30

0 n
Q[21]: Evaluate the following series, or show that it diverges: Z (%) .
n=3
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[e¢]
Q[22]: Does the following series converge or diverge? Z sin(7tn)
n=7
0
Q[23]: Does the following series converge or diverge? Z cos(7tn)
n=7

O ok
Q[24]: Does the following series converge or diverge? kZ: R
=il

0
Q[26]: Does the following series converge or diverge? Z
n=1

nln!
(2n)!

0

°+1
Q[27]: Does the following series converge or diverge? Z 21:1 4—:_ m
=il

(00)
QI28](*): Show that the series 2 converges.

n(logn)3/2

o0
Q[29](+): Find the values of p for which the series Z converges.
n

— n(logn)?

converge or diverge?

o0 e_\/ﬁ
QI[30](x): Does
2

Q[31](x): Use the comparison test (not the limit comparison test) to show whether the
series

X V32 -7 .
Z ——5—— converges or diverges.
n
n=2
o 3 k4
32](*): Determine whether the series converges.
Ql32](+) 21 e OmerE

2 42n/3

Q[33](*): Does Z 17 ;7 converge or diverge?

Q[34](*): Determine, with explanation, whether each of the following series converge or
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diverge.

@ ZW

) Z 1 .cos nn)

n=1

QI35](*): Determine whether the series
Z —2k3+2
B4k
converges or diverges.

Q[36](+): Determine whether each of the following series converge or diverge.

(a) Zn +n+1

m=1

1
Q[37]: Evaluate the following series, or show that it diverges: Z —
n= 5
es}
QI38](*): Determine whether the series Z o is convergent or divergent. If it is conver-

n=2
gent, find its value.

Q[39](*): Determine, with explanation, whether each of the following series converge or
diverge.

@1+3+2+7+5+--
2n+1
®) Z ey

Q[40](#): Determine, with explanation, whether each of the following series converges or
diverges.

o vk
(a)
kszZ—k

o k1010% (k1)?
® %

k=1

© Z k(logk) loglogk)
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34
41](*): Determi hether th i —
Q[41](*): Determine whether the series ,;1 55

G is convergent or divergent.
—6n

)"

Q[42](+): What is the smallest value of N such that the partial sum Z (_

107 approxi-
062
1)71—1 7.[2
Q[43](*): It is known that Z —r T (you don’t have to show this). Find N so

n=1
that Sy, the N*' partial sum of the series, satisfies |71T—22 — Sn| < 1076, Be sure to say why
your method can be applied to this particular series.

( 1)n+1
n+1)>2
this). According to the Alternatmg Series Estimation Theorem what is the smallest value
of N for which the N*! partial sum of the series is at most 100 away from S? For this value
of N, write out the N partial sum of the series.

Q[44](+): The series Z converges to some number S (you don’t have to prove

» Stage 3

Q[45](*): Determine, with explanation, whether the following series converge or diverge.
[e¢] Tln
@) ;12—:1 9"n!
[e¢]
1
(b) ngl nlogn

X + sin x

T2 dx diverges.

QI[46](+): (a) Prove that f

(b) Explain why you cannot conclude that Z n—:_%nn diverges from part (a) and the

Integral Test.

o0 9
. . . n—+sinn
(c) Determine, with explanation, whether Z T

n=1

converges or diverges.

§

Q[47](+): Show that Z converges and find an interval of length 0.05 or less that

7

contains its exact Value

Q[48](+): Suppose that the series Z a, converges and that 1 > a, > 0 for all n. Prove that
n=1
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0

the series 2
n=1

1 also converges.

[00]
QI[49](): Suppose that the series }’ (1 —a,) converges, where a, > 0forn =0,1,2,3, -
n=0

[e¢]
Determine whether the series ) 2"a, converges or diverges.
n=0

S na, —2n+1

QI50](*): Assume that the series Z o converges, where a,, > 0 for

n=1,2,---.Is the following seriez

—loga; + Z log <an+1>

convergent? If your answer is NO justify your answer. If your answer is YES, evaluate

the sum of the series —loga; + Z log (

n=

ﬁ+1)

0
QI51](*): Prove that if a,, > 0 for all n and if the series Z a, converges, then the series
» n=1
Z a% also converges.
n=1

A number of phenomena roughly follow a distribution called Zipf’s law. We discuss some of these in Ques-

tions 52 and 53.
Q[52]: Suppose the frequency of word use in a language has the following pattern:

o
The n-th most frequently used word accounts for . percent of the total words

used.

So, in a text of 100 words, we expect the most frequently used word to appear « times,
while the second-most-frequently used word should appear about 5 times, and so on.

If books written in this language use 20, 000 distinct words, then the most commonly
used word accounts for roughly what percentage of total words used?

QI[53]:

Suppose the sizes of cities in a country adhere to the following pattern: if the largest city
has population «, then the n-th largest city has population .

If the largest city in this country has 2 million people and the smallest city has 1 person,

then the population of the entire country is szm wa . (For many n’s in this sum ==~ 2X10

is not an integer. Ignore that.) Evaluate this sum approx1mately, with an error of no more
than 1 million people.

112




SEQUENCES AND SERIES 3.4 ABSOLUTE AND CONDITIONAL CONVERGENCE

3.4 Absolute and Conditional Convergence

Exercises
Jump to HINTS, ANSWERS, SOLUTIONS or TABLE OF CONTENTS.

» Stage 1

Q[1](*): Decide whether the following statement is true or false. If false, provide a
counterexample. If true provide a brief justification.

o0 o8]
If Z (—1)”+1bn converges, then Z by, also converges.

n=1 n=1

(e0) [e0) o0
QJ2]: Describe the series Z a, based on whether Z a, and Z |an| converge or diverge,
n=1 n=1 n=1
using vocabulary from this section where possible.

> a, converges | >, a, diverges

Y. |an| converges

> |an| diverges

» Stage 2

9n+5
convergent, or divergent; justify your answer.

O 1\n
Q[3](*): Determine whether the series Z (=1) is absolutely convergent, conditionally
=1

_1)2n+1

[e¢]
Q[4](+): Determine whether the series Z (il

T is absolutely convergent,

n=1
conditionally convergent, or divergent.

o0 1 4n
. . -1
Q[5](*): The series n:EI(—l)" T

conditionally; diverges; or none of the above. Determine which is correct.

either: converges absolutely; converges
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QI[6](+): Does the series converge conditionally, converge absolutely, or

i \/ncosn
n2—1

diverge?

1’l —sinn

ﬁ Converges

[7](¥): Determine (with justification!) whether the series Z

n—=
absolutely, converges but not absolutely, or diverges.

(=1)"(2n)!
Q[8](): Determine (with justification!) whether the series Z (

W C onverges

absolutely, converges but not absolutely, or diverges.

(=1)"

[9](): Determine (with justification!) whether the series Z W

converges

absolutely, converges but not absolutely, or diverges.

QI10]: Show that the series Z — converges
n=1

0 . n
Q[11]: Show that the series Z (SLZ n_ %) converges.
n=1

* sin?n — cosn + &
Q[12]: Show that the series Z ! > t2

n=1

converges.

» Stage 3

3

[e¢]
Q[13](*): Both parts of this question concern the series S = Z (=1)"124ne.
n=1

(a) Show that the series S converges absolutely.

(b) Suppose that you approximate the series S by its fifth partial sum Ss. Give an upper
bound for the error resulting from this approximation.
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Q[14]: You may assume without proof the following:

Z (Zn)' = cos(1)

Using this fact, approximate cos 1 as a rational number, accurate to within ﬁ
Check your answer against a calculator’s approximation of cos(1): what was your actual
error?

QI[15]: Let a,, be defined as

—e"? if nis prime
an = 08 o .
n? if n is not prime

Show that the series Z —- converges.
n= 1

3.54 Power Series

Exercises
Jump to HINTS, ANSWERS, SOLUTIONS or TABLE OF CONTENTS.

» Stage 1

Q[1]: Suppose f(x) = Z <3;x)”' What s f(1)?

n=0

0 _ E\n
QI2]: Suppose f(x) = Z % Give a power series representation of f'(x).
n=1 """

o0
QI[3]: Let f(x) = Z An(x —¢)" for some positive constants a and ¢, and some sequence
n=a
of constants {A;}. For which values of x does f(x) definitely converge?

QI4]: Let f(x) be a power series centred at ¢ = 5. If f(x) converges at x = —1, and
diverges at x = 11, what is the radius of convergence of f(x)?
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» Stage 2

Q[5](+): (a) Find the radius of convergence of the series

o0
Z (_1)k2k+1xk
k=0

(b) You are given the formula for the sum of a geometric series, namely:

1

14+r+r24-- = , rl <1
1—r
Use this fact to evaluate the series in part (a).
Q[6](+): Find the radius of convergence for the power series Z T (k=11
(o 10 (ke 1)!

(x=2)"
n2+1 °

o0
QI[7](+): Find the radius of convergence for the power series Z
n=0

1)"(x+2)"

o0
QI[8](*): Consider the power series Z (= NG

, where x is a real number. Find the

n=1
interval of convergence of this series.

Q[9](+): Find the radius of convergence and interval of convergence of the series

S (5

Q[10](*): Find the interval of convergence for the power series

& x—2)"
Zm-

n=1

0 n
QI[11](#): Find all values x for which the series Z % converges.
n=1

D gn
Q[12](+): Find the interval of convergence for Z 4g(x -1

n=1
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Q[13](*): Find, with explanation, the radius of convergence and the interval of
convergence of the power series

= n (x_l)n
2V ar )

n=0

QI[14](+): Find the interval of convergence for the series Z (=1)"n*(x — a)*" where a is a

n=1
constant.

QI15](* ) Find the interval of convergence of the following series:
2 (e 1)k
) Z K29k

(b) i (x —1)¥, wherea; > 0fork=1,2,--- and Z( ak_“):

a

Ap+1 k42 a

3

Q[16](*): Find a power series representation for T

Q0

n+1
Q[17]: Suppose f'(x) = ,;o and f f(t)dt =3x + Z n(n + 1)2

Give a power series representat1on of f(x).

» Stage 3

QI18](*): Determine the values of x for which the series

7’l

[e¢]
Z:: 32 logn

converges absolutely, converges conditionally, or diverges.

Q[19](#): (a) Find the power—series representation for J 1 !

g dx centred at 0 (i.e. in

powers of x).
1/4

(b) The power series above is used to approximate f dx. How many terms are

0o 143
required to guarantee that the resulting approximation is within 10~° of the exact value?
Justify your answer.
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o0
Q[20](+): (a) Show that Z nx" = ﬁ for -1 < x < 1.
n=0

0
(b) Express Z n?x" as a ratio of polynomials. For which x does this series converge?
n=0

Q[21](=): Suppose that you have a sequence {b,,} such that the series > " (1 — b,)
converges. Using the tests we’ve learned in class, prove that the radius of convergence of
0

the power series Z byx" is equal to 1.
n=0

Q[22](x): Assume {an} is a sequence such that na, decreases to C as n — oo for some real
number C > 0

0
(a) Find the radius of convergence of Z a,x" . Justify your answer carefully.

n=1

(b) Find the interval of convergence of the above power series, that is, find all x for which
the power series in (a) converges. Justify your answer carefully.

Q[23]: An infinitely long, straight rod of negligible mass has the following weights:

1
¢ Atevery whole number 7, a mass of weight e at position n, and

. 1 iy
* amass of weight = at position —n.

At what position is the centre of mass of the rod?

-3 -2 -1 0 1 2 3
] | | \ | | |
(@) ( ) I [ I : :
1
33
1 1
32 23
1 1
31 22
1
21

o0
Q[24]: Let f(x) = Z Apn(x —c)", for some constant ¢ and a sequence of constants {A}.
n=0

Further, let f(x) have a positive radius of covergence.

If A7 = 0, show that y = f(x) has a critical point at x = ¢. What is the relationship
between the behaviour of the graph at that point and the value of A,?
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n

e0]
QI25]: Evaluate Z =T

n=3

Q[26]: Find a polynomial that approximates f(x) = log(1 + x) to within an error of 10~>
for all values of x in (0, 11—0 .
Then, use your polynomial to approximate log(1.05) as a rational number.

Q[27]: Find a polynomial that approximates f(x) = arctan x to within an error of 10~ for

all values of x in (_}Iull .

3.64 Taylor Series

Exercises
Jump to HINTS, ANSWERS, SOLUTIONS or TABLE OF CONTENTS.

» Stage 1

QI1]: Below is a graph of y = f(x), along with the constant approximation, linear
approximation, and quadratic approximation centred at a = 2. Which is which?

Y C

Q[2]: Suppose T(x) is the Taylor series for f(x) = arctan® (e* + 7) centred at a = 5. What
is T(5)?
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Q[3]: Below are a list of common functions, and their Taylor series representations.
Match the function to the Taylor series and give the radius of convergence of the series.

function series
1 o A1
_1\n
A'l—x IZ( l)n—l—l
n=0
i © , x2n+1
0 x2n
C. arctan x I -1)"
nZ:lo( ) (2n)!
. 0 ; x2n—|—l
D.e IV. 1;0(—1) T
Q0
E. sinx V. » x"
n=0
Q0 xn
F. cosx VL Z )
n=0
Ql4]:
(a) Suppose f(x) = Z 1) (x —3)" for all real x. What is f(29)(3) (the twentieth
n=0 ‘"""
derivative of f(x) at x = 3)?
o 2
(b) Suppose g(x) = Z (n'n+ 1 (x —3)2" for all real x. What is g(29)(3)?
n=0 \ "’
arctan(5x?) . (20 . (2
(c) If h(x) = ——""~ what is h(29(0)? What is h(22)(0)?

x4

» Stage 2

In Questions 5 through 8, you will create Taylor series from scratch. In practice, it is often preferable to

modify an existing series, rather than creating a new one, but you should understand both ways.

QI5]: Using the definition of a Taylor series, find the Taylor series for f(x) = log(x)

centred at x = 1.

Q[6]: Find the Taylor series for f(x) = sinx centred ata = 1.

1
Q[7]: Using the definition of a Taylor series, find the Taylor series for g(x) = p centred at
x = 10. What is the interval of convergence of the resulting series?
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QI[8]: Using the definition of a Taylor series, find the Taylor series for /i(x) = ¢3* centred
at x = a, where a is some constant. What is the radius of convergence of the resulting
series?

In Questions 9 through 16, practice creating new Taylor series by modifying known Taylor series, rather
than creating your series from scratch.

QI[9](): Find the Maclaurin series for f(x) = 2x1— -
Q[10](x): Let i bnx" be the Maclaurin series for f(x) = > 1
A x4+l 2x-17
0
3 1
. n __ . .
ie. Z byx" = T+l 1 Find b,,.

n=0

o0
Q[11](*): Find the coefficient c5 of the fifth degree term in the Maclaurin series Z cpx for

n=0

3%,

Q[12](): Express the Taylor series of the function
£(x) = log(1 +2x)

about x = 0 in summation notation.

Q[13](+): The first two terms in the Maclaurin series for x? sin(x) are ax® + bx!! , where a
and b are constants. Find the values of a and b.

2 _q
¢ dx.

Q[14](#): Give the first two nonzero terms in the Maclaurin series for J

Q[15](*): Find the Maclaurin series for fx4 arctan(2x) dx.

. df  «x
Q[16](+): Suppose that - = 1=

and f(0) = 1. Find the Maclaurin series for f(x).

In past chapters, we were only able to exactly evaluate very specific types of series: geometric and telescoping.
In Questions 17 through 25, we expand our range by relating given series to Taylor series.
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Q[17](*): The Maclaurin series for arctan x is given by

0
x2n+1

t = -1)"
arctan x HZ::O( ) il

which has radius of convergence equal to 1. Use this fact to compute the exact value of

the series below:
0 1);/[
Z (2n+1)3"

n:0

Q[18](*): Evaluate i (=1 .
n=0

0
1
19](*): Evaluat —
Q[19](+) vauae;)ekk!

[e¢]
1
Q[20](*): Evaluate the sum of the convergent series Z —5
o k!
© (_1)11—1
QI[21](*): Evaluate Z T
n=1
+ 2

QI[22](*): Evaluate Z

n=1

7’1
QI23]: Evaluate Z —, or show that it diverges.
n=1

Q[24]: Evaluate
S (_1)11 T2+l n
ngo 2n+1)! (7)) (2)

or show that it diverges.

2n
Q[25](#): (a) Show that the power series Z 2 )| converges absolutely for all real

numbers x.

o 1
(b) Evaluate nZ::O 2
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Q[26]: .
(a) Using the fact that arctan(1) = 1
would you have to add up to approximate 7t with an error of at most 4 x 107°?

(b) Example 3.6.13 in the CLP-2 text mentions the formula

, how many terms of the Taylor series for arctangent

1 1
7 = 16arctan 5 4 arctan 239
Using the Taylor series for arctangent, how many terms would you have to add up to
approximate 7t with an error of at most 4 x 107°?
(c) Assume without proof the following:

arctan 1 + arctan 1 = arctan i
2 3 2.3-1

Using the Taylor series for arctangent, how many terms would you have to add up to
approximate 7t with an error of at most 4 x 107°?

QI27]: Suppose you wanted to approximate the number log(1.5) as a rational number
using the Taylor expansion of log(1 + x). How many terms would you need to add to get
10 decimal places of accuracy? (That is, an absolute error less than 5 x 10711.)

Q[28]: Suppose you wanted to approximate the number e as a rational number using the
Maclaurin expansion of ¢*. How many terms would you need to add to get 10 decimal
places of accuracy? (That is, an absolute error less than 5 x 10711

You may assume without proof that 2 < e < 3.

QI29]: Suppose you wanted to approximate the number log(0.9) as a rational number
using the Taylor expansion of log(1 — x). Which partial sum should you use to get 10
decimal places of accuracy? (That is, an absolute error less than 5 x 10711.)

Q[30]: Deftine the hyperbolic sine function as

eX —e %

smn x >

Suppose you wanted to approximate the number sinh(b) using the Maclaurin series of
sinh x, where b is some number in (—2,1). Which partial sum should you use to
guarantee 10 decimal places of accuracy? (That is, an absolute error less than 5 x 10711.)

You may assume without proof that 2 < e < 3.

QI31]: Let f(x) be a function with

foralln > 1.
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SEQUENCES AND SERIES 3.6 TAYLOR SERIES

Give reasonable bounds (both upper and lower) on the error involved in approximating

f (—%) using the partial sum Sg of the Taylor series for f(x) centred ata = %

Remark: One function with this quality is the inverse hyperbolic tangent function.!

» Stage 3

1—cosx
32](%): U ies t luate lim ————.
QI32](*): Use series oevauaexlir(l)l_l_x_ex

3
inx —x+ %
QI[33](*): Evaluate lim L

x—0 x5

2/
Q[34]: Evaluate lim (1 +x+ xz) ' using a Taylor series for the natural logarithm.

x—0

QI[35]: Use series to evaluate

1 X
lim <1 + —)
X—00 2x

n+1)(n+2)

71/1

o 0]
Q[36]: Evaluate the series Z (
n=0

or show that it diverges.

(_1)nx2n+4

2n+1)(2n +2) as a combination of familiar functions.

Q[37]: Write the series f(x) = Z
n=0

Q[38]:

(a) Find the Maclaurin series for f(x) = (1 — x)~!/2. What is its radius of convergence?

(b) Manipulate the series you just found to find the Maclaurin series for g(x) = arcsin x.
What is its radius of convergence?

QI[39](): Find the Taylor series for f(x) = log(x) centred at @ = 2. Find the interval of
convergence for this series.

X
1
QI40](+): Let I(x) = L gt
(a) Find the Maclaurin series for I(x).

(b) Approximate I(1/2) to within +0.0001.

(c) Is your approximation in (b) larger or smaller than the true value of I(1/2)? Explain.

eX _ X
1 Of course it is! Actually, hyperbolic tangent is tanh(x) = ppp— and inverse hyperbolic tangent is
its functional inverse.
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SEQUENCES AND SERIES 3.6 TAYLOR SERIES

Q[41](#): Using a Maclaurin series, the number a = 1/5—-1/7 4 1/18 is found to be an
1

approximation for [ = f x*¢~ dx. Give the best upper bound you can for | —a|.
0

Q[42](+): Find an interval of length 0.0002 or less that contains the number
1

2
I = J x2e~* dx
0

dt.

x ,—t
QI43](+): Let I(x) :f et -1

0
(a) Find the Maclaurin series for I(x).

(b) Approximate I(1) to within +0.01.

(c) Explain why your answer to part (b) has the desired accuracy.

¥

Q[44](+): The function X(x) is defined by X(x) = J L?t dt.
0

(a) Find the Maclaurin series for X(x).

(b) It can be shown that X(x) has an absolute maximum which occurs at its smallest
positive critical point (see the graph of X (x) below). Find this critical point.
(c) Use the previous information to find the maximum value of % (x) to within +0.01.
Y

X
Q[45](+): Let I(x) = L Costtz LTy
(a) Find the Maclaurin series for I(x).
(b) Use this series to approximate I(1) to within +0.01
(c) Is your estimate in (b) greater than I(1)? Explain.

* t+tsint—1
Q[46](+): Let I(x) = f cos +t2‘°’m dt

0

(a) Find the Maclaurin series for I(x).
(b) Use this series to approximate I(1) to within +0.001
(c) Is your estimate in (b) greater than or less than I(1)?

QI[47](+): Define f(x) = Jx 1—et

0 t

dt.

(a) Show that the Maclaurin series for f(x) is Z
n=1
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SEQUENCES AND SERIES 3.6 TAYLOR SERIES

(b) Use the ratio test to determine the values of x for which the Maclaurin series

© n—1
(_1) n
————X converges.
= n n!

