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ABSTRACT. We obtain connections between comparative convexity prop-
erties and comparative concavity properties of certain functions de-
fined on positive definite operators by continuous functional calcu-
lus. Among others, we show that any positive, operator concave func-
tion defined on the positive half-line is convex with respect to the har-
monic mean, and any positive, operator convex, and numerically non-
increasing function on the positive half-line is concave with respect to
the harmonic mean. We propose some open problems, as well.

1. INTRODUCTION

A real function f defined on some interval I ⊂R is said to be convex if

f
(
(1−λ)x +λy

)≤ (1−λ) f (x)+λ f (y)
(
x, y ∈ I ,λ ∈ [0,1]

)
holds. For continuous functions, convexity coincides with the a priori
weaker mid-point convexity property

(1) f

(
1

2
(x + y)

)
≤ 1

2

(
f (x)+ f (y)

) (
x, y ∈ I

)
.

In fact, under very mild conditions, convexity is equivalent to mid-point
convexity, see [4, Thm. 30]. If we introduce the notation mA(x, y) := 1

2 (x+
y) for the arithmetic mean, equation (1) can be written as follows:

(2) f
(
mA(x, y)

)≤ mA
(

f (x), f (y)
) (

x, y ∈ I
)

.

It is quite natural to consider equation (2) with means different from the
arithmetic mean. By considering (2) with general means, we arrive to the
topic of comparative convexity. For a detailed introduction to this field,
we refer to [9, Chapter 2]. However, we collect some of the basic notions
of the topic below based on the book [9].
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In order to define comparative convexity of functions, we have to de-
fine means first.

Definition 1 (Means of real numbers). Let I be a real interval. A function
m : I × I →R is called a mean if

min{x, y} ≤ m(x, y) ≤ max{x, y}
(
x, y ∈ I

)
holds.

Comparative convexity is defined for general means as follows.

Definition 2 (Comparative convexity). Let m and n be means of positive
numbers. We say that a function f : (0,∞) → (0,∞) is (m,n)-convex if

(3) f
(
m(x, y)

)≤ n
(

f (x), f (y)
)

holds for any x, y ∈ (0,∞). The (m,n)-concave property is defined accord-
ingly.

Obviously, if both m and n is the arithmetic mean, we recover the clas-
sical notion of convexity. If m is the arithmetic mean and n is the geo-
metric mean, we get the notion of log-convexity. The terminology is mo-
tivated by the fact that the inequality f

(
mA(x, y)

) ≤ mG
(

f (x), f (y)
)

is
equivalent to the classical convexity of the function log◦ f . (Here and thro-
ughout, mA and mG stand for the arithmetic and geometric means of
positive numbers, respectively.) If both m and n is the geometric mean,
we get the notion of multiplicative convexity. We emphasize that now
we follow the terminology of [9]. Sometimes, (mA,mG )-convexity is re-
ferred to as multiplicative convexity, see, e.g., [4, Def. 31]. However, in the
present paper (mA,mG )-convexity is called log-convexity, and (mG ,mG )-
convexity is referred to as multiplicative convexity.

Comparative convexity can be defined analogously for maps sending
positive operators to positive operators. The tools we need for the defini-
tion are continuous functional calculus, Kubo-Ando operator means, and
the order on self-adjoint operators induced by positivity. So, throughout
this paper, if f is a continuous function defined on some interval I ⊂ R

and A is a self-adjoint bounded operator on a Hilbert space such that its
spectrum σ(A) is contained in I , then the symbol f (A) denotes the oper-
ator obtained by continuous functional calculus. In the next section we
provide a detailed introduction to the topic of operator means and oper-
ator connections. The order on self-adjoint operators induced by posi-
tivity (the Löwner order) is defined as follows: A ≤ B if and only if B − A
is positive semidefinite. A continuous function f : R ⊃ I → R is said to
be operator monotone if for any self-adjoint bounded operators A and B
which satisfy A ≤ B and σ(A)∪σ(B) ⊂ I we have f (A) ≤ f (B). Operator
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convexity of continuous functions is defined similarly. If f : R ⊃ I → R

is a continuous function satisfying f
(1

2 (A+B)
) ≤ 1

2

(
f (A)+ f (B)

)
for any

self-adjoint operators A and B with σ(A)∪σ(B) ⊂ I , then f is said to be
operator convex. Operator concavity is defined accordingly. Note that the
above definition are precisely the definitions of mid-point convexity and
concavity, but we consider only continuous functions, and in this case,
convexity and mid-point convexity coincide.

