T H I R D E D I T I O N CALCULUS EARLY TRANSCENDENTALS

BRIGGS
COCHRAN
GILHETT
SOHULZ

MyLab Math for Calculus: Early Transcendentals, 3e

(access code required)

Used by over 3 million students a year, MyLab™ Math is the world's leading online program for teaching and learning mathematics. MyLab Math for Calculus: Early Transcendentals, 3e delivers text-specific assessment, tutorials, and multimedia resources that provide engaging and personalized experiences, so learning can happen in any environment and course format.

eBook with Interactive Figures

This groundbreaking eBook includes approximately 700 figures that can be manipulated to provide a deeper geometric understanding of key concepts. Plus, all-new Enhanced Interactive Figures incorporate functionality from several standard Interactive Figures, making each one mathematically richer and ideal for in-class demonstrations.

Compute the volume of the solid bounded by the planes below

$$
x=0, x=7, z=y-2, z=-4 y-2, z=0, z=2
$$

Find the double integral needed to determine the volume of the solid.
$\frac{5}{4} \int_{0}^{7} \int_{0}^{2}(z+2) d z d x$
The volume of the solid is $\frac{105}{2}$ cubic units. (Simplify your answer.)

ALL NEW! Instructional Videos

For each section of the text, there is a newly recorded full-lecture video. Many videos make use of Interactive Figures to enhance understanding of concepts. To make them easier to navigate, each lecture video is segmented into parts (Introduction, Example, or Summary). The videos are assignable within MyLab Math, and a Guide to Video-Based Assignments shows which MyLab Math exercises correspond to each video.

Questions that Deepen Understanding

 MyLab Math includes a variety of question types designed to help students succeed in the course. In Setup \& Solve questions, students show how they set up a problem as well as the solution, better mirroring what is required on tests. Additional Conceptual Questions were written by faculty at Cornell University to support deeper, theoretical understanding of the key concepts in calculus.

ALGEBRA

Exponents and Radicals

$x^{a} x^{b}=x^{a+b}$
$\frac{x^{a}}{x^{b}}=x^{a-b}$
$x^{-a}=\frac{1}{x^{a}}$
$\left(x^{a}\right)^{b}=x^{a b} \quad\left(\frac{x}{y}\right)^{a}=\frac{x^{a}}{y^{a}}$
$x^{1 / n}=\sqrt[n]{x}$
$x^{m / n}=\sqrt[n]{x^{m}}=(\sqrt[n]{x})^{m} \quad \sqrt[n]{x y}=\sqrt[n]{x} \sqrt[n]{y}$

Factoring Formulas

$a^{2}-b^{2}=(a-b)(a+b) \quad a^{2}+b^{2}$ does not factor over real numbers. $a^{3}-b^{3}=(a-b)\left(a^{2}+a b+b^{2}\right) \quad a^{3}+b^{3}=(a+b)\left(a^{2}-a b+b^{2}\right)$ $a^{n}-b^{n}=(a-b)\left(a^{n-1}+a^{n-2} b+a^{n-3} b^{2}+\cdots+a b^{n-2}+b^{n-1}\right)$

Binomial Theorem

$(a+b)^{n}=a^{n}+\binom{n}{1} a^{n-1} b+\binom{n}{2} a^{n-2} b^{2}+\cdots+\binom{n}{n-1} a b^{n-1}+b^{n}$, where $\binom{n}{k}=\frac{n(n-1)(n-2) \cdots(n-k+1)}{k(k-1)(k-2) \cdots 3 \cdot 2 \cdot 1}=\frac{n!}{k!(n-k)!}$

Binomials

$$
\begin{aligned}
& (a \pm b)^{2}=a^{2} \pm 2 a b+b^{2} \\
& (a \pm b)^{3}=a^{3} \pm 3 a^{2} b+3 a b^{2} \pm b^{3}
\end{aligned}
$$

