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1. Introduction

In a series of papers [3,8,11,9] the first author and his coauthors described the struc-
tures of surjective maps of the positive definite cones in matrix algebras, or in operator
algebras which can be considered generalized isometries meaning that they are transfor-
mations which preserve “distances” with respect to given so-called generalized distance 
measures. This latter notion stands for any function d : X ×X → [0, ∞) on any set X
with the mere property that for x, y ∈ X we have d(x, y) = 0 if and only if x = y. We 
recall that in several areas of mathematics not only metrics are used to measure nearness 
of points but also more general functions of this latter kind.

In [11,9] the considered generalized distance measures are of the form d = dN,g, where 
N(.) is a unitarily invariant norm on the underlying matrix algebra or operator algebra, 
g : (0, ∞) → C is a continuous function with the properties

(a1) g(y) = 0 if and only if y = 1;
(a2) there exists a constant K > 1 such that 

∣∣g (y2)∣∣ ≥ K |g(y)|, y > 0,

and the generalized distance measure dN,g is defined by

dN,g(X,Y ) = N
(
g
(
Y −1/2XY −1/2

))
(1)

for all positive invertible elements X, Y of the underlying algebra. In the mentioned 
papers one can see several important examples of that sort of generalized distance mea-
sures, many of them having backgrounds in the differential geometry of positive definite 
matrices or operators. The basic tools in describing the structure of the correspond-
ing generalized isometries have been so-called generalized Mazur–Ulam type theorems 
and descriptions of certain algebraic isomorphisms (Jordan triple isomorphisms) of the 
positive definite cones in question.

In the present paper we determine the structures of generalized isometries with respect 
to other important types of generalized distance measures. Namely, here we consider 
Bregman divergences and Jensen divergences. These types of divergences have wide 
ranging applications in several areas of mathematics. For example, in the recent vol-
ume [12] on matrix information geometry 3 chapters are devoted to the study of Bregman 
divergences. One feature of Jensen divergences which justifies their importance is that 
Bregman divergences can be considered as asymptotic Jensen divergences (see Section 6.2 
in [12]). We further mention that the famous Stein’s loss and Umegaki’s relative entropy 
are among the most important Bregman divergences. Our basic tool in this paper to 
determine the corresponding preserver transformations is, just as above, also algebraic 
in nature but rather different from what we have mentioned in the previous paragraph. 
Namely, here we use order isomorphisms.

Before presenting the results we fix the notation and terminology. In what follows Mn

denotes the algebra of all n ×n complex matrices and Pn stands for the positive definite 
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cone in Mn, i.e., the set of all positive definite matrices in Mn. Whenever convenient, in 
the paper we use the equivalence of the language of matrices and that of linear operators 
on Cn.

We next define the two basic concepts what we consider in this paper, Bregman diver-
gence and Jensen divergence. Both concepts are connected to convex real functions. Let 
f be a convex function on the interval (0, ∞). It is known that f is necessarily contin-
uous and the set of points where f is differentiable has at most countable complement. 
It is a remarkable fact that if f is everywhere differentiable then its derivative f ′ is 
automatically continuous (see e.g. [14, Corollary 25.5.1]).

For a differentiable convex function f on (0, ∞), the Bregman f -divergence on Pn is

Hf (X,Y ) = Tr (f(X) − f(Y ) − f ′(Y )(X − Y )) , X, Y ∈ Pn,

see e.g. formula (5) in [13]. If limx→0+ f(x) and limx→0+ f ′(x) exist, then f , f ′ have 
continuous extensions onto [0, ∞) and the Bregman f -divergence is well-defined and 
finite for any pair of positive semidefinite matrices, too.

For a convex function f on (0, ∞) and for given λ ∈ (0, 1), the Jensen λ −f -divergence 
on Pn is defined by

Jf,λ(X,Y ) = Tr (λf(X) + (1 − λ)f(Y ) − f (λX + (1 − λ)Y )) , X, Y ∈ Pn.

If limx→0+ f(x) exists, then the Jensen λ − f -divergence is also well-defined and finite 
for any pair of positive semidefinite matrices.

