Functional Analysis, Exercises 7.

- 1. Show that a closed subspace M in a Hilbert space is invariant under a linear bounded operator A iff M^{\perp} is invariant under A^* . Thus M reduces A iff it is invariant under both A and A^* .
- 2. Let X, Y be Banach spaces. Suppose that $T \in \mathcal{B}(X, Y)$ is bounded below, that is, there exists C > 0 s.t. $||Tx|| \ge C ||x||$, for all $x \in X$. Prove that Ran T is closed.
- 3. Let X be a Banach space, $T \in \mathcal{B}(X)$.
 - (a) Show that T is invertible iff T is bounded below and $\operatorname{Ran} T$ is dense.
 - (b) Let X be a Hilbert space. Show that T is invertible iff T is bounded below and Ker $T^* = \{0\}$.
 - (c) Let X be a Hilbert space, T be normal operator. Show that T is invertible iff T is bounded below.
- 4. Let X be a Banach space, $T \in \mathcal{B}(X)$. Show that Ran T is not dense iff there exists a nonzero $\varphi \in X^*$ s.t. $\varphi \circ T = 0$.
- 5. Let \mathcal{H} be a Hilbert space and let $T \in \mathcal{B}(\mathcal{H})$ be normal.
 - (a) Show that $\operatorname{Ker} T$ is T^* -invariant.
 - (b) Show that $(\operatorname{Ker} T)^{\perp}$ is T-invariant.
 - (c) Prove that $\operatorname{Ker} T = \operatorname{Ker} T^2$.
 - (d) Prove that $\operatorname{Ker} T = \operatorname{ker} T^k$ for any positive integer k.
- 6. Let $T \in \mathcal{B}(\mathcal{H})$ be a selfadjoint operator. Show that if $\langle Tx, x \rangle = \text{for all } x \in \mathcal{H}$, then T = 0.
- 7. Prove that an operator $T \in \mathcal{B}(\mathcal{H})$ is normal iff $||Tx|| = ||T^*x||$ for all $x \in \mathcal{H}$.

8. Let define the following $T: \ell_2 \to \ell_2$ operator by

$$T(x_1, x_2, \dots) = \left(\frac{x_1 + x_2}{2}, \frac{x_2 + x_3}{2}, \frac{x_3 + x_4}{2}, \dots\right).$$

Determine the adjoint operator T^* .

9. Let define the following $T: \ell_{\infty} \to \ell_{\infty}$ operator by

$$T(x_1, x_2, x_3, x_4, \dots) = \left(x_1, \frac{x_2}{2}, \frac{x_3}{3}, \frac{x_4}{4}, \dots\right).$$

Show that T is compact. Determine its spectrum (point, continuous, residual).

10. Let define the following $T: \ell_{\infty} \to \ell_{\infty}$ operator by

$$T(x_1, x_2, x_3, x_4, \dots) = \left(x_1, \frac{x_1 + x_2}{2}, \frac{x_1 + x_2 + x_3}{3}, \frac{x_1 + x_2 + x_3 + x_4}{4}, \dots\right).$$

Show that T is bounded and determined ||T||. Is T injective? Is T surjective?

- 11. Consider the Volterra operator $Vf(x) = \int_0^x f(t) \, dt$ on $L^2[0, 1]$.
 - (a) Show that the Volterra operator is compact.
 - (b) Find the adjoint V^* . It is true that V is selfadjoint?
 - (c) Show that its spectrum is $\{0\}$, and that it has no eigenvalues.
- 12. Let $T \in \mathcal{B}(\mathcal{H})$ be arbitrary. Prove that

(a)
$$\sigma(T^*) = \{\overline{\lambda} : \lambda \in \sigma(T)\}.$$

(b) $\lambda \in \sigma_p(T)$ iff $\operatorname{Ran}(\overline{\lambda}I - T)$ is not dense.

13. Show that the residual spectrum of a normal operator $T \in \mathcal{B}(\mathcal{H})$ is always empty.

- 14. Let $T \in \mathcal{B}(\mathcal{H})$ be normal. Prove the following statements.
 - (a) $||T^2|| = ||T||^2$.
 - (b) $||T^{2^k}|| = ||T||^{2^k}$ for every positive integer k.
 - (c) For the spectral radius of T, r(T) = ||T||.
 - (d) $||T^n|| = ||T||^n$ for every positive integer n.
- 15. What is the set of eigenvalues for the left shift operator

$$S_L: (x_1, x_2, x_3, \dots) \mapsto (x_2, x_3, x_4, \dots)$$

- (a) as an $\mathbb{C}^{\mathbb{N}} \to \mathbb{C}^{\mathbb{N}}$ operator?
- (b) as an $\ell_{\infty} \to \ell_{\infty}$ operator?
- (c) as an $\ell_p \to \ell_p$ operator?
- 16. Consider the left shift operator S_L and the right shift operator

$$S_R: (x_1, x_2, x_3, \dots) \mapsto (0, x_1, x_2, x_3, x_4, \dots)$$

as $\ell_2 \to \ell_2$ operators. Determine their adjoints and find their point-, continous- and residual spectrum. What can we say, when we consider S_L and S_R as $\ell_2(\mathbb{Z}) \to \ell_2(\mathbb{Z})$ operators?

- 17. Let X be a Banach space, $A \in \mathcal{B}(X)$, $\lambda \in \mathbb{C}$, and assume there is a sequence $(x_n)_{n\in\mathbb{N}}$ in X so that $||x_n|| = 1$ and $Ax_n \lambda x_n \to 0$ as $n \to \infty$. Prove that $\lambda \in \sigma(A)$.
- 18. Let $T \in \mathcal{B}(\mathcal{H})$ be a selfadjoint operator and $\alpha \in \mathbb{C}$ with $\Im \alpha \neq 0$. Prove that the operator

$$U = (\bar{\alpha}I + T)(\alpha + T)^{-1}$$

is unitary.

- 19. Let $T \in \mathcal{B}(\mathcal{H})$. Prove that $\operatorname{Ker}(T^*T) = \operatorname{Ker} T$.
- 20. Let $T, S \in \mathcal{B}(\mathcal{H})$. Prove the Resolvent identities, i.e.
 - (a) Let $\mu, \lambda \in \rho(T)$, then

$$R_{\lambda}(T) - R_{\mu}(T) = (\lambda - \mu)R_{\lambda}(T)R_{\mu}(T).$$

(b) For $\lambda \in \rho(T) \cap \rho(S)$

$$R_{\lambda}(T) - R_{\lambda}(S) = R_{\lambda}(T)(T-S)R_{\lambda}(S).$$

21. Consider C[0,1] with the supremum norm and let define the following operator

$$T: C[0,1] \to C[0,1], \quad (Tf)(x) = xf(x).$$

Determine the spectrum of T (point, continuous and residual).