










Budapest University of Technology and Economics
Mathematical Institute
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Introduction

Markov chains are the simplest mathematical models for random phenomena
evolving in time. Their simple structure makes it possible to say a great deal
about their behaviour. At the same time, the class of Markov chains is rich
enough to serve in many applications, for example in population growth,
mathematical genetics, networks of queues, Monte Carlo simulation and in
many others. This makes the Markov chains the first and most important
examples of random processes. Indeed, the whole of the mathematical study
of random processes can be regarded as a generalization in one way or another
of the theory of Markov chains. We shall be concerned exclusively with the
case where the process can assume only a finite or countable set of states.

A discrete random variable is a function X with values in a finite set X
and its probability mass function is p(x) = Pr{X = x}, x ∈ X . Each x ∈ X
is called a state and X is called the state-space. A stochastic process is an in-
dexed sequence of random variables. In general, there can be an arbitrary de-
pendence among these random variables. The process is characterized by the
joint probability mass functions p(x1, x2, . . . , xn) = Pr{(X1, X2, . . . , Xn) =
(x1, x2, . . . , xn)}, where (x1, x2, . . . , xn) ∈ X n for n = 1, 2, . . . . A simple, but
important example of a stochastic process with dependence is one in which
each random variable depends on the one preceding it and is conditionally
independent of all the other preceeding random variables. Such a process is
said to be Markovian. For the most part we will attend to the case of three
random variables, so we say, that the random variables X, Y and Z form a
Markov triplet (denoted by X → Y → Z) if

p(x, y, z) = p(x)p(y|x)p(z|y),

where

p(y|x) =
Pr{X = x, Y = y}

Pr{X = x}
is the conditional probability. If Z has the interpretation as ”future”, Y is
the ”present” and X is the ”past”, then having the Markov property means
that, given the present state, future states are independent of the past states.
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In other words, the description of the present state fully captures all the
information that could influence the future evolution of the process.

It is natural to investigate the Markov triplets from information theo-
retical point of view. In 1948 the electric engineer C. Shannon published a
remarkable pair of papers laying the foundations for the modern theory of
information and communication. Perhaps the key step taken by Shannon
was to mathematically define the concept of information. As a measure of
uncertainty of a random variable he proposed the following formula

H(X) = −
∑
x∈X

p(x) log p(x)

called Shannon entropy. If the log is to the base 2, the entropy is expressed
in bits, while if the base is e, the unit of entropy is sometimes called nat. The
Shannon entropy has many properties that are in accord with the intuitive
notion of what a measure of information should be, for example it helps us
to express the dependence among the random variables. One of its basic
properties is subadditivity, i.e.

H(X, Y ) ≤ H(X) + H(Y ),

where H(X, Y ) = −∑x∈X ,y∈Y p(x, y) log p(x, y) is the joint entropy of ran-
dom variables X and Y , and measures our total uncertainty about the pair
(X, Y ). The equality holds in the subadditivity if and only if X and Y are in-
dependent random variables. The other remarkable property of the Shannon
entropy is the strong subadditivity:

H(X, Y, Z) + H(Y ) ≤ H(X, Y ) + H(Y, Z),

with equality if and only if X → Y → Z, i.e. X, Y and Z form a Markov
triplet. It means that Markov triplets are completely characterized by the
strong additivity of their Shannon entropy.

At the turn of the twentieth century a series of crises had arisen in the
physics. The problem was that the classical theory were predicting absur-
dities such as the existence of an ”ultraviolet catastrophe” involving infinite
energies, or electrons spiraling inexorably into the atomic nucleous. The crisis
came to a head in the early 1920’s and resulted in the creation of the modern
theory of quantum mechanics. J. von Neumann worked in Göttingen when
W. Heisenberg gave the first lectures on the subject. Quantum mechanics
motivated the creation of new areas in mathematics, the theory of linear
operators on Hilbert spaces was certainly such an area. John von Neumann
made an effort towards the mathematical foundations and he initiated the
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study of what are now called von Neumann algebras. With F.J. Murray,
they made a first classification of such algebras [47]. While the mathematics
of classical probability theory was subsumed into classical measure theory by
A.N. Kolmogorov [34], the quantum or non-commutative probability theory
was induced by the quantum theory and was incorporated into the beginnings
of non-commutative measure theory by J. von Neumann [48].

In this concept, quantization is a process in which classical observables,
i.e. real functions on a phase space, are replaced by self-adjoint operators on
a Hilbert space H. Similarly, in quantum or non-commutative probability
the role of random variables is played by self-adjoint elements affiliated to
some C*-algebra A with unit element 1. Probability measures are replaced
by states, i.e positive linear functionals φ on A such that φ(1) = 1. If A is a
non-commutative algebra then we say that (A, φ) is an abstract or algebraic
non-commutative probability space. This concept means a generalization:
as long as one considers a commutative C*-algebra A, quantum probability
reduces to classical probability. One usually represents A as a subalgebra
of B(H) of bounded operators acting on a complex separable Hilbert space
H. If the state φ is normal, i.e. positive weakly continous normalized linear
functional on the von Neumann algebra B(H), then it is given by φ(A) =
Tr (ρA), A ∈ B(H), for some unique statistical operator ρ acting on H, i.e.
0 < ρ = ρ∗ ∈ B(H) such that Tr (ρ) = 1. If H is finite dimensional ρ is
often called density matrix. From the quantum theoretical point of view the
selfadjoint elements of B(H) are identified with physical observables, while
state φ represents the state of a physical system.

It is a natural question, that how can we generalize the concept of Marko-
vianity in the non-commutative setting which means the framework of C*-
algebras, or matrix algebras in the finite dimensional case.