It is well-known that Hf and Jf,λ are always nonnegative and they are generalized 
distance measures (in the sense we use in this paper) if and only if f is strictly convex.

Our main aim is to describe the “symmetries” of the positive definite cone Pn that 
preserve above type of divergences. This means that we are looking for the structure of 
all bijective maps φ : Pn → Pn for which

Hf (φ(X), φ(Y )) = Hf (X,Y ), X, Y ∈ Pn

or

Jλ,f (φ(X), φ(Y )) = Jλ,f (X,Y ), X, Y ∈ Pn

holds.

2. The results

We now turn to our results. It is useful to examine first the question that how different 
the present problem is from the ones we have considered in the papers [3,8,11,9]. To 
see clearly the differences we determine below which Bregman divergences, respectively 
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which Jensen divergences are of the form (1). Let us begin with the case of Bregman 
divergences.

One of the most important Bregman divergence is the one usually denoted by l which 
corresponds to the strictly convex function f(x) = − log x, x > 0 and is called Stein’s 
loss. Apparently, we have

l(X,Y ) = −Tr
(
logX − log Y − Y −1(X − Y )

)
= TrXY −1 − log detXY −1 − n

for all X, Y ∈ Pn, where we have used the identity Tr ◦ log = log ◦ det on Pn. On the 
other hand, the continuous function g(y) = y − log y − 1, y > 0 is nonnegative, satisfies 
the conditions (a1), (a2) (with constant K = 2), and with the trace norm ‖.‖1 we easily 
get

d‖.‖1,g(X,Y ) =
∥∥∥g (Y −1/2XY −1/2

)∥∥∥
1

= l(X,Y ), X, Y ∈ Pn.

In the next proposition we prove that Stein’s loss is essentially the only Bregman 
divergence on Pn which is a generalized distance measure of the form (1). Observe that 
any distance measure of the form (1) is invariant under multiplication of the variables 
X, Y by the same positive scalar t.

Proposition 1. Let f be a differentiable convex function on (0, ∞). Assume that the 
Bregman f -divergence Hf on Pn is homogeneous of degree 0, i.e., it satisfies

Hf (tX, tY ) = Hf (X,Y ), X, Y ∈ Pn, t > 0. (2)

Then we have f(x) = a log x + bx + c, x > 0 with some real scalars a, b, c and a ≤ 0.

Proof. We plug scalar multiples of the identity X = xI, Y = yI, x, y > 0 into the 
equality (2) and obtain

f(tx) − f(ty) − f ′(ty)t(x− y) = f(x) − f(y) − f ′(y)(x− y), t > 0. (3)

Choosing t = 1/y and reordering this equality we have

f ′(y) = (1/(x− y))(f(x) − f(y) − f(x/y) + f(1) + f ′(1)((x/y) − 1)))

implying that f is twice continuously differentiable. Differentiating (3) with respect to 
x twice we obtain f ′′(x) = f ′′(tx)t2, x, t > 0. In particular, it follows that f ′′(t) is a 
constant multiple of t−2, t > 0. We infer that f(t) = a log t + bt + c, t > 0 holds with 
some real constants a, b, c. By the convexity of f we have a ≤ 0. �

Concerning the appearance of the function x 	→ bx + c in the above proposition we 
note that adding an affine function to a given convex function f does not change the 
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corresponding Bregman divergence (the same holds for Jensen divergence, too), hence 
that part simply does not count.

We next examine the case of Jensen divergences. Again, let f(x) = − log x, x > 0 and 
pick λ ∈ (0, 1). It is easy to see that the corresponding Jensen divergence is

J− log,λ(X,Y ) = log det (λX + (1 − λ)Y ) − log detXλY 1−λ, X, Y ∈ Pn

which can also be written as

J− log,λ(X,Y ) = log det
(
λY −1/2XY −1/2 + (1 − λ)I

)
− log det

(
Y −1/2XY −1/2

)λ

= Tr
(

log
((

λY −1/2XY −1/2 + (1 − λ)I
)(

Y −1/2XY −1/2
)−λ

))
, X, Y ∈ Pn.