Let us introduce some notation, as well. Throughout this paper, H is
a complex Hilbert space and B(H ) denotes the set of all bounded linear
operators on H . The symbol B(H )++ stands for the set of all positive
definite (that is, positive semidefinite and invertible) elements of B(H ).

The main result of this paper concerns comparative convexity of op-
erator functions. In particular, we show that any positive, operator con-
cave function defined on the positive half-line is convex with respect to
the harmonic mean, and any positive, operator convex, and numerically
non-increasing function on the positive half-line is concave with respect
to the harmonic mean.

2. KUBO-ANDO MEANS OF POSITIVE OPERATORS

Based on the seminal paper [6], we recall some basic facts from the
Kubo-Ando theory of operator means. For the sake of simplicity and clar-
ity, we present the basics of the theory of operator means only for positive
definite operators. In this way, we avoid some technical difficulties which
are not relevant from our viewpoint.

Definition 3 (Operator connection, operator mean). A binary operation
σ : B(H )++×B(H )++ →B(H )++; (A,B) 7→ AσB is said to be an opera-
tor connection if

• it is monotone in both variables, that is,

(A ≤ B &C ≤ D) =⇒ AσC ≤ BσD,

• the equation

C (AσB)C = (C AC )σ (C BC )

holds for any A,B ,C ∈B(H )++,
• and if the monotone decreasing sequences An and Bn tend to A and

B , respectively, in the strong operator topology, then AnσBn tends
to AσB monotone decreasingly in the strong operator topology.

An operator connection satisfying the equation IσI = I is called operator
mean. (The symbol I stands for the identity operator on H .)

Example 1. We enumerate some of the most important operator means.
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• The arithmetic mean of positive definite operators is denoted by
∇ and is defined as A∇B = 1

2 (A+B) .
• The geometric mean [1, 10] is denoted by the symbol # and is de-

fined as

A#B = A1/2 (
A−1/2B A−1/2)1/2

A1/2.

• The harmonic mean (denoted by the symbol !) is defined as

A!B =
(

1

2

(
A−1 +B−1))−1

.

There is a very important one-to-one correspondence between oper-
ator connections and positive operator monotone functions defined on
the positive half-line. This correspondence is as follows. Given an opera-
tor connectionσ, one can define a positive function g on (0,∞) by g (x) :=
1σx. The map σ 7→ g obtained this way is an affine order-isomorphism
from the class of connections onto the class of positive operator mono-
tone functions [6, Thm. 3.2.]. Moreover, the connection σ can be recov-
ered from the function g by the formula

AσB = A
1
2 g

(
A− 1

2 B A− 1
2

)
A

1
2 ,

see, e.g. [6, Eq. (3.8)]. It follows from the definition of operator means,
that the means are in a one-to-one correspondence with the positive op-
erator monotone functions satisfying g (1) = 1. Sometimes, the function g
obtained from the connectionσ is referred to as the representing function
of σ.

Example 2. The representing functions of the arithmetic, the geometric,
and the harmonic means are g A(x) = (1+ x)/2, gG (x) =p

x, and gH (x) =
(2x)/(1+x), respectively.

We introduce the following notation. For an operator monotone func-
tion g : (0,∞) → (0,∞), we denote the corresponding operator connec-
tion by Mg , that is,

Mg (A,B) = A
1
2 g

(
A− 1

2 B A− 1
2

)
A

1
2

(
A,B ∈B(H )++

)
.

2.1. Comparative operator convexity. Comparative convexity for func-
tions sending positive operators to positive operators can be defined sim-
ilarly to the case of functions sending positive numbers to positive num-
bers. Therefore, the following definition is formally very similar to Defi-
nition 2.

Definition 4 (Comparative operator convexity). Let M and N be opera-
tor connections (in the sense of Definition 3). We say that a continuous
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function f : (0,∞) → (0,∞) is (M , N )-convex if

(4) f (M(X ,Y )) ≤ N
(

f (X ), f (Y )
)

holds for any X ,Y ∈ B(H )++. (Recall that expressions like f (X ) are de-
fined by continuous functional calculus.) The (M , N )-concave property is
defined accordingly.