1 x3

1
Q[48](*): Show ’chatfO =1 dx < 3

Q[49](+): Let cosh(x) = %

(a) Find the power series expansion of cosh(x) about xp = 0 and determine its interval
of convergence.

(b) Show that 3% < cosh(2) < 33 +0.1.

(c) Show that cosh(t) < ez for all t.

Q[50]: The law of the instrument says “If you have a hammer then everything looks like
a nail” — it is really a description of the “tendency of jobs to be adapted to tools rather
than adapting tools to jobs.”” Anyway, this is a long way of saying that just because we
know how to compute things using Taylor series doesn’t mean we should neglect other
techniques.
(a) Using Newton’s method, approximate the constant v/2 as a root of the function

¢(x) = x> — 2. Using a calculator, make your estimation accurate to within 0.01.
(b) You may assume without proof that

o1l 4 Dy DEE) =)

n oyl
6 o 3t n!
for all real numbers x. Using the fact that this is an alternating series, how many
terms would you have to add for the partial sum to estimate +/2 with an error less

than 0.01?

+  Quote from Silvan Tomkins’s Computer Simulation of Personality: Frontier of Psychological Theory. See also
Birmingham screwdrivers.

QI51]: Let f(x) = arctan(x®). Write f(10) (%) as a sum of rational numbers with an error

less than 10~° using the Maclaurin series for arctangent.
Q[52]: Consider the following function:

e/ x 20
f(x)z{o v

(a) Sketchy = f(x).

(b) Assume (without proof) that £(*)(0) = 0 for all whole numbers 7. Find the Maclaurin
series for f(x).
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SEQUENCES AND SERIES 3.6 TAYLOR SERIES

(c) Where does the Maclaurin series for f(x) converge?

(d) For which values of x is f(x) equal to its Maclaurin series?

@ £(n)
QI53]: Suppose f(x) is an odd function, and f(x) = >, . n'( .

n=0
o fP(0) o
(2n)! =

x". Simplify

n=0
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HINTS TO PROBLEMS
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L g a

Hints for Exercises 1.1. — Jump to TABLE OF CONTENTS.

H-1: Draw a rectangle that encompasses the entire shaded area, and one that is
encompassed by the shaded area. The shaded area is no more than the area of the bigger
rectangle, and no less than the area of the smaller rectangle.

H-2: We can improve on the method of Question 1 by using three rectangles that together
encompass the shaded region, and three rectangles that together are encompassed by the
shaded region.

H-3: Four rectangles suffice.
H-4: Try drawing a picture.
H-5: Try an oscillating function.

H-6: The ordering of the parts is intentional: each sum can be written by changing some
small part of the sum before it.

H-7: If we raise —1 to an even power, we get +1, and if we raise it to an odd power, we
get —1.

H-8: Sometimes a little anti-simplification can make the pattern more clear.

(a) Re-write as % + % + 25—7 + % + %.

(b) Compare to the sum in the hint for (a).

(c) Re-writeas1-1000+2-100+ 310+ + 3 + 15 + 1000+

H-9: (a), (b) These are geometric sums.

(c) You can write this as three separate sums.

(d) You can write this as two separate sums. Remember that e is a constant. Don’t be
thrown off by the index being 1 instead of i.

H-10:
(a) Write out the terms of the two sums.

(b) A change of index is an easier option than expanding the cubic.

(c) Which terms cancel?

(d) Remember 21 + 1 is odd for every integer n. The index starts at n = 2, not n = 1.

H-11: Since the sum adds four pieces, there will be four rectangles. However, one might
be extremely small.

H-12: Write out the general formula for the left Riemann sum from Definition 1.1.11 in

the CLP-2 text and choose 4, b and 7n to make it match the given sum.
H-13: Since the sum runs from 1 to 3, there are three intervals. Suppose 2 = Ax = bn;“.
You may assume the sum given is a right Riemann sum (as opposed to left or midpoint).

H-14: Let Ax = %. Then what s b — a?
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H-15: Notice that the index starts at k = 0, instead of k = 1. Write out the given sum
explicitly without using summation notation, and sketch where the rectangles would fall
on a graph of y = f(x). Then try to identify b — 4, and n, followed by “right”, “left”, or
“midpoint”, and finally a.

H-16: The area is a triangle.
H-17: There is one triangle of positive area, and one of negative area.
H-18: Review Definition 1.1.11 in the CLP-2 text.

H-20: You'll want the limit as n goes to infinity of a sum with n terms. If you're having a
hard time coming up with the sum in terms of 7, try writing a sum with a finite number
of terms of your choosing. Then, think about how that sum would change if it had n
terms.

H-21: The main step is to express the given sum as the right Riemann sum,

n

Zf(a + iAx)Ax.

i=1
Don’t be afraid to guess Ax and f(x) (review Definition 1.1.11 in the CLP-2 text). Then
write out explicitly i f(a + iAx)Ax with your guess substituted in, and compare the
result with the giveilzéum. Adjust your guess if they don’t match.
H-22: The main step is to express the given sum as the right Riemann sum

n
> f(a+ kAx)Ax. Don’t be afraid to guess Ax and f(x) (review Definition 1.1.11 in the
k=1

n
CLP-2 text). Then write out explicitly >; f(a + kAx)Ax with your guess substituted in,
k=1
and compare the result with the given sum. Adjust your guess if they don’t match.

H-23: The main step is to express the given sum in the form > ; f(x})Ax. Don't be
afraid to guess Ax, xj (for either a left or a right or a midpoint sum — review Definition
1.1.11 in the CLP-2 text) and f(x). Then write out explicitly > ;' ; f(x})Ax with your
guess substituted in, and compare the result with the given sum. Adjust your guess if
they don’t match.

H-24: The main step is to express the given sum in the form i f(x})Ax. Don’t be afraid
to guess Ax, x} (probably, based on the symbol Ry, assumingl:vile have a right Riemann
sum — review Definition 1.1.11 in the CLP-2 text) and f(x). Then write out explicitly

i f(xf)Ax with your guess substituted in, and compare the result with the given sum.
Zéljust your guess if they don’t match.

H-25: Try several different choices of Ax and x;'.

H-26: Let x = r3, and re-write the sum in terms of x.

H-27: Note the sum does not start at Y = 1.

130



H-28: Draw a picture. See Example 1.1.15 in the CLP-2 text.

x x=0

H-29: Draw a picture. Remember |x| = { Cx ox<0

H-30: Draw a picture: the area we want is a trapezoid. If you don’t remember a formula
for the area of a trapezoid, think of it as the difference of two triangles.

H-31: You can draw a very similar picture to Question 30, but remember the areas are
negative.

H-32: If y = v/16 — x2, then y is nonnegative, and y* + x> = 16.
H-33: Sketch the graph of f(x).

H-34: At which time in the interval, for example, 0 < t < 0.5, is the car moving the
fastest?

H-35: What are the possible speeds the car could have reached at time t = 0.25?

H-36: You need to know the speed of the plane at the midpoints of your intervals, so (for
example) noon to 1pm is not one of your intervals.

H-37: Sure looks like a Riemann sum.

H-38: For part (b): don’t panic! Just take it one step at a time. The first step is to write
down the Riemann sum. The second step is to evaluate the sum, using the given identity.
The third step is to evaluate the limit n — oo.

H-39: The first step is to write down the Riemann sum. The second step is to evaluate the
sum, using the given formulas. The third step is to evaluate the limit as n — co.

H-40: The first step is to write down the Riemann sum. The second step is to evaluate the
sum, using the given formulas. The third step is to evaluate the limit n — cc.

H-41: You've probably seen this hint before. It is worth repeating. Don’t panic! Just take
it one step at a time. The first step is to write down the Riemann sum. The second step is
to evaluate the sum, using the given formula. The third step is to evaluate the limit

n— .

H-42: Using the definition of a right Riemann sum, we can come up with an expression

for f(—5+ 10i). In order to find f(x), set x = —5+ 10i.

H-43: Recall that for a positive constant g, % {a*} = a*loga, where log a is the natural
logarithm (base ¢) of a.

H-44: Part (a) follows the same pattern as Question 43-there’s just a little more algebra
involved, since our lower limit of integration is not 0.

H-45: Your area can be divided into a section of a circle and a triangle. Then you can use
geometry to find the area of each piece.

H-46:

(a) The difference between the upper and lower bounds is the area that is outside of the
smaller rectangles but inside the larger rectangles. Drawing both sets of rectangles on
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one picture might make things clearer. Look for an easy way to compute the area you
want.

(b) Use your answer from Part (a). Your answer will depend on f, a, and b.

H-47: Since f(x) is linear, there exist real numbers m and c such that f(x) = mx +c. It'sa
little easier to first look at a single triangle from each sum, rather than the sums in their
entirety.

&> <&

Hints for Exercises 1.2. — Jump to TABLE OF CONTENTS.
H-1.
(a) What is the length of this figure?

(b) Think about cutting the area into two pieces vertically.

(c) Think about cutting the area into two pieces another way.

H-2: Use the identity gf(x) dx = §f(x) dx + ?f(x) dx.

a

H-4: Note that the limits of the integral given are in the opposite order from what we
might expect: the smaller number is the top limit of integration.

Recall Ax = bn;”.

H-5: Split the “target integral” up into pieces that can be evaluated using the given
integrals.

H-6: Split the “target integral” up into pieces that can be evaluated using the given
integrals.

H-7: Split the “target integral” up into pieces that can be evaluated using the given
integrals.

1

H-8: For part (a), use the symmetry of the integrand. For part (b), the area {1 — x2 dx is
0

easy to find-how is this useful to you?

H-9: The evaluation of this integral was also the subject of Question 9 in Section 1.1. This
time try using the method of Example 1.2.6 in the CLP-2 text.

H-10: Use symmetry.
H-11: Check Theorem 1.2.11 in the CLP-2 text.
H-12: Split the integral into a sum of two integrals. Interpret each geometrically.

H-13: Hmmmm. Looks like a complicated integral. It’s probably a trick question. Check
for symmetries.

H-14: Check for symmetries again.

H-15: What does the integrand look like to the left and right of x = 3?
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H-16: In part (b), you'll have to factor a constant out through a square root. Remember
the upper half of a circle looks like V72 — x2.

H-17: For two functions f(x) and g(x), define h(x) = f(x) - g(x). If h(—x) = h(x), then
the product is even; if 1(—x) = —h(x), then the product is odd.

The table will not be the same as if we were multiplying even and odd numbers.
H-18: Note f(0) = f(-0).
H-19: If f(x) is even and odd, then f(x) = —f(x) for every x.

H-20: Think about mirroring a function across an axis. What does this do to the slope?

L o &

Hints for Exercises 1.3. — Jump to TABLE OF CONTENTS.

H-2: First find the general antiderivative by guessing and checking.
H-3: Be careful. Two of these make no sense at all.

H-4: Check by differentiating.

H-5: Check by differentiating.

H-6: Use the Fundamental Theorem of Calculus Part 1.

H-7: Use the Fundamental Theorem of Calculus, Part 1.

H-8: You already know that F(x) is an antiderivative of f(x).

. d _ _ -1
H-9: (a) Recall g {arccosx} = e
(b) All antiderivatives of /1 — x2 differ from one another by a constant. You already
know one antiderivative.

H-10: In order to apply the Fundamental Theorem of Calculus Part 2, the integrand must
be continuous over the interval of integration.

H-11: Use the definition of F(x) as an area.
H-12: F(x) represents net signed area.

H-13: Note G(x) = —F(x), when F(x) is defined as in Question 12.

F h) —F
H-14: Using the definition of the derivative, F'(x) = }lin}) (x+ l)z (x) .

The area of a trapezoid with base b and heights k1 and h; is %b(hl + hy).
H-15: There is only one!

H-16: If £{F(x)} = f(x), that tells us { f(x) dx = F(x) + C.

H-17: When you're differentiating, you can leave the e* factored out.

H-18: After differentiation, you can simplify pretty far. Keep at it!
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H-19: This derivative also simplifies considerably. You might need to add fractions by
finding a common denominator.

H-20: Guess a function whose derivative is the integrand, then use the Fundamental
Theorem of Calculus Part 2.

H-21: Split the given integral up into two integrals.

1
H-22: The integrand is similar to T2 so something with arctangent seems in order.

H-23: The integrand is similar to , so factoring out 1/2 from the denominator will

1
V1—x2
make it look like some flavour of arcsine.
H-24: We know how to antidifferentiate sec?
t 2

x, and there is an identity linking sec? x with

an” x.

H-25: Recall 2 sin x cos x = sin(2x).
1 2

H-26: cos? x = JFC%(JC)

H-28: There is a good way to test where a function is increasing, decreasing, or constant,
that also has something to do with topic of this section.

H-29: See Example 1.3.5 in the CLP-2 text.
H-30: See Example 1.3.5 in the CLP-2 text.
H-31: See Example 1.3.5 in the CLP-2 text.
H-32: See Example 1.3.5 in the CLP-2 text.
H-33: See Example 1.3.6 in the CLP-2 text.

H-34: Apply % to both sides.

H-35: What is the title of this section?
H-36: See Example 1.3.6 in the CLP-2 text.
H-37: See Example 1.3.6 in the CLP-2 text.
H-38: See Example 1.3.6 in the CLP-2 text.
H-39: See Example 1.3.6 in the CLP-2 text.
H-40: Split up the domain of integration.

H-41: It is possible to guess an antiderivative for f'(x)f”(x) that is expressed in terms of
f'(x).

H-42: When does the car stop? What is the relation between velocity and distance
travelled?

H-43: See Example 1.3.5 in the CLP-2 text. For the absolute maximum part of the
question, study the sign of f'(x).
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H-44: See Example 1.3.5 in the CLP-2 text. For the “minimum value” part of the question,
study the sign of f'(x).

H-45: See Example 1.3.5 in the CLP-2 text. For the “maximum” part of the question,
study the sign of F/(x).

H-46: Review the definition of the definite integral and in particular Definitions 1.1.9 and
1.1.11 in the CLP-2 text.

H-47: Review the definition of the definite integral and in particular Definitions 1.1.9 and
1.1.11 in the CLP-2 text.

H-48: Carefully check the Fundamental Theorem of Calculus: as written, it only applies
directly to F(x) when x > 0.

Is F(x) even or odd?

H-49: In general, the equation of the tangent line to the graph of y = f(x) atx = ais
y = f(a) + f'(a) (x —a).
H-50: Recall tan? x + 1 = sec? x.

H-51: Since the integration is with respect to t, the x> term can be moved outside the
integral.

H-52: Remember that antiderivatives may have a constant term.

&> <&

Hints for Exercises 1.4. — Jump to TABLE OF CONTENTS.

H-1: One is true, the other false.
H-2: You can check whether the final answer is correct by differentiating.

-3: Check the limits.

i

H-4: Check every step. Do they all make sense?

H-6: Whatis &{f(g(x))}?

H-7: What is the derivative of the argument of the cosine?
H-8: What is the title of the current section?

H-9: What is the derivative of x3 + 1?

H-10: What is the derivative of log x?

H-11: What is the derivative of 1 + sin x?

H-12: cos x is the derivative of what?

H-13: What is the derivative of the exponent?

H-14: What is the derivative of the argument of the square root?

H-15: Whatis & {/log x}?
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H-16: There is a short, slightly sneaky method — guess an antiderivative — and a really
short, still-more-sneaky method.

H-17: Review the definition of the definite integral and in particular Definitions 1.1.9 and
1.1.11 in the CLP-2 text.

H-18: Ifw = u?> + 1, then u?2 = w — 1.

H-19: Using a trigonometric identity, this is similar (though not identical) to
{tan 6 - sec? 6 do.

H-20: If you multiply the top and the bottom by e*, what does this look like the
antiderivative of?

H-21: You know methods other than substitution to evaluate definite integrals.

sin x
COS X

H-22: tanx =

H-23: Review the definition of the definite integral and in particular Definitions 1.1.9 and
1.1.11 in the CLP-2 text.

H-24: Review the definition of the definite integral and in particular Definitions 1.1.9 and

1.1.11 in the CLP-2 text.
H-25: Find the right Riemann sum for both definite integrals.

L g a

Hints for Exercises 1.5. — Jump to TABLE OF CONTENTS.

H-1: When we say “area between,” we want positive area, not signed area.

H-2: We're taking rectangles that reach from one function to the other.

H-3: Draw a sketch first.

H-4: Draw a sketch first.

H-5: You can probably find the intersections by inspection.

H-6: To find the intersection, plug x = 4y? into the equation x + 12y +5 = 0.

H-7: If the bottom function is the x-axis, this is a familiar question.

H-8: Part of the job is to determine whether y = x lies above or below y = 3x — x2.

H-9: Guess the intersection points by trying small integers.

H-10: Draw a sketch first. You can also exploit a symmetry of the region to simplify your
solution.

H-11: Figure out where the two curves cross. To determine which curve is above the
other, try evaluating f(x) and g(x) for some simple value of x. Alternatively, consider x
very close to zero.

H-12: Think about whether it will easier to use vertical strips or horizontal strips.

H-13: Writing an integral for this is nasty. How can you avoid it?
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H-14: You are asked for the area, not the signed area. Be very careful about signs.

H-15: You are asked for the area, not the signed area. Draw a sketch of the region and be
very careful about signs.

H-16: You have to determine whether

e the curve y = f(x) = xv25 — x2 lies above the line y = ¢(x) = 3x forall0 < x < 4
or

e the curve y = f(x) lies below the line y = g(x) forall0 < x <4 or

e y= f(x)and y = g(x) cross somewhere between x = 0 and x = 4.
One way to do so is to study the sign of f(x) — g(x) = x(v25 — x2 - 3).
H-17: Flex those geometry muscles.

H-18: These two functions have three points of intersection. This question is slightly
messy, but uses the same concepts we’ve been practicing so far.

&> <&

Hints for Exercises 1.6. — Jump to TABLE OF CONTENTS.

H-1: The horizontal cross-sections were discussed in Example 1.6.1 of the CLP-2 text.

H-2: What are the dimensions of the cross-sections?
H-3: There are two different kinds of washers.

H-4: Draw sketches. The mechanically easiest way to answer part (b) uses the method of
cylindrical shells, which is in the optional section 1.6 of the CLP-2 text. The method of
washers also works, but requires you to have more patience and also to have a good idea
what the specified region looks like. Look at your sketch very careful when identifying
the ends of your horizontal strips.

H-5: Draw sketchs.
H-6: Draw a sketch.

H-7: If you take horizontal slices (parallel to one face), they will all be equilateral
triangles.

Be careful not to confuse the height of a triangle with the height of the tetrahedron.
H-8: Sketch the region.
H-9: Sketch the region first.

H-10: You can save yourself quite a bit of work by interpreting the integral as the area of
a known geometric figure.

H-11: See Example 1.6.3 in the CLP-2 text.
H-12: See Example 1.6.5 in the CLP-2 text.
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H-13: Sketch the region. To find where the curves intersect, look at where cos(3) and
xZ — 712 both have roots.

H-14: See Example 1.6.6 in the CLP-2 text.

H-15: See Example 1.6.6 in the CLP-2 text. Imagine cross-sections with shadow parallel
to the y-axis, sticking straight out of the xy-plane.

H-16: See Example 1.6.1 in the CLP-2 text.

H-17: (a) Don’t be put off by phrases like “rotating an ellipse about its minor axis.” This
is the same kind of volume you’ve been calculating all section.

(b) Hopefully, you sketched the ellipse in part (a). What was its smallest radius? Its
largest? These correspond to the polar and equitorial radii, respectively.

(c) Combine your answers from (a) and (b).

(d) Remember that the absolute error is the absolute difference of your two results—that
is, you subtract them and take the absolute value. The relative error is the absolute error
divided by the actual value (which we’re taking, for our purposes, to be your answer
from (c)). When you take the relative error, lots of terms will cancel, so it’s easiest to not
use a calculator till the end.

H-18: To find the points of intersection, set 4 — (x —1)? = x + 1.

H-19: You can somewhat simplify your calculations in part (a) (but not part (b)) by using
the fact that R is symmetric about the line y = x.

When you're solving an equation for x, be careful about your signs: x — 1 is negative.

H-20: The mechanically easiest way to answer part (b) uses the method of cylindrical
shells, which we have not covered. The method of washers also works, but requires you
have enough patience and also to have a good idea what R looks like. So it is crucial to
tirst sketch R. Then be very careful in identifying the left end of your horizontal strips.

H-21: Note that the curves cross. The area of this region was found in Problem 14 of
Section 1.5. It would be useful to review that problem.

H-22: You can use ideas from this section to answer the question. If you take a very thin
slice of the column, the density is almost constant, so you can find the mass. Then you
can add up all your little slices. It's the same idea as volume, only applied to mass.

Do be careful about units: in the problem statement, some are given in metres, others in
kilometres.

If you're having a hard time with the antiderivative, try writing the exponential function
with base e. Remember 2 = ¢!°82.

L o &

Hints for Exercises 1.7. — Jump to TABLE OF CONTENTS.

H-1: Read back over Sections 1.4 and 1.7 of the CLP-2 text. When these methods are
introduced, they are justified using the corresponding differentiation rules.
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H-2: Remember our rule: Sudv = uv — Svdu. So, we take u and use it to make du, and
we take dv and use it to make v.

H-3: According to the quotient rule,

a4 {f(x)} _ 8 f'(x) — f(x)g'(x)
dx | g(x) g2 (x) '

Antidifferentiate both sides of the equation, then solve for the expression in the question.

H-4: Remember all the antiderivatives differ only by a constant, so you can write them
all as v(x) + C for some C.

H-5: What integral do you have to evaluate, after you plug in your choices to the
integration by parts formula?

H-6: You'll probably want to use integration by parts. (It’s the title of the section, after
all). You'll break the integrand into two parts, integrate one, and differentiate the other.
Would you rather integrate log x, or differentiate it?

