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The Markov property of Gaussian states of canonical commutation relation alge-
bras is studied. The detailed description is given by the representing block matrix.
The proof is short and allows infinite dimension. The relation to classical Gaussian
Markov triplets is also described. The minimizer of relative entropy with respect to
a Gaussian Markov state has the Markov property. The appendix contains formulas
for the relative entropy. © 2009 American Institute of Physics.
�doi:10.1063/1.3253974�

I. INTRODUCTION

The notion of Gaussian �or quasifree� state was developed in the framework of the
C�-algebraic approach to the canonical commutation relation �CCR�.16,11,6,18 The CCR algebra is
generated by the Weyl unitaries �satisfying a commutation relation, therefore Weyl algebra is an
alternative terminology�. The Gaussian states on CCR can be regarded as analogs of Gaussian
distributions in classical probability: The n-point functions can be computed from the 2-point
functions, and in a kind of central limit theorem, the limiting state is quasifree and it maximizes
the von Neumann entropy when the 2-point function is fixed.19 The Gaussian states are quite
tractable, for example, the von Neumann entropy has an explicit expression.7,6

The Markov property was invented by Accardi in the noncommutative �or quantum probabi-
listic� setting.1,2 This Markov property is based on a completely positive, identity preserving map,
so-called quasiconditional expectation, and it was formulated in the tensor product of matrix
algebras. �A slightly different formulation is in Ref. 9.� A state of a tensor product system is
Markovian if and only if the von Neumann entropy increase is constant. This property and a
possible definition of the Markov condition was suggested in Ref. 20. A remarkable property of
the von Neumann entropy is the strong subadditivity15,10,17,21 which plays an important role in the
investigations of quantum system’s correlations. The above mentioned constant increase in the von
Neumann entropy is the same as the equality for the strong subadditivity of von Neumann entropy.

A CCR �or Weyl� algebra is parametrized by a Hilbert space, we use the notation CCR�H�
when H is the Hilbert space. Assume that �123 is a state on the composite system CCR�H1�
� CCR�H2� � CCR�H3�. Denote by �12, �23 the restriction to the first two and to the second and
third factors, similarly �2 is the restriction to the second factor. The Markov property is defined as

S��123� − S��12� = S��23� − S��2� ,

where S denotes the von Neumann entropy.17 When �123 is Gaussian, it is given by a positive
operator �corresponding to the 2-point function� and the main goal of the present paper is to
describe the Markov property in terms of this operator. The technique will be using block matrix
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methods and linear analysis. Reference 22 studied a similar question for the CAR algebra,3 is
about multivariate Gaussian distributions, and12 is about quasifree states under the finite dimen-
sional condition. Although the multivariate Gaussian case �in classical probability� is rather dif-
ferent from the present noncommutative setting, we use the same block matrix formalism �and
Ref. 3 was actually a preparation of this problem�. A Gaussian state is described by a block matrix
and the Markov property is formulated by the entries. A Markovian Gaussian state induces mul-
tivariate Gaussian restrictions, but they are very special in that framework. Given a Markovian
Gaussian state, the relative entropy can be minimized under a fixed initial condition. It is proven
that the minimizer is a Markov state as well.

The paper is organized as follows. Section II contains some crucial properties of the Weyl
unitaries in the CCR algebra and the Gaussian states. The Markov condition is not discussed in
details in the setting of noncommutative C�-algebras. In Sec. III we investigate the Gaussian
Markov triplets. The essential necessary and sufficient condition described in the block matrix
approach: the block matrix should be block diagonal. There are nontrivial Markovian quasifree
states which are not a product in the time localization. However, the first and the third subalgebras
are always independent. Note that the proof does not require the finite dimension of the Hilbert
space �contrary to Ref. 12�. In a subsection the Markovian quasifree state is compared with the
spin chain and with the classical probabilistic vector-valued Gaussian. The minimization of the
relative entropy with respect a Gaussian state on CCR is also discussed under two conditions. The
minimizer is Markovian similarly to the probabilistic case.4 Appendix is devoted to the concept of
relative entropy in general CCR case and it is computed for the Gaussian states.