Quadratic Formula

The solutions of $a x^{2}+b x+c=0$ are

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} .
$$

GEOMETRY

TRIGONOMETRY

$\cos \theta=\frac{\text { adj }}{\text { hyp }} \sin \theta=\frac{\text { opp }}{\text { hyp }} \tan \theta=\frac{\text { opp }}{\text { adj }}$
$\sec \theta=\frac{\text { hyp }}{\operatorname{adj}} \quad \csc \theta=\frac{\text { hyp }}{\text { opp }} \quad \cot \theta=\frac{\text { adj }}{\text { opp }}$

$$
\begin{aligned}
\cos \theta=\frac{x}{r} & \sec \theta=\frac{r}{x} \\
\sin \theta=\frac{y}{r} & \csc \theta=\frac{r}{y} \\
\tan \theta=\frac{y}{x} & \cot \theta=\frac{x}{y}
\end{aligned}
$$

Reciprocal Identities

$\tan \theta=\frac{\sin \theta}{\cos \theta} \quad \cot \theta=\frac{\cos \theta}{\sin \theta} \quad \sec \theta=\frac{1}{\cos \theta} \quad \csc \theta=\frac{1}{\sin \theta}$

Pythagorean Identities

$\sin ^{2} \theta+\cos ^{2} \theta=1 \quad \tan ^{2} \theta+1=\sec ^{2} \theta \quad 1+\cot ^{2} \theta=\csc ^{2} \theta$

Sign Identities

$\sin (-\theta)=-\sin \theta \quad \cos (-\theta)=\cos \theta \quad \tan (-\theta)=-\tan \theta$
$\csc (-\theta)=-\csc \theta \quad \sec (-\theta)=\sec \theta \quad \cot (-\theta)=-\cot \theta$

Double-Angle Identities

$$
\begin{array}{rlrl}
\sin 2 \theta & =2 \sin \theta \cos \theta & \cos 2 \theta & =\cos ^{2} \theta-\sin ^{2} \theta \\
& & =2 \cos ^{2} \theta-1 \\
\tan 2 \theta & =\frac{2 \tan \theta}{1-\tan ^{2} \theta} & & =1-2 \sin ^{2} \theta
\end{array}
$$

Half-Angle Identities

$\cos ^{2} \theta=\frac{1+\cos 2 \theta}{2} \quad \sin ^{2} \theta=\frac{1-\cos 2 \theta}{2}$

Addition Formulas

$\sin (\alpha+\beta)=\sin \alpha \cos \beta+\cos \alpha \sin \beta$
$\cos (\alpha+\beta)=\cos \alpha \cos \beta-\sin \alpha \sin \beta$
$\tan (\alpha+\beta)=\frac{\tan \alpha+\tan \beta}{1-\tan \alpha \tan \beta}$
$\sin (\alpha-\beta)=\sin \alpha \cos \beta-\cos \alpha \sin \beta$
$\cos (\alpha-\beta)=\cos \alpha \cos \beta+\sin \alpha \sin \beta$
$\tan (\alpha-\beta)=\frac{\tan \alpha-\tan \beta}{1+\tan \alpha \tan \beta}$

Law of Sines
$\frac{\sin \alpha}{a}=\frac{\sin \beta}{b}=\frac{\sin \gamma}{c}$

Law of Cosines

$a^{2}=b^{2}+c^{2}-2 b c \cos \alpha$

Graphs of Trigonometric Functions and Their Inverses

Calculus EARLY TRANSCENDENTALS

Third Edition

WILLIAM BRIGGS
University of Colorado, Denver

LYLE COCHRAN
Whitworth University

BERNARD GILLETT

University of Colorado, Boulder

ERIC SCHULZ

Walla Walla Community College

Director, Portfolio Management:
Executive Editor:
Content Producer:
Managing Producer: Producer:
Manager, Courseware QA:
Manager, Content Development:
Product Marketing Manager:
Field Marketing Manager:
Marketing Assistants:
Senior Author Support/Technology Specialist:
Manager, Rights and Permissions:
Manufacturing Buyer:
Text and Cover Design, Production
Coordination, Composition:
Illustrations:
Cover Image:

Copyright © 2019, 2015, 2011 by Pearson Education, Inc. All Rights Reserved. Printed in the United States of America. This publication is protected by copyright, and permission should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise. For information regarding permissions, request forms, and the appropriate contacts within the Pearson Education Global Rights \& Permissions department, please visit www.pearsoned.com/permissions/.