H-7: This problem is similar to Question 6.

H-8: Example 1.7.5 in the CLP-2 text shows you how to find the antiderivative. Then the
Fundamental Theorem of Calculus Part 2 gives you the definite integral.

H-9: Compare to Question 8. Try to do this one all the way through without peeking at
another solution!

H-10: If at first you don’t succeed, try using integration by parts a few times in a row.
Eventually, one part will go away.

H-11: Similarly to Question 10, look for a way to use integration by parts a few times to
simplify the integrand until it is antidifferentiatable.

H-12: Use integration by parts twice to get an integral with only a trigonometric function
init.

H-13: If you let u = log t in the integration by parts, then du works quite nicely with the
rest of the integrand.

H-14: Those square roots are a little disconcerting— get rid of them with a substitution.
H-15: This can be solved using the same ideas as Example 1.7.8 in the CLP-2 text.
H-16: Not every integral should be evaluated using integration by parts.

H-17: You know, or can easily look up, the derivative of arccosine. You can use a similar
trick as the book did when antidifferentiating other inverse trigonometric functions in
Example 1.7.9 of the CLP-2 text.

H-18: After integrating by parts, do some algebraic manipulation to the integral until it’s
clear how to evaluate it.

H-19: After integration by parts, use a substitution.
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H-20: This example is similar to Example 1.7.10 in the CLP-2 text. The functions e*/? and

cos(2x) both do not substantially alter when we differentiate or antidifferentiate them. If
we use integration by parts twice, we’ll end up with an expression that includes our
original integral. Then we can just solve for the original integral in the equation, without
actually integrating.

H-21: This looks a bit like a substitution problem, because we have an “inside function.”
It might help to review Example 1.7.11 in the CLP-2 text.

H-22: Start by simplifying.

H-23: sin(2x) = 2sinx cos x

H-24: What is the derivative of xe™*?

H-25: You'll want to do an integration by parts for (a)—check the end result to get a guess
as to what your parts should be. A trig identity and some amount of algebraic
manipulation will be necessary to get the final form.

H-26: See Examples 1.7.9 and 1.6.5 in the CLP-2 text for refreshers on integrating
arctangent, and using washers.

2

Remember tan? x + 1 = sec? x, and sec? x is easy to integrate.

H-27: Your integral can be broken into two integrals, which yield to two different
integration methods.

H-28: Think, first, about how to get rid of the square root in the argument of f”, and,
second, how to convert f” into f’. Note that you are told that f'(2) =4 and f(0) =1,

f(2) = 3.

H-29: Interpret the limit as a right Riemann sum.

&> <&

Hints for Exercises 1.8. — Jump to TABLE OF CONTENTS.
H-1: Go ahead and try it!
H-2: Use the substitution u = sec x.

H-3: Divide both sides of the second identity by cos? x.

H-4: See Example 1.8.6 in the CLP-2 text. Note that the power of cosine is odd, and the
power of sine is even (it’s zero).

H-5: See Example 1.8.7 in the CLP-2 text. All you need is a helpful trig identity.

H-6: The power of cosine is odd, so we can reserve one cosine for du, and turn the rest
into sines using the identity sin? x + cos? x = 1.

H-7: Since the power of sine is odd (and positive), we can reserve one sine for du, and

turn the rest into cosines using the identity sin® + cos? x = 1.

H-8: When we have even powers of sine and cosine both, we use the identities in the last
two lines of Equation 1.8.3 in the CLP-2 text.
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H-9: Since the power of sine is odd, you can use the substitution u = cos x.
H-10: Which substitution will work better: u = sin x, or u = cos x?

H-11: Try a substitution.

H-12: For practice, try doing this in two ways, with different substitutions.

H-13: A substitution will work. See Example 1.8.14 in the CLP-2 text for a template for
integrands with even powers of secant.

H-14: Try the substitution u = sec x.
H-15: Compare to Question 14.
H-16: What is the derivative of tangent?

H-17: Don’t be scared off by the non-integer power of secant. You can still use the
strategies in the notes for an odd power of tangent.

H-18: Since there are no secants in the problem, it’s difficult to use the substitution
u = sec x that we’ve enjoyed in the past. Example 1.8.12 in the CLP-2 text provides a
template for antidifferentiating an odd power of tangent.

H-19: Integrating even powers of tangent is surprisingly different from integrating odd
powers of tangent. You’ll want to use the identity tan® x = sec? x — 1, then use the
substitution u = tan x, du = sec? x dx on (perhaps only a part of) the resulting integral.
Example 1.8.16 in the CLP-2 text show you how this can be accomplished.

H-20: Since there is an even power of secant in the integrand, we can use the substitution
u = tanx.

H-21: How have we handled integration in the past that involved an odd power of
tangent?

H-22: Remember e is some constant. What are our strategies when the power of secant is
even and positive? We’ve seen one such substitution in Example 1.8.15 of the CLP-2 text.

H-23: See Example 1.8.16 in the CLP-2 text for a strategy for integrating powers of
tangent.

in x
H-24: Write tanx = Sth .
Ccos X

H-25: — secO

cos
X
H-26: cotx = C(.)S
sin x

H-27: Try substituting.
H-28: To deal with the “inside function,” start with a substitution.

H-29: Try an integration by parts.

&> <&
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Hints for Exercises 1.9. — Jump to TABLE OF CONTENTS.

H-1: The beginning of this section has a template for choosing a substitution. Your goal is

to use a trig identity to turn the argument of the square root into a perfect square, so you
can cancel 4/ (something)? = |[something].

H-2: You want to do the same thing you did in Question 1, but you’ll have to complete
the square first.

H-3: Since 0 is acute, you can draw it as an angle of a right triangle. The given
information will let you label two sides of the triangle, and the Pythagorean Theorem
will lead you to the third.

H-4: You can draw a right triangle with angle 6, and use the given information to label
two of the sides. The Pythagorean Theorem gives you the third side.

H-5: As in Question 1, choose an appropriate substitution. Your answer should be in
terms of your original variable, x, which can be achieved using the methods of
Question 3.

H-6: As in Question 1, choose an appropriate substitution. Your answer will be a number,
50 as long as you change your limits of integration when you substitute, you don’t need
to bother changing the antiderivative back into the original variable x. However, you
might want to use the techniques of Question 4 to simplify your final answer.

H-7: Question 1 guides the way to finding the appropriate substitution. Since the integral
is definite, your final answer will be a number. Your limits of integration should be
common reference angles.

H-8: Question 1 guides the way to finding the appropriate substitution. Since you have
in indefinite integral, make sure to get your answer back in terms of the original variable,
x. Question 3 gives a reliable method for this.

H-9: A trig substitution is not the easiest path.

H-10: To antidifferentiate, change your trig functions into sines and cosines.

H-11: The integrand should simplify quite far after your substitution.

H-12: In part (a) you are asked to integrate an even power of cos x. For part (b) you can
use a trigonometric substitution to reduce the integral of part (b) almost to the integral of

part (a).
H-13: What is the symmetry of the integrand?

H-14: See Example 1.9.3 in the CLP-2 text.

2

H-15: To integrate an even power of tangent, use the identity tan® x = sec? x — 1.

H-16: A trig substitution is not the easiest path.

H-17: Complete the square. Your final answer will have an inverse trig function in it.

H-18: To antidifferentiate even powers of cosine, use the formula cos? 8 = 1(1 + cos(26)).
Then, remember sin(20) = 2sin 6 cos 6.
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H-19: After substituting, use the identity tan? x = sec? x — 1 more than once.

Remember Jsec xdx = log|secx + tanx| + C.

H-20: There’s no square root, but we can still make use of the substitution x = tan 6.

H-21: You'll probably want to use the identity tan? 0 + 1 = sec? § more than once.

H-22: Complete the square — refer to Question 2 if you want a refresher. The constants
aren’t pretty, but don’t let them scare you.

H-23: After substituting, use the identity sec? u = tan? u + 1. It might help to break the
integral into a few pieces.

H-24: Make use of symmetry, and integrate with respect to y (rather than x).

H-25: Use the symmetry of the function to re-write your integrals without an absolute
value.

H-26: Think of e* as (¢*/ 2)2, and use a trig substitution. Then, use the identity
sec”f = tan 6 + 1.

H-27:
(a) Use logarithm rules to simplify first.
(b) Think about domains.

(c) What went wrong in part (b)? At what point in the work was that problem
introduced?
There is a subtle but important point mentioned in the introductory text to
Section 1.9 of the CLP-2 text that may help you make sense of things.

H-28: Consider the ranges of the inverse trigonometric functions. For (c), also consider

the domain of v/x2 — a2.

L g a

Hints for Exercises 1.10. — Jump to TABLE OF CONTENTS.

H-1: If a quadratic function can be factored as (ax + b)(cx + d) for some constants
a,b,c,d, then it has roots —2 and —%.

H-2: Review Equations 1.10.7 through 1.10.11 of the CLP-2 text. Be careful to fully factor
the denominator.

H-3: Review Example 1.10.1 in the CLP-2 text. Is the “Algebraic Method” or the “Sneaky
Method” going to be easier?

H-4: For each part, use long division as in Example 1.10.4 of the CLP-2 text.

H-5: (a) Look for a pattern you can exploit to factor out a linear term.

(b) If you set y = x2, this is quadratic. Remember (x?> —a) = (x + v/a)(x — v/a) as long as
a is positive.

(c),(d) Look for integer roots, then use long division.
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‘ v

-6: Why do we do partial fraction decomposition at all?

T

-7: What is the title of this section?

v

-8: You can save yourself some work in developing your partial fraction decomposition
y renaming x to y and comparing the result with Question 7.

o

H-9: Review Steps 3 (particularly the “Sneaky Method”) and 4 of Example 1.10.3 in the
CLP-2 text.

H-10: Review Steps 3 (particularly the “Sneaky Method”) and 4 of Example 1.10.3 in the
CLP-2 text. Remember %{arctan x} = HLxZ

H-11: Fill in the blank: the integrand is a function.
H-12: The integrand is yet another function.

H-13: Since the degree of the numerator is the same as the degree of the denominator, we
can’t do our partial fraction decomposition before we simplify the integrand.

H-14: The degree of the numerator is not smaller than the degree of the denominator.
Your final answer will have an arctangent in it.

H-15: In the partial fraction decomposition, several constants turn out to be 0.

H-16: Factor (2x — 1) out of the denominator to get started. You don’t need long division
for this step.

H-17: When it comes time to integrate, look for a convenient substitution.

1 sin x
H-18: cscx = — =—
s Xx sin” x

H-19: Use the partial fraction decomposition from Queston 18 to save yourself some time.

H-20: In the final integration, complete the square to make a piece of the integrand look
more like the derivative of arctangent.

H-21: Review Question 20 in Section 1.9 for antidifferentiation tips.

H-22: Partial fraction decomposition won’t simplify this any more. Use a trig
substitution.

H-23: To evaluate the antiderivative, break one of the fractions into two fractions.
H-24: cos?0 = 1 — sin?6

H-25: If you're having a hard time making the substitution, multiply the numerator and
the denominator by e*.

H-26: Try the substitution u = /1 + ¢*. You’ll need to do long division before you can
use partial fraction decomposition.

H-27: The mechanically easiest way to answer part (c) uses the method of cylindrical
shells, which we have not covered. The method of washers also works, but requires you
have enough patience and also to have a good idea what R looks like. So look at the
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sketch in part (a) very carefully when identifying the left endpoints of your horizontal
strips.
H-28: You'll need to use two regions, because the curves cross.

H-29: For (b), use the Fundamental Theorem of Calculus Part 1.

&> <&

Hints for Exercises 1.11. — Jump to TABLE OF CONTENTS.

H-1: The absolute error is the difference of the two values; the relative error is the
absolute error divided by the exact value; the percent error is one hundred times the
relative error.

H-2: You should have four rectangles in one drawing, and four trapezoids in another.

H-3: Sketch the second derivative-it's quadratic.

H-4: You don’t have to find the actual, exact maximum the second derivative
achieves—you only have to give a reasonable “ceiling” that it never breaks through.

H-5: To compute the upper bound on the error, find an upper bound on the fourth
derivative of cosine, then use Theorem 1.11.12 in the CLP-2 text.

To find the actual error, you need to find the actual value of A.
H-6: Find a function with f”(x) = 3 for all x in [0, 1].

H-7: You're allowed to use common sense for this one.

H-8: For part (b), consider Question 7.

H-9: Draw a sketch.

H-10: The error bound for the approximation is given in Theorem 1.11.12 in the CLP-2
text. You want this bound to be zero.

H-11: Follow the formulas in Equations 1.11.2, 1.11.6, and 1.11.9 in the CLP-2 text.

H-12: See Section 1.11.1 in the CLP-2 text. You should be able to simplify your answer to
an exact value (in terms of 7).

H-13: See Section 1.11.2 in the CLP-2 text. To set up the volume integral, see Example
1.6.6 in the CLP-2 text. Note the dimensions given for the cross sections are diameters,
not radii.

H-14: See Section 1.11.3 in the CLP-2 text, and compare to Question 13. Note the table
gives diameters, not radii.

H-15: See §1.11.3 in the CLP-2 text. To set up the volume integral, see Example 1.6.6 in
the CLP-2 text, or Question 14.

Note that the table gives the circumference, not radius, of the tree at a given height.

H-18: The main step is to find an appropriate value of M. It is not necessary to find the
smallest possible M.
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H-19: The main step is to find M. This question is unusual in that its wording requires
you to find the smallest possible allowed M.

H-20: The main steps in part (b) are to find the smallest possible values of M and L.

H-21: As usual, the biggest part of this problem is finding L. Don’t be thrown off by the
error bound being given slightly differently from Theorem 1.11.12 in the CLP-2 text:

these expressions are equivalent, since Ax = b%“

H-22: The function e=2¥ = 2% 18 positive and decreasing, so its maximum occurs when x
is as small as possible.
H-23:

H-24: The “best ... approximations that you can” means using the maximum number of
intervals, given the information available.

The final sentence in part (b) is just a re-statement of the error bounds we're familiar with

from Theorem 1.11.12 in the CLP-2 text. The information [s*) (x)| < ﬁ gives you
values of M and L when you set k = 2 and k = 4, respectively.

H-25: Set the error bound to be less than 0.001, then solve for n.

H-26: See Section 1.11.3 in the CLP-2 text. To set up the volume integral, see Example
1.6.2 in the CLP-2 text.

Since the cross-sections of the pool are semi-circular disks, a section that is 4 metres

2
across will have area %7‘( (%) square feet. Based on the drawing, you may assume the

very ends of the pool have distance 0 feet across.
H-27: See Example 1.11.14 in the CLP-2 text.

Don’t get caught up in the interpretation of the integral. It’s nice to see how integrals can
be used, but for this problem, you're still just approximating the integral given, and
bounding the error.

When you find the second derivative to bound your error, pay attention to the difference
between the integrand and g(7).

H-28: See Example 1.11.15 in the CLP-2 text. You'll want to use a calculator for the
approximation in (a), and for finding the appropriate number of intervals in (b).
Remember that Simpson’s rule requires an even number of intervals.

H-29: See Example 1.11.15 in the CLP-2 text.

Rather than calculating the fourth derivative of the integrand, use the graph to find the
largest absolute value it attains over our interval.

H-30: See Example 1.11.14 in the CLP-2 text.

You'll have to differentiate f(x). To that end, you may also want to review the
fundamental theorem of calculus and, in particular, Example 1.3.5 in the CLP-2 text.
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You don’t have to find the best possible value for M. A reasonable upper bound on
|f"(x)| will do.

To have five decimal places of accuracy, your error must be less than 0.000005. This
ensures that, if you round your approximation to five decimal places, they will all be
correct.

H-31: To find the maximum value of |f”(x)|, check its critical points and endpoints.

X
1
H-32: In using Simpson’s rule to approximate f n dt with n intervals,a = 1, b = x, and
1

-1
Ax:x .

n
H-33:

o Sf ﬁ dx = arctan(2) — ¥, so arctan(2) = F + ﬁ 1+1x2 dx

¢ If an approximation A of the integral Si ﬁ dx has error at most ¢, then
A—séﬁﬁdxé/l—ks.

¢ Looking at our target interval will tell you how small € needs to be, which in turn
will tell you how many intervals you need to use.

* You can show, by considering the numerator and denominator separately, that
|f®) (x)| < 30.75 for every x in [1,2].

¢ If you use Simpson’s rule to approximate ﬁ HLXZ dx, you won’t need very many
intervals to get the requisite accuracy.

L g a

Hints for Exercises 1.12. — Jump to TABLE OF CONTENTS.

H-1: There are two kinds of impropreity in an integral: an infinite discontinuity in the
integrand, and an infinite limit of integration.

H-2: The integrand is continuous for all x.

H-3: What matters is which function is bigger for large values of x, not near the origin.
H-4: Read both the question and Theorem 1.12.17 in the CLP-2 text very carefully.

H-5: (a) What if h(x) is negative? What if it’s not?

(b) What if h(x) is very close to f(x) or g(x), rather than right in the middle?
(c) Note |h(x)] < 2f(x).

H-6: First: is the integrand unbounded, and if so, where?

Second: when evaluating integrals, always check to see if you can use a simple
substitution before trying a complicated procedure like partial fractions.

H-7: Is the integrand bounded?
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H-8: See Example 1.12.21 in the CLP-2 text. Rather than antidifferentiating, you can find
a nice comparison.

H-9: Which of the two terms in the denominator is more important when x ~ 0?7 Which
one is more important when x is very large?

H-10: Remember to break the integral into two pieces.

H-11: Remember to break the integral into two pieces.

H-12: The easiest test in this case is limiting comparison, Theorem 1.12.22 in the CLP-2
text.

H-13: Not all discontinuities cause an integral to be improper—only infinite
discontinuities.

H-14: Which of the two terms in the denominator is more important when x is very
large?

H-15: Which of the two terms in the denominator is more important when x ~ 0?7 Which
one is more important when x is very large?

H-16: What are the “problem x’s” for this integral? Get a simple approximation to the
integrand near each.

H-17: To find the volume of the solid, cut it into horizontal slices, which are thin circular
disks.

The true/false statement is equivalent to saying that the improper integral giving the
volume of the solid when a = 0 diverges to infinity.

H-18: Review Example 1.12.8 in the CLP-2 text. Remember the antiderivative of - looks
very different from the antiderivative of other powers of x.

H-19: Compare to Example 1.12.14 in the CLP-2 text. You can antidifferentiate with a
u-substitution.

H-20: To evaluate the integral, you can factor the denominator.

T . )
Recall lim arctanx = 5 For the other limits, use logarithm rules, and beware of
X—00

indeterminate forms.

H-21: Break up the integral. The absolute values give you a nice even function, so you
can replace |x — a| with x — a if you're careful about the limits of integration.

H-22: Use integration by parts twice to find the antiderivative of e™* sin x, as in
Example 1.7.10 of the CLP-2 text. Be careful with your signs — it’s easy to make a
mistake with all those negatives.

If you're having a hard time taking the limit at the end, review the Squeeze Theorem,
Theorem 1.4.17 in the CLP-1 text.

H-23: What is the limit of the integrand when x — 0?

H-24: The only “source of impropriety” is the infinite domain of integration. Don’t be
afraid to be a little creative to make a comparison work.
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H-25: There are two things that contribute to your error: using t as the upper bound
instead of infinity, and using 7 intervals for the approximation.

First, find a f so that the error introduced by approximating §;’ f:r—; dx by Sé 1@;—; dx is at

most %10*4. Then, find your n.
H-26: Look for a place to use Theorem 1.12.20 of the CLP-2 text.

Examples 1.2.9 and 1.2.10 in the CLP-2 text have nice results about the area under an
even/odd curve.

H-27: x should be a real number

&> <&

Hints for Exercises 1.13. — Jump to TABLE OF CONTENTS.

H-1: Each option in each column should be used exactly once.

H-2: The integrand is the product of sines and cosines. See how this was handled with a
substitution in Section 1.8.1 of the CLP-2 text.

After your substitution, you should have a polynomial expression in u-but it might take
some simplification to get it into a form you can easily integrate.

H-3: We notice that the integrand has a quadratic polynomial under the square root. If
that polynomial were a perfect square, we could get rid of the square root: try a trig
substitution, as in Section 1.9 of the CLP-2 text.

The identity sin(26) = 2 sin 6 cos 6 might come in handy.
H-4: Notice the integral is improper. When you compute the limit, 'Hopital’s rule might
help.
-1
If you're struggling to think of how to antidifferentiate, try writing xe—x =(x—1)e™.

H-5: Which method usually works for rational functions (the quotient of two
polynomials)?

1
H-6: It would be nice to replace logarithm with its derivative, 7

H-7: The integrand is a rational function, so it is possible to use partial fractions. But
there is a much easier way!

H-8: You should prepare your own personal internal list of integration techniques
ordered from easiest to hardest. You should have associated to each technique your own
personal list of signals that you use to decide when the technique is likely to be useful.

H-9: Despite both containing a trig function, the two integrals are easiest to evaluate
using different methods.

H-10: For the integral of secant, see See Section 1.8.3 or Example 1.10.5 in the CLP-2 text.

In (c), notice the denominator is not yet entirely factored.
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H-11: Part (a) can be done by inspection — use a little highschool geometry! Part (b) is
reminiscent of the antiderivative of logarithm-how did we find that one out? Part (c) is
an improper integral.

H-12: Use the substitution # = sin 6.

H-13: For (c), try a little algebra to split the integral into pieces that are easy to
antidifferentiate.

H-14: If you're stumped, review Sections 1.8, 1.9, and 1.10 in the CLP-2 text.

H-15: For part (a), see Example 1.7.11 in the CLP-2 text. For part (d), see Example 1.10.4
in the CLP-2 text.

