Functional Analysis, Exercises 6.

1. Show that a norm $\|.\|$ in a complex vector space is induced by an inner product if and only if it satisfies the Parallelogram Identity, i.e. iff

$$||x + y||^{2} + ||x - y||^{2} = 2(||x||^{2} + ||y||^{2})$$

holds for all vectors x and y. Moreover, show that if $\|.\|$ satisfies the Parallelogram Identity, then the inner product $\langle ., . \rangle$ that induces $\|.\|$ is given by

$$\langle x, y \rangle = \frac{1}{4} \left(\|x + y\|^2 - \|x - y\|^2 + i \|x + i y\|^2 - i \|x - i y\|^2 \right).$$

2. Prove the Appolonius theorem, i.e. in an inner product space for all x, y, z vectors the identity

$$||x - y||^{2} + ||x - z||^{2} = 2\left(||x - \frac{y + z}{2}||^{2} + ||\frac{y - z}{2}||^{2}\right)$$

holds.

- 3. Let X be an inner product space. Prove that the following statements are equivalent.
 - (a) $x \perp y$
 - (b) for all scalars λ , $||x + \lambda y|| = ||x \lambda y||$
 - (c) for all scalars λ , $||x + \lambda y|| \ge ||x||$.
- 4. Given x, y in a complex inner product space X, prove that

$$\langle x, y \rangle = \frac{1}{2\pi} \int_0^{2\pi} \|x + e^{it}y\|^2 e^{it} dt.$$

5. Let X be an inner product space and x_1, \ldots, x_{100} unit vectors in X such that $|\langle x_n, x_m \rangle| = 1/10$ for all $n \neq m$. Find a sharp estimate for $||x_1 + \cdots + x_{100}||$.

6. If x is a vector in an inner product space, the show that

$$||x|| = \sup_{||y||=1} |\langle x, y \rangle|.$$

- 7. Assume that a sequence $(x_n)_{n \in \mathbb{N}}$ in a Hilbert space satisfies $\langle x_n, x \rangle \to ||x||^2$ and $||x_n|| \to ||x||$ as $n \to \infty$. Show that $x_n \to x$.
- 8. Show that the norms of the following Banach spaces cannot be induced by inner products.
 - (a) The norm $||x|| = \max\{|x_1|, \dots, ||x_n||\}$ on \mathbb{R}^n .
 - (b) The sup norm on C[a, b]
 - (c) The $\|.\|_p$ norm on any $L^p(\mu)$ space for each $1 \le p \le \infty$ with $p \ne 2$.
- 9. Recall that for the vectors x_1, \ldots, x_n in a Hilbert space \mathcal{H} the $n \times n$ Gram matrix $G(x_1, \ldots, x_n)$ whose i, j entry is $\langle x_i, x_j \rangle$ we called the Gram matrix of the given vectors. Prove the following statements.
 - (a) Every Gram matrix is positive semidefinite. It is positive definite iff the vectors x_j are linearly independent.
 - (b) Every positive semidefinite matrix is a Gram matrix.
 - (c) Let x_1, \ldots, x_n be linearly independent vectors in \mathcal{H} and let \mathcal{M} be their linear span. The for every $y \in \mathcal{H}$

$$\operatorname{dist}(y, \mathcal{M}) = \left(\frac{\operatorname{det} G(y, x_1, \dots, x_n)}{\operatorname{det} G(x_1, \dots, x_n)}\right)^{1/2}$$

- 10. If $(x_n)_{n\in\mathbb{N}}$ is an orthonormal sequence in a Hilbert space \mathcal{H} , then show that $\lim_n \langle x_n, y \rangle = 0$ for each $y \in \mathcal{H}$.
- 11. Let $(\phi_n)_{n \in \mathbb{N}}$ be an orthonormal sequence of functions in the Hilbert space $L^2[-1, 1]$. Show that the sequence of functions $(\psi_n)_{n \in \mathbb{N}}$, where

$$\psi_n(x) = \left(\frac{2}{b-a}\right)^{1/2} \phi_n\left(\frac{2}{b-a}\left(x-\frac{b+a}{2}\right)\right)$$

is an orthonormal sequence in the Hilbert space $L^{2}[a, b]$.

12. Find $a, b, c \in \mathbb{C}$ which minimize the value of the integral

$$\int_{-1}^{1} |x^3 - a - bx - cx^2|^2 \, \mathrm{d} \, x.$$