In von Neumann’s unifying scheme for classical and quantum probability
an important ingredient was missing: conditioning. In order to study non-
trivial statistical dependences, in particular to construct Markov processes,
this gap had to be filled. The first step was made in 1962 by the most
natural quantum generalization of the notion of conditional expectation, by
H. Umegaki [75], which is relevant for several problems in operator theory
and in quantum probability. By a (Umegaki) conditional expectation E :
A → B ⊂ A we mean a norm-one projection of the C*-algebra A onto the
C*-subalgebra B. The map E is automatically a completely positive identity-
preserving B-bimodule map by a theorem of J. Tomiyama [73]. E is called
compatible with a state φ if φ◦E = φ. Unfortunately Umegaki’s notion is not
perfect to express the Markovianity, since the states compatible with norm-
one projections tend to be trivial in the extremely non-commutative case.
Indeed, a state φ on Mn ⊗ Mn is compatible with an Umegaki conditional
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expectation onto Mn⊗I if and only if it is a product state, which means that
our random variables are independent. (Here Mn denotes n by n complex
matrices.) To avoid this trivial case L. Accardi and A. Frigerio proposed
the following definition in 1978 [7]. Consider a triplet C ⊂ B ⊂ A of unital
C*-algebras. A quasi-conditional or generalized conditional expectation w.r.t
the given triplet is a completely positive identity-preserving linear map E :
A → B such that

E(ca) = cE(a), a ∈ A, c ∈ C.

The notion of non-commutative or quantum Markov chains was also intro-
duced by Accardi in [2, 3]. Quantum Markov chains are defined on non-
commutative C*-algebras, in particular on UHF algebras, and they are de-
termined by an initial state and a sequence of unital completely positive
maps, called transition maps. Since in the classical case Markov chains can
be defined on abelian C*-algebras and are determined by an initial distribu-
tion and a sequence of transition matrices, quantum Markov chains can be
regarded as the generalization of the classical ones.

In spite of the abstractness of this definition, several improvements have
been made in their applications to physical models. In particular a sub-class
of Markov chains, also called finitely correlated states, was shown to coincide
with the so-called valence bond states introduced in the late 1980’s in the
context of antiferromagnetic Heisenberg models. The works of M. Fannes,
B. Nachtergaele and R.F. Werner were appreciable to find the ground states
of these models [23]. As another special class of quantum Markov chains,
the notion of quantum Markov states was defined in [7]. A quantum Markov
state φ is determined by an initial state and a sequence of φ-preserving quasi-
conditional expectations. If we consider a Markov state with three parts we
say that it is a short Markov state or Markov triplet. The question raises,
whether similarly to the classical case, there is any characterization of Markov
states by the entropy quantities?

If ρ is the density matrix of a normal state φ, the von Neumann entropy
of the state is defined by

S(φ) ≡ S(ρ) = −Tr ρ log ρ.

Similarly to the classical case the von Neumann entropy plays an impor-
tant role in the investigations of quantum systems’s correlations. The von
Neumann entropy is subadditive, i.e.

S(φ12) ≤ S(φ1) + S(φ2),

where φ12 is a normal state of the composite system of A12 = A1⊗A2, and the
equality holds if and only if φ12 is product of its marginals, i.e. φ12 = φ1⊗φ2,
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which is the non-commutative analogue of the independent random variables.
We also have the remarkable strong subadditivity property which was proved
by E. Lieb and M.B. Ruskai in 1973 [38]. Let A1, A2 and A3 be subalgebras
of B(H) representing three quantum systems and set A123 = A1 ⊗A2 ⊗A3,
A12 = A1⊗A2 and A23 = A2 ⊗A3 as their several compositions. For a state
φ123 of A123 we denote its restrictions to A12, A23 and A2 with φ12, φ23 and
φ2, respectively. The strong subadditivity says, that

S(φ123) + S(φ2) ≤ S(φ12) + S(φ23).

On the analogy of the classical Markov property it has been shown that
the strong subadditivity of the von Neumann entropy is tightly related to
the Markov property invented by L. Accardi. A state of a three-fold ten-
sor product system is Markovian if and only if it takes the equality of the
strong subadditivity of von Neumann entropy, which is referred to as strong
additivity of the von Neumann entropy. In other words, a state of a tensor
product system is Markovian if and only if the von Neumann entropy in-
crease is constant. The exact structure of a density ρ123 with this property
was established in 1994 by P. Hayden, R. Jozsa, D. Petz and A. Winter [29].

Although a pivotal example of quantum composite systems is tensor prod-
uct of Hilbert spaces, we can see that the definition of Markov property has
been given under a very general setting that is not limited to the most fa-
miliar case of tensor-product systems. Which means, it does not require in
principle any specific algebraic location among systems imbedded in the total
system. A very important example from this point of view is the algebra of
the canonical anti-commutation relation or briefly CAR algebra, that serves
as the description of fermion lattice systems.

The quantum-mechanical states of n identical point particles in the con-
figuration space Rν are given by vectors of the Hilbert space H := L2(Rνn).
If ψ ∈ H is normalized, then

dp(x1, . . . , xn) = |ψ(x1, . . . , xn)|2dx1 . . .dxn

is the probability density for ψ to describe n particles at the infinitesimal
neighborhood of the points x1, . . . , xn. The normalization of ψ corresponds
to the normalization of the total probability to unity. But in microscopic
physics identical particles are indistinguishable and this is reflected by the
symmetry of the probability density under interchange of the particle coordi-
nates. This interchange defines a unitary representation of the permutation
group and the symmetry is assured if the ψ transform under a suitable sub-
representation. There are two cases of paramount importance. The first
arises when ψ is symmetric under change of coordinates. Particles whose
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states transform in this manner are called bosons and are said to satisfy
Bose-Einstein statistics. The second case corresponds to anti-symmetry of ψ
under interchange of each pair of coordinates. The associated particles are
called fermions and said to satisfy Fermi-Dirac statistics. The elementary
constituents of matter seem to be fermions, while interactions are mediated
by bosons. In the case of fermions the anti-symmetry of the wave function
had a deep consequence, namely the Pauli principle: It is impossible to cre-
ate two fermions in the same state. The main qualitative difference between
fermions and bosons is the absence of a Pauli principle for the latter particles.
There is no bound on the number of particles which can occupy a given state.
Mathematically this is reflected by the unboundedness of the so-called Bose
annihilation and creation operators. This unboundedness leads to a large
number of technical difficulties which are absent for fermions. These prob-
lems can be partially avoided by consideration of bounded functions of the
annihilation and creation operators. This idea yields the Weyl operators and
their algebra, the algebra of canonical commutation relation (briefly CCR
algebra). I investigate both systems from the viewpoint of Markovianity.