H-16: For part (b), first complete the square in the denominator. You can save some work
by first comparing the derivative of the denominator with the numerator. For part (d)
use a simple substitution.

H-17: For part (b), complete the square in the denominator. You can save some work by
tirst comparing the derivative of the denominator with the numerator.

H-18: For part (a), the numerator is the derivative of a function that appears in the
denominator.

H-19: The integral is improper.

H-20: For part (a), can you convert this into a partial fractions integral? For part (b), start
by completing the square inside the square root.

H-21: For part (b), the numerator is the derivative of a function that is embedded in the
denominator.

H-22: Try a substitution.

H-23: Note the quadratic function under the square root: you can solve this with
trigonometric substitution, as in Section 1.9 of the CLP-2 text.

H-24: Try a substitution, as in Section 1.8.2 of the CLP-2 text.

H-25: What's the usual trick for evaluating a rational function (quotient of polynomials)?

H-26: If the denominator were x2 + 1, the antiderivative would be arctangent.

H-27: Simplify first.
H28 23 +1=(x+1)(x>—x+1)

H-29: You have the product of two quite dissimilar functions in the integrand—try
integration by parts.

H-30: Use the identity cos(2x) = 2cos® x — 1.
H-31: Using logarithm rules can make the integrand simpler.

H-32: What is the derivative of the function in the denominator? How could that be
useful to you?

H-33: For part (a), the substitution # = log x gives an integral that you have seen before.
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H-34: For part (a), split the integral in two. One part may be evaluated by interpreting it
geometrically, without doing any integration at all. For part (c), multiply both the
numerator and denominator by e¢* and then make a substitution.

H-35: Letu = 1 — x.
H-36: Use the substitution u = e*.

H-37: Use integration by parts. If you choose your parts well, the resulting integration
will be very simple.

H-38: 25~ = tan x sec x
COs“ X

H-39: The cases n = —1 and n = —2 are different from all other values of 7.
H-40: x* +1 = (x> +v2x + 1) (x> — vV2x + 1)

L o &

Hints for Exercises 2.1. — Jump to TABLE OF CONTENTS.

kg-m2
sec? ’/

H-1: Watch your units: 1] =1
Eeight is not given in metres.

but your mass is not given in kilograms, and your

H-2: The force of the rock on the ground is the product of its mass and the acceleration
due to gravity.

H-3: Adding or subtracting two quantities of the same units doesn’t change the units.
For example, if I have one metre of rope, and I tie on two more metres of rope, I have
1+ 2 = 3 metres of rope-not 3 centimetres of rope, or 3 kilograms of rope.

Multiplying or dividing quantities of some units gives rise to a quantity with the product
or quotient of those units. For example, if I buy ten pounds of salmon for $50, the price of
50 dollars _ @ dollars __ 5 dollars

10 pounds " 10 pound pound *

H-4: See Question 3.

my salmon is (Not 5 pound-dollars, or 5 pounds.)

H-5: Hooke’s law says that the force required to stretch a spring x units past its natural
length is proportional to x; that is, there is some constant k associated with the individual
spring such that the force required to stretch it x m past its natural length is kx.

H-6: Definition 2.1.1 in the CLP-2 text tells us the work done by the force from x =1 to

x=bisW(b) = Si’ F(x) dx, where F(x) is the force on the object at position x. To recover
the equation for F(x), use the Fundamental Theorem of Calculus.

H-7: Review Definition 2.1.1 in the CLP-2 text for calculating the work done by a force
over a distance.

H-8: For (a), 7= is meausured in Newtons, while £ and x are in metres. For (b), notice the
similarities and differences between the tube of air and a spring obeying Hooke’s law.

H-9: See Example 2.1.2 in the CLP-2 text. Be careful about your units.
H-10: Be careful about the units.
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H-11: Suppose that the bucket is a distance y above the ground. How much work is
required to raise it an additional height dy?

H-12: Since you're given the area of the cross-section, it doesn’t matter what shape it has.
However, the density of water is given in cubic centimetres, while the measurements of
the tank are given in metres.

H-13: Consider the work done to lift a horizontal plate from 2 m below the ground to a
height z. You'll need to know the mass of the plate, which you can calculate from its
volume, since its density is given to you.

dz T

H-14: You can find the spring constant k from the information about the hanging
kilogram.

H-15: Follow the method of Example 2.1.6 in the CLP-2 text and Question 11 in this
section.

H-16: Calculating the work done on the rope and the weight separately makes the
computation somewhat easier.

H-17: When you pull the box, the force you're exerting is exactly the same as the
frictional force, but in the opposite direction. In (a), that force is constant. In (b), it
changes. Check Definition 2.1.1 in the CLP-2 text for how to turn force into work.

H-18: Remember that the work done on an object is equal to the change in its kinetic
energy, which is 2mv?, where m is the mass of the object and v is its velocity. Hooke’s law
will tell you how much work was done stretching the spring.

H-19: As in Question 18 in this section, the change in kinetic energy of the car is equal to
the work done by the compressing struts. The only added step is to calculate the spring
constant, given that a car with mass 2000 kg compresses the spring 2 cm in Earth’s
gravity. You're not calculating work to find the spring constant: you're using the fact that
when the car is sitting still, the force exerted upward by the struts is equal to the force
exerted downward by the mass of the car under gravity.

H-20: To find the radius of a horizontal layer of water, use similar triangles. Be careful
with centimetres versus metres.

H-21: See Example 2.1.4 in the CLP-2 text for a basic method for calculating the work
done pumping water.

To find the area of a horizontal layer of water, use some geometry. A horizontal
cross-section of a sphere is a circle, and its radius will depend on the height of the layer
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in the tank.

H-22: The basic ideas you've used already with “cable problems” still work, you only
need to take care that the density of the cable is no longer constant. The mass of a tiny
piece of cable, say of length dx, is (density) x (length) = (10 — x)dx, where x is the
distance of our piece from the bottom of the cable.

If you want more work to reference, Question 22 in Section 1.6 finds the mass of an object
of variable density.

H-23: To calculate the force on the entire plunger, first find the force on a horizontal
rectangle with height dy at depth y.

Checking units can be a good way to make sure your calculation makes sense.

H-24: When y metres of rope have been hauled up, what is the mass of the water?

H-25: The work you're asked for is an improper integral, moving the earth and moon
infinitely far apart.

H-26: You can formulate a guess by considering the work done on the ball versus the
work done on the rope in Question 16, Solution 1. But be careful-the ball in that problem
did not have the same mass as the rope.

H-27: There are two things that vary with height: the density of the liquid, and the area
of the cross-section of the tank. Make a formula M(h) for the mass of a thin layer of
liquid /1 metres below the top of the tank, using mass=volume xdensity. The rest of the
problem is similar to other tank-pumping problems in this section.

H-28: You can model the motion, instead of a rotation, as dividing the sand into thin
horizontal slices and lifting each of them to their new position.

¢ In order to calculate the work involved lifting a layer of sand, you need to know the
mass of the layer of sand.

¢ To find the mass of a layer of sand, you need its volume and the density of the sand.

* To find the density of the sand, you need to the volume of the sand: that is, the
volume of half the hourglass.

* The hourglass is a solid of rotation: you can find its volume using an integral, as in
Section 1.6.

H-29: Theorem 1.11.12 in the CLP-2 text gives error bounds for the standard types of
numerical approximations. You won’t need very many intervals to achieve the desired
accuracy.

L o &

Hints for Exercises 2.2. — Jump to TABLE OF CONTENTS.

H-1: See Definition 2.2.2 in the CLP-2 text and the discussion following it for the link
between area under the curve and averages.
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H-2: Average velocity is discussed in Example 2.2.5 of the CLP-2 text. You don’t need an
integral for this.

H-3: Much like Problem 2, you don’t need to do any integration here.

H-4: Part (a) is asking the length of the pieces we’ve cut our interval into. Part (c) should
be given in terms of f. Our final answer in (d) will resemble a Riemann sum, but without
some extra manipulation it won’t be in exactly the form of a Riemann sum we’re used to.

H-5: For (b), the value of f(0) could be much, much larger than g(0).

H-6: The answer is something very simple.

H-7: Apply the definition of “average value” in Section 2.2 of the CLP-2 text.
H-8: You can antidifferentiate x* log x using integration by parts.

H-9: You can antidifferentiate an odd power of cosine with a substitution; for an even
power of cosine, use the identity cos? x = 3 (1 + cos(2x)).

H-10: If you're not sure how to antidifferentiate, try the substitution u = kx, du = kdx,
keeping in mind that k is a constant. Interestingly, your final answer won’t depend on k.

H-11: The method of partial fractions can help you antidifferentiate.
H-12: Try the substitution u = log x, du = 1 dx.

H-13: Remember cos? x = (1 + cos(2x)).

H-14: Notice the term 50 cos ({;77) has a period of 24 hours, while the term
200 cos (g35577) has a period of one year.

If n is an approximation of ¢, then the relative error of n is MC;C'

2

H-15: A cross section of S at location x is a circle with radius x2, so area rtx*. Part (a) is

asking for the average of this function on [0, 2].

H-16: (a) can be done without calculation

H-17: tan? x = sec?x — 1

H-18: Remember force is the product of the spring constant with the distance it’s
stretched past its natural length. The units given in the question are not exactly standard,
but they are compatible with each other.

You can find part (b) without any calculation. For (c), remember sin® x = 1 (1 — cos(2x)).
H-19: The trapezoidal rule is found in Section 1.11.2 of the CLP-2 text.

H-20: To find a definite integral of the absolute value of a function, break up the interval
of integration into regions where the function is positive, and intervals where it’s
negative.

H-21: This is an application of the ideas in Question 20.

H-22: Slice the solid into circular disks of radius | f(x)| and thickness dx.
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H-23: The question tells you 115 Sé f(x)dx = Jw.

H-24: Set up this question just like Question 23, but with variables for your limits of
integration.

Note (s — t)? = s? — 25t + 2,
H-25: What are the graphs of f(x) and f(a + b — x) like?
H-26: For (b), express A(x) as an integral, then differentiate.

H-27: For (b), consider the cases that f(x) is always bigger or always smaller than 0.
Then, use the intermediate value theorem, Theorem 1.6.12 in the CLP-1 text.

H-28: Try I'Hopital’s rule.
H-29: Use the result of Question 28.

&> <&

Hints for Exercises 2.3. — Jump to TABLE OF CONTENTS.

H-1: It might help to know that —x? +2x +1=2— (x — 1)%

H-2: The centroid of a region doesn’t have to be a point in the region.

H-3: Read over the very beginning of Section 2.3 in the CLP-2 text, specifically
Equation 2.3.1.

H-4: Use Equation 2.3.1 in the CLP-2 text.

H-5: Imagine cutting out the shape and setting it on top of a pencil, so that the pencil
lines up with the vertical line x = a. Will the figure balance, or fall to one side? Which
side?

H-6: You can find the heights of the centres of mass using symmetry.

H-7: Think about whether your answers should have repetition.

H-8: The definition of a definite integral (Definition 1.1.9 in the CLP-2 text) will tell you
how to convert your limits of sums into integrals.

H-9: In (a), the slices all have the same width, so the area of the slices is larger (and hence
the density of R is higher) where T(x) — B(x) is larger.

H-10: Part (a) is a significantly different model from the last question.

H-11: Which method involves more work: horizontal strips or vertical strips?

H-12: This is a straightforward application of Equation 2.3.2 in the CLP-2 text.

H-13: Remember the derivative of arctangent is

H-14: This is a straightforward application of Equations 2.3.3 and 2.3.4 in the CLP-2 text.
Note that you're only asked for the y-coordinate of the centroid.

_1
142

H-15: You can use a trigonometric substitution to find the area, then a partial fraction
decomposition to find the y-coordinate of the centroid. Remember sin(1/2) = 71/6.
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H-16: Vertical slices will be easier than horizontal. An integration by parts might be
helpful to find %, while trigonometric identities are important to finding 7.

H-17: No trigonometric substitution is necessary if you're clever with your
u-substitutions, and remember the derivative of arctangent.

H-18: In R, the top function is x — x2, and the bottom function is x% — 3x.

1

H-19: Remember %{arctan X} =12

H-20: You can save quite a bit of work by, firstly, exploiting symmetry and, secondly,
thinking about whether it is more efficient to use vertical strips or horizontal strips.

H-21: Sketch the region, being careful the domain of v9 — 4x2. You can save quite a bit of
work by exploiting symmetry.

H-22: Horizontal slices will be easier than vertical.

H-23: Start with a picture: whether you use vertical slices or horizontal, you’ll need to
break your integral into multiple pieces.

H-24: For practice, do the computation twice — once with horizontal strips and once
with vertical strips. Watch for improper integrals.

H-25: Draw a sketch. In part (b) be careful about the equation of the right hand boundary
of A.

H-26: Draw a sketch. Rotating about a horizontal line is similar to rotating about the
x-axis, but for the radius of a slice, you'll need to know |y — (—1)|: the distance from the
outer edge of the region (the boundary function’s y-value) toy = —1.

H-27: Go back to the derivation of Equation 2.3.3 in the CLP-2 text (centroid for a region)
to figure out what to do when your surface does not have uniform density. We will
consider a rod R that reaches from x = 0 to x = 4, and the mass of the section of the rod
along [a, b] is equal to the mass of the strip of our rectangle along [a, b].

H-28: Horizontal slices will help you, where symmetry doesn’t, to set up a rod R whose
centre of mass is the same as one coordinate of the centre of mass of the circle. When
you're integrating, trigonometric substitutions are sometimes the easiest way, and
sometimes not.

The equation of a circle of radius 3, centred at (0,3), is x> + (y — 3)? = 9.

H-29: The model in the question gives you the setup to solve this problem. You know
how to find the centre of mass of a rod—that’s Equation 2.3.2 in the CLP-2 text — so all
you need to find is p(y), the density of the rod at position y. To find this, consider a thin
slice of the cone at position y with thickness dy. Its volume V() is the same as the mass

of the small section of the rod at position y with thickness dy. So, the density of the rod at
position y is p(y) = %.

H-30: Use similar triangles to show that the shape of the lower (also upper) half of the
hourglass is a truncated cone, where the untruncated cone would have had a height 10
cm.
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To calculate the centre of mass of the upturned sand using the result of Question 29, you
should find /1 = 9.8 (not h = 10-think carefully about our model from Question 29) and
k = 8.8. For the centre of mass of the sand before turning, » = 10 and k = 6.

H-31: The techniques of Section 2.1 get pretty complicated here, so it’s easiest to use the
techniques we developed in Questions 6, 29, and 30 in this section. That is, (1) find the
height of the centre of mass of the water in its staﬁng and ending positions, and then (2)
model the work done as the work moving a point mass with the weight of the water
from the first centre of mass to the second.

The height change of the centre of mass is all that matters to calculate the work done
against gravity, so you only have to worry about the height of the centres of mass.

H-32: The area of R is precisely one, so the error in your approximation is the error

involved in approximating §; /2 2x2 sin(x2) dx.

L o &

Hints for Exercises 2.4. — Jump to TABLE OF CONTENTS.

H-1: You don’t need to solve the differential equation from scratch, only verify whether

the given function y = f(x) makes it true. Find % and plug it into the differential
equation.

H-2: For (d), note the equation given is quadratic in the variable %.

H-3: The step J ﬁ dy = f f(x) dx shows up whether we’re using our mnemonic or

not.

H-4: Note %{f(x)} = %{f(x) + C}. Pluginy = f(x) + C to the equation ?TZ = xy to see
whether it makes the equation is true.

H-5: If a function is differentiable at a point, it is also continuous at that point.

H-6: Let Q(t) be the quantity of morphine in a patient’s bloodstream at time ¢, where ¢ is
measured in minutes.

Using the definition of a derivative,

dQ .. QUt+h)-Q() Q(t+1)-Q(F)
ar 7 ~ 1

So, % is roughly the change in the amount of morphine in one minute, from ¢ to t + 1.

H-7: If p(t) is the proportion of the new form, then 1 — p(t) is the proportion of the old
form.

When we say two quantities are proportional, we mean that one is a constant multiple of
the other.

H-8: The red marks show the slope y(x) would have at a point if it crosses that point. So,
pick a value of y(0); based on the red marks, you can see how fast y(x) is increasing or
decreasing at that point, which leads you roughly to a value of y(1); again, the red marks
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tell you how fast y(x) is increasing or decreasing, which leads you to a value of y(2), etc
(unless you're already off the graph).

H-9: To draw the sketch similar to Question 8(d), don’t actually calculate every single
slope; find a few (for instance, where the slope is zero, or where it’s negative), and use a
pattern (for instance, the slope increases as y increases) to approximate most of the
points.

H-10: Start by multiplying both sides of the equation by ¢¥ and dx, pretending that % is
a fraction, according to our mnemonic.

H-11: You need to solve for your function y(x) explicitly. Be careful with absolute values:
if |y| = F, theny = F or y = —F. However, y = +F is not a function. You have to choose
one:y=Fory=—F.

H-12: If your answer doesn’t quite look like the answer given, try manipulating it with
logarithm rules: loga + log b = log(ab), and alogb = log(b*).

H-13: Simplify the equation.
H-14: Be careful with the arbitrary constant.
H-15: Start by cross-multiplying.

H-16: Be careful about signs. If y> = F, then possibly y = +/F, and possibly y = —+/F.
However, y = ++/F is not a function.

H-17: Be careful about signs.

H-18: Be careful about signs. If log |y| = F, then |y| = ef. Since you should give your

answer as an explicit function y(x), you need to decide whether y = ef ory = —ef.

H-19: Move the y from the left hand side to the right hand side, then use partial fractions
to integrate.

Be careful about the signs. Remember that we need y = —1 when x = 1. This suggests
how to deal with absolute values.

H-20: The unknown function f(x) satisfies an equation that involves the derivative of f.

H-21: Try guessing the partial fractions expansion of x+ 1)

Since x = 1 is in the domain and x = 0 is not, you may assume x > 0 for all x in the
domain.

d
H-22: a{sec x} = secxtanx

H-23: The general solution to the differential equation will contain the constant k and one
other constant. They are determined by the data given in the question.

H-24:

¢ When you're solving the differential equation, you should have an integral that you
can massage to look something like arctangent.
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* What is the velocity of the object at its highest point?
* Your final answer will depend on the (unspecified) constants vy, m, g and k.

H-25: The general solution to the differential equation will contain the constant k and one
other constant. They are determined by the data given in the question.

H-26: The method of partial fractions will help you integrate.

To solve ;=3 = Y for x, move the terms containing x out of the denominator, then gather
them on one side of the equals sign and factor out the x.

xX—a
x—b
x—a=Y(x—-b)=Yx-Y0b
x—Yx=a-Yb
x(1-Y)=a-Yb

=Y

To find the limit, you can avoid I’'H6pital’s rule using some clever algebra-but you can
also just use 1'Hopital’s rule.

H-27: Be careful about signs.
Part (a) has some algebraic similarities to Question 26.

H-28: The general solution to the differential equation will contain a constant of
proportionality and one other constant. They are determined by the data given in the
question.

H-29: You do not need to know anything about investing or continuous compounding to
do this problem. You are given the differential equation explicitly. The whole first
sentence is just window dressing.

H-30: Again, you do not need to know anything about investing to do this problem. You
are given the differential equation explicitly.

H-31: Differentiate the given integral equation. Plugging in x = 0 gives you y(0).

H-32: Suppose that in a very short time interval dt, the height of water in the tank
changes by di (which is negative). Express in two different ways the volume of water
that has escaped during this time interval. Equating the two gives the needed differential
equation.

As the water escapes, it forms a cylinder of radius 1 cm.

H-33: Sketch the mercury in the tank at time ¢, when it has height /1, and also at time

t + dt, when it has height h + dh (with dh < 0). The difference between those two
volumes is the volume of (essentially) a disk of thickness —dh. Figure out the radius and
then the volume of that disk. This volume has to be the same as the volume of mercury
that left through the hole in the bottom of the sphere, which runs out in the shape of a
cylinder. Toricelli’s law tells you what the length of that cylinder is, and from there you
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can find its volume. Setting the two volumes equal to each other gives the differential
equation that determines h(t).

H-34: The fundamental theorem of calculus will be useful in part (b).

H-35: For any p > 0, determine first y(¢) (in terms of p and c) and then the times (also
depending on p and c) at which y = 2, y = 1 and y = 0. The condition that “the top half
takes exactly the same amount of time to drain as the bottom half” then gives an
equation that determines p.

H-36: For (a), think of a very simple function.

The equation in the question statement is equivalent to the equation

[ raw - W

which is, in some cases, easier to use.

For (d), you'll want to let Y(x) = { f(t) dt, and use the quadratic equation.
H-37: Start by antidifferentiating both sides of the equation with respect to x.

L g a

Hints for Exercises 3.1. — Jump to TABLE OF CONTENTS.

H-1: Not every limit exists.

H-2: 100 isn’t all that big when you're contemplating infinity. (Neither is any other
number.)

H-3: lim ap,,.5 = lim a,
n—aoo n—0oo

H-4: The sequence might be defined by different functions when 7 is large than when n
is small.

H-5: Recall (—1)" is positive when 7 is even, and negative when 7 is odd.

H-6: Modify your answer from Question 5, but make the terms approach zero.

R G
H-7: (—7’1) n— 7
H-8: What might cause your answers in (a) and (b) to differ? Carefully read
Theorem 3.1.6 in the CLP-2 text about convergent functions and their corresponding

sequences.

. 22 .
H-9: You can use the fact that 77 is somewhat close to >, OT you can use trial and error.

H-10: You can compare the leading terms, or factor a high power of n from the
numerator and denominator.

H-11: This isn’t a rational expression, but you can treat it in a similar way. Recall e < 3.