Attributions of third party content appear on page xxii, which constitutes an extension of this copyright page.
PEARSON, ALWAYS LEARNING, and MYLAB are exclusive trademarks owned by Pearson Education, Inc. or its affiliates in the U.S. and/or other countries.

Unless otherwise indicated herein, any third-party trademarks that may appear in this work are the property of their respective owners and any references to third-party trademarks, logos or other trade dress are for demonstrative or descriptive purposes only. Such references are not intended to imply any sponsorship, endorsement, authorization, or promotion of Pearson's products by the owners of such marks, or any relationship between the owner and Pearson Education, Inc. or its affiliates, authors, licensees or distributors.

Library of Congress Cataloging-in-Publication Data

Names: Briggs, William L., author. I Cochran, Lyle, author. I Gillett, Bernard, author. I Schulz, Eric P., author.
Title: Calculus. Early transcendentals.
Description: Third edition / William Briggs, University of Colorado, Denver, Lyle Cochran, Whitworth University, Bernard Gillett, University of Colorado, Boulder, Eric Schulz, Walla Walla Community College. I New York, NY: Pearson, [2019] I Includes index.
Identifiers: LCCN 2017046414 I ISBN 9780134763644 (hardcover) I ISBN 0134763645 (hardcover)
Subjects: LCSH: Calculus—Textbooks.
Classification: LCC QA303.2 .B75 2019 I DDC 515—dc23
LC record available at https://lcen.loc.gov/2017046414
17

For Julie, Susan, Sally, Sue,
Katie, Jeremy, Elise, Mary, Claire, Katie, Chris, and Annie, whose support, patience, and encouragement made this book possible.