Returning to the classical context an important case was solved recently:
The characterisation of multivariate normal Markov triplets was given [9].
In classical probability, a Gaussian measure leads to a characteristic function
which is the exponential of a quadratic form. Its logarithm is therefore a
quadratic polynomial, and all correlations beyond the second order vanish.
Following this procedure in some non-commuting systems as the CAR al-
gebra or the CCR algebra it is also possible to define the useful concept of
the correlation function (cumulants or truncated function in other words),
and we can arrive to the analogues of Gaussian distributions, to the so-called
quasi-free states. In these states the n-point functions can be computed from
the 2-point functions and in one kind of central limit theorem the limiting
state is quasi-free. The quasi-free states are quite tractable, for example the
von Neumann entropy has an explicit expression. It is a natural to ask: What
can we say about the quasi-free Markov triplets? My goal is the discussion
of these questions. The dissertation is organized as follows.

In Chapter 1 I give an overview of the notion of Markov chains in the clas-
sical probability theory. I investigate its connection to the strong additivity
property of the Shannon entropy and as an example the characterization of
the multivariate Gaussian Markov triplets is given.
In Chapter 2 I review the basics of the non-commutative probability. After
the premilinaries as the notion of C*-algebra, states and maps, I investigate
the topic of the non-commutative conditional expectation. I overview the
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main properties of the von Neumann entropy and I give a new proof for its
strong subadditivity with condition for the equality. I attend to the operator
monotone functions too.
In Chapter 3 I turn to the main topic, the Markov property in the non-
commutative setting. I follow the historical line and analyze the connec-
tions among the concepts of Markovianity. The characterization of the short
Markov states in the three-fold tensor product case is also considered.
In Chapter 4 I summerize the main properties of CAR algebras and their
quasi-free states. I attend to the anti-symmetric Fock space and I give some
entropy quantities of quasi-free states.
In Chapter 5 I prove that an even state on a CAR algebra is Markovian if
and only if it saturates the strong subadditivity of the von Neumann entropy
with equality, and I slightly generalize this theorem. I also give the complete
characterization of quasi-free Markov states.
Chapter 6 contains some crucial properties of the Weyl unitaries, the sym-
metric Fock space, the CCR algebra and quasi-free states. This is written
for the sake of completeness, the results are known but not well accessible in
the literature. The main point is the von Neumann entropy formula which is
well-known for the CCR quasi-free state. I also give another entropy related
quantities.
In Chapter 7 I investigate the quasi-free Markov triplets. A necessary and
sufficient condition described in the block matrix approach is obtained: The
block matrix should be block diagonal. There are non-trivial Markovian
quasi-free states which are not products in the time localization. The exis-
tence of such states is interesting, because it is in contrast with the CAR case.
However, the first and the third subalgebras are always independent. The
relation to classical Gaussian Markov triplets is also described and I show
that the minimizer of relative entropy with respect to a quasi-free Markov
state has the Markov property.
The new results are published in the papers [33, 61, 62, 63, 64, 65].
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Chapter 1

Markovianity in the classical

probability

1.1 Classical Markov chains

This section is about a certain sort of classical random process. The charac-
teristic property of this sort of process is that it retains no memory of where
it has been in the past. We shall be concerned exclusively with the case
where the process can assume only a finite or countable set of states.

Let X be a countable set. Each x ∈ X is called a state and X is called the
state space. We say that p(x), (x ∈ X ) is a measure on X if 0 ≤ p(x) < ∞
for all x ∈ X . If in addition the total mass

∑
x∈X p(x) = 1, we call p a

distribution. We work throughout with a probability space (Ω,F , p). Recall
that a random variable X with values in X is a function X : Ω → X . Let X
and Y be random variables with values in the sets X and Y . The following
notations will be used:

p(x) = Pr(X = x) and p(y) = Pr(Y = y)

for the probability distributions of X and Y , respectively. (Thus, p(x) and
p(y) refer to two different random variables, and are in fact different proba-
bility mass functions.) We write

p(x, y) = Pr(X = x, Y = y)

for their joint distribution and

p(x|y) = Pr(X = x|Y = y) =
p(x, y)

p(y)

for the conditional distribution.
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Definition 1.1.1 Random variables X, Y and Z are said to form a Markov

chain (denoted by X → Y → Z) if the conditional distribution of Z depends
only on Y and is conditionally independent of X, i.e.

p(z|y, x) = p(z|y). (1.1)

This is equivalent with the following condition for the joint distribution:

p(x, y, z) = p(x)p(y|x)p(z|y) (1.2)

or similarly
p(x, y, z) = p(y)p(x|y)p(z|y). (1.3)

Let suppose that X → Y → Z. Then the computation

p(x, z|y) =
p(x, y, z)

p(y)
=

p(x, y)p(z|y)

p(y)
= p(x|y)p(z|y)

shows that X → Y → Z if and only if X and Z are conditionally independent.
If Z has the interpretation as ”future”, Y is the ”present” and X is the ”past”,
then having the Markov property means that, given the present state, future
state is independent of the past state. In other words, the description of
the present state fully captures all the information that could influence the
future evolution of the process. We remark that X → Y → Z implies
Z → Y → X. We can extend the notion of Markov chain to a countable
set of random variables in a natural way, getting a stochastic process. A
stochastic process is an indexed sequence of random variables. In general,
there can be an arbitrary dependence among the random variables. The
process is characterized by the joint probability mass functions

p(x1, x2, . . . , xn) ≡ Pr{(X1, X2, . . . , Xn) = (x1, x2, . . . , xn)},

where (x1, x2, . . . , xn) ∈ X n for all n = 1, 2, . . . . A stochastic process is said
to be stationary if the joint distribution of any subset of the sequence of
random variables is invariant with respect to the shifts in their index, i.e.