If a function f is (M , M)-convex (-concave) for some operator connec-
tion M then we may say that f is convex (concave) with respect to the
connection M .

Remark 1. Note that while in Definition 2 comparative convexity was de-
fined with means, in Definition 4 comparative operator convexity was
defined with operator connections (and not only with operator means).
In fact, there is no reason to restrict ourselves to operator means in the
definition of comparative operator convexity.

2.2. The adjoint of a connection. Taking the adjoint of an operator con-
nection is a common operation in the theory of operator connections. In
order to define the adjoint of a connection, first we define the adjoint of
a function.

Definition 5 (Adjoint function). For any function g : (0,∞) → (0,∞) the
adjoint function of g is denoted by g∗ and it is defined by

g∗ : (0,∞) → (0,∞); x 7→ g∗(x) := 1

g
( 1

x

) .

If g is also continuous then we have

(5) g∗ (
X −1)= g (X )−1 , g

(
X −1)= g∗ (X )−1 (

X ∈B(H )++
)

.

The above computation rules are straightforward to check and will be
used in the following computations several times.

The adjoint of a connection is defined as follows. Letσ be a connection
and let g be the representing function ofσ. The representing function g is
a positive operator monotone function defined on the positive half-line,
hence so is its adjoint, the function g∗ (the only non-trivial fact which is
used at this point is that the map x 7→ 1/x is operator monotone decreas-
ing). That is, g∗ is also a representing function of an operator connection,
and this connection is said to be the adjoint of σ, and is denoted by σ∗.

The following claim shows that the adjoint of a connection can be ex-
pressed very explicitly. This fact is mentioned also in [6], see Eq. (4.1).
The proof of this claim is rather straightforward, but we present it for the
sake of completeness.
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Claim 1. Let g : (0,∞) → (0,∞) be an operator monotone function. Then
we have

(6) Mg∗
(

A−1,B−1)= (
Mg (A,B)

)−1 (
A,B ∈B(H )++

)
.

Proof.

Mg∗
(

A−1,B−1)= A− 1
2 g∗

(
A

1
2 B−1 A

1
2

)
A− 1

2

= A− 1
2

(
g

((
A

1
2 B−1 A

1
2

)−1
))−1

A− 1
2 = A− 1

2

(
g

(
A− 1

2 B A− 1
2

))−1
A− 1

2

=
(

A
1
2 g

(
A− 1

2 B A− 1
2

)
A

1
2

)−1 = (
Mg (A,B)

)−1 .

�

Remark 2. Let us note the following facts.

• The adjoint of the arithmetic mean is the harmonic mean, and
vice versa.

• The geometric mean is self-adjoint.

The following claim shows that there is a one-to-one correspondence
between the self-adjoint functions — that is, functions mapping (0,∞)
into itself and satisfying g (x) = (

g
(
x−1

))−1
— and the odd functions on

the real line.

Claim 2. Let ϕ : R→ R be an odd function, that is φ(−t ) = −ϕ(t ), (t ∈R) .
Then the function

g : (0,∞) → (0,∞); x 7→ g (x) := exp
(
ϕ

(
log(x)

))
is self-adjoint, that is, g∗ = g .

Moreover, if a function g : (0,∞) → (0,∞) is self-adjoint, that is, it sat-
isfies g (x) = (

g
(
x−1

))−1
, then the function ϕ : R → R defined by ϕ(t ) :=

log
(
g

(
exp(t )

))
is odd.

This claim can be verified by straightforward computations. So, every
odd function on the real line determines a self-adjoint function on (0,∞)
and vice versa.

Remark 3. Note that every power function f (x) = xp
(
p ∈R)

is self-adjoint
on (0,∞).

3. MAIN RESULTS

The following lemma is not difficult to prove, however, it leads to sev-
eral interesting statements.
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Lemma 3. Let f : (0,∞) → (0,∞) be a continuous function and let g and
h be positive operator monotone functions defined on (0,∞). Then the fol-
lowings are equivalent.

(a) The function f is
(
Mg , Mh

)
-concave, that is,

(7) f
(
Mg (X ,Y )

)≥ Mh
(

f (X ), f (Y )
) (

X ,Y ∈B(H )++
)

.