H-12: The techniques of evaluating limits of rational sequences are again useful here.
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H-13: Use the squeeze theorem.

H14: b <nfiM <
n
H-15: e=1/" = ——: what happens to 1 as 1 grows?
: o/’ PP 7 g ¢

H-16: Use the squeeze theorem.
H-17: L’'Hopital’s rule might help you decide what happens if you are unsure.
H-18: Simplify a.

1
H-19: What happens to o asn gets very big?
H-20: cos0 =1

1
H-21: This is trickier than it looks. Write . = x and look at the limit as x — 0.

H-22: Multiply and divide by the conjugate.

H-23: Compared to Question 22, there’s an easier path.
H-24: Consider f’(x), when f(x) = x1%.

H-25: Look to Question 24 for inspiration.

H-26: The area of an isosceles triangle with two sides of length 1, meeting at an angle 6, is
5 sin 6.

H-27: Every term of A, is the same, and g(x) is a constant function.
H-28: You'll need to use a logarithm before you can apply 1'Hopital’s rule.

H-29: (a) Write out the first few terms of the sequence.
(c) Consider how a,,,1 — L relates to a, — L. What should happen to these numbers if a,
converges to L?

H-30: Your answer from (b) will help you a lot with the subsequent parts.

L o &

Hints for Exercises 3.2. — Jump to TABLE OF CONTENTS.

H-1: Sy is the sum of the terms corresponding to n = 1 through n = N.

H-2: Note Cy, is the cumulative number of cookies.
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v

-3: How is (a) related to Question 2?

T

-4: You'll have to calculate a; separately from the other terms.

H-5: When does adding a number decrease the total sum?

H-6: For (b), imagine cutting up the triangle into its black and white parts, then sharing it
equally among a certain number of friends. What is the easiest number of friends to
share with, making sure each has the same area in their pile?

H-7: Compare to Question 6.
H-8: Iteratively divide a shape into thirds.

N N+1
1—
H-9: Equation 3.2.1 in the CLP-2 text tells us E ar'" = a%, for r # 1.

n=0 o

H-10: Note Cy is the cumulative number of cookies.

H-11: To adjust the starting index, either factor out the first term in the series, or subtract
two series. For the subtraction option, consider Question 10.

H-12: Express your gains in (a) and (c) as series.

o0 oe]
H-13: To find the difference between Z ¢, and Z Cn+1, try writing out the first few

— n=1 n=1
terms.
S a, 2 A
H-14: You might want to first consider a simpler true or false: Z bl = 5
n=1""

H-15: What kind of a series is this?
H-16: This is a special kind of series, that you should recognize.
H-17: When you see Z < ke — k10 ), you should think “telescoping series.”
- k
H-18: When you see Z < e — ceen+ 1. ), you should immediately think

n

“telescoping series”. But be careful not to jump to conclusions — evaluate the n" partial
sum explicitly.

H-19: Review Definition 3.2.3 in the CLP-2 text.

H-20: This is a special case of a general series whose sum we know.

H-21: Review Example 3.2.5 in the CLP-2 text. To write the number as a geometric series,
the first few terms might not fit the pattern of the rest of the terms.

H-22: Start by writing it as a geometric series.

H-23: Review Example 3.2.5 in the CLP-2 text. Since the pattern repeats every three

decimals, your common ratio » will be 105"
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H-24: Split the series into two parts.
H-25: Split the series into two parts.
H-26: Split the series into two parts.

H-27: Use logarithm rules to turn this into a more obvious telescoping series.

H-28: This is a telescoping series.

1
H-29: The stone at position x has mass yES kg, and we have to pull it a distance of 2*
metres. From this, you can find the work involved in pulling up a single stone. Then,

add up the work involved in pulling up all the stones.

4
H-30: The volume of a sphere of radius r is 5711'3.

H-31: Use the properties of a telescoping series to simplify the terms.
Recall sin® § + cos? 0 = 1.

H-32: Review Question 3 for using the sequence of partial sums.

H-33: What is the ratio of areas between the outermost (red) ring and the next (blue) ring?

L g a

Hints for Exercises 3.3. — Jump to TABLE OF CONTENTS.

H-1: That is, which series have terms whose limit is not zero?

H-2: That is, if f(x) is a function with f(n) = a, for all whole numbers #, is f(x)
nonnegative and decreasing?

H-3: This isn’t a trick. It's meant to give you intuition to the direct comparison test.

H-4: The comparison test is Theorem 3.3.8 in the CLP-2 text. However, rather than trying
to memorize which way the inequalities go in all cases, you can use the same reasoning
as Question 3.

H-5: Think about Question 4 to remind yourself which way the inequalities have to go
for direct comparison.

Note that all the comparison series have positive terms, so we don’t need to worry about
that part of the limit comparison test.

H-6: The divergence test is Theorem 3.3.1 in the CLP-2 text.
H-7: The limit is calculated correctly.

H-8: It is true that f(x) is positive. What else has to be true of f(x) for the integral test to
apply?
H-9: Refer to Question 4.

H-10: The definition of an alternating series is given in the start of Section 3.3.4 in the
CLP-2 text.
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Ap+1

an

H-11: For the ratio test to be inconclusive, lim should be 1 or nonexistent.

n—0oo

H-12: By the divergence test, for a series ) a, to converge, we need lirgo a, = 0. That is,
n—

the magnitude (absolute value) of the terms needs to be getting smaller.

H-13: If f(x) is positive and decreasing, then the integral test tells you that the integral
and the series either both increase or both decrease. So, in order to find an example with
the properties required in the question, you need f(x) to not be both positive and
decreasing.

H-14: Review Theorem 3.3.11 and Example 3.3.12 in the CLP-2 text.
H-15: Don’t jump to conclusions about properties of the a;s.

H-16: Always try the divergence test first (in your head).

H-17: Which test should you always try first (in your head)?

H-18: Review the integral test, which is Theorem 3.3.5 in the CLP-2 text.

H-19: A comparison might be helpful-try some algebraic manipulation to find a likely
series to compare it to.

H-20: This is a geometric series.

H-21: Notice that the series is geometric, but it doesn’t start at n = 0.

H-22: Note n only takes integer values: what’s sin(7tn) when 7 is an integer?

H-23: Note 1 only takes integer values: what’s cos(7rn) when 7 is an integer?
H-24: What's the test that you should always think of when you see a factorial?
H-25: This is a geometric series, but you'll need to do a little algebra to figure out .
H-26: Which test fits most often with factorials?

H-27: Try finding a nice comparison.

H-28: With the substitution u = log x, the function

1 . v int bl
W 1S easl y mn egra e.

H-29: Combine the integral test with the results about p-series, Example 3.3.6 in the
CLP-2 text.

H-30: Try the substitution u = /x.

H-31: Review Example 3.3.9 in the CLP-2 text for developing intuition about
comparisons, and Example 3.3.10 for an example where finding an appropriate
comparison series calls for some creativity.

H-32: What does the summand look like when k is very large?
H-33: What does the summand look like when 7 is very large?
n

H-34: cos(n) is a sneaky way to write (—1)".

H-35: What is the behaviour for large k?
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H-36: When m is large, 3m + sin/m ~ 3m.
H-37: This is a geometric series, but it doesn’t start at n = 0.

H-38: The series is geometric.

o0
1
H-39: The first series can be written as Z 1
=1

H-41: What does the summand look like when 7 is very large?

H-42: Review the alternating series test, which is given in Theorem 3.3.14 in the CLP-2
text.

H-43: Review the alternating series test, which is given in Theorem 3.3.14 in the CLP-2
text.

H-44: Review the alternating series test, which is given in Theorem 3.3.14 in the CLP-2
text.

H-46: For part (a), see Example 1.12.23 in the CLP-2 text.
For part (b), review Theorem 3.3.5 in the CLP-2 text.

For part (c), see Example 3.3.12 in the CLP-2 text.

0 e_\/ﬁ N e_\/ﬁ
H-47: The truncation error arising from the approximation Z — ~ 2 —is
vnoo Aoyn

O eVn
precisely Ex = Z . You'll want to find a bound on this sum using the integral
n=N+1 \/ﬁ

test.

ef\/f
A key observation is that, since f(x) = NG is decreasing, we can show that

e_\/ﬁ - Jn e_ﬁ d
< x
\/ﬁ n—1 ﬁ

for every n > 1.

[c¢]
H-48: What does the fact that the series }; a, converges guarantee about the behavior of
n=0
a, for large n?

[c¢]
H-49: What does the fact that the series )’ (1 —a,) converges guarantee about the
n=0
behavior of 4, for large n?

na, —2n+1

converges guarantee about the
n+1

0
H-50: What does the fact that the series 2
n=1

behavior of a, for large n?

H-51: What does the fact that the series >’ ; a, converges guarantee about the behavior
of a, for large n? When is x? < x?
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H-52: If we add together the frequencies of all the words, they should amount to 100%.
We can approximate this sum using ideas from Example 3.3.4 in the CLP-2 text.

H-53: We are approximating a finite sum — not an infinite series. To get greater accuracy,
use exact values for the first several terms in the sum, and use an integral to approximate
the rest.

&> <&

Hints for Exercises 3.4. — Jump to TABLE OF CONTENTS.

H-1: What is conditional convergence?

H-2: If ) |a,| converges, then } a, is guaranteed to converge as well.
(That’s Theorem 3.4.2 in the CLP-2 text.) So, one of the blank spaces describes an
impossible sequence.

H-4: Be careful about the signs.

H-5: Does the alternating series test really apply?

H-6: What does the summand look like when 7 is very large?
H-7: What does the summand look like when 7 is very large?

H-8: This is a trick question. Be sure to verify all of the hypotheses of any convergence
est you apply.
-9: Try the substitution u = log x.

If‘t‘

T

-10: Show that it converges absolutely.

H-11: Use a similar method to Queston 10.
H-12: Show it converges absolutely using a direct comparison test.

H-13: For part (a), replace n by x in the absolute value of the summand. Can you
integrate the resulting function?

H-14: You don’t need to add up very many terms for this level of accuracy.

H-15: Use the direct comparison test to show that the series converges absolutely.

&> <&

Hints for Exercises 3.5. — Jump to TABLE OF CONTENTS.

H-1: f(1) is the sum of a geometric series.

dx | n!+2

H-3: There is only one.

H-4: Use Theorem 3.5.9 in the CLP-2 text.

_ E=\n
H-2: Calculate i { (x —5) } when # is a constant.

H-5: Review the discussion immediately following Definition 3.5.1 in the CLP-2 text.

H-6: Review the discussion immediately following Definition 3.5.1 in the CLP-2 text.
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H-7: Review the discussion immediately following Definition 3.5.1 in the CLP-2 text.
H-8: See Example 3.5.11 in the CLP-2 text.
H-9: See Example 3.5.11 in the CLP-2 text.

H-15: Start part (b) by computing the partial sums of Z <a Zkﬂ >
k+1 k42

. Use it.

H-16: You should know a power series representation for 7

H-17: You can safely ignore one of the given equations, but not the other.

H-18: n > logn foralln >
H-19: See Example 3.5.21 in the CLP-2 text. For part (b) review §3.3.4 in the CLP-2 text.

H-20: You know the geometric series expansion of ;= . What (calculus) operation(s) can
you apply to that geometric series to convert it into the given series?

H-21: First show that the fact that the series Y, (1 — b,) converges guarantees that
limn*)oo bn = 1.

H-22: What does a, look like for large n?

H-23: Equation 2.3.1 in the CLP-2 text tells us the centre of mass of a rod with weights
Z MyXy

{m,} at positions {x,}is ¥ =
H-24: Use the second derivative test.

H-25: What function has Z nx""! as its power series representation?
n=1

H-26: The power series representation in Example 3.5.20 is an alternating series when x
is positive.

H-27: The power series representation in Example 3.5.21 is an alternating series when x
is nonzero.

&> <&

Hints for Exercises 3.6. — Jump to TABLE OF CONTENTS.

H-1: Which of the functions are constant, linear, and quadratic?

H-2: You don’t have to actually calculate the entire series T(x) to answer the question.
H-3: If you don’t have these memorized, it’s good to be able to derive them. For instance,
log(1 + x) is the antiderivative of ﬁ, whose Taylor series can be found by modifying
the geometric series >, x".

H-4: See Example 3.6.16 in the CLP-2 text.

H-5: The series will bear some resemblance to the Maclaurin series for log(1 + x).
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H-6: The terms f(")(77) are going to be similar to the terms f(")(0) that we used in the
Maclaurin series for sine.

H-7: The Taylor series will look similar to a geometric series.

H-8: Your answer will depend on a.

Use it.

H-9: You should know the Maclaurin series for 1

_x.

H-10: You should know the Maclaurin series for 1 Use it.

— x :

H-11: You should know the Maclaurin series for ¢*. Use it.
H-12: Review Example 3.5.20 in the CLP-2 text.

H-13: You should know the Maclaurin series for sin x. Use it.

H-14: You should know the Maclaurin series for ¢*. Use it.

H-15: You should know the Maclaurin series for arctan(x). Use it.

Use it.

H-16: You should know the Maclaurin series for 1

_x.
2n+1 (_1)17
2n+1  (2n+1)3"

H-17: Set (—1)" for some constant C. What are x and C?

H-18: There is an important Taylor series, one of the series in Theorem 3.6.5 of the CLP-2
text, that looks a lot like the given series.

H-19: There is an important Taylor series, one of the series in Theorem 3.6.5 of the CLP-2
text, that looks a lot like the given series.

H-20: There is an important Taylor series, one of the series in Theorem 3.6.5 of the CLP-2
text, that looks a lot like the given series. Be careful about the limits of summation.

H-21: There is an important Taylor series, one of the series in Theorem 3.6.5 of the CLP-2
text, that looks a lot like the given series.

H-22: Split the series into a sum of two series. There is an important Taylor series, one of
the series in Theorem 3.6.5 of the CLP-2 text, that looks a lot like each of the two series.

H-23: Try the ratio test.

H-24: Write it as the sum of two Taylor series.

O n
H-25: Can you think of a way to eliminate the odd terms from e* = Z —?
n=0

H-26: The series you're adding up are alternating, so it’s simple to bound the error using
a partial sum.

H-27: The Taylor Series is alternating, so bounding the error in a partial-sum
approximation is straightforward.
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H-28: The Taylor Series is not alternating, so use Theorem 3.6.1-b in the CLP-2 text to
bound the error in a partial-sum approximation.

H-29: The Taylor Series is not alternating, so use Theorem 3.6.1-b in the CLP-2 text to
bound the error in a partial-sum approximation.

H-30: Use Theorem 3.6.1-b in the CLP-2 text to bound the error in a partial-sum
approximation. This theorem requires you to consider values of ¢ between x and x = 0;

since x could be anything from —2 to 1, you should think about values of c between —2
and 1.

H-31: Use Theorem 3.6.1-b in the CLP-2 text to bound the error in a partial-sum
approximation.

To bound the derivative over the appropriate range, remember how to find absolute
extrema.

H-32: See Example 3.6.21 in the CLP-2 text
H-33: See Example 3.6.21 in the CLP-2 text

H-34: Set f(x) = (1+x+ xz)z/x, and find lirré log (f(x)).
xX—

1
H-35: Use the substitution y = = and compare to Question 34.

0
H-36: Start by differentiating Z x".
n=0

H-37: The series bears a resemblance to the Taylor series for arctangent.

2n)!
H-38: For simplification purposes, note (1)(3)(5)(7)---(2n—1) = % :
H-39: You know the Maclaurin series for log(1 + y). Use it! Remember that you are asked
for a series expansion in powers of x — 2. So you want y to be some constant times x — 2.

H-40: See Example 3.5.21 in the CLP-2 text. For parts (b) and (c), review §3.3.4 in the
CLP-2 text.

H-41: Look at the signs of successive terms in the series.

H-42: The magic word is “series”.

H-43: See Example 3.6.14 in the CLP-2 text. For parts (b) and (c), review §3.3.4 in the
CLP-2 text.

H-44: See Example 3.6.14 in the CLP-2 text. For part (b), review the fundamental theorem
of calculus in §1.3 of the CLP-2 text. For part (c), review §3.3.4 in the CLP-2 text.

H-45: See Example 3.6.14 in the CLP-2 text. For parts (b) and (c), review §3.3.4 in the
CLP-2 text.

H-46: See Example 3.6.14 in the CLP-2 text. For parts (b) and (c), review §3.3.4 in the
CLP-2 text.
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H-48: Use the Maclaurin series for e*.
H-49: For part (c), compare two power series term-by-term.

H-50: For Newton’s method, recall we approximate a root of the function g(x) in
8(xn)
§'(xn)
To gauge your error, note that from approximation to approximation, the first digits
stabilize. Keep refining your approximation until the first two digits stop changing.

iterations: given an approximation x;,, our next approximation is x,, 1 = x, —

H-51: First, modify your known Maclaurin series for arctangent into a Maclaurin series
for f(x). This series is not hard to repeatedly differentiate, so use it to find a power series

for £10)(x).

H-52: Remember ¢* is never negative for any real number x.

H-53: Since f(x) is odd, f(—x) = —f(x) for all x in its domain. Consider the
even-indexed terms and odd-indexed terms of the Taylor series.
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ANSWERS TO PROBLEMS
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A 4

Answers to Exercises 1.1 — Jump to TABLE OF CONTENTS

A-1: The area is between 1.5 and 2.5 square units.

A-2: The shaded area is between 2.75 and 4.25 square units. (Other estimates are
possible, but this is a reasonable estimate, using methods from this chapter.)

) . . . 31, 1] 3 1
A-3: The area under the curve is a number in the interval <§ [5 + ﬁ} /3 [1 + ﬁ} )

A-4: left

A-5: Many answers are possible. One example is f(x) = sinx, [a,b] = [0, 7], n = 1.
Another example is f(x) = sinx, [a,b] = [0,57], n = 5.

A-6: Some of the possible answers are given, but more exist.

5
(a)Zz ; 21—1—2)
i=1

5
(b)ZZz ;Y (2i+4)
i=1

5

7
(© > (2i+1) ; Y (20+5)

i=3 i=1

8 7
(d) > (2i—1) 221+1
i=1 i=0

A-7: Some answers are below, but others are possible.

=1 =1

4 2 4 1 i
® Y2 _Zz@

i=1 i=1

4 2 i 2

-1)'=

© LV 5 Ly

4 ) 4 2
d 11—!—1_. ; _
()1_21< i ; 3y
Ag:

5 .
(a) 2213—11
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51
®) 2573
i=1

7

7 .
(C) Z i 104_i ’ Z 10:74

i=1 i=1

Ac9:

20"
SENEED

(c) 270

b
1— (1 ’
(@ e_(j) + b+

A-10:
(@) 50 -51 = 2550

(b) [%(95)(96)]2 - [%(4)(5)}2 — 20,793,500

(c) —1
(d) —10
A-11:

N

A-122n=4,a=2,and b =06

A-13: One answer is below, but other interpretations exist.




121 —

81 —

49 —

A-14: Many interpretations are possible-see the solution to Question 13 for a more
thorough discussion-but the most obvious is given below.

Yy y = tanx

7T 27

2t 3n  4n
20 20 20 20 20

A-15: Three answers are possible. It is a midpoint Riemann sum for f on the interval

[1,5] with n = 4. Tt is also a left Riemann sum for f on the interval [1.5,5.5] with n = 4. It
is also a right Riemann sum for f on the interval [0.5,4.5] with n = 4.
25

A'16: 7

21
A-17: —
2

50 8
A18: Y, (54 (i-1/2)8) b
i=1
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A-19: 54

A-20: f7 f(x) dx = lim Zn:f (—1 + @) 8
. n—oo nj)n

A-21: f(x) = sin’(2+ x) and b = 4

A-22: f(x) = xvV1—x2

A-23: §5 e /% cos(x) dx

1
A-24: J xe* dx
0

A-25: Possible answers include:
2 3

3/2 !
Jelx dx, Jex dx, 2f e 2 dx, and ZJelzx dx.
0

1/2
1

r3n+3 -1

A-260 ————
6 r3—1

A-35: true

A-36: 3200 km

A-37: (a) There are many possible answers. Two are ng V4 —x2 dx and
oVAi— (24 x)2dx. ()

A-38: (a) 30 (b) 411

56

A-39: —
39 3
A-40: 6

A-41:12
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3 /x 2 [2x
A-42: f(x) = 10 (5 + 8) sin (? +2)
1
A-43: fog2
_44- b __1na
A-44: (a) og 10 (10° —107)
b__ a)\. :
(b) log e (c? —c"); yes, it agrees.
A-45: Z — T arccos(a) + 3av'1 — a2
A-46:
b—a
@ L)~ fa)] -

(b) Choose n to be an integer that is greater than or equal to 100 [f(b) — f(a)] (b — a).

A-47: true (but note, for a non-linear function, it is possible that the midpoint Riemann
sum is not the average of the other two)

&> <&

Answers to Exercises 1.2 — Jump to TABLE OF CONTENTS

A-1: Possible drawings:

y y y
B B y=f(x)+g(x)
y=f(x) y=f(x) P
y = f(x)
L‘l o a c p / o a b

A-2: sinb — sina
A-3: (a) False. For example, the function

Flx) = {0 forx <0

1 forx=>0

provides a counterexample.
(b) False. For example, the function f(x) = x provides a counterexample.
(c) False. For example, the functions

flx) = {O for x <

1 forx >

and g(x) =

= N[—
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provide a counterexample.

ﬁ (@) —% (b) positive (c) negative (d) positive
A-5: -21

A-6: —6

A-7:20

A-8:

(a) Z — Jarccos(—a) — 3av/1—a2 = —Z + Larccos(a) — 3av/1 — a2
(b) 1arccos(a) — av1l—a?