II. PRELIMINARIES

A. CCR algebras

Let H be a Hilbert space. Assume that for every f �H a unitary operator W�f� is given such
that the relations

W�f1�W�f2� = W�f1 + f2�exp�i��f1, f2�� , �1�

W�− f� = W�f�� �2�

hold for f1 , f2 , f �H with ��f1 , f2�ª Im�f1 , f2�. The C�-algebra generated by these unitaries is
unique and denoted by CCR�H�.18,23

The C�-algebra CCR�H� is not separable, but nuclear,8 therefore its tensor product with any
other C�-algebra is uniquely defined �Ref. 13, Chap. 11�. Relation �1� shows that W�f1� and W�f2�
commute if f1 and f2 are orthogonal. It follows that CCR�H1� � CCR�H2� is isomorphic to
CCR�H1 � H2�.

The C�-algebra CCR�H� has a very natural state,

��W�f�� ª exp�− �f�2/2� , �3�

which is called Fock state. The GNS representation of CCR�H� is called Fock representation8 and
it leads to the Fock space F�H� with cyclic vector �, also called vacuum vector. Since � is
actually a product state, the GNS Hilbert space is a tensor product. We shall identify the abstract
unitary W�f� with the representing unitary acting on the Fock space F�H�. The map t�W�tf� is
a strongly continuous 1-parameter group of unitaries, and according to the Stone theorem we have

W�tf� = exp�itB�f�� and � �

�t
�

t=0
W�tf� = iB�f�

for a self-adjoint operator B�f�, called field operator. The distribution of a field operator is Gauss-
ian with respect to the Fock state. The usual �Bose� creation operator is defined by
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a+�f� =
1
	2

�B�f� − iB�if�� ,

and the annihilation operator a�f� is its adjoint.

B. Gaussian states

The Fock state �3� can be generalized by choosing a positive operator A�B�H�,

�A�W�f�� ª exp�− �f�2/2 − �f ,Af�� . �4�

This is called Gaussian or �gauge invariant� quasifree state. By derivation we get

�A�B�f�B�g�� = − i��f ,g� + 1
2 ��f ,�I + 2A�g� + �g,�I + 2A�f�� = Re�f ,�I + 2A�g� − i Im�f ,g� ,

and all higher order correlation functions are expressed by this two-point functions.6 Moreover,

�A�a+�f�a�g�� = �g,Af� . �5�

For 0�A�B�H�, the statistical operator of the quasifree state �A of CCR�H� in the Fock
representation has the form

DA =
���A�I + A�−1��

�Tr ��A�I + A�−1��
, �6�

where � is the second quantization of operators.6 Therefore, the von Neumann entropy is

S��A� = Tr ��A�, where ��t� = − t log t + �t + 1�log�t + 1� . �7�

Assume that H=H1 � H2 and write the positive mapping A�B�H� in the form of block
matrix,

A = 
A11 A12

A21 A22
� .

If f �H1, then

�A�W�f � 0�� = exp�− �f�2/2 − �f ,A11f�� .

Therefore, the restriction of the quasifree state �A to CCR�H1� is the quasifree state �A11
.

C. Classical Markov triplets

Let X=X1�X2�X3 be a finite set with probability distribution p�x1 ,x2 ,x3� �xi�Xi ,1� i
�3�. The Markov property is defined by conditional probabilities in the stochastic setting,

p�x3�x1,x2� = p�x3�x2� ,

which means

p�x1,x2,x3�
p�x1,x2�

=
p�x2,x3�

p�x2�

or

log p�x1,x2,x3� + log p�x2� = log p�x2,x3� + log p�x1,x2� .

The expectation value gives the Shannon entropy equality,
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S�p123� + S�p2� = S�p12� + S�p23� ,

which is actually an equivalent form. This relation can be used for the definition of Markov
property in the CCR setting.