These divergences are scalar multiples of the Chebbi–Moakher log-determinant α-di-
vergences, see [2,11]. As mentioned in [11] (see pages 146–147) the continuous function 
gλ(y) = log

(
(λy + (1 − λ))/yλ

)
, y > 0 is nonnegative, satisfies (a1), (a2) (with constant 

K = 2) and, moreover, we have

J− log,λ(X,Y ) =
∥∥∥gλ (Y −1/2XY −1/2

)∥∥∥
1
, X, Y ∈ Pn.

This means that the Jensen divergences J− log,λ are also of the form (1).
Let us insert the remark here that in the particular case λ = 1/2 the above Jensen 

divergence was considered and called S-divergence in the paper [15] of Sra. He proved the 
interesting fact there that the square root of this divergence is a true metric and proposed 
to use it as a convenient substitute for the geodesic distance d‖.‖2,log (‖.‖2 stands for the 
Hilbert–Schmidt or Frobenius norm) originating from the natural Riemann geometric 
structure on Pn.

Continuing the discussion, above we have seen that the divergences J− log,λ are of the 
form (1). In what follows we show that they are essentially the unique Jensen divergences 
with this property.

Proposition 2. Let f be a convex function on (0, ∞) and pick a number λ ∈ (0, 1). Assume 
that the corresponding Jensen λ −f divergence is homogeneous of order 0, i.e., it satisfies

Jf,λ(tX, tY ) = Jf,λ(X,Y ), X, Y ∈ Pn, t > 0. (4)

Then we have f(x) = a log x + bx + c, x > 0 with some real scalars a, b, c and a ≤ 0.

Proof. Just as above, plugging scalar multiples of the identity X = xI, Y = yI, x, y > 0
into the equality (4) we have

λf(tx) + (1 − λ)f(ty) − f(λtx + (1 − λ)ty)

= λf(x) + (1 − λ)f(y) − f(λx + (1 − λ)y), t > 0. (5)
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We assert that f is differentiable. In fact, choosing x = 1 we have

f(t) = (1/λ)(λf(1) + (1 − λ)f(y) − f(λ + (1 − λ)y)

− (1 − λ)f(ty) + f(λt + (1 − λ)ty)).

The result [5, 11.3. Theorem] of Járai on the regularity of solutions of functional equations 
applies and tells us that f is necessarily continuously differentiable. Differentiating (5)
with respect to t we have

0 = λf ′(tx)x + (1 − λ)f ′(ty)y − f ′(λtx + (1 − λ)ty)(λx + (1 − λ)y)

implying the equality

λf ′(tx)x + (1 − λ)f ′(ty)y = f ′(λtx + (1 − λ)ty)(λx + (1 − λ)y)

for all positive t, x, y. Choosing t = 1 we infer

λf ′(x)x + (1 − λ)f ′(y)y = f ′(λx + (1 − λ)y)(λx + (1 − λ)y).

This means that the function h(x) = f ′(x)x, x > 0 is affine and hence it is of the form 
h(x) = bx +a, x > 0. It follows that f(x) = a log x + bx + c, x > 0 with some real scalars 
a, b, c. Again, the convexity of f implies a ≤ 0. �

The above results can be considered as characterizations (hopefully a bit interesting) 
of the Stein’s loss and the Chebbi–Moakher log-determinant α-divergences.

We now turn to the descriptions of the corresponding generalized isometries, i.e., 
transformations preserving the considered divergences. We begin with a general result 
relating to Bregman divergences.

We first mention the easy fact that both kinds of divergences are clearly invariant 
under unitary and antiunitary congruence transformations. These are maps of the form 
A 	→ UAU∗, where U is a unitary or an antiunitary operator on Cn. In fact, this follows 
from the following. For any continuous function f on (0, ∞) and for any unitary or 
antiunitary operator U on Cn we have that f (UAU∗) = Uf(A)U∗ holds for every 
positive definite A. This is the consequence of the fact that on the spectrum of A the 
function f coincides with a polynomial p and hence we have f (UAU∗) = p (UAU∗) =
Up(A)U∗ = Uf(A)U∗. Our theorems below show that in many cases only the unitary 
and antiunitary congruence transformations preserve the Bregman divergence.