A-9:5

A-10: 0

A-11: 5

A-12: 20+ 27T

A-13: 0

A-14: 0

A-15: 0

A-16: (a) y = }1] 1—( bJ 4/——x2dx (c)—
A-17:

x || even | odd |

even || even | odd
odd || odd | even

A-18: f(0) = 0; g(0) can be any real number
A-19: f(x) = 0 for every x

A-20: The derivative of an even function is odd, and the derivative of an odd function is
even.

L g a

Answers to Exercises 1.3 — Jump to TABLE OF CONTENTS
A-1: e? — o2

o1 1
A-2: F(x) = 7t Ecost +5
A-3: (a) True (b) False (c) False, unless Ss f(x)dx = Ss xf(x)dx =

A-4: false
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A-5: false
A-6: sin(x?)
A-7: e

A-8: For any constant C, F(x) + C is an antiderivative of f(x). So, for example, F(x) and

F(x) + 1 are both antiderivatives of f(x).

A-9:

(a) We differentiate with respect to a. Recall %{arccos x} = \/1__17 To differentiate

%a 1 — a2, we use the product and chain rules.

%{%—%arecos(u) +%a\/1—a2} = 0—%- %_laz + (%ﬂ) i —ﬁZ_aaz +%\/1—02
B 1 a> 1— a2
T2 iid iz
1-a2+1-a?

O 2V1-a2
~2(1—-a%)
C2V1-a2
=4/1—-a?

(b) F(x) = % - %arccos(x) + %x\/l —x?

A-10: (a) 0 (b),(c) The FTC does not apply, because the integrand is not continuous
over the interval of integration.

A-11:
y
/-
a x x+h
A-12: (a) zero (b) increasing when 0 < x < 1and 3 < x < 4; decreasing when
1l<x<3
A-13: (a) zero (b) G(x) is increasing when 1 < x < 3, and it is decreasing when

0 <x<1and when 3 < x < 4.
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A-14: Using the definition of the derivative,

F(x+h)—F(x)

Fx) = Jim 7
x+h X
tdt —\"tdt
— ].im Su Sﬂ
h—0 h
x+h
t dt
= lim —Sx
h—0 h

The numerator describes the area of a trapezoid with base /& and heights x and x + h.

— lim %h(x+x+h)
h—0 h
= lim x+1h
_h—>0 2
=X
y
y=t
x+h—
X — S;CJrhtdt
— t
X x+h
So, F'(x) = x.
A-15: f(t) =0

A-16: {log(ax) dx = xlog(ax) — x + C, where a is a given constant, and C is any constant.
A-17: {xPe¥ dx = e* (x® —3x* +6x—6) + C

1
A-18: (— dx =1lo ‘x +Vx2+ az‘ + C when a is a given constant. As usual, C is
J vV x2 + a2 8 8

an arbitrary constant.

A19: [ X dx = \/x(a+x)—al +atx)+C
| ey x x(a+ x) —alog (vx ++a+x)

A-20: 5 —cos2

A-21:2

1
A-22: 5 arctan(5x) + C

X
A-23: arcsin [ — | + C
' <ﬁ)
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A-24:tanx —x+C

3 3
A-25: -1 cos(2x) + C, or equivalently, 5 sin®x + C

1 1
A-26: Ex + Z Sin(ZX) + C

A-27:F (5) =1log(3) G (5) = —log(3)
A-28: f(x) is increasing when —0 < x < 1 and when 2 < x < .
sin x

AP = -5y 16

A-30: 4y3p(1+x%)?

A-31: (sin®x + 8) cos x

A-32: F/(1) =3¢ !

A-34: f(x) = 2x

A-35: f(4) = 4m

A-36: (a) 2x +1)e™  (b)x=—1/2
A-37: esinx _ esin(x' =) (433 _ 342)

A-38: —2x cos (e_xz) —5x%cos (exS)

A-39: e¥4/sin(e) — 4/sin(x)

A-40: 14
5
A-41: -
2
A-42: 45m
A-43: f'(x) = (2—2x)log (1 + ezx—xz) and f(x) achieves its absolute maximum at x = 1,
because f(x) is increasing for x < 1 and decreasing for x > 1.

A-44: The minimum is ! 11‘;4 As x runs from —oo to oo, the function f(x) = {; o 1%4

decreases until x reaches 1 and then increases all x > 1. So the minimum is ach1eved for
x=1Atx=1,x*—2x = —1.

A-45: F achieves its maximum value at x = 7.
A-46: 2
A-47:log?2
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A-48: In the sketch below, open dots denote inflection points, and closed dots denote
y

extrema.

x3+1 s 3
A-49: (a) 3x2JO e’ dt 4 3x2er 1) b)y = -3(x+1)

A-50: Both students.
A-51: (a) 27(1 — cos 3) (b) x®sin(x) + 3x2[1 — cos(x)]
A-52: If f(x) = 0 for all x, then F(x) is even and possibly also odd.

If f(x) # 0 for some x, then F(x) is not even. It might be odd, and it might be neither
even nor odd.

(Perhaps surprisingly, every antiderivative of an odd function is even.)

L o &

Answers to Exercises 1.4 — Jump to TABLE OF CONTENTS
A-1: (a) true (b) false

A-2: The reasoning is not sound: when we do a substitution, we need to take care of the
differential (dx). Remember the method of substitution comes from the chain rule: there
should be a function and its derivative. Here’s the way to do it:

Problem: Evaluate J(Zx +1)2dx.

Work: We use the substitution u = 2x + 1. Then du = 2dx, so dx = %du:




A-3: The problem is with the limits of integration, as in Question 1. Here’s how it ought
to go:

7T
Problem: Evaluate J Mdt.

1 t

Work: We use the substitution u = logt, so du = %dt. When t = 1, we have
u =log1 = 0 and when t = 71, we have u = log(7r). Then:

T log ()
f Mdt = J cos(u)du
1 log1

log(77)
= J cos(u)du
0

= sin(log(m)) — sin(0) = sin(log(m)).

A-4: This one is OK.

1
A-5: f f(u) du. Because the denominator v/1 — u2 vanishes when u = 1, this is what
0 V1—u?

is known as an improper integral. Improper integrals will be discussed in § 1.12 of the
CLP-2 text.

A-6: some constant C

1, . .
A-7: 5 (sin(e) —sin(1))

1
A-8: =
3

A-9: — 1 o0 T C
300(x3 +1)

A-10: log 4
A-11: log 2
4

A-12: =
3

A-13: ¢® — 1

1
A-ld: (4 x2)3/2 4 C

A-15: eV1o8¥ 4 C
A-16: 0
1
A-17: E[COS 1—cos2] ~0.478

1 1

A-19: J tan?6 — log | sec| + C
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A-20: arctan(e*) + C
2

7T
A21: = — =
T4 03

A-22: —1 (log(cos x))*+C
A-23: 3 sin(1)

A-24: %[2\@ —1] ~ 0.609

A-25: Using the definition of a definite integral with right Riemann sums:

Jb 2f(2x)dx = lim 3 Ax-2£(2(a + i)
i=1

4 N—>00 4

:;}E’E‘o:l(b;a> 2f (2 (a—ki(b;a)))
:Jﬁoi(zbnm) 'f(2a+i(2bn2a>>
szf(x)dx = lim Zn:Ax.f(zaJriAx)

n—aoo0
2a i=1

:Jﬁo;(zbgza) 'f(2a+i(2b;2a))

Since the Riemann sums are exactly the same,

b 2b
f 2f(20)dr = [ fx)ds

a

Ax =

b—a
n

_ 2b—2a

A 4

Answers to Exercises 1.5 — Jump to TABLE OF CONTENTS

A-1: Area between curves ~ 7 (2 + \/i)

Yy

X

W
NI
<]
|
|
~

y =sinx

Y = cosx

-2: (a) Vertical rectangles:
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(&

y = arcsin (2)
| | | | —x
JT i 3 27 Fi
10 5 5 2
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A-18: 124/2 — ?

L g a

Answers to Exercises 1.6 — Jump to TABLE OF CONTENTS

-1: The horizontal cross-sections are circles, but the vertical cross-sections are not.

A-2: The columns have the same volume.

;

Washers when 1 <y < 6: If y > 1, then our washer has inner radius 2 + %y, outer radius
6 — 3y, and height dy.
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3 thickness: dy

Washers when 0 <y <1: When 0 <y < 1, we have a “double washer,” two concentric
rings. The inner washer has inner radius r; = y and outer radius Ry = 2 —y. The
outer washer has inner radius r, =2 + %y and outer radius Ry = 6 — %y. The
thickness of the washers is dy.

3 thickness: dy
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3 2
A-4: (a)nJ xe?* dx

© [ w6+ G- i) ay s [l - i)y
A-5: (a)f (5-4x)"—(2-x)"dx (b

o

J_ln[(5+«/y—|—1)2—(5—«/y+1)2]dy

A-6: nfz [(9- x2)2 — (x*+ 1)2} dx
_ Ja

V32
A-7: ~— 83
12

A-8: ;—T (e - 1)

38 5141 512

A-10: (@) 87§ V1 —x2dx  (b) 4n?

A-11: (a) The region R is the region between the blue and red curves, with 3 < x <5, in
the figures below.

2=22+15
Y y yQ:Sx

5,40
6.y A (5,/40) ( )

(3,v/24)

(b) 37 ~ 4.19
A-12: (a) The region R is sketched below.

Y
v=loes ], 2

(b) 7T [4 log?2 — g} ~ 3.998

A-13: 722 4 8% 4 82
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8

A-14: —

3
A5 2028 43653
A-16: ﬁnh

3

47 1 1
-17: (@) = I i = 6356.752 b= 378137

A7 (2) g, cubieunits (b)a = Famrms; and b = oare 137

(c) Approximately 1.08321 x 10'2 km®, or 1.08321 x 10?! m?
(d) Absolute error is about 3.64 x 10° km?>, and relative error is about 0.00336, or 0.336%.

9

A-18: () 5

(b) nfl [(4—x) = (1+ (x—1)?)°] dx

2
A-19: (a) g 1 () % 7~ 1793

A-20:(a)V1=§7rc2 (b)vzz%[ziﬁ—z] (c=0o0rc=+v2-1

A1
T 37/2
J 7t[(5+ msinx)? — (5 + 27 — 2x)?] dx—|—J 7t[(5+ 27 —2x)? — (5+ msinx)?] dx

7T

6000cTt
log 2

1
A-22: (a) 6000c7t (1

og2 — ﬁ) , which is close to

(b) 6km: that is, there is roughly the same mass of air in the lowest 6 km of the column as
there is in the remaining 54 km.

&> <&

Answers to Exercises 1.7 — Jump to TABLE OF CONTENTS

>

-1: chain; product

A-2: The part chosen as u will be differentiated. The part chosen as dv will be
antidifferentiated.

L [F®) ) (g,
ﬁfgwd w0 |

X

A-4: All the antiderivatives differ only by a constant, so we can write them all as
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v(x) + C for some C. Then, using the formula for integration by parts,

Ju(x) v (x)dx = u(x) [o(x)+C] —J [v(x) + C] ' (x)dx
N —_—

u 14

v du
= u(x)v(x) + Cu(x) — fv(x)u'(x)dx — JCu’(x)dx
= u(x)v(x) + Cu(x) — fv(x)u’(x)dx —Cu(x)+ D
= u(x)v(x) — fv(x)u’(x)dx +D

where D is any constant.

Since the terms with C cancel out, it didn’t matter what we chose for C—all choices end
up the same.

A-5: Suppose we choose dv = f(x)dx, u = 1. Then v = Jf(x)dx, and du = dx. So, our

integral becomes:

J o o= reoa= (Jreoa) e

u d ——— du
v

In order to figure out the first product (and the second integrand), you need to know the
antiderivative of f(x)-but that’s exactly what you're trying to figure out!

x*logx  x?
A-6: — —
6 > 1 +C
log x 1
A-7: — —-—+C
616 3626
A-8. 7
T
A-9: ——1
? 2
A-10: ¢* (x> —3x2+6x—6) +C
2 2 2 2
X 3 3x > 3x 3x
11 = _ = el | _ ==
A-11 2log X—— log” x + g logx——¢ +C

A-12: (2 —x?)cosx + 2xsinx + C

A-13: (3 — 312+ 6t) logt — 33+ 3t — 6t + C
A-14: eV® (25 —4y/5+4) +C
ﬁxlogzx—2xlogx~l—2x+C
Mexzﬂ#—c
ﬂyarceosy—ﬂ—l—c
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A-18: 2y* arctan(2y) — y + 3 arctan(2y) + C

3

A-19: % arctan x — %(1 +x2) + élog(l +x2)+C

. 2 x/2 8 X/2 &
A-20: 75 cos(2x) + 77 sin(2x) + C

A-21: g[sin(log x) —cos(logx)] +C

A-22: 2 X — 1 +C
" log?2 log 2

A-23: 2e°5¥[1 —cosx] + C

xe ¥ xe ¥ e *
A-24: dx = *1LC= C
f(1—x)2 YT Tt

1

A-25: (a) We integrate by parts with u = sin"™" x and dv = sin x dx, so that

du = (n—1)sin" 2 xcosx and v = — cos x.

Jsin” xdx = — sin" ! x cos x+(n—1) fcos2 x sin" 2 x dx
uv . >

— {odu

Using the identity sin? x + cos? x = 1,
= —sin"lx cosx + (n—1) J(l — sin® x) sin" 2 x dx
= —sin" 1x cosx + (n—1) Jsin”_2 xdx—(n—1) Jsin" x dx
Moving the last term on the right hand side to the left hand side gives
n fsin” xdx = —sin" 1 x cosx + (n—1) Jsin”_2 x dx

Dividing across by n gives the desired reduction formula.

35
(b) ETE ~ 0.4295
log 2
A-26: (a) Area: g — 02g
Yy y =tan lx

r=1

x

2

(b) Volume: % -7
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18 _
ADT: < 17e 4373)

36
A-28: 12
2

A-29: —
e

&>
Answers to Exercises 1.8 — Jump to TABLE OF CONTENTS
A-1: (e)

1
A-2: —sec"x+C

A-3: We divide both sides by cos? x, and simplify.

2

sin2x—|—cos x=1
sin?x +cos’x 1
cos? x cos? x
. 2
sin” x
5o T 1 = sec?x
cos? x

tanZ x +1= sec? x

. 3
A-4: sinx — s X +C
T
A-5: —
2
. 37 .39
sin”’t st
A-6: 7 39 +C
1 1
A-7: — C
" 3cosdx cosx +
Ag T3
8 64

2 1
A-9: —cosx+§cos3x—§cos5x+c

1
A-10: %) sin2x + C

1 1
A-11: 5 tan?x + C, or equivalently, 5 sec? +C

1 1
A-12: - sec’ x — 5 sec®x + C

tan*¥ x  tan* x
A-13:
3 9 + 47 +C

1 1
A-14: 35 sec3d x — 15 secl®x 4+ C
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1 1 1
A-15: Zsec‘lx—Esec2x+C0than4x+C

1
A-16: 5 tan® x + C

o1 1.3 1 0.7
A-17: 1.3SGC x—|—0.7cos x+C

1
A-18: = o sec* x —sec? x + log |sec x| + C

41 7T

A19: —— — =
453 6

1 1

A-20: 11 + 9

A-21: 2\/secx + C

tan69+3tan49 +3tan26 1 iC
7+e 5+e 3+e 1+e

A-22: tan®*1 9 (
A-23: (a) Using the trig identity tan? x = sec? x — 1 and the substitution y = tan x,
dy = sec? x dx,

Jtan“ xdx = J’can"’_2 x tanZ x dx = f’cam”_2 x sec? x dx — f’cam”_2 x dx
yn—l
= Jy”_z dy — J’can”_2 xdx = i f’can”_2 x dx
tan” 1 x
=~ Jtan’12 x dx
n—1

13
— — — ~0.081
(b)15 1 0.0813

A-24:
2cos? x

A-25: tan 6 + C

1
+ 2log | cos x| — §c052x+C

A-26: log |sinx| +C

1
A-27: 5 sin?(e¥) + C

A-28: (sin? x + 2) cos(cos x) + 2 cos x sin(cos x) + C

1
A-29: gsin2x—2+zsinxcosx+c

L 4

Answers to Exercises 1.9 — Jump to TABLE OF CONTENTS

A-1: (a)ngsece (b)x:%sine (c) x =5tanf
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1
A-2:(@)x—2=+/3secu  (b)x—1=+/5sinu (c) (2x+;) = Tﬁtanu
1 1
(d)x—i—isecu
\/399 52 x—5
A-3: (a) —— (b) —— (c)
- 7 2
\/LJ:—x2 1 1
A-4: -
@ 5= O @
1 X
A5 - ——+C
T4 a2t
1
A-6: ——
24/5
7T
A-7. —
___ 6
2
A-8: 1 1+ —
8: log |4/ +25+5 +C
1
-9 E\/2x2+4x—|—C
2
A-10: _l\/x +16
__ 16 X
2 _
A1 Y9
9x
A-12: (a) We'll use the trig identity cos 260 = 2 cos? 0 — 1. It implies that
20 +1 1 1 40 +1
cos2f = % cos*f = Z[C05226+2C0829+1] = Z[%—FZCOSZO—F@
_cos46 + cos 20 +§
8 2 8
So,
/4 /4
4 B cos40 ~cos2 3
L cos@de—fo ( 3 + > —i—8>d9
511'149 sin20 3 /4
+ + -0
4 8 1o
_1+§ n
4 8 4
8+3
32

as required.
8 + 3
(b)
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A-13: 0
A-14: 2arcsin§ + g\/él —x2+C

A-15: v/25x2 — 4 — 2arcsec %3 + C

40
A-16: —
3

A-17: arcsin x+1 +C

1 1 4x2 —12 8
A-18: 1 (arccos ( e 3> + ad X ) + C, or equivalently,

(2x — 3)2

1 ( 4x> —12x+ 8
1 arcsec (2x — 3) + R )—|—C

A-19: log(1++/2) — \%

1
A-20: 5 (arctanx + xzxﬁ) +C

1
A-21: 3%x/xz—zwrﬂElog’\/a@—2x+2+x—1’+c

1 2
A-22: —log éx+1 + =4/9x%2 +15x| + C
V3 5 5
1 1-+v1 2
A-23: gm(él + x%) + log TVITE L ¢
871
A-24: = +44/3
4 4 2 3
A-25: Area: 3 % Volume: % — %
A-26: 2¢/1+ ¥ 4 2log |1 — 1+ e¥| —x+C
A-27:
1
@) 3
(b) False

(c) The work in the question is not correct. The most salient problem is that when we
make the substitution x = sin 6, we restrict the possible values of x to [—1, 1], since
this is the range of the sine function. However, the original integral had no such

restriction.

How can we be sure we avoid this problem in the future? In the introductory text to
Section 1.9 (before Example 1.9.1), the CLP-2 text tells us that we are allowed to write
our old variable as a function of a new variable (say x = s(u)) as long as that function
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is invertible to recover our original variable x. There is one very obvious reason why
invertibility is necessary: after we antidifferentiate using our new variable u, we
need to get it back in terms of our original variable, so we need to be able to recover
x. Moreover, invertibility reconciles potential problems with domains: if an inverse
function u = s~!(x) exists, then for any x, there exists a u with s(u) = x. (This was
not the case in the work for the question, because we chose x = sin, but if x = 2,
there is no corresponding 6. Note, however, that x = sin 6 is invertible over [—1,1], so
the work is correct if we restrict x to those values.)

A-28: (a), (b): None. (0):x < —a

&> <&

Answers to Exercises 1.10 — Jump to TABLE OF CONTENTS

A-l: (@) (i) (b)) () (o G)  (d) ()

Ap A, B . C D | Ex+F
x—1 (x—1)2 x+1 (x4+1)2 x2+1
A-3:3
x3+2x+2 x+2
A4 (a) —— = =
@ x2 41 : x2 41
15x* + 6x3 + 34x% + 4x + 20 ) 4
b =32 424 -
b) 5x2 +2x + 8 SRR I
2x° + 9% +12x2 +10x +30 4
(c) 22 15 =x"+2x+6

A-5: (@) 5x% —3x2 — 10x + 6 = (x +v2)(x —v/2)(5x — 3)

(b) x4 —3x2—5 = <x+ 3+2@) (x\/@) <x2+¢792—3)

() x* —4x3 —10x> —1lx -6 = (x +1)(x — 6) (x> + x + 1)
(d) 2% +120% = 22 = 52x +15 = (x +3)(x +5) (x = (1+2)) (x - (1-42))

A-6: The goal of partial fraction decomposition is to write our integrand in a form that is

easy to integrate. The antiderivative of (1) can be easily determined with the substitution
u = (ax + b). It's less clear how to find the antiderivative of (2).

A-7: log g

1
A-8: - arctanx + C

A-9: 4log |x — 3| —2log(x* + 1) + C
A-10: F(x) = log |x — 2| + log(x? + 4) + 2arctan(x/2) + D
A-11: —2log |x — 3| +3log|x + 2|+ C
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A-12: —9log |x + 2| 4 14log|x + 3|+ C

1 7
A-13: 5x+§10g|x—1]—§10g|x+1|+C

2
A-14: x — p + garctan(Zx) +C

A-15:1—L+C
x x-—1

A-16: —%log|x—2|+%log\x+2\+glog|2x—1|—|-C

3
A-17: log (%)

1

A-18: 5 log 1—cosx

1+ cosx

—cosx 1 '1—cosx

A-19; ——— + =
2sin? x + 4 %81 cosx

1 2 7 9
A-20: 3log2 + - + — | arctan | —— | — arctan | —
8275 \/15( <\/15> ( 15))
X

A-21: = iarctan (—> — 42—|—3x

4+/2 V2 (x2+2) tC

3 3x3 + 5x
A-22: 3 arctan x + m +C

3, 1 X 3 2 3
A-23: 2x —|—\f5arctan(\@> +2log\x + 5| 2x2+10+C
inf —1

sin @ ’+C

A-24: lOg 511‘19——2

1 1 2et +1
A-25:t—=1o 62t+et+1——arctan( >+C
2 8! | V3 V3

\/1—|—ex—1‘+c
V1+eXr+1

A-26: 2+/1 + e* + log

A-27: (a)

The region R is
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(b) 107r10gZ = 207T10g% (c) 207t

5 4 1
A-28: 2log 3 + 7 arctan 3

-3
235) eFm =

A-29: (a) % <log

L 4

Answers to Exercises 1.11 — Jump to TABLE OF CONTENTS

A-1: Relative error: ~ 0.08147; absolute error: 0.113; percent error: ~ 8.147%.
A-2: Midpoint rule:

Y
S~—~—
: X
2 10
Trapezoidal rule:
y

A-3: M=625L=2

-4: One reasonable answer is M = 3.