Pr{(X1 = x1, . . . , Xn = xn)} = Pr{(X1+k = x1, . . . , Xn+k = xn)},

for every shift k for all x1, x2, . . . , xn ∈ X . A simple example of a stochastic
process with dependence is one in which each random variable depends on the
one preceding it and is conditionally independent of all the other preceding
random variables, i.e. it forms a Markov chain.
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Definition 1.1.2 A discrete stochastic process X1, X2, . . . is said to be a
Markov chain or a Markov process if, for n = 1, 2, . . .

Pr{(Xn+1 = xn+1|Xn = xn, . . . , X1 = x1)} = Pr{(Xn+1 = xn+1|Xn = xn)},

for all x1, x2, . . . , xn, xn+1 ∈ X .

It is obvious that in this case the joint probability mass function can be
written as

p(x1, x2, . . . , xn) = p(x1)p(x2|x1)p(x3|x2) . . . p(xn|xn−1).

The next example shows a very important subclass of Markov chains.

Example 1.1.3 The Markov chain is said to be time invariant if the con-
ditional probability p(xn+1|xn) does not depend on n, i.e. for n = 1, 2, . . .

Pr(Xn+1 = b|Xn = a) = Pr(X2 = b|X1 = a)

for all a, b ∈ X . If {Xi} is a Markov chain, then Xn is often called the state

at time n. A time invariant Markov chain is characterized by its initial

state and a probability transition matrix P = [Pij], i, j ∈ {1, 2, . . . , m},
where

Pij = Pr(Xn+1 = j|Xn = i). (1.4)

Indeed, the probability mass function of the state n + 1 is wholly determined
by the initial distribution p(x1) and the transition matrix via

p(xn+1) =
∑

xn,xn−1,...,x1

p(x1)Px1x2Px2x3 . . . Pxnxn+1. (1.5)

�

It is natural to investigate the Markov chains from information theoretical
point of view. For this reason we make some preparation in the next section.

1.2 Classical information quantities

For a measure of uncertainty of a random variable C. Shannon proposed
the following formula. The Shannon entropy H(X) of a discrete random
variable X is defined by

H(X) = −
∑
x∈X

p(x) log p(x). (1.6)

14



(If the log is to the base 2, the entropy is expressed in bits, while if the
base of the log is e, the unit of the entropy is sometimes called nat.) The
Shannon entropy has many properties that agree with the intuitive notion of
what a measure of information should be, for example it helps us to express
the dependence among the random variables. One of its basic property is
the subadditivity, i.e.

H(X, Y ) ≤ H(X) + H(Y ), (1.7)

where
H(X, Y ) = −

∑
x∈X ,y∈Y

p(x, y) log p(x, y) (1.8)

is the joint entropy of random variables X and Y , and measures our total
uncertainty about the pair (X, Y ). The equality holds in the subadditivity if
and only if X and Y are independent random variables. If we introduce the
notion mutual information followed by Shannon:

I(X : Y ) = H(X) + H(Y ) − H(X, Y ), (1.9)

then the subadditivity of the entropy is equivalent with I(X : Y ) ≥ 0, and
we have equality if and only if X and Y are independent. We define the
conditional mutual information by the formula

I(X : Z|Y ) =
∑
y∈Y

p(y)I(X|Y =y : Z|Y =y), (1.10)

where I(X|Y =y : Z|Y =y) is the mutual information between the random vari-
ables X and Z conditional on the event ”Y = y”. As (1.10) is a convex
combination of mutual informations, i.e. nonnegative quantities,

I(X : Z|Y ) ≥ 0 (1.11)

follows immediately. A straightforward computation gives a chain rule

I(X : (Y, Z)) = I(X : Y ) + I(X : Z|Y ),

which implies the formula

I(X : Z|Y ) = H(X, Y ) + H(Y, Z) − H(X, Y, Z) − H(Y ). (1.12)

This equation and (1.11) leads us to the remarkable property of the Shannon
entropy, the strong subadditivity:

H(X, Y, Z) + H(Y ) ≤ H(X, Y ) + H(Y, Z). (1.13)

We can see that the strong subadditivity of the Shannon entropy is an imme-
diate consequence of its subadditivity. It is interesting to find the condition
of the equality.
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Theorem 1.2.1 I(X : Z|Y ) = 0, or equivalently, we have equality in the
strong subadditivity of Shannon entropy, i.e.

H(X, Y, Z) + H(Y ) = H(X, Y ) + H(Y, Z) (1.14)

if and only if X → Y → Z.

Proof. The sufficiency is obvious by (1.3), (1.9) and (1.10). Assume con-
versely, that I(X : Z|Y ) = 0 holds. Then by the definition (1.10) it is
clear that for all y ∈ Y , such that p(y) �= 0, I(X|Y =y : Z|Y =y) = 0 follows. It
means by (1.9) that we have got equality in the subadditivity of the Shannon
entropy

H(X|Y =y) + H(Z|Y =y) = H(X|Y =y, Z|Y =y),

that is X|Y =y and Z|Y =y are independent:

p(x, z|y) = p(x|y)p(z|y),

so X → Y → Z as we stated. �

Further details can be found in [18, 50, 59].

1.3 Gaussian Markov triplets

In this section we investigate the multivariate normal distribution forming a
Markov chain. All these results can be found in [9].