Contents

Preface ix
Credits xxii
1 Functions 1
1.1 Review of Functions 1
1.2 Representing Functions 13
1.3 Inverse, Exponential, and Logarithmic Functions 27
1.4 Trigonometric Functions and Their Inverses 39Review Exercises 51
2 Limits56
2.1 The Idea of Limits 56
2.2 Definitions of Limits 63
2.3 Techniques for Computing Limits 71
2.4 Infinite Limits 83
2.5 Limits at Infinity 91
2.6 Continuity 103
2.7 Precise Definitions of Limits 116
Review Exercises 128
3 Derivatives 131
3.1 Introducing the Derivative 131
3.2 The Derivative as a Function 140
3.3 Rules of Differentiation 152
3.4 The Product and Quotient Rules 163
3.5 Derivatives of Trigonometric Functions 171
3.6 Derivatives as Rates of Change 178
3.7 The Chain Rule 191
3.8 Implicit Differentiation 201
3.9 Derivatives of Logarithmic and Exponential Functions 208
3.10 Derivatives of Inverse Trigonometric Functions 218
3.11 Related Rates 227
Review Exercises 236
4 Applications of the Derivative 241
4.1 Maxima and Minima 241
4.2 Mean Value Theorem 250
4.3 What Derivatives Tell Us 257
4.4 Graphing Functions 271
4.5 Optimization Problems 280
4.6 Linear Approximation and Differentials 292
4.7 L'Hôpital's Rule 301
4.8 Newton's Method 312
4.9 Antiderivatives 321
Review Exercises 334
5 Integration 338
5.1 Approximating Areas under Curves 338
5.2 Definite Integrals 353
5.3 Fundamental Theorem of Calculus 367
5.4 Working with Integrals 381
5.5 Substitution Rule 388
Review Exercises 398
6 Applications of Integration 403
6.1 Velocity and Net Change 403
6.2 Regions Between Curves 416
6.3 Volume by Slicing 425
6.4 Volume by Shells 439
6.5 Length of Curves 451
6.6 Surface Area 457
6.7 Physical Applications 465
Review Exercises 478
7 Logarithmic, Exponential, and Hyperbolic Functions 483
7.1 Logarithmic and Exponential Functions Revisited 483
7.2 Exponential Models 492
7.3 Hyperbolic Functions 502
Review Exercises 518
8 Integration Techniques 520
8.1 Basic Approaches 520
8.2 Integration by Parts 525
8.3 Trigonometric Integrals 532
8.4 Trigonometric Substitutions 538
8.5 Partial Fractions 546
8.6 Integration Strategies 556
8.7 Other Methods of Integration 562
8.8 Numerical Integration 567
8.9 Improper Integrals 582
Review Exercises 593
9 Differential Equations 597
9.1 Basic Ideas 597
9.2 Direction Fields and Euler's Method 606
9.3 Separable Differential Equations 614
9.4 Special First-Order Linear Differential Equations 620
9.5 Modeling with Differential Equations 627
Review Exercises 636
10 Sequences and Infinite Series 639
10.1 An Overview 639
10.2 Sequences 650
10.3 Infinite Series 662
10.4 The Divergence and Integral Tests 671
10.5 Comparison Tests 683
10.6 Alternating Series 688
10.7 The Ratio and Root Tests 696
10.8 Choosing a Convergence Test 700
Review Exercises 704
11 Power Series 708
11.1 Approximating Functions with Polynomials 708
11.2 Properties of Power Series 722
11.3 Taylor Series 731
11.4 Working with Taylor Series 742
Review Exercises 750
12 Parametric and Polar Curves 753
12.1 Parametric Equations 753
12.2 Polar Coordinates 767
12.3 Calculus in Polar Coordinates 779
12.4 Conic Sections 789
Review Exercises 800
13 Vectors and the Geometry of Space 804
13.1 Vectors in the Plane 804
13.2 Vectors in Three Dimensions 817
13.3 Dot Products 827
13.4 Cross Products 837
13.5 Lines and Planes in Space 844
13.6 Cylinders and Quadric Surfaces 855
Review Exercises 865
14 Vector-Valued Functions 868
14.1 Vector-Valued Functions 868
14.2 Calculus of Vector-Valued Functions 875
14.3 Motion in Space 883
14.4 Length of Curves 896
14.5 Curvature and Normal Vectors 902
Review Exercises 916
15 Functions of Several Variables 919
15.1 Graphs and Level Curves 919
15.2 Limits and Continuity 931
15.3 Partial Derivatives 940
15.4 The Chain Rule 952
15.5 Directional Derivatives and the Gradient 961
15.6 Tangent Planes and Linear Approximation 973
15.7 Maximum/Minimum Problems 984
15.8 Lagrange Multipliers 996
Review Exercises 1005
16 Multiple Integration 1008
16.1 Double Integrals over Rectangular Regions 1008
16.2 Double Integrals over General Regions 1017
16.3 Double Integrals in Polar Coordinates 1027
16.4 Triple Integrals 1036
16.5 Triple Integrals in Cylindrical and Spherical Coordinates 1048
16.6 Integrals for Mass Calculations 1063
16.7 Change of Variables in Multiple Integrals 1072
Review Exercises 1084
17 Vector Calculus 1089
17.1 Vector Fields 1089
17.2 Line Integrals 1098
17.3 Conservative Vector Fields 1114
17.4 Green's Theorem 1124
17.5 Divergence and Curl 1136
17.6 Surface Integrals 1146
17.7 Stokes' Theorem 1162
17.8 Divergence Theorem 1171
Review Exercises 1182
D2 Second-Order Differential Equations
(online at goo.gl/nDhoxc)
D2.1 Basic Ideas
D2.2 Linear Homogeneous Equations
D2.3 Linear Nonhomogeneous Equations
D2.4 Applications
D2.5 Complex Forcing FunctionsReview Exercises
Appendix A Proofs of Selected Theorems AP-1
Appendix B Algebra Review (online at goo.gl/6DCbbM)
Appendix C Complex Numbers (online at goo.gl/1bW164)
Answers A-1
Index I-
Table of Integrals End pages