(b)o (90

A-6: Possible answers: f(x) = ;xz + Cx + D for any constants C, D.

A-7: my mother
A-8: (a) true (b) false
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A-9: True. Because f(x) is positive and concave up, the graph of f(x) is always below the
top edges of the trapezoids used in the trapezoidal rule.

y

y = f(x)

A-10: Any polynomial of degree at most 3 will do. For example, f(x) = 5x° — 27, or
f(x) =22

A-11:

Midpoint:

01 1 1 1 1 1 1

fo X3+ 1 dx ~ {(2.5)3+1 + (7.5)°+1 * (12.5)°4+1 + (17.5)°4+1 + (22.5)°+1 + (27.5)%1} >

Trapezoidal:

f301dx~{1/2+ LU SRS SUNSN SRR +1/2}

0 x34+1 0+1 5+1 103+1 15841 203+1 253+1 3083+1

Simpson’s:

fodem[1+4+2+4+2+4+1]§

0 x3+1 0+1 541 10°+1 15°+1 20°+1 253+1 30%+1!3
27

A—12:?

A-13: 17207t ~ 5403.5 cm3
A-14: %(16.72) ~ 4.377 m3

A-15: 1294 ~ 0.6865 m?
671

A-16: (a) 363,500 (b) 367,000

A-17: (a) % (b) %7
A-18: Let f(x) = sin(x?). Then f'(x) = 2x cos(x?) and
f"(x) = 2cos(x?) — 4x* sin(x?).
2
|

Since |x*| < 1 when |x| <1, and |sinf| < 1 and |cos 6| < 1 for all 6, we have

’2cos(x2) — 4x? sin(xZ)‘ < 2|cos(x?)| 4+ 4x2|sin(x?)| <2x14+4x1x1=2+4=6
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We can therefore choose M = 6, and it follows that the error is at most

_ 413 01— (—1)\13
24n2 24 - 10002 106

3
A-19: —
? 100

A-20: (a)

#((—3)%4(% —3)5+2(§ —3)5+4(—2)5+2(§ —3>5+4(§ —3)5+ (-1)°)

(b) Simpson’s Rule results in a smaller error bound.

8
A-21: —
15

1 1
A-22: =
180 x 3% 14580

1[/1 4 2 4 (1 1
A-23: Ty == —x1 i Zx =
3@ T 4{(2>< >+5+3+7+(2X2)}’

1 4 2 4 1
(b)54:ﬁ[1+(4x5>+<2x§>+<4x§>+§]
24 3

180 x 44 — 5760
A-24: (a) Ty = 8.03515, Sy ~ 8.03509

b 2 83
L R L T 12(4)2
5
< 4800084

b
L f(x) dx = Sul < 150078023

A-25: Any n > 68 works.
472
A26: =% ~ 494 ft°

A-27: (a) 0.025635 (b) 1.8 x 10~°
A-28: (a) ~ 0.6931698 (b) n = 12 with n even
)

© ‘1—54( <

(b) < 0.00533,

A-29: (a) 0.01345 (b) n = 28 with n even

A-30: n > 259
2 1
A-31: (@) When0 < x < 1,thenx> <land x+1 > 1,s0 [f"(x)| = |x3_c|_1| < 1 =1
1

(b) 5 (c)n =65 (d)n =46

x—1 16 4 16 1
A-32: 1 -

12 Jrx+3+x+1+3x+1+x
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A-33: Note: for more detail, see the solutions.

First, we use Simpson’s rule with n = 4 to approximate S% 1J:7 dx. The choice of this
method (what we’re approximating, why n = 4, etc.) is explained in the solutions—here,
we only show that it works.

__|___|__-|-—-|-1 ~ 0.321748

f 1o 11, 64 8 o4
;142277 712|241 13 "65 ' 5

For ease of notation, define A = 0.321748.

Now, we bound the error associated with this approximation. Define

N(x) = 24(5x* —10x? + 1) and D(x) = (x*> + 1), s0 N(x)/D(x) gives the fourth

derivative of 7. When 1 < x <2, [N(x)| < N(2) = 984 (because N(x) is increasing

over that interval) and |D(x)| = D(1)
9

interval), so ‘% {ﬁ = ’ggg < 8B4 — 30.75. Now we find the error bound for

5
Simpson’s rule with L = 30.75,b =2,a =1,and n = 4.

2° (because D(x) is also increasing over that

N

2 5
1 L(b—a)P® 3075
dx — A| = < = .00067
L T X lerror| 180 4 180‘44<OOOO6
So,
2 1
~0.00067 < J dx—A < 0.00067
1 1+x2
2 1
A —0.00067 < arctan(2)—arctan(l) < A +0.00067
A —0.00067 < arctan(2) — g < A +0.00067
g +A-000067 < arctan(2) < % + A +0.00067
g +0.321748 — 0.00067 < arctan(2) < % +0.321748 + 0.00067
g 10321078 < arctan(2) < % +0.322418
% 10321 < arctan(2) < g +0.323

This was the desired bound.

A 4

Answers to Exercises 1.12 — Jump to TABLE OF CONTENTS
A-1: Any real number in [1,0) or (-0, —1], and b = +o0.

A-2:b=+w
A-3: The red function is f(x), and the blue function is g(x).
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A 4: False. For example, the functions f(x) = e * and g(x) = 1 provide a
counterexample.

-

(a) Not enough information to decide. For example, consider /(x) = 0 versus h(x) = —1.
(b) Not enough information to decide. For example, consider h(x) = f(x) versus
h(x) = g(x).
o0 0
() J h(x) dx converges by the comparison test, since |h(x)| < 2f(x) and J 2f(x) dx
0 0

converges.

>

-6: The integral diverges.
7: The integral diverges.

LIS

-8:
-9:

The integral does not converge.
T

;|

he integral converges.

D>

-10: The integral diverges.

A-11: The integral diverges.

‘ >

-12: The integral diverges.
A-13: The integral diverges.
A-14: The integral diverges.
A-15: The integral converges.

+ L arctan 2
4 24
A-21: The integral converges.
1
A-22: —
2

A-23: The integral converges.
A-24: The integral converges.
A-25:t = 10 and n = 2042 will do the job. There are many other correct answers.

A-26: (a) The integral converges. (b) The interval converges.

A-27: false

&> <&
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Answers to Exercises 1.13 — Jump to TABLE OF CONTENTS

AL (A-D,  B-IV), (©-1), (D)~

1 2 1 8
A5 7197315
3
A-3: —— arcsin | x \/3 5x2 +C
245 ( \g)
-4: 0
x+1
-5:1 C
?;erl‘jL
A-6 §log2—g

7.2 2 _
A7.210g‘x 3|+ C

A-8: (a) 2 (b)% (c )3i+%

A-9: (a) 1 (b) %

A-10: () €2+ 1 (b) log(v2+1) (c) log 13 ~ 0.1431
A-11: (a) Zn (b) log2 —2 + g ~ 0264  (b)2log2— 1~ 0.886

sinf — 3
sinf — 2

1
A12: 2 sin®@ — 2sin @ + 121og

RES

1 1 X

1
(d) 5 [x?arctan x — x + arctan x| + C

1 . 1X x2
A-14:(a)ﬁ (b) 2sin E—i—x 1_Z+C

1
(c) —2log |x| + = +210g\x—1| +C

A-15: () % (b) ——

1 1
\F (@log2 -5~ 0193  (d)log2—; ~ 0193

A-16: (a) x 2log x — 1x +C (b) %log[x2 + 4x 4+ 5] — 3arctan(x +2) + C

(c)ilog]x—3|—%log]x—1]+C (d)%arctanx3+C

1
+C

1 1 —
A-17: (a) % —5 log 2 (b) log |x2 —2x+5|+ 5 arctan il

1
+C (c)%log|x—1|—ilog(x2+1)—Earctanx—FC
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1 sin®x sin’x

_mmu6+1ﬂw‘*c b) == - == +¢C

A-18: (a)

A-19: -2

1 1 4
A-20: (a) —110g|€x+1|+zlog!ex—3|+c (b) g_z\@

1
A-21: (a) % sec? x +log | cos x| + C (b) 10 arctan 8 ~ 0.1446

2 2
A-22: g(x ~1)%2 ¢ g(x -1)*¥24C
Va2 =2

Aa&ng+vﬂ—4—-xx +C

7
A-24: —
!
A25:3loglx + 1|+ —— — > _4C

$008 x+1 2(x+1)2

2 2 1
A-26: — arctan | —x+ — | + C
V3 (%3 x@)

1
A-27: 5 (x —sinxcosx) + C

1 1 1 2x—1
A—28:glog|x+1|—glog|x2—|—x+1|—|——arctan( ad )+C

V3 V3
A-29: 3x3 arcsin x +3v1 —x2 — (1 —x2)3/2 +C
A-30: 2
1
A-31: 1
. log(cos(0.1))
A-32: log (log(cos(0.2))

A-33: (a) 1x sin(log x) — cos(logx)| + C (b) 21og2 — log 3 = log %
5 & & & 3

A-34: (a) Zn+9 (b) 2log |x — 2| — log(x* +4) 4+ C (c)%

A-35: —arcsin(v/1—x) —v/1—xy/x+C
A-36: ¢°(e — 1)
X

x+1

A-37: +C

A-38: xsecx —log|secx + tanx| + C
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(n+2) n+1 )
(H;i)uz - a(x:i)l +C ifn#-1,-2

A-39:fx(x+a)” dx = (x+a)—alog|x+al+C ifn=-1
log|x+a|+ 7 +C ifn=-2

A-40: x arctan(x?) — 1 (% log | 75T

V2

&> <&

M‘ +arctan (v2x + 1) + arctan (v2x — 1) ) +C

Answers to Exercises 2.1 — Jump to TABLE OF CONTENTS
A-1: 0.00294

A-2: The rock has mass % kg (about 102 grams); lifting it one metre takes 1 J of work.

A-3: (a) metres (b) newtons (c) joules

smoot - barn
Al ———————
megaFonzie

(smoot-barns per megaFonzie)

A-5: 10 cm below the bottom of the unloaded spring
A-6: x =2
A-7.a =3

A-8: (a)joules  (b)clog (%) J

1
A-9: -

1 J
A-10: 25]
A-11: 196 ]
A-12: 14700 ]

A-13: J 3(9.8) (8000)(242)(3 —z)*dz joules
_Jo

A-14: 0.2352]
20
A-15: 9 kg, or about 408 grams

A-16: 294 ]
A-17: (a) 117.6]  (b) 3.92 [30 —2v/3] ~ 104]

1
A-18: ——= m/sec, or about 22.36 cm/sec

25

A-19: yes (at least, the car won't scrape the ground)
A-20: ~ 0.144]
A-21: 904,0507 ]
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A-22:10202 ]

A-23: (a) 4900 N (b) 0N (c) 29400 ]
A-24:2205]

A-25: About 7 x 108 ]

A-26: true

A-27: 92553 ]

7
A-28: 0= 0.175]

, 1 1\* 3\*
A-29: One possible answer: 1 1-— 3 +4/1— 3

L 4

Answers to Exercises 2.2 — Jump to TABLE OF CONTENTS

A-1: The most straightforward of many possible answers is shown.

y

A /\
N s

A-2: 500 km
W
-3: - N
. b— b—a b—a 12 . b—a
A-4: (a) " (b) a + 37 (o f (a + 37> (d) . Elf (a + (i— 1)T>
-5: (a) yes (b) not enough information
A-6: 0
A-7:1
1 25 1
At (58 + 5]
A-9: é +1
R 4
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A-10: E
T

A-11: % log 7 degrees Celsius

1
A-12:
2(e—1)
1
A-13: 5
A-14: (a) 400 ppm (b) ~ 599.99 ppm (c) 0.125, or 12.5%
l6m 327 327

A-16: (a) 0 (b) V3

A-17: «/é —1~0.52
T

A-18: () F(H) = 3f(H) = 3sin (1) N (0)0  (0) % ~ 212

A-19: (a) 130 km (b) 65 km/hr

A-20: (@) A=e—1 (b) O (c)4—2e+2(e—1)log(e—1) ~ 042

A-21: (a) neither-both are zero (b) | f(x) — A| has the larger average on [0, 4]
A-22: (b—a)ntR?

A-23: 0

A-24: Yes, butifa # 0, thens = t.

A-25: A
bA(b) —aA(a)
b—

A-26: (a)

A-27:

(b) f(t) = A(t) +tA'(t)

-1 ifx<0

One of ibl : = .
(a) One of many possible answers: f(x) {1 =0

(b) No such function exists.

Note 1: Suppose f(x) > 0 for all x in [~1,1]. Then % Sl_l f(x)dx > %51_1 0dx = 0.
That is, the average value of f(x) on the interval [—1, 1] is not zero—it’s
something greater than zero.

Note 2: Suppose f(x) < 0 for all x in [~1,1]. Then % Sl_l f(x)dx < %51_1 0dx =0.
That is, the average value of f(x) on the interval [—1,1] is not zero-it’s
something less than zero.

So, if the average value of f(x) is zero, then f(x) > 0 for some x in [-1,1], and

f(y) < 0forsomey € [—1,1]. Since f is a continuous function, and 0 is between f(x)
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and f(y), by the intermediate value theorem (Theorem 1.6.12 in the in the CLP-1 text)
there is some value ¢ between x and y such that f(c) = 0. Since x and y are both in
[—1,1], then c is as well. Therefore, no function exists as described in the question.

A-28: true
A-29: 0

&> <&

Answers to Exercises 2.3 — Jump to TABLE OF CONTENTS
A-1: (1,1)
A-2: (0,0)

A-3: In general, false.
A-4: 3.5 metres from the left end

A-5: (a) to the left (b) to the left (c) not enough information
(d) along the line x = a (e) to the right

A-6: 39280” (12— 71) ~ 121,212 ]
AT @), <b>§dx ©, (log3 (o), (f)@
% [t (a+ (i-8) (59) = (a+ - D) (52))] P ds
A8 (a) = . (b) %= P :
—a 1 b—a
_ S (00 () Lotoo
A-9: (a)
Y T(x)
B(x)
} T } \ X
a a/ b/ b

e rae e LT
O TE-Ba)dr  @TE -8  @r=5

a

A-10: (a) The strips between x = a and x = 4’ at the left end of the figure all have the
same centre of mass, which is the y-value where T(x) = B(x), x < 0. So, there should be
multiple weights of different mass piled up at that y-value.
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Similarly, the strips between x = b’ and x = b at the right end of the figure all have the
same centre of mass, which is the y-value where T(x) = B(x), x > 0. So, there should be
a second pile of weights of different mass, at that (higher) y-value.

Between these two piles, there are a collection of weights with identical mass distributed
fairly evenly. The top and bottom ends of R (above the uppermost pile, and below the
lowermost pile) have no weights.

One possible answer (using twelve slices):

(b) The area of the strip is (T(x) — B(x)) dx, and its centre of mass is at height
T(x)+ B(x)
—

a

§7(T(x)2 = B(x)?) dx
2§, (T(x) - B(x)) dx

©§=

1 0
A-ll:f:——J 6x% dx
3J

14
A-12: ¥ = —
T
log 10.1
A-13: x = ~ 0.43
* 2(arctan 10 + arctan(3))
3 e
Aldig=——°
YT
A-15: (a)
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y
=2

3log3

(b) =~
V2-1 1

16 v — & _—

A-16: x 21 and V21
k k> 8

A7 @ 5= [V2-1], g=5r  (Bk=—[v2-1]
A-18: (a)

8
bz @1

2
A-19: P log2 ~ 0.44127

12

A-20: x =0and 7 = 291

A-21: (a)ZT[ (b)xzoandg:%

A-22: (%,7) = (1,—%)

2 4
e-—3/2 e*—7
A-23: (e2 75 I 10) ~ (1.2,24)

A-24: 7 =

Q1] oo

8§ _ 166 4 6 )
G- | vdyen [ 6-yrdy

A-25: (a) X =

2

e 3 e 3
A26: (@) ] =5 — 1 (b)n(5+2e—§)

A-27: (3,1.5)
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A-28: (0,3.45)

h 1hzk hk2 + 153
ﬂ @7 O §k§
A-30: about 0.833 N
A-31: (a) 17,1507t J (b) ﬂ (8T —9)~13,797] (c) about 74%
A%s=
%\/g 72) + 2sin (;;) +9sin <8) + 8sin (29 ) + 25sin (2752 ) +9} ~ 0.976
- -

Answers to Exercises 2.4 — Jump to TABLE OF CONTENTS

A-1: (a) yes (b) yes (c) no

A-2:

siny
3y

(b) One possible answer: f(x) =¢*, ¢(y) = év.

(a) One possible answer: f(x) = x, g(y) =

(c) One possible answer: f(x) =x—1, g(y) = 1.

dy

=X, which fits the form of a

(d) The given equation is equivalent to the equatlon I
separable equation with f(x) = x, g(y) =

A-3: The mnemonic allows us to skip from the separable differential equation we want to
solve (very first line) to the equation

fﬁdyzjf(x)dx

-4; false
A-5: (a) [0,0)
(b) No such function exists. If | f(x)| = Cx and f(x) switches from f(x) = Cx to
f(x) = —Cx at some point, then that point is a jump discontinuity. Where f(x) contains a

discontinuity, % does not exist.

do

A-6: A6

= —0.003Q(¢)

A-7: % = ap(t)(1—p(t)), for some constant a.

A-8: (a) —1 (b) 0 (c)0.5
(d) Two possible answers are shown below:
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Another possible answer is the constant function y = 2.

1 3 5
Adi@ -5 (b5 3
(d) Your sketch should look something like this:

Y

[ S S

N
14 SN

“f X

NN

| CEE SRR S S S

| R W G B

(e) There are lots of possible answers. Several are shown below.
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A-10: y = log(x? + 2)
A-11: y(x) = 3vV1+ x?

-3
A-12: y(t) = 3log (C n sint)

A-13:y = {/3e” + C.

22
A-14: y = —log (C — ?)

The solution only exists for C — "2—2 > 0, i.e. C > 0 and the function has domain

{x:|x] <+v2C}.
A-15: y = (3e* — 3x2 +24)1/3
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A-16: y = f(X) = ——ﬁ

A-17: y = v/10x3 4 4x2 + 6x — 4

A-18: y(x) = o'/

A-21: y(x) = /4 + 2log 2. Note that, to satisfy y(1) = 2, we need the positive square

Troot.

2
A-22: % + g(y2 —4)3/2 = 2secx +2

A-23: 12 weeks

A-24:t = n arctan ( i Uo>
\ kg \ mg

A-25: (a) k = 455 (b) t = 70sec

3 — el
A-26: (a) x(t) = 1_—2; (b) As t — o0, x — 2.
A7 @P=—2  (b)Att= P~3523 Ast— o0, P — 4
. —_— 1+e—4t —_— 2, ~ . . 7 .
do 400
A-28: (a) —— = —ko? == =7
B:(a) g, =k D= @

A-29: (a) B(t) = C V06!-0.02cost \yith the arbitrary constant C > 0. (b) $1159.89
A-30: (a) B(t) = {30000 — 50m} e!/% + 50m (b) $600

4 — 1—cos x
A3L:y(x) = —¢

2ol s The largest allowed interval is

—arccos(1 —log?2) < x < arccos(1 — log2)
or, roughly, —1.259 < x < 1.259.

A-32: 180, OOO\/g ~ 99,591 sec ~ 27.66 hr

5
A3t = 214 122 e ~ 0.665hr
15\ 2g
, 4—¢*
A3t @3 by =y-1y-2 ©O©f)=57—4
A-35:p =}
A-36:
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(a) One possible answer: f(t) =0

w>;¢%;{f x_a‘ff }

@—{fw[ wjf&}ﬂ

(d) Y(x) = D(x —a), where D is any constant

T

(e) f(t) = D, for any nonnegative constant D

v 14 L oe |2
A-37.x—4(y 1+ log2y+1)

L g a

Answers to Exercises 3.1 — Jump to TABLE OF CONTENTS

A-1: (a) -2 (b) 0 (c) the limit does not exist

A-2: true
A—B

®0  @©%

A-4: Two possible answers, of many:

A-3: (a)

o 3000 —n ifn <1000
e —2—|—% if n > 1000

1,002,001
[ ] a?’l = — —2
n
A-5: One possible answer isa, = (-1)" = {-1,1,-1,1,-1,1,-1,...}.
Anotherisa, = n(-1)" ={-1,2,-3,4,-5,6,-7,...}.