III. MARKOV PROPERTY ON CCR

A. Matrix characterization

Assume that the Hilbert space H has the orthogonal decomposition H1 � H2 � H3. Then

CCR�H� = CCR�H1� � CCR�H2� � CCR�H3�

and the equality in the strong subadditivity of the von Neumann entropy can be the definition of
the Markov property.20

We study the Markov property of a Gaussian state �A�123, where A is a positive operator
acting on H. This operator has the block matrix form,

A = �A11 A12 A13

A12
� A22 A23

A13
� A23

� A33
� ,

and we set

B = 
A11 A12

A12
� A22

�, C = 
A22 A23

A23
� A33

� .

In connection with the strong subadditivity of the von Neumann entropy, the definition of the
Markov property is

Tr ��A� + Tr ��A22� = Tr ��B� + Tr ��C� , �8�

where � :R+→R+ is defined in �7�. Our aim is to characterize the Markov property in terms of the
block matrix A.

Denote by Pi the orthogonal projection from H onto Hi, 1� i�3. Of course, P1+ P2+ P3= I,
and we use also the notation P12ªP1+ P2 and P23ªP2+ P3.

Theorem 2.1: Assume that A�B�H� is a positive invertible operator and the Gaussian state
�A�123 on CCR�H� has finite von Neumann entropy. Then the following conditions are equiva-
lent.

�a� S��123�+S��2�=S��12�+S��23�.
�b� Tr ��A�+Tr ��P2AP2�=Tr ��P12AP12�+Tr ��P23AP23�.
�c� There is a projection P�B�H�, such that P1� P� P1+ P2 and PA=AP.

Proof: �a� and �b� are different only in notation. Condition �c� tells that the matrix A has a
special form,

A = �
A11 �a 0 � 0


a�

0
� 
c 0

0 d
� 
0

b
�

0 �0 b� � A33

� = �

A11 a

a� c
� 0

0 
d b

b� A33
� � , �9�

where the parameters a ,b ,c ,d �and 0� are operators. This is a block diagonal matrix, A
=Diag�A1 ,A2�,
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A1 0

0 A2
� ,

and the projection P is


I 0

0 0
�

in this setting.
The Hilbert space H2 is decomposed as H2

L
� H2

R, where H2
L is the range of the projection

PP2. Therefore,

CCR�H� = CCR�H1 � H2
L� � CCR�H2

R
� H3� �10�

and �123 becomes a product state �L � �R. This shows that the implication �c�⇒ �a� is obvious.
The essential part is the proof �a�⇒ �c� which is based on a result of Ref. 3,

Tr log�A� + Tr log�A22� � Tr log�B� + Tr log�C� �11�

holds and the necessary and sufficient condition for equality is A13=A12A22
−1A23.

The integral representation,

��x� = �
1

	

t−2 log�tx + 1�dt , �12�

shows that the function � is operator monotone �since the logarithm is so5� and �12� implies the
inequality

Tr ��A� + Tr ��A22� � Tr ��B� + Tr ��C� . �13�

The equality holds if and only if

tA13 = tA12�tA22 + I�−1tA23

for almost every t
1. The continuity gives that actually for every t
1, we have

A13 = A12�A22 + t−1I�−1A23.

The right-hand side, A12�A22+zI�−1A23, is an analytic function on �z�C :Re z
0�, therefore, we
have

A13 = 0 = A12�A22 + sI�−1A23 �s � R+� ,

as the s→	 case shows. Since A12s�A22+sI�−1A23→A12A23 as s→	, we have also 0=A12A23. The
latter condition means that Rng A23�Ker A12, or equivalently �Ker A12���Ker A23

� .
The linear combinations of the functions x�1 / �s+x� form an algebra, and due to the Stone–

Weierstrass theorem A12g�A22�A23=0 for any continuous function g.
We want to show that the equality implies the structure �9� of the operator A. We have

A23:H3→H2 and A12:H2→H1. To show the structure �9�, we have to find a subspace H�H2,
such that

A22H � H, H� � Ker A12, H � Ker A23
� ,

or alternatively �H�=�K�H2 should be an invariant subspace of A22, such that

Rng A23 � K � Ker A12.