(b) The function f ∗ is
(
Mg∗ , Mh∗

)
-convex, that is,

(8) f ∗ (
Mg∗ (X ,Y )

)≤ Mh∗
(

f ∗(X ), f ∗(Y )
) (

X ,Y ∈B(H )++
)

.

In particular, a continuous function f : (0,∞) → (0,∞) is concave with
respect to the operator connection Mg if and only if the adjoint function
f ∗ is convex with respect to the adjoint connection Mg∗ .

Proof. Let us consider first the direction (a) ⇒ (b). Let X and Y be arbi-
trary positive definite operators. By Claim 1 and the computation rules
(5) we have

f ∗ (
Mg∗ (X ,Y )

)= f ∗
((

Mg
(
X −1,Y −1))−1

)
= (

f
(
Mg

(
X −1,Y −1)))−1

.

Taking the inverse reverses the semidefinite order, hence by the concavity
assumption (7) we can majorize the latest term as follows:(

f
(
Mg

(
X −1,Y −1)))−1 ≤ (

Mh
(

f
(
X −1) , f

(
Y −1)))−1

.

Taking Claim 1 into account again and using the computation rules (5)
we get that(

Mh
(

f
(
X −1) , f

(
Y −1)))−1 = Mh∗

((
f
(
X −1))−1

,
(

f
(
Y −1))−1

)
= Mh∗

(
f ∗(X ), f ∗(Y )

)
,

and so the inequality (8) is verified.
The direction (b) ⇒ (a) is very similar. Assuming (8) we can deduce

that

f
(
Mg (X ,Y )

)= f
((

Mg∗
(
X −1,Y −1))−1

)
= (

f ∗ (
Mg∗

(
X −1,Y −1)))−1

≥ (
Mh∗

(
f ∗ (

X −1) , f ∗ (
Y −1)))−1 = Mh

((
f ∗ (

X −1))−1
,
(

f ∗ (
Y −1))−1

)
= Mh

(
f (X ), f (Y )

)
.

�

Our main results (Theorem 4 and Theorem 5) are heavily based on this
Lemma 3.
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Theorem 4. Any operator concave function is convex with respect to the
harmonic mean, that is, if f : (0,∞) 7→ (0,∞) is operator concave, then

f (X !Y ) ≤ f (X )! f (Y )
(
X ,Y ∈B(H )++

)
,

where the symbol ! stands for the harmonic mean.

Proof. For any function f : (0,∞) → (0,∞) the followings are equivalent.

• f is operator monotone,
• f is operator concave,

see, e.g., [5, Thm. 4.43]. The adjoint of an operator monotone function is
operator monotone (see the discussion after Definition 5 where the ad-
joint of a function was defined), so the adjoint of a positive operator con-
cave function defined on the positive half-line is operator concave. That
is, for an operator concave function f : (0,∞) → (0,∞) we have

(9) f ∗ (X∇Y ) ≥ f ∗(X )∇ f ∗(Y )
(
X ,Y ∈B(H )++

)
,

where ∇ denotes the arithmetic mean. As mentioned in Remark 2, the
harmonic mean is the adjoint of the arithmetic mean, hence by Lemma
3, the inequality (9) implies

f (X !Y ) ≤ f (X )! f (Y )
(
X ,Y ∈B(H )++

)
,

which completes the proof. �

Example 3. The function f (x) = xp is operator concave, if 0 ≤ p ≤ 1,
hence by Theorem 4, the inequality

(X !Y )p ≤ X p !Y p (
p ∈ [0,1], X ,Y ∈B(H )++

)
holds.

Theorem 5. If f : (0,∞) 7→ (0,∞) is operator convex function such that the
numerical function f (x) is non-increasing, then f is concave with respect
to the harmonic mean, that is,

f (X !Y ) ≥ f (X )! f (Y )
(
X ,Y ∈B(H )++

)
.