Let X := (X1, X2, . . . , Xn) be an n-tuple of real or complex random
variables. The (i, j) element of the n × n covariance matrix is given by

Ci,j := E(XiXj) − E(Xi)E(Xj),

where E denotes the expectation. The covariance matrix is positive semi-
definite. The mean m := (m1, m2, . . . , mn) consists of the expectations mi =
E(Xi), (i = 1, 2, . . . , n). Let M be a positive definite n×n matrix and m be
a vector. Then

fm,M(x) :=

√
DetM

(2π)n
exp
(
− 1

2
〈x − m, M(x −m)〉

)
(1.15)

is a multivariate Gaussian probability distribution, denoted by N(m, M−1),
with expectation m and with quadratic matrix M . If m = 0, then we
write simply fM(x). If M is diagonal, then (1.15) is the product of functions
of one-variable which means the independence of the random variables. It
is a remarkable fact that the covariance matrix of the distribution (1.15) is
M−1. The following lemma is well known, see for example [9, 25].
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Lemma 1.3.1 Let

M =

[
A B
B∗ D

]
(1.16)

be a positive definite (m+k) by (m+k) matrix written in block matrix form.
Then the marginal of the Gaussian probability distribution

fM(x1,x2) :=

√
DetM

(2π)(m+k)
exp
(
− 1

2
〈(x1,x2), M(x1,x2)〉

)

on Rm is the distribution

f1(x1) :=

√
DetM

(2π)mDetD
exp
(
− 1

2
〈x1, (A − BD−1B∗)x1〉

)
. (1.17)

The matrix (M |D) := A − BD−1B∗ appears often in the matrix analysis,
and called the Schur complement of D in M [66].

Now turn to the conditional distributions. Given the random variables
X1 and X2, the conditional density is given by

f(x2|x1) :=
f(x1,x2)(x1,x2)

fx1(x1)
, (1.18)

which is a function of x2, since x1 is fixed. If (X1,X2) is Gaussian with
a quadratic matrix (1.16), then the conditional distribution (1.18) is the
Gaussian N(−D−1B∗x1, D

−1).
Let (X1,X2,X3) be random variables with joint probability distribution

f(x1,x2,x3). The distribution of the appropriate marginals are f(x1,x2),
f(x2,x3) and f(x2). In accordance with the foregoing (X1,X2,X3) is called
a Markov triplet if

f(x3|x1,x2) = f(x3|x2). (1.19)

We use the notation X1 → X2 → X3 for the Markov triplets as before. Let
(X1,X2,X3) be a Gaussian random variable with the quadratic matrix

M =

⎡
⎣A1 A2 B1

A∗
2 A3 B2

B∗
1 B∗

2 D

⎤
⎦ (1.20)

and with expectation m = 0. The next theorem gives the characterization
of Gaussian Markov triplets by the form of its block covariance matrix and
by the form of its quadratic matrix [9].

Theorem 1.3.1 For the Gaussian triplet (X1,X2,X3) with quadratic matrix
(1.20) and with expectation 0, the following conditions are equivalent.
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1. X1 → X2 → X3.

2. B1 = 0.

3. The conditional distribution f(x3|x1,x2) does not depend on x1.

4. The covariance matrix of (X1,X2,X3) is of the form⎡
⎣ S11 S12 S12S

−1
22 S23

S∗
12 S22 S23

S∗
23S

−1
22 S∗

12 S∗
23 S33

⎤
⎦ . (1.21)

The Markov property should be characterized by entropy quantities, as we
expected. For an n-tuple of real random variables X := (X1, X2, . . . , Xn)
with density f(x1, x2, . . . , xn) the Boltzmann-Gibbs entropy (also called
differential entropy) is defined as

h(X) = −
∫

f(x) log f(x)dx,

whenever this has a meaning. In particular, if X has a multivariate Gaussian
distribution (1.15), then

h(X) =
1

2
(n log(2πe) − log Det M) .

The relative entropy of the random variables X1 and X2 with probability
densities f1 and f2, respectively is defined as

D(X1||X2) =

∫
f1(x)(log f1(x) − log f2(x))dx.

Let X1 and X2 be n-tuples of real variable and assume that the distribution
of X2 is N(0, C). Then

D(X1||X2) = −h(X1) +
1

2
(TrCX2M − log Det M − n log 2π) , (1.22)

where M = C−1 and CX2 is the covariance matrix of X2. The next theorem
shows an important property of positive block matrices [9].

Theorem 1.3.2 Let

S :=

⎡
⎣S11 S12 S13

S∗
12 S22 S23

S∗
13 S∗

23 S33

⎤
⎦
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be a positive definite block matrix. Then

DetSDetS22 ≤ Det

[
S11 S12

S∗
12 S22

]
Det

[
S22 S23

S∗
23 S33

]
(1.23)

and the condition for equality is S13 = S12S
−1
22 S23.

As a consequence we get a characterization of Markov triplets via the strong
additivity of Boltzmann-Gibbs entropy [9].

Theorem 1.3.3 Let Xi be a random variable with values in Rni, i = 1, 2, 3.
Assuming that the differential entropy and the covariance of (X1,X2,X3) are
well defined the strong subadditivity of entropy holds:

h(X1,X2,X3) + h(X2) ≤ h(X1,X2) + h(X2,X3).

The equality holds if and only if (X1,X2,X3) form a Markov triplet.

In the next chapter we turn to the non-commutative case.

19



Chapter 2

Basics of non-commutative

probability

2.1 C*-algebras

In this chapter we summarize briefly some basic notions and technical tools
from the theory of non-commutative probability, needed later in our investi-
gations. In order to treat classical and non-commutative or quantum systems
in the same formalism, it is useful to use a C*-algebraic language. Excellent
and more detailed discussions can be found in several places [8, 16, 21, 45,
50, 52, 53, 68].

Let A be an algebra with a norm ||.|| on it. If (A, ||.||) is a Banach space
as a vector space and the submulticative property of the norm

||xy|| ≤ ||x||||y||
holds for all x, y ∈ A, then it called a Banach algebra. If the algebra is
equipped with an involution, i.e. with a map ∗ : A → A with the following
properties:

1. (x∗)∗ = x

2. (x + y)∗ = x∗ + y∗

3. (λx)∗ = λx∗

4. (xy)∗ = y∗x∗

for all x, y ∈ A and λ ∈ C, moreover ||x∗|| = ||x|| holds for all x ∈ A then it
called a Banach*-algebra. If the involution and the norm are also related
by the so-called C*-property

||x∗x|| = ||x||2, x ∈ A
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then the algebra is a C*-algebra. A C*-algebra is called unital, if there
exists an element 1 ∈ A such that 1x = x1 = x holds for all x ∈ A. In the
following, under a C*-algebra we always mean a unital one.