Theorem 3. Let f be a differentiable convex function on (0, ∞) such that f ′ is bounded 
from below and unbounded from above. Let φ : Pn → Pn be a bijective map which satisfies

Hf (φ(A), φ(B)) = Hf (A,B) , A,B ∈ Pn.
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Then there exists a unitary or antiunitary operator U : Cn → Cn such that φ is of the 
form

φ(A) = UAU∗, A ∈ Pn.

Proof. First we recall that since f is convex and everywhere differentiable, f ′ is con-
tinuous. By the convexity of f , its derivative f ′ is monotonically increasing. The as-
sumption that f ′ is bounded from below implies that limx→0+ f ′(x) exists and is finite. 
Hence f ′ can be continuously extended onto [0, ∞). The same holds for f , too. Indeed, 
f(x) = f(1) +

∫ x

1 f ′(t)dt, x > 0 and 
∫ x

1 f ′(t)dt is convergent as x tends to 0 by the 
boundedness of f ′ on (0, 1].

In the rest of the proof we shall need the following characterization of the usual order ≤
on Pn.

Claim A. Let B, C ∈ Pn. The set

{Hf (B,A) −Hf (C,A)|A ∈ Pn} (6)

is bounded from below if and only if B ≤ C.

To prove the claim we first compute

Hf (B,A) −Hf (C,A)

= Tr f(B) − Tr f(A) − Tr f ′(A)(B −A)

− Tr f(C) + Tr f(A) + Tr f ′(A)(C −A)

= Tr f(B) − Tr f(C) + Tr f ′(A)(C −B). (7)

Let k denote a lower bound of f ′. Assume B ≤ C. Then by the inequality

f ′(A) ≥ kI, A ∈ Pn,

we have that

Tr f ′(A)(C −B) ≥ Tr kI(C −B) = kTr(C −B)

holds for every A ∈ Pn which shows that the set (6) is bounded from below. Conversely, 
if B � C, then there exists a unit vector x ∈ Cn such that 〈Bx, x〉 > 〈Cx, x〉. Let Px

denote the orthogonal projection onto the one-dimensional subspace generated by x. For 
any t > 0 we have

Tr f ′ (tPx + (I − Px)) (C −B) = f ′(t) 〈(C −B)x, x〉 + f ′(1) Tr (I − Px) (C −B). (8)
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Since 〈(C −B)x, x〉 < 0 and {f ′(t)|t > 0} is unbounded from above, hence the first term 
on the right hand side of (8) is unbounded from below. By (7), it follows that the set

{Hf (B,A) −Hf (C,A)|A ∈ Pn}

is unbounded from below. This proves our claim.
Since the bijective map φ : Pn → Pn preserves the Bregman f -divergence, using the 

above characterization of the order we obtain that φ is an order automorphism, i.e., for 
any B, C ∈ Pn we have B ≤ C if and only if φ(B) ≤ φ(C).

By the result [7, Theorem 1] of the first author, φ, just as any order automorphism 
of Pn, is of the form

φ(A) = TAT ∗, A ∈ Pn,

where T is an invertible linear or conjugate-linear operator on Cn. We may suppose that 
T is linear, since if we are done with this, the case of conjugate-linear T is not difficult 
to handle.

We show that T is unitary. Assume on the contrary that T is not unitary. Then 
T ∗T �= I. Consider the polar decomposition T = UP of T where P =

√
T ∗T is positive 

definite and U = TP−1 is unitary. Since the Bregman f -divergence is invariant under 
unitary congruences, hence we have

Hf (A,B) = Hf (φ(A), φ(B)) = Hf (TAT ∗, TBT ∗)

= Hf (UPAPU∗, UPBPU∗) = Hf (PAP,PBP ) (9)

for all A, B ∈ Pn. Since T is not unitary, hence P �= I, and thus P has an eigen-
value different from 1. Without serious loss of generality we may assume that P has an 
eigenvalue greater than 1 for the following reason. The map A 	→ PAP is a bijection 
of Pn which preserves the Bregman f -divergence. Therefore, the inverse transformation 
A 	→ P−1AP−1 preserves the Bregman f -divergence as well. If P does not have any 
eigenvalue greater than 1, P−1 must have one.