Let
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K ª ��
i

A22
ni A23xi:xi � H3,ni � Z+�

be a set of finite sums. It is a subspace of H2. The property Rng A23�K and the invariance under
A22 are obvious. Since

A12A22
n A23x = 0,

K�Ker A12 also follows. The proof is complete. �

B. Comparisons

We can compare the structure of a Markov state on the CCR algebra with the tensor product
of full matrix algebras.10 In the case Mk�C� � Mk�C� � Mk�C�, the middle factor contains a decom-
position

� i�Bi
L

� Bi
R� �14�

and the Markov state has the form �ipi�i � �i, where �i is a state of Mk�C� � Bi
L and �i is a state

of Bi
R

� Mk�C�.10 The CCR situation is similar, but we do not have direct sum as �14�, but only
tensor product decomposition.

We want to compare the classical Gaussian situation with the CCR setting. For the sake of
simplicity in this subsection we assume that the Hilbert spaces H1, H2, and H3 are all
k-dimensional.

Let X1 ,X2 ,X3 be vector-valued random variables with Gaussian joint probability distribution,

	Det M

�2��3k exp�−
1

2
�x,Mx�� , �15�

where M �M3k�C� is positive definite matrix. The triplet �X1 ,X2 ,X3� has the Markov property if
and only if the covariance matrix S=M−1 of �X1 ,X2 ,X3� is of the form

� S11 S12 S12S22
−1S23

S12
� S22 S23

S23
� S22

−1S12
� S23

� S33
� , �16�

that is,

S13 = S12S22
−1S23, �17�

See Ref. 3. To show some analogy between the classical Gaussian and the CCR Gaussian case, we
formulate a somewhat similar description to �17� in the CCR setting.

Theorem 2.2: The block matrix

A = �A11 A12 A13

A21 A22 A23

A31 A32 A33
�

gives a quasifree state with the Markov property if and only if

A13 = A12f�A22�A23 �18�

for any continuous function f :R→R.
Proof: If the Markov property holds, then A has the form of �9�, and we have
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A12f�A22�A23 = �a 0 �
 f�c� 0

0 f�d� �
0

b
� = 0 = A13.

The converse is part of the proof of Theorem 2.1. �

We choose unit vectors ej, 1� j�3k, such that

e�i−1�k+r � Hi, 1 � i � 3, 0 � r � k − 1, �19�

and

�et,eu� is real for any 1 � t, u � 3k . �20�

In the Fock representation the Weyl unitaries W�tej�=exp�tiB�ej�� commute and give the �un-
bounded� field operators B�ej�. It follows from Refs. 3 and 12 that the classical �multivalued�
Gaussian triplet,

�B�e1�, . . . ,B�ek��, �B�ek+1�, . . . ,B�e2k��, �B�e2k+1�, . . . ,B�e3k�� , �21�

is Markovian if and only if

�I + 2A�13 = �I + 2A�12�I + 2A�22
−1�I + 2A�23 �22�

which means that �1,3� element of �I+2A�−1 is 0. If the quasifree state induced by A gives a
Markov triplet, then �22� is true and the classical Markov property of �21� follows.3 The converse
is not true. However, if for every A �
0� the classical Markov property is true, then from �22�
we have

A13 = A12�I/�2� + A�22
−1A23

and the Markovianity of the quasifree state follows.

C. Minimizing relative entropy

Recall the notations H=H1 � H2 � H3 and CCR�H�=CCR�H1� � CCR�H2� � CCR�H3�. The
next theorem is the analog of Ref. 4.

Theorem 2.3: Let ��A be a Markovian a Gaussian state on the CCR algebra CCR�H� and
let �1 be a state of CCR�H1� with a 2-point function. If � is the state minimizing the relative
entropy S�� ��A� under the constraint that � �CCR�H1�=�1 is fixed, then � is a Markov state.

Proof: We have the tensor product structure �=�L � �R on �10�. Due to the monotonicity of
the relative entropy,

S�� � �� � S���CCR�H1 � H2
L� � ��CCR�H1 � H2

L��

holds and it is enough to minimize the right-hand side. The right-hand side can be finite, for
example, if � is Gaussian, therefore, the minimizer is uniquely exists. If the state �� is the
minimizer, then �=�� � �R is the minimizer on CCR�H� due to the conditional expectation
property, see Chap. 2 in Ref. 17. From the product structure the Markov property follows. �

Note that the minimizer Markovian state � has the same conditional expectation than the
given state �. In the probabilistic case the similar statement is well known, see Ref. 4, for
example.

Theorem 2.4: Let ��A be a Markovian quasifree state on the CCR algebra CCR�H�. There
exists a state � which is minimizing the relative entropy S�� ��A� under the constraint that � �A1

has a fixed 2-point operator. Moreover, � is a Markov state.
Proof: Let T be the 2-point operator of � �A1=� and assume that �A is determined by the

matrix �9�. Similarly to the proof of the previous theorem, we have to concentrate first to the
restrictions of � and �A to ALªCCR�H1 � H2

L�. Here they have the block matrices,
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�:
 T u

u� v
� and �A�AL:
A11 a

a� c
� .

The unknown entries u and v of the first matrix are uniquely determined by the minimization of
S�� ��A �AL�. When � is obtained, � has the matrix

�
T u 0 0

u� v 0 0

0 0 d b

0 0 b� A33

� .

So �=� � �R. From the product structure the Markov property follows. �
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APPENDIX: RELATIVE ENTROPY

The von Neumann entropy and the relative entropy were defined originally for statistical
operators,

S�D� = − Tr D1 log D1, S�D1 � D2� = Tr D1�log D1 − log D2� .

Kosaki’s formula can be used to define relative entropy of states of a C�-algebra A,

S�� � �� = sup
n

sup���I�log n − �
1/n

	

���y�t��y�t�� + t−1��x�t�x�t����
dt

t � ,

where the first sup is taken over all natural numbers n, the second one is over all step functions
x : �1 /n ,	�→A with finite range and y�t�= I−x�t�.14 The von Neumann entropy can be defined via
the relative entropy,

S��� = sup��
i

iS��i � ��:�
i

i�i = �� .

Here the supremum is over all decompositions of � into finite �or equivalently countable� convex
combinations of other states.

In our situation �A is a Gaussian state of the CCR algebra which has a normal extension �̄A

in the Fock representation and so S��A�=S��̄A�. If the state � does not have a normal extension,

then S�� ��A�=+	. When �̄ is the normal extension, then S�� ��A�=S��̄ � �̄A�, see Chaps. 5 and 6
in Ref. 17 about the details. It is a consequence that we can work in the Fock representation.

We want to compute the relative entropy of a state � and a Gaussian state �A. The point is the
computation of the term ��log DA�, where DA is the statistical operator of �A. Using

log ��A�I + A�−1� = �
i

log
i

1 + i
a+�f i�a�f i� �A1�

and

log Tr ��A�I + A�−1� = Tr log�I + A� , �A2�

we have
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��log DA� = ��log ��A�I + A�−1�� − log Tr ��A�I + A�−1�

= �
i

log
i

1 + i
��a+�f i�a�f i�� − Tr log�I + A� = �

i

log
i

1 + i
�f i,Tfi� − Tr log�I + A�

= Tr T log A�I + A�−1 − Tr log�I + A� ,

where T is the 2-point operator of �. Hence

S�� � �A� = − S��� − Tr T log A�I + A�−1 + Tr log�I + A� . �A3�

If A=T, then we have

− S��� + S��A� � 0,

that is, the quasifree state �A has the largest entropy among states with 2-point function A. On the
other hand, the relative entropy of the Gaussian states �B and �A is

S��B � �A� = Tr B�log B − log A� − Tr�I + B��log�I + B� − log�I + A�� . �A4�
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