Example 2.1.1 Let B(H) denote the set of all bounded operators on a Hilbert
space H. Then B(H) is a non-commutative C*-algebra with the standard op-
erations, with the operator norm and with the adjoint as an involution. Every
subalgebra of B(H), which is closed under the involution and the operator
norm is again a C*-algebra, and called a C*-subalgebra of B(H).

The importance of the example above is given by the following theorem of
I.M. Gelfand, M. Naimark and I.E. Segal.

Theorem 2.1.2 Every C*-algebra is isomorphic to a C*-subalgebra of B(H)
for some Hilbert space H.

A C*-algebra is called finite dimensional if it is finite dimensional as a vector
space. The following theorem gives the characterization of such algebras.

Theorem 2.1.3 Every finite dimensional C*-algebra is isomorphic to
⊕n

i=1B(Hi) for some finite dimensional Hilbert spaces H1,H2, . . . ,Hn.

Given a concrete C*-algebra A, i.e. a C*-algebra of bounded operators on a
given Hilbert space H, it is natural to consider notions of convergence on A
weaker than those induced by the operator norm.

Definition 2.1.4 A von Neumann algebra N is a C*-subalgebra of B(H)
which is also closed in the strong operator topology.

The latter requirement means that if {xn} is a sequence of operators from
N , such that for all ξ ∈ H one has xnξ → xξ for some x ∈ B(H), then
x ∈ N . So, in particular, B(H) is also a von Neumann algebra. The ad-
joint operation is not continous in the strong operator topology. This fact
motivates to introduce a weaker topology. A sequence of bounded operators
{xn} converges to x ∈ B(H) in the weak operator sense if, xnξ → xξ weakly
for all ξ ∈ H, i.e. 〈η, xnξ〉 → 〈η, xξ〉 for all ξ, η ∈ H. The adjoint operation
is continous in the weak operator topology. The operator norm topology is
strictly stronger than the strong operator topology which is stronger than
the weak operator topology whenever H is infinite dimensional. When H
is finite dimensional, these topologies coincide and there is no distinction
between C*-algebras and von Neumann algebras.

If S is any subset of B(H), then its commutant S ′ is the set of bounded
operators which commute with every element in S, i.e.

S ′ ≡ {y ∈ B(H) : xy = yx, ∀x ∈ S}.
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It is a unital subalgebra of B(H), closed in the weak operator topology, hence
in the strong operator topology. The operation of taking the commutant
can be iterated, S ′′ ≡ (S ′)′, and it is clear that S ⊂ S ′′. The so called von

Neumann’s double commutant theorem characterizes the bicommutant
of a *-subalgebra of B(H):

Theorem 2.1.5 For any *-subalgebra A ⊂ B(H), A′′ coincides with the
strong and weak operator closures of A.

The double commutant theorem implies that a subset S ⊂ B(H) which is
closed under the involution is a von Neumann algebra if and only if S = S ′′.
It follows that S ′ is a von Neumann algebra itself. A von Neumann algebra
N is called a factor if its center is trivial, i.e. if the only elements in N
which commute with every other element in N are the constant multiplies
of the identity: N ∩N ′ = C1. B(H) is a factor, since B(H)′ = C1, and the
only abelian factor is C1. Note that a von Neumann algebra N is abelian if
and only if N ⊂ N ′ and N is said to be maximally abelian if N = N ′.

2.2 States and representations

Since every C*-algebra A is a Banach space, its topological dual A∗, con-
sisting of continous linear maps A → C, is also a Banach space. States on a
C*-algebra are general expectation functionals.

Definition 2.2.1 A state on a unital C*-algebra A is a linear functional
φ : A → C, which is positive, i.e. φ(x∗x) ≥ 0, for all x ∈ A, and normalized:
φ(1) = 1.

The set of the states on A is denoted by S(A). A state φ defines an inner
product on A through the formula

〈x, y〉 := φ(x∗y),

which implies the Schwarz inequality for states:

|φ(x∗y)|2 ≤ φ(x∗x)φ(y∗y). (2.1)

This inequality implies that a state is continous and in the same time it also
enables us to compute its norm. Indeed, with y = x

|φ(x)| ≤ φ(x∗x)1/2 ≤ ||x∗x||1/2φ(1) = ||x||
shows that φ is bounded, and hence continous with ||φ|| ≤ 1. Moreover,
||φ|| = 1 as φ(1) = 1. A remarkable fact, that a continous functional on A is
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positive if and only if ||φ|| = φ(1). It is easy to check, that S(A) is a convex
subset of the dual space A∗ of A. The extremal points of this convex set are
called pure states. In other words, a state is pure if and only if it cannot
be decomposed into a nontrivial convex combination of two states. The next
example motivates to introduce a very important class of states.

Example 2.2.2 Consider the matrix algebra Mn ≡ M(C) of n×n complex
matrices. As a vector space Mn is isomorphic to Cn2

. By taking the matrix
units as a canonical basis for Mn, we have an inner product on Mn defined
by

〈A, B〉 =
n∑

i,j=1

AijBij = TrA∗B,

for all A, B ∈ Mn. Thus if φ is a linear functional on Mn, then there exists
by the Riesz-Frèchet theorem a unique D ∈ Mn such that for all A ∈ Mn

φ(A) = 〈D, A〉 = TrD∗A.

Moreover if φ is a state, i.e. positive and normalized, then it follows that
D ≥ 0 and TrD = 1. �

The state considered above is an example for normal state. We say that a
state φ on a von Neumann algebra N is normal if for any countable family
{Pn} of mutually orthogonal projections in N

φ

(∑
n

Pn

)
=
∑

n

φ(Pn)

holds. Every normal state φ on B(H) is given by

φ(x) = Tr (ρx), x ∈ B(H), (2.2)

for some unique statistical operator ρ acting on H, i.e. 0 ≤ ρ ∈ B(H) such
that Tr ρ = 1. If H is finite dimensional ρ is often called density matrix.
In the commutative case the set of normal states can be identified with the
set of probability measures on a set, and the functional as the expectation
value in the classical sense.