Suppose that Pv = λv for some λ > 1 and unit vector v ∈ Cn. Let Qv be the 
orthogonal projection onto the one-dimensional subspace generated by v. By (9), the 
transformation A 	→ PAP preserves the Bregman f -divergence and so does any of its 
powers A 	→ PnAPn. Hence

Hf

(
λ2Qv, Qv

)
= Hf

(
Pnλ2QvP

n, PnQvP
n
)

= Hf

(
λ2(n+1)Qv, λ

2nQv

)
(10)

holds for any n ∈ N.
We now consider the symmetrized Bregman f -divergence Hf (A, B) +Hf (B, A) which 

can be written in the following convenient form
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Hf (A,B) + Hf (B,A) = Tr f(A) − Tr f(B) − Tr f ′(B)(A−B)

+ Tr f(B) − Tr f(A) − Tr f ′(A)(B −A) = Tr (f ′(A) − f ′(B)) (A−B).

By (10) we have

Hf

(
λ2Qv, Qv

)
+ Hf

(
Qv, λ

2Qv

)
= Hf

(
λ2(n+1)Qv, λ

2nQv

)
+ Hf

(
λ2nQv, λ

2(n+1)Qv

)
= Tr

(
f ′(λ2(n+1)Qv) − f ′(λ2nQv)

)(
λ2(n+1)Qv − λ2nQv

)
=

(
f ′

(
λ2(n+1)

)
− f ′ (λ2n))λ2n (λ2 − 1

)
for any n ∈ N. This means that 

(
f ′(λ2(n+1)) − f ′ (λ2n))λ2n is independent of n, that is,

f ′
(
λ2(n+1)

)
− f ′ (λ2n) = c

(λ2)n

holds for some constant c. Therefore,

lim
x→∞

f ′(x) = lim
n→∞

f ′
(
λ2(n+1)

)
= lim

n→∞

(
f ′(1) +

n∑
k=0

(
f ′

(
λ2(k+1)

)
− f ′ (λ2k)))

= f ′(1) + lim
n→∞

n∑
k=0

c

(λ2)k
= f ′(1) + c

∞∑
n=0

(
λ−2)n < ∞,

which contradicts the assumption that f ′ is unbounded from above. The proof of the 
theorem is complete. �

The probably most important Bregman f -divergences on Pn correspond to the fol-
lowing functions: x 	→ xp (p > 1), x 	→ x log x − x, x 	→ − log x. Unfortunately, the 
general theorem above covers only the case of the first type of functions. Indeed, the sec-
ond function has derivative which is neither bounded from below nor unbounded from 
above and the derivative of the third one is not bounded from below. Fortunately, the 
Bregman divergence related to the third function, i.e., Stein’s loss is of the form (1) and 
the corresponding preservers were characterized in [11]. By [11, Theorem 2] a surjective 
map φ : Pn → Pn preserves the Stein’s loss if and only if there is an invertible linear or 
conjugate linear operator T : Cn → Cn such that φ is of the form

φ(A) = TAT ∗, A ∈ Pn.

In what follows we characterize the preservers of Umegaki’s relative entropy or, in 
other words, von Neumann divergence which is the Bregman divergence corresponding 
to the function x 	→ x log x − x. It is clear that this divergence equals
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Tr (A(logA− logB) − (A−B)) , A,B ∈ Pn.

The result reads as follows.

Theorem 4. Let φ : Pn → Pn be a surjective map which satisfies

Tr (φ(A) (logφ(A) − log φ(B)) − (φ(A) − φ(B)))

= Tr(A(logA− logB) − (A−B)), A,B ∈ Pn. (11)

Then there exists a unitary or antiunitary operator U : Cn → Cn such that φ is of the 
form

φ(A) = UAU∗, A ∈ Pn.

Proof. We begin with the following general observation. Assume that f is a strictly 
convex differentiable function on (0, ∞). We assert that for any B, C ∈ Pn, the set

{Hf (A,B) −Hf (A,C)|A ∈ Pn}

is bounded from below if and only if f ′(B) ≤ f ′(C). Indeed, we have

Hf (A,B) −Hf (A,C)

= Tr (f ′(C) − f ′(B))A + Tr (f(C) − f(B) − (f ′(C)C − f ′(B)B))

which is easily seen to be bounded from below if and only if f ′(C) − f ′(B) ≥ 0.
Therefore, for any surjective (and hence, by the strict convexity of f , bijective) map 

φ : Pn → Pn which preserves the Bregman f -divergence, we obtain that φ has the 
property that

f ′(B) ≤ f ′(C) ⇐⇒ f ′ (φ(B)) ≤ f ′ (φ(C)) .

This means that the transformation A 	→ f ′
(
φ
(
f ′−1(A)

))
is an order automorphism 

of the set of all self-adjoint operators on Cn with spectrum contained in the range of f ′.
In our particular case we have f ′ = log, therefore A 	→ log

(
φ
(
eA

))
is an order 

automorphism of the set of all self-adjoint operators on Cn. By [6, Theorem 2] we have 
an invertible linear or conjugate-linear operator T : Cn → Cn and a self-adjoint linear 
operator X : Cn → Cn such that

log
(
φ
(
eA

))
= TAT ∗ + X

or

φ(A) = eT log AT∗+X , A ∈ Pn. (12)
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We assume that T is linear, the conjugate-linear case is similar, not difficult to handle. 
Consider the polar decomposition T = UP of T where U is unitary and P =

√
T ∗T

is positive definite. As already mentioned, the unitary similarity transformation A 	→
UAU∗ preserves Bregman divergences. Since

φ(A) = eUP (log A)PU∗+X = UeP (log A)P+U∗XUU∗, A ∈ Pn,

it follows that in (12) we can and do assume that T is a positive definite operator. We 
prove that necessarily T = I holds. To see this, first assume that T has an eigenvalue 
which is greater than 1. We know that

Tr
(
eT (log A)T+X(T (logA)T − T (logB)T ) −

(
eT (log A)T+X − eT (log B)T+X

))
= Tr(A(logA− logB) − (A−B)), A,B ∈ Pn. (13)

Fixing A, B, write tB in the place of B where t > 0 is arbitrary. The above equality 
gives us that

a log t + Tr e(log t)T 2+T (log B)T+X + c = d log t + et + f, t > 0 (14)

holds for some real constants a, b, c, d, e, f . Select a real number μ such that μI ≤
T (logB)T + X. Let λ be an eigenvalue of T which is greater than 1 and let x be a 
corresponding unit eigenvector. Denote by Px the rank-one projection onto the subspace 
generated by x. Then λ2Px ≤ T 2, so for t ≥ 1 we have (log t)λ2Px + μI ≤ (log t)T 2 +
T (logB)T + X. By the monotonicity of trace functions (see [1, 2.10. Theorem]) this 
implies that

Tr e(log t)λ2Px+μI ≤ Tr e(log t)T 2+T (log B)T+X , t ≥ 1.

Therefore, the function t 	→ Tr e(log t)T 2+T (log B)T+X , t ≥ 1 can be minorized by a func-
tion αtλ

2 + β with some positive α and real number β. Since λ2 > 1, considering the 
equality (14) and letting t tend to infinity, we easily obtain a contradiction. Therefore, 
the eigenvalues of T are all less than or equal to 1. However, the inverse of φ also preserves 
the von Neumann divergence and we have

φ−1(A) = eT
−1(log A)T−1−T−1XT−1

, A ∈ Pn.

It follows that the eigenvalues of T−1 are also not greater than 1. We conclude that 
T = I.

We finally prove that X = 0. Let A = I and B be any element of Pn which commutes 
with X. We obtain from (13) that

Tr eX(− logB + B − I) = Tr(− logB + B − I).
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By the properties of the function x 	→ − log x + x − 1, x > 0 (strictly increasing for 
x ≥ 1, and takes the value 0 at 1) it is easy to see that any positive semidefinite operator 
D which commutes with X can be written as D = − logB + B − I with some positive 
definite B which commutes with X. Consequently, we have

Tr eXD = TrD

for any positive semidefinite operator D on Cn. This clearly implies that eX = I, i.e., 
X = 0. The proof of the theorem is complete. �

Let us mention here that the structure of all surjective maps on the set of nonsingular 
density operators (i.e., positive definite operators with trace 1) which preserve the rela-
tive entropy was determined in [7, Theorem 3]. The conclusion there is analogous to the 
conclusion here, those maps are unitary or antiunitary congruence transformations. Fur-
thermore, the fundamental idea of the proof there is basically the same as here although 
the details are rather different.

We now turn to the preservers of Jensen divergences. Our general result reads as 
follows.

Theorem 5. Let f be a differentiable strictly convex function on (0, ∞), assume 
limx→0+ f(x) exists and is finite and f ′ is unbounded from above. Pick λ ∈ (0, 1). If 
φ : Pn → Pn is a surjective map which satisfies

Jf,λ (φ(A), φ(B)) = Jf,λ (A,B) , A,B ∈ Pn,

then there exists a unitary or antiunitary operator U : Cn → Cn such that φ is of the 
form

φ(A) = UAU∗, A ∈ Pn.

Proof. Observe first that, by the assumptions on the function, f is monotonically in-
creasing for large enough values of its variable. Next, we verify the following.

Claim B. For any B, C ∈ Pn, the set

{Jf,λ(A,B) − Jf,λ(A,C)|A ∈ Pn}

is bounded from below if and only if B ≤ C.

To prove the claim first observe that

Jf,λ(A,B) − Jf,λ(A,C) = (1 − λ) (Tr f(B) − Tr f(C)) +

+ Tr f (λA + (1 − λ)C) − Tr f (λA + (1 − λ)B) , A ∈ Pn.
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Assume now that B ≤ C and that there is a sequence (Ak) in Pn such that

Tr f (λAk + (1 − λ)C) − Tr f (λAk + (1 − λ)B) → −∞.

Denote μ(k)
i , i = 1, . . . , n the eigenvalues of λAk + (1 − λ)B and λ(k)

i , i = 1, . . . , n
the eigenvalues of λAk + (1 − λ)C both ordered in increasing order. By the Weyl 
inequality (see e.g. [4, 4.3.3. Corollary]) it follows that μ(k)

i ≤ λ
(k)
i for all i and k. 

Moreover, we have 
∑

i

(
f
(
λ

(k)
i

)
− f

(
μ

(k)
i

))
→ −∞ which implies that the sequence (

f
(
λ

(k)
i

)
− f

(
μ

(k)
i

))
is not bounded from below for some i = 1, . . . , n and hence it has a 

subsequence 
(
f
(
λ

(kl)
i

)
− f

(
μ

(kl)
i

))
→ −∞. Since f is bounded from below, we deduce 

that f
(
μ

(kl)
i

)
→ ∞. This implies that μ(kl)

i → ∞ and hence f
(
λ

(kl)
i

)
− f

(
μ

(kl)
i

)
≥ 0

for all but finitely many indexes l which is a contradiction.
Conversely, if B � C, then there exists a unit vector x ∈ Cn such that 〈Bx, x〉 >

〈Cx, x〉. Set ε = 〈(B − C)x, x〉 and let Px denote the orthogonal projection onto the 
one-dimensional subspace generated by x. Let m be a positive number such that mI −
(1 − λ)C is positive definite. For any t > 0 set

At := 1
λ

(mI + tPx − (1 − λ)C) .

Now

Jf,λ(At, B) − Jf,λ(At, C) = (1 − λ) (Tr f(B) − Tr f(C))

+ Tr f (λAt + (1 − λ)C) − Tr f (λAt + (1 − λ)B)

= (1 − λ) (Tr f(B) − Tr f(C)) + Tr f (mI + tPx)

− Tr f (mI + tPx + (1 − λ)(B − C)) . (15)

Let {x, y2, y3, . . . , yn} be an orthonormal basis in Cn. For 2 ≤ j ≤ n, denote by ajj the 
diagonal matrix elements of mI + tPx + (1 − λ)(B − C) relative to this basis, that is,

ajj := 〈(mI + tPx + (1 − λ)(B − C)) yj , yj〉 = 〈(mI + (1 − λ)(B − C)) yj , yj〉 .