Proof. By the result of [2, Thm. 2.1 and Thm. 3.1], if f : (0,∞) → (0,∞) is
a continuous function, then f is operator convex and numerically non-
increasing if and only if f is operator monotone decreasing. The map
X 7→ X −1 reverses the Löwner order on positive definite operators, so it is
clear that if f is operator monotone decreasing, then so is f ∗. Using again
the result of [2, Thm. 2.1 and Thm. 3.1], this means that f ∗ is operator
convex. And now, let us use Lemma 3 and the fact that the arithmetic
mean is the adjoint of the harmonic mean (Remark 2) to deduce that f is
concave with respect to the harmonic mean. �
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Remark 4. Not only the numerically non-increasing operator convex func-
tions are concave with respect to the harmonic mean. It is well-known
that for any p ∈ [1,2], the power function f (x) = xp is operator convex
(see, e.g., [3, Chapter V]). As we have remarked before, every power func-
tion is self-adjoint (Remark 3). Using this self-adjoint property of the
power functions and the fact that the arithmetic mean is the adjoint of the
harmonic mean (Remark 2), we obtain by Lemma 3 that for any 1 ≤ p ≤ 2
the function f (x) = xp is concave with respect to the harmonic mean,
that is,

(X !Y )p ≥ X p !Y p (
p ∈ [1,2], X ,Y ∈B(H )++

)
.

So, we have seen that those operator convex functions which are non-
increasing as numerical functions are concave with respect to the har-
monic mean, and that there is a family of numerically increasing oper-
ator convex functions which are concave with respect to the harmonic
mean, as well. Therefore, the following question naturally appears.

Problem 1. Is it true that every operator convex function is concave with
respect to the harmonic mean?

4. CLOSING REMARKS AND FURTHER OPEN QUESTIONS

Note that Lemma 3 has an easy but remarkable consequence for self-
adjoint functions. Namely, that if f is a self-adjoint function (that is, f =
f ∗ holds), then f is concave with respect to the operator connection Mg if
and only is f is convex with respect to the adjoint connection Mg∗ . Recall
that there is a lot of self-adjoint function in the sense that the self-adjoint
functions are in a one-to-one correspondence with the odd functions on
the real line (see Claim 2).

The situation is even more interesting if the connection Mg is also self-
adjoint (and not just the function f .) In this case, by Lemma 3, if f is
convex with respect to Mg , that is,

(10) f
(
Mg (X ,Y )

)≤ Mg
(

f (X ), f (Y )
) (

X ,Y ∈B(H )++
)

,

then f is also concave with respect to Mg , that is,

(11) f
(
Mg (X ,Y )

)≥ Mg
(

f (X ), f (Y )
) (

X ,Y ∈B(H )++
)

.

The Löwner order on self-adjoint operators is antisymmetric, hence the
inequalities (10) and (11) imply

(12) f
(
Mg (X ,Y )

)= Mg
(

f (X ), f (Y )
) (

X ,Y ∈B(H )++
)

,

which means that f preserves the connection Mg . We summarize the re-
sult of the above argument in a proposition.
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Proposition 6. Let f : (0,∞) → (0,∞) be a continuous self-adjoint func-
tion and let Mg be a self-adjoint operator connection. Then the followings
are equivalent.

(i) The function f is convex with respect to Mg , that is, (10) holds.
(ii) The function f is concave with respect to Mg , that is, (11) holds.

(iii) The function f preserves the connection Mg , that is, (12) holds.

The geometric mean A#B = A1/2
(

A−1/2B A−1/2
)1/2

A1/2 is an important
example of self-adjoint connections. Proposition 6 shows that if a self-
adjoint function (for example, a power function) is convex (or concave)
with respect to the geometric mean, then is preserves the geometric mean.
The reader who is interested in the description of the preserver transfor-
mations of the geometric mean and other operator means should consult
the works [7] and [8] of Lajos Molnár.

We have seen above (Proposition 6) that every self-adjoint connection
Mg has the property that if a self-adjoint function f is convex with respect
to Mg , then f preserves the connection Mg (in the sense of Eq. (12)). It is
quite natural to ask whether this property characterizes the self-adjoint
connections or not. We formulate this question precisely as follows.

Problem 2. Assume that Mg is a operator connection such that if a self-
adjoint function f is convex with respect to Mg then it necessarily pre-
serves Mg . Is it true that Mg is a self-adjoint connection?

Similarly, it follows from Proposition 6 that every self-adjoint function
f has the property that if f is convex with respect to a self-adjoint con-
nection Mg , then f preserves Mg . It is also natural to ask whether this
property characterizes the self-adjoint functions or not. We finish our
paper by proposing this open question.

Problem 3. Assume that f : (0,∞) → (0,∞) is a continuous function such
that for any self-adjoint connection Mg the following holds: if f is convex
with respect to Mg then it preserves Mg . Is it true that f is a self-adjoint
function?
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