The most simple examples of normal states are the vector states. If
Ψ ∈ H is a unit vector, then the corresponding density matrix is PΨ ∈ B(H)
the orthogonal projection onto the one dimensional subspace of H spanned
by Ψ, and the state is given by:

φ(x) = 〈Ψ, xΨ〉 = Tr (PΨx), x ∈ B(H).
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A state φ on a C*-algebra A is faithful if 0 ≤ x ∈ A and φ(x) = 0 entail
x = 0 and the state τ is tracial, if τ(xy) = τ(yx), for all x, y ∈ A. If
dimH = n, then τ is a normal, faithful state with the density matrix 1

n
1. If

H is infinite dimensional, then there exists no faithful tracial state on B(H).

Definition 2.2.3 A representation of a C*-algebra A is a C*-algebra
morphism π : A → B(H) with some Hilbert space H. The representation
is called faithful, if Kerπ = {0}, and irreducible if there is no nontrivial
invariant closed subspace of H under the action of π.

We remark, that the irreducibility is equivalent to π(A)′ = C1. Given a
state φ on A, one can construct a Hilbert space Hφ, a distinguished unit
vector Ωφ ∈ Hφ and a C*-homomorphism πφ : A → B(Hφ), so that πφ(A) is
a C*-algebra acting on the Hilbert space Hφ, the set of vectors πφ(A)Ωφ is
dense in Hφ (i.e. Ω is cyclic ) and

φ(x) = 〈Ωφ, πφ(x)Ωφ〉, ∀x ∈ A.

The triple (Hφ, Ωφ, πφ) is uniquely determined up to unitary equivalence by
these properties, πφ is called the GNS representation of A determined
by φ, in honour of I.M. Gelfand, M. Naimark and I.E. Segal. The GNS
representation of a C*-algebra A is faithful, and any state of A can be given as
a vector state in this representation. Now we are ready to give the definition
of the non-commutative probability space.

Definition 2.2.4 An abstract or algebraic probability space consists of
a unital C*-algebra A and a state φ on A. If A is non-commutative, then the
pair (A, φ) is called a non-commutative probability space. An algebraic
random variable is an embedding j : B → A of an algebra B into A. The
state φ ◦ j of B is called the distribution of the random variable j.

The next example shows that from C*-algebraic point of view the classical
probability theory is simply the commutative case.

Example 2.2.5 Let X be a compact Hausdorff topological space, and C(X)
the set of all continous complex-valued functions on X. Then C(X) forms an
algebra with respect to the pointwise operations. If we take the norm to the
supremum norm, i.e.

||f || := sup{|f(x)| : x ∈ X}

and the involution is the pointwise conjugation, then C(X) becomes a com-

mutative C*-algebra. Moreover a theorem of I.M. Gelfand and M. Naimark
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says that every commutative C*-algebra is isomorphic to C(X) for some com-
pact Hausdorff space X. States on commutative C*-algebras can be concretely
described as follows. Suppose μ is a finite signed measure on X. Then

φ(f) =

∫
X

f(x)dμ(x), f ∈ C(X)

defines a continous linear functional on C(X). Moreover, Riesz-Kakutani

theorem tells us that any continous linear functional φ on C(X) is of this
form, for some measure μ, and φ is a state if and only if μ is a positive
normalized measure. Thus states on a commutative C*-algebra should be
regarded as analogous to probability measures on a compact Hausdorff topo-
logical space. Regarding this case, we can form the Hilbert space L2(X, μ), as
the completion of C(X) with respect to the inner product

〈f, g〉 =

∫
X

f(x)g(x)dμ(x) = φ(fg) f, g ∈ C(X).

There is then a canonical representation π of C(X) on L2(X, μ) given by
pointwise multiplication:

π(f)g = fg f, g ∈ C(X),

where g and fg are regarded as elements of L2(X, μ). Moreover, if Ω = 1,
the identity of C(X) is also regarded as a vector in L2(X, μ), then

φ(f) =

∫
X

(f(x)1)1dμ(x) = 〈π(f)Ω, Ω〉,

L2(X, μ) = π(C(X))Ω.

�

2.3 Positive and completely positive maps

An element x in the C*-algebra A is called positive, x ≥ 0, in notation, if
it can be written in the form x = y∗y for some y ∈ A. The set of positive
elements, denoted by A+ forms a convex cone, with A+∩ (−A+) = {0}. The
positivity induces a partial ordering on the set of self-adjoint elements: we
say that x ≥ y if and only if x − y ≥ 0.

A map α : A → B between C*-algebras is positive, if it preserves the
positivity, i.e. α(A+) ⊂ B+. Convex combinations and compositions of
positive maps are positive again, but the positivity is not preserved under
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forming tensor product. Indeed, the transposition map α(Eij) = Eji, where
Eij are the matrix units is positive, but one can easily check that the map
12 ⊗ α is not positive even though both factors are positive. This motivates
to define a subclass of positive maps:

Definition 2.3.1 A map α : A → B is called d-positive, if

1d ⊗ α : Md ⊗A → Md ⊗ B

is positive, where Md is the algebra of d×d complex matrices with the identity
1d. If α is d-positive for all d ≥ 1, then we called it completely positive.

Sums, positive multiples and compositions of d-positive maps are d-positive
again. Moreover, if A and B are finite dimensional C*-algebras, and α∗ :
B → A is the adjoint map of α : A → B with respect to the Hilbert-Schmidt
scalar product, i.e.

Tr α(A)B = Tr Aα∗(B), A ∈ A, B ∈ B,

then it easy to see that α∗ is d-positive if and only if α is d-positive and α is
trace preserving if and only if α∗ is unit preserving.

The complete positivity is a typical non-commutative notion. Indeed, if
A or B is a commutative C*-algebra then any positive α : A → B map
is completely positive. Completely positive maps are very extensively stud-
ied, for details see for example [15, 21, 39, 53]. Here we only mention the
important Kraus representation theorem.