Note that ajj is independent of t for 2 ≤ j and

〈(mI + tPx + (1 − λ)(B − C))x, x〉 = m + t + (1 − λ)ε.

By Peierls inequality (see [1, 2.9. Theorem]), for the convex function f we have

f(m + t + (1 − λ)ε) +
n∑

j=2
f(ajj) ≤ Tr f (mI + tPx + (1 − λ)(B − C)) .

On the other hand, it is apparent that
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Tr f (mI + tPx) = f(m + t) + (n− 1)f(m).

Therefore, by (15),

Jf,λ(At, B) − Jf,λ(At, C) ≤ f(m + t) − f(m + t + (1 − λ)ε) + K(B,C),

where

K(B,C) = (1 − λ) (Tr f(B) − Tr f(C)) + (n− 1)f(m) −
n∑

j=2
f(ajj)

is independent of the parameter t. Since f ′ is unbounded from above, hence

lim
t→∞

f(m + t) − f(m + t + (1 − λ)ε) = −∞,

and this completes the proof of our claim.
Using the characterization of the order given in Claim B, we see that the transforma-

tion φ is an order automorphism of Pn and hence it is of the form

φ(A) = TAT ∗, A ∈ Pn,

where T is an invertible linear or conjugate-linear operator on Cn. We consider only the 
case where T is linear and prove that then T is necessarily unitary.

As already mentioned, the unitary–antiunitary congruence transformations preserve 
the Jensen divergences. Hence, by polar decomposition, we can assume that T is a 
positive definite operator.

Any power of φ is also a divergence preserver, so for every positive integer n we have 
that

Trλf(TnATn) + (1 − λ)f(TnBTn) − f(Tn(λA + (1 − λ)B)Tn)

= Trλf(A) + (1 − λ)f(B) − f(λA + (1 − λ)B), A,B ∈ Pn. (16)

Since f is continuously extendible onto [0, ∞), thus we can insert any positive semidefinite 
operators A, B in the equality above. Assume T has an eigenvalue, say s, which is greater 
than 1 and x is a corresponding unit eigenvector. As before, denote by Px the orthogonal 
projection onto the subspace generated by x. Plug A = Px and B = 0 into (16). We have

λf
(
s2n)− f

(
λs2n) = c

with some constant c. One can easily check that the function t 	→ λf(t) − f(λt) is 
monotonically increasing (just differentiate and use that f ′ is increasing). Since s2n → ∞, 
it follows that
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λf(t) − f(λt) = c, t > 0.

We deduce λf ′(t) = f ′(λt)λ, t > 0 and this implies that f ′ is constant. We obtain that 
f is affine, a contradiction. It follows that T has no eigenvalue which is greater than 1. 
Since φ−1 also preserves the λ − f Jensen divergence, we have that the eigenvalues of 
T−1 are also not greater than 1. It follows that T = I and the proof of the theorem is 
complete. �

Let us again consider the three most important examples x 	→ xp (p > 1), x 	→
x log x − x, x 	→ − log x of generating functions. The first two do satisfy the conditions 
in our theorem, hence the corresponding preservers are unitary–antiunitary congruence 
transformations. As for the third one, it does not satisfy the conditions (not bounded 
below), but the Jensen divergence in that case is of the form (1), see the discussion 
before Proposition 2. By [11, Theorem 2], a surjective map φ : Pn → Pn preserves the 
corresponding Jensen divergence (i.e., Chebbi–Moakher log-determinant α-divergence) 
if and only if there is an invertible linear or conjugate linear operator T : Cn → Cn such 
that φ is of the form

φ(A) = TAT ∗, A ∈ Pn.

In closing the paper we finally remark that the main result in our paper [10] where 
we have described the structure of all transformations on any dense subset of density 
operators that preserve the Holevo bound is closely related to Theorem 5 in the particular 
case where the function f is x 	→ x log x − x, x > 0. Indeed, the Holevo bound of the 
ensemble {λ, 1 −λ} is just the corresponding Jensen divergence. We admit that the proof 
in [10] is of completely different character.
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