) 1 _(—1) B 1 11 11
A-6: One sequence of many possible is a, = = 1, > 31 5

-7: Some possible answers:

-1 sin#n 1
< <

(a) —

n n n
n? n? n? n? n?
< <= < —
(b) 13e" ~ e"(7 +sinn —5cosn) e or0 < e"(7 +sinn—5cosn) e
-1 1
© & <(m)™< 3
A-8: (a) ap = by = h(n) = i(n), CnZ](”) dn = f(n),  en=g(n)
(b) 1 hrn ay = hm b, = lim h(x) = lim ¢, = hm en = lim g(x) = lim j(x) =0,
X—00 n—o0 X—00 X—00

nlEIolo dn, xlgrolof( ) and xlgroloz( x) do not exist.

A-9: (a) Some possible answers: ay ~ —0.99996, a¢s ~ —0.99965, and 4119 ~ —0.99902.
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(b) Some possible answers: a7 ~ 0.0044, az3 ~ —0.0133, and as5 ~ 0.0221.
22
The integers 11, 33, and 55 were found by approximating 7 by - and finding when an

odd multiple of % (which is the corresponding approximation of %) is an integer.

(c) Some possible answers: a44 ~ 0.9998, 213, ~ 0.9986 and a2y ~ 0.09961.
See the solution for how we found them.

A-10: (a) oo (b) 2 (©0
AL o

A-12: 0

A-13: 0

A-14: 0

A-15:1

A-16: 0

A-17: o

A-18: lim a; = 0.

k—>0

A-19: The sequence converges to 0.
A-20:9

A-21: log?2

A-22:5

A-23: —0

A-24: 100 - 2%,

1
A-25: Possible answers are {a,} = {n fla+ - — f(a)

or fan) = {n | f@) £ (a3 )|}

n . (2mr
A-26: (a) A, = 5 sin (7) (b) 7
A-27:
(a)
y
1 e—oO
| SR L
2 3
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(b)

1 e—O
| o ¢ X
3 4

(c) A, =1foralln
(d) lim A, =1.
n—ao

(e) g(x) =

(f)fg

-28: &3
A-29: (a) 4 (b)x =4 (c) see solution

A-30: (a) decreasing (b)fn = % f1 (c) 2% (d) 0.18%
(e) “be”: 11,019,308; “and”: 7,346,205

A 4

Answers to Exercises 3.2 — Jump to TABLE OF CONTENTS

AL

N | Sy

11

2 |1+3

3 |1+5+3

4 |1+3+1+1

5 |1+3+3+5++

A-2:3
% ifn=1

A-3: () ay = 1 dlse ®)0 (o)1
nn+1)

Ad g — ifn=1
-4ay = 2(=1)" — n(n 0 else

A-5:a, <Oforalln >2
2 2
Aﬁwagiﬂ- (b) 3
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AH@Z% @%
n=1

A-8: Two possible pictures:

101 _
PN
4 . 5100
A-10: All together, there were 36 cookies brought by Student 11 through Student 20.
571 —1
4 . 5100
A-12: (a) As time passes, your gains increase, approaching $1. (b)1
(c) As time passes, you lose more and more money, without bound. (d) —oo

A-13:A+B+C—C1

A-11:

A-14: in general, false

3
A-15: =
2

1
A-16: o

A-17: 6
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A-18: cos (%) —cos(0) = —%

11 3
A-19: = b) -
@ =1 oars g
24
A-20: —
5
7
A-21: —
30
263
A-22: —
99
321 107
A2 559 = 333
A-24: 3
1 5 17
A-25: 5 + =11
40
A-26: —
3
A-27: The series diverges to —co.
1
A-28: ——
8 2
A-29:9.8]
47
A-30: ———
3(m—-1)
sin®3
A-31: 3 + 32 ~ 32.0025
2 .
n(n—1)(n-2) ifn >3,
A-32:a, = —g ifn=2,
2 ifn=1
5
A-33: =
8
-

Answers to Exercises 3.3 — Jump to TABLE OF CONTENTS

A-1: (B), (C)

A-2: (A)

A-3: (a) I am old (b) not enough information to tell
(c) not enough information to tell (d) I am young
A-4:
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if >  a, converges if > a, diverges

and if {a,} is the red series | then > b, CONVERGES inconclusive

and if {a,} is the blue series inconclusive then > b, DIVERGES
A-5: (a) both direct comparison and limit comparison (b) direct comparison
(c) limit comparison (d) neither

A-6: It diverges by the divergence test, because lin&) an # 0.
n—

A-7: We cannot use the divergence test to show that a series converges. It is inconclusive
in this case.

A-8: The integral test does not apply because f(x) is not decreasing.

A-9: The inequality goes the wrong way, so the direct comparison test (with this

comparison series) is inconclusive.

A-10: (B), (D)

o0
. 1
A-11: One possible answer: nz_:l e

A-12: By the divergence test, for a series » a, to converge, we need lirglo a, = 0. That is,
n—

the magnitude (absolute value) of the terms needs to be getting smaller. If lim <1

n—ao

Apn+1
Ap+1

> 1, then |a,.+1| > |a,| for sufficiently large n, so the terms

or (equivalently) linolo
n—

are actually growing in magnitude. That means the series diverges, by the divergence test.
A-13: One possible answer: f(x) = sin(7tx), a, = 0 for every n.
By the integral test, any answer will use a function f(x) that is not both positive and
decreasing.

21’1

A-14: One possible answer: by, = 31

0
A-15: (a) In general false. The harmonic series ), % provides a counterexample.
n=1

(b) In general false. If a, = (—1)"1, then i (—1)"a, is again the harmonic series § L
which diverges. " "
(c) In general false. Take, for example, 2, = 0 and b, = 1.

A-16: No. It diverges.

A-17: It diverges.
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A-18: The series diverges.
A-19: It diverges.

A-20: This is a geometric series with r = 1.001. Since |r| > 1, it is divergent.

A-21: The series converges to —

150°
A-22: The series converges.

A-23: It diverges.

A-24: The series converges.

1
A-25: The series converges to 3

A-26: The series converges.

A-27: It converges.

5

A-28: Let f(X) = W

0 00]
sum 2 f(n) and the integral f f(x) dx either both converge or both diverge, by the
3 3

Then f(x) is positive and decreases as x increases. So the

integral test, which is Theorem 3.3.5 in the CLP-2 text. For the integral, we use the
substitution u = log x, du = % to get

f *  5dx J * 5du
5 x(logx)3/2 " Jiogs u3/2
which converges by the p—test (which is Example 1.12.8 in the CLP-2 text) with p = % > 1.

A-29:p>1
A-30: It converges.

0
A-31: The series Z ;{—f converges by the p—test with p = 2.
n=2

Note that
V3n2 -7 3n2 V3
O0<a, = 3 < =5
n n n

A/ 3n2—-7

n3

0 Q0
forall n > 2. As the series )| %? converges, the comparison test says that ),
n=2 n=2

converges too.

A-32: The series converges.
A-33: It diverges.
A-34: (a) diverges (b) converges

A-35: The series diverges.
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A-36: (a) converges (b) diverges

1
A-37: m
A-38: 1
A-39: (a) diverges by limit comparison with the harmonic series

(b) converges by the ratio test

A-40: (a) Converges by the limit comparison test with b = I@%

(b) Diverges by the ratio test.
(c) Diverges by the integral test.

A-41: It converges.

A-42: N =5

A-43: N > 999

A-44: We need N = 4 and then S = 3%—%4—%—91—2
E (a) converges (b) converges

A-46: (a) See the solution.

() f(x) = xl—i——i_;lxnzx is not a decreasing function.

(c) See the solution.

A-47: The sum is between 0.9035 and 0.9535.

A-48: Since 1}1_1)1010 a, = 0, there must be some integer N such that % >qa, >0foralln > N.
Then, for n > N,

an an
1—ay,

From the information in the problem statement, we know

0 0
Z 20y, =2 2 ay converges.
n=N+1 n=N+1

So, by the direct comparison test,

[e¢]
an
Z 1 converges as well.
n=N+1"~ n

Since the convergence of a series is not affected by its first N terms, as long as N is finite,
we conclude

0
>
converges.
n=1
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A-49: It diverges.

A-50: It converges to —log2 = log %,

A-51: See the solution.

A-52: About 9% to 10%

A-53: The total population is between 29,820,091 and 30,631,021 people.

A 4

Answers to Exercises 3.4 — Jump to TABLE OF CONTENTS

A-1: False. For example, b, = % provides a counterexample.

A-2:
> a, converges > ay, diverges
> lax| converges | converges absolutely not possible
> |an| diverges | converges conditionally diverges

A-3: conditionally convergent
The series diverges.

It diverges.

A-7: It converges absolutely.
A-8: It diverges.
A9

-9: It converges absolutely.

A-12: See solution.
A-13: (a) See the solution. (b) |S — S5| <24 x 36e~°
A-14: cos1 ~ ggg, the actual associated error (using a calculator) is about 0.000025.

A-15: See solution.

L 4

Answers to Exercises 3.5 — Jump to TABLE OF CONTENTS

A-1:2

S on(x—5)r1
A-2: f(x) = nzz:l —( 7 +)2
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>
o

only x = ¢
:R=6

D>
,.|>

A-5: (@) R = forall |x| < %

(b) 1+ 2x

A-6: R = ©

A-7:1

A-8: The interval of convergence is —1 < x +2 < 1 or (-3, —1].
A-9: The interval of convergence is —4 < x < 2, or simply (—4,2].
A-10: -3 <x <7or[-3,7)

A-11: The given series converges if and only if —3 < x < —1. Equivalently, the series has
interval of convergence [—3, —1].

A-12: The interval of convergence is % <x< 2, or [%, %)

A- 13 The radius of convergence is 2. The interval of convergence is —1 < x < 3, or
(-13].

A-14: The interval of convergenceis a—1<x <a-+1,or (a —1,a+ 1).

A-15: (a) [x + 1| <9or —10 < x < 8 or [-10, 8] (b) This series converges only for
x =1

0 o0
A-16: Z X3 = Z x"
n=0 n=3

A-17: =3
flx + Z (n+ 1
A-18: The series converges absolutely for |x| <9, converges conditionally for x = —9 and
diverges otherwise.
0o x3n+1

A-19: (a) Z (-1)" +C  (b) We need to keep two terms (then = 0and n =1

= 3n+1
terms).

A-20: (a) See the solution.

(1
(b) 2 2y = —+x;C) The series converges for —1 < x < 1.

A-21: See the solution.

A-22: (a) 1. (b) The series converges for —1 < x < 1, i.e. for the interval [-1,1)

5
A-23: —
36

A-24: The point x = ¢ corresponds to a local maximum if A, < 0 and a local minimum if
A2 > 0.
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A-25: =
80
x2  x3 x4
A6 x— X X
I S
3 5
X X
A7 x— 24X
Adlix =343
<@

Answers to Exercises 3.6 — Jump to TABLE OF CONTENTS

A-1: A: linear B: constant : quadratic

A-2: T(5) = arctan® (¢° 4 7)

;

A -V, radius=1 B-1, radius=1 C-1V, radius=1
D-VI, radius= +o E-II, radius= +o F-III, radius= +w

At @ ) =20 (28] g =107 (20

- 1.513
() KV (0) = 0; 1h*)(0) = 22'135

- (_1)n+1 2n+1
A6 S L (x o
;O TR

1 o (10—x\"_ . .
A-7: — Z with interval of convergence (0, 20).

10 4 10
L 3np3a
A-8: Z — (x —a)", with infinite radius of convergence
n=0
0
A-9: — 3 2""
n=0
-10: by, = 3(—1)" 4 2"
35
A-11: ¢c5 = =
© n2n+1xn+l .
A-12: —1)"———— forall 5
HZ::O( ) T fora x| < 5
1 1
A-13:a = 1,b = —§ = —6
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4

—x2 2
1
A-14:fe dr=c_ X X,
X 2 8

It is not clear from the wording of the question whether or not the arbitrary constant C is
to be counted as one of the “first two nonzero terms”.

22n+1 2n+6 22nx2n+6
A-15: -1 C= C
,;o( ) zn+1)(zn+6)+ Z V' ymes *

A-1 _1 31’l+2
6: f(x +Z 3n-1—2

A-17: ——
Zﬁ

A-18: 1

A-19: el/¢

A-20: /7 — 1
A-21:log(3/2)
A-22: (e+2)e —2

A-23: The sum diverges—see the solution.

1+42
V2
. 1 1
A-25: (a) See the solution. (b) 5 <e + E)

A-26: (a) 50,000 (b) three terms (n = 0ton = 2) (c) six terms (n = 0ton = 5)
A-27:29

A-28: 513 or higher

A-29: Sq or higher

A-30: 515 or higher

A-24:

&7
14 .37

A-31: The error is in the interval (

A-32: -1

1 1
A-33: A3 == 100

A-34: ¢?
A-35: /e
A-36:

_K&7
7] - 7

7 7_67) ~ (—0.199, —0.040)

2 __38
(6/7)3 ~ 108
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x2n—|—4 2

A37: N (~1)" — ¥arctan x — = log(1 + 22
nz_lo( ) ) x”arctanx — - og(1+ x7)
Q0
A-38: (a) the Maclaurin series for f(x Z x , and its radius of convergence is
R=1. "
(271)! 2n+1 : ;
(b) the Maclaurin series for arcsin x is Z X , and its radius of

221 (n!)2(2n + 1)

=0
convergence is R = 1.

© -1 n—1
A-39: log(x) = log2 + Z n;” (x —2)". It converges when 0 < x < 4.
n=1
© ; xAn+1
A-40: (@) > (-1) yPm (b) 0.493967

n=0

(c) The approximate value of part (b) is larger than the true value of 1(1/2)

1
A-41: —
66
A-42: Any interval of length 0.0002 that contains 0.03592 and 0.03600 is fine.
- a X" .

A-43: (a) 1121(—1) — (b) —0.80 (c) See the solution.

o 2n+1
A-44: (@) & ngo RS TR b)x=m  (c)1.8525
A4 3 o b)I(1) = —2 4 4 4 1

PRI S =—-+-—+-—=-0486£0.
@l T;l oy ® I =gt ggtgs = 04864000
11

©I(1) <=5+ 13

0

A-46: (a) I(x) = > (- 1)n+1x2 _ —lx—lx3+lx5—lx8+~-
' - T R TR T

n=1
(b) 0.460 (o) I(1 )<%—%—|—$<0460
A-47: (a) See the solution. (b) The series converges for all x.
A-48: See the solution.
© X" © x2n
A-49: (a) cosh(x ; P ZO( 20)1 for all x.

A-50: (@) V3~ 126  (b) 12 terms (S11)
15! 21! 27! 33!

A-51: -
T 51.56 71.111.511 + 9!.17!-517  111.23!.5%
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Yy

1 y=f(x)
| | X
A-52: (a) —V2/3 v2/3
(b) the constant function 0 (c) everywhere (d)onlyatx =0

A-53: 0
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SOLUTIONS TO PROBLEMS
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L g a

Solutions to Exercises 1.1 — Jump to TABLE OF CONTENTS

St
y y

1.25 —
0.75 —

1.25 —
0.75 —

The diagram on the left shows a rectangle with area 2 x 1.25 = 2.5 square units. Since the
blue-shaded region is entirely inside this rectangle, the area of the blue-shaded region is
no more than 2.5 square units.

The diagram on the right shows a rectangle with area 2 x 0.75 = 1.5 square units. Since
the blue-shaded region contains this entire rectangle, the area of the blue region is no less
than 1.5 square units.

So, the area of the blue-shaded region is between 1.5 and 2.5 square units.

Remark: we could also give an obvious range, like “the shaded area is between zero and
one million square units.” This would be true, but not very useful or interesting.

S-2:
Solution 1: One naive way to solve this is to simply use the same method as Question 1.

y y

225 —
1.75 —
1.25 —
0.75 —
0.25 —

The rectangle on the left has area 3 x 2.25 = 6.75 square units, and encompasses the
entire shaded region. The rectangle on the right has area 3 x 0.25 = 0.75 square
units, and is entirely contained inside the blue-shaded region. So, the area of the
blue-shaded region is between 0.75 and 6.75 square units.

This is a legitimate approximation, but we can easily do much better. The shape of
this graph suggests that using the areas of three rectangles would be a natural way
to improve our estimate.

Solution 2: Let’s use these rectangles instead:
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y Yy

2.25 — 2.25 —
1.75 — 1.75 —
1.25 — 1.25 —
0.75 — 0.75 —

In the left picture, the red area is (1 x 1.25) 4 (1 x 2.25) + (1 x 0.75) = 4.25 square
units. In the right picture, the red area is (1 x 0.75) + (1 x 1.75) 4 (1 x 0.25) = 2.75
square units. So, the blue shaded area is between 2.75 and 4.25 square units.

S-3: Remark: in the solution below, we find the appropriate approximation using trial
and error. In Question 46, we take a more systematic approach.

Try 1: First, we can try by using a single rectangle as an overestimate, and a single

rectangle as an underestimate.

y Y
1/2 —

1/2 -

1/8 —

The area under the curve is less than the area of the rectangle on the left (2 x % =1)

and greater than the area of the rectangle on the right (2 x % = 411)' So, the area is in

the range <zly 1) . Unfortunately, this range is too big—we need our range to have
length at most 0.2. So, we refine our approximation by using more rectangles.

Try 2: Let’s try using two rectangles each for the upper and lower bounds.
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y Yy

1/2 - 1/2 -
1/4 - 1/4 -
1/8 — 1/8 -

The rectangles in the left picture have area (1 X %) + (1 X %) = 3, and the
rectangles in the right picture have area (1 X l) + (1 X l) = § So, the area under

the curve 1s in the interval ( & 4) The length of this interval is 8, and

3> 32 =1=02 (Indeed, 3 = 0.375 > 0.2.) Since the length of our interval is still

bigger than 0.2, we need even more rectangles.
Try 3: Let’s go ahead and try four rectangles each for the upper and lower estimates.

y y

1/2 - 1/2 -
1/(2v2) — 1/(2v2) —

1/4 - 1/4 -
1/(4V2) 7o — 1/ (42) e —

The area of the rectangles on the left is:

G () (o2) o (otg) -3t

and the area of the rectangles on the right is:

(rae) (o) Gt ()38

So, the area under the curve is in the interval (% [% + \/%] ,% [1 + %D The length

of this interval is =, and & < 7= = £ = 0.2, as desired. (Indeed, = = 0.1875 < 0.2.)

Note, if we choose any value in the interval ( [ + \f] , 3 [1 + }]) as an

approximation for the area under the curve, our error is no more than 0.2.
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S-4: Since f(x) is decreasing, it is larger on the left endpoint of an interval than on the
right endpoint of an interval. So, a left Riemann sum gives a larger approximation.
Notice this does not depend on n.

5

Furthermore, the actual area J f(x)dx is larger than its right Riemann sum, and smaller
0

than its left Riemann sum.

y Y

X

left Riemann sum right Riemann sum

S-5: If f(x) is always increasing or always decreasing, then the midpoint Riemann sum
will be between the left and right Riemann sums. So, we need a function that goes up
and down. Many examples are possible, but let’s work with a familiar one: sin x.

If our intervals have endpoints that are integer multiples of 7, then the left and right
Riemann sums will be 0, since sin(0) = sin(7r) = sin(277) = --- = 0. The midpoints of
these intervals will give y-values of 1 and -1. So, for example, we can let f(x) = sinx,
[a,b] = [0, 7t], and n = 1. Then the right and left Riemann sums are 0, while the midpoint
Riemann sum is 7.

We can extend the example of f(x) = sin x to have more intervals. As long as we have
more positive terms than negative, the midpoint approximation will be a positive
number, and so it will be larger than both the left and right Riemann sums. So, for
example, we can let f(x) = sinx, [4,b] = [0,57], and n = 5. Then the midpoint Riemann
sum is 7T — 7T + 7T — 7T + 7T = 71, which is strictly larger than 0 and so it is larger than both
the left and right Riemann sums.

Yy

5
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S-6:

(a)

(b)

(©)

(d)

S-7

(a)

(b)

7 5
Two possible answers are Z i and Z (i 4+ 2). The first has simpler terms (i versus
i=3 i=1
i 4 2), while the second has simpler indices (we often like to start at i = 1). Neither is
objectively better than the other, but depending on your purposes you might find
one more useful.

The terms of this sum are each double the terms of the sum from part (a), so two
7 5

possible answers are Z 2i and Z (2i +4).

i=3 i=1
We often want to write a sum that involves even numbers: it will be useful for you to

remember that the term 2i (with index 7) generates evens.

The terms of this sum are each one more than the terms of the sum from part (b), so

7 5
two possible answers are Z (2i+1) and 2 (2i +5).
i=3 i=1
In the last part, we used the expression 2i to generate even numbers; 2i + 1 will
generate odds. So will the index 2i + 5, and indeed, 2i + k for any odd number k. The
choice of what you add will depend on the bounds of i.

This sum adds up the odd numbers from 1 to 15. From Part (c), we know that the
formula 2i + 1 is a simple way of generating odd numbers. Since our first term

should be 1 and our last term should be 15, if we use > (2i + 1), then i should run
7

from 0 to 7. So, one way of expressing our sum in sigma notation is Z (2i+1).
i=0

Sometimes we like our sum to start at i = 1 instead of i = 0. If this is our desire, we

can use 2i — 1 as our terms, and let i run from 1 to 8. This gives us another way of
8

expressing our sum: Z (2i —1).
i=1

4
1
The denominators are successive powers of three, so one way of writing this is Z 30
i=1
Equivalently, the terms we’re adding are powers of 1/3, so we can also write

% (3):

This sum is obtained from the sum in (a) by multiplying each term by two, so we can

4 2 4 1 i
write — or 2(=1.

233



(c) The difference between this sum and the previous sum is its alternating sign,
minus-plus-minus-plus. This behaviour appears when we raise a negative number to
successive powers. We can multiply each term by (—1), or we can slip a negative

4 4
2 2
into the number that is already raised to the power i: ;(_1)1§ , or 1; =

(d) This s