Theorem 2.3.2 Let H and K finite dimensional Hilbert spaces, and A ⊂
B(H) and B ⊂ B(K) two C*-subalgebras. The map α : A → B is completely
positive if and only if there exist operators Vk : H → K, k = 1, . . . , n such
that

α(A) =
∑

k

VkAV ∗
k , A ∈ A (2.3)

holds.

The operators Vk are not unique, they are called Kraus operators. If∑
k VkV

∗
k = 1K, then α is unital, i.e. preserves the unit, while if

∑
k V ∗

k Vk =
1H, then α preserves the trace. The trace preserving completely positive
maps are often called stochastic maps. Moreover, if α is unital to, we say
that is bistochastic.
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2.4 Conditional expectations

In the classical probability the notion of conditional expectation was clarified
by A.N. Kolmogorov and J.L. Doob [25]. Consider an arbitrary commutative
probability space. Let A be the underlying σ-algebra of sets and B an arbi-
trary σ-subalgebra in A. Let Y be a random variable with expectation. A
random variable U is called a conditional expectation of Y relative to B if it is
B-measurable and E(Y 1B) = E(U1B) for every set B ∈ B, where E denotes
the expectation, 1B is the characteristic function of the set B and we write
U = E(Y |B). It follows from the Radon-Nikodym theorem that a con-
ditional expectation always exists. Moreover, whenever Z is a B-measurable
and the expectations exist, then

E(Y Z|B) = ZE(Y |B). (2.4)

If B0 ⊂ B a σ-subalgebra and U0 = E(Y |B0), then the following important
properties of the conditional expectations hold:

E(Y 1B) = E(U1B) = E(U01B), B ∈ B0, (2.5)

E(Y |B0) = E(E(Y |B)|B0) = E(E(Y |B0)|B), B ∈ B0. (2.6)

Now let us turn to the non-commutative case. A detailed description of this
topic can be found in [59]. Followed the concept of the classical case which
is expressed in (2.4), (2.5) and (2.6), H. Umegaki proposed the following
definition [75].

Definition 2.4.1 Let A be a von Neumann algebra, and B ⊂ A be its sub-
algebra. A conditional expectation E : A → B is a unital linear positive
mapping such that

E(ab) = E(a)b for all a ∈ A, b ∈ B. (2.7)

Choosing a = 1, we obtain that E acts identically on B. From the positivity
E(a∗) = E(a)∗ follows, which implies the modular property E(ba) = bE(a)
for all a ∈ A and b ∈ B. Moreover,∑

i,j

b∗i E(a∗
i aj)bj = E((

∑
i

aibi)
∗(
∑

j

ajbj)) ≥ 0

shows that E is completely positive due to the positivity and the modular
property. Heuristically, E(a) is a kind of best approximation of a from B.
Indeed, let τ be a faithful, tracial functional on A. Then A becomes a Hilbert
space when it is endowed with the Hilbert-Schmidt inner product

〈a1, a2〉 := τ(a∗
1a2),
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and the conditional expectation E : A → B will be an orthogonal projection
onto B with respect to the above defined inner product.

Let φ be a normal state on A. We say that the conditional expectation
E : A → B preserves the state φ or E is compatible with φ if

φ ◦ E = φ. (2.8)

The following example shows that in contrast to the classical case a state
preserving conditional expectation does not always exist.

Example 2.4.2 Let E : Mn ⊗Mn → Mn ⊗1n be a conditional expectation
compatible with the state φ on Mn ⊗Mn. Then

E(x ⊗ y) = (x ⊗ 1n)E(1n ⊗ y) = (E(1n ⊗ y))(x ⊗ 1n)

shows that E(1n⊗y) ∈ (Mn⊗1n)′ = 1n⊗Mn and since E(1n⊗y) ∈ Mn⊗1n

we have E(1n ⊗ y) = c(1n ⊗ 1n) for some constant c, but by the compatible
property φ(E(1n ⊗ y)) = φ(1n ⊗ y) = φ2(y) and c = φ2(y) follows, where
φ2 is the restriction of φ to the factor 1n ⊗Mn. Then any such conditional
expectation has the form

E(x ⊗ y) = (x ⊗ 1n)φ2(y) (2.9)

and φ must be a product state: φ = φ1 ◦ φ2. �

Before clarifying the conditions for the existence of the conditional expec-
tation we need to introduce the concept of the modular operator. Let
N ∈ B(H) be a von Neumann algebra with an Ω ∈ H cyclic and sepa-

rating vector for N , i.e. the set {xΩ : N ∈ N} is dense in H and for any
x ∈ N , xΩ = 0 implies x = 0. By the double commutant theorem (Theorem
2.1.5) one can easily verify that Ω is cyclic for N if and only if Ω is separating
for N ′. One can introduce two natural antilinear operators S0 and F0 on H
by the relations

S0(xΩ) := x∗Ω, ∀x ∈ N , (2.10)

F0(x
′Ω) := (x′)∗Ω, ∀x′ ∈ N ′. (2.11)

S0 and F0 are well defined on the dense domains domS0 = NΩ and domF0 =
N ′Ω, respectively. It can be shown that the operators S0 and F0 are closable
and that S = F ∗

0 and F = S∗
0 , where S and F denotes the closures of S0 and

F0, respectively. The closed, antilinear operator S is called the Tomita op-

erator for the pair (N , Ω). Let Δ be the unique positive, selfadjoint operator
and J the unique antilinear operator occuring in the polar decomposition of
S, i.e.

S = JΔ1/2.
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We call Δ the modular operator and J the modular conjugation asso-
ciated to the pair (N , Ω). Given the modular operator Δ, we can construct
the strongly continous unitary group, called modular group by

Δit = exp(it(ln Δ)), t ∈ R, (2.12)

via functional calculus. Denote

σt(x) := ΔitxΔ−it, ∀x ∈ N , t ∈ R. (2.13)

The main result of the so-called modular theory is the Tomita-Takesaki

theorem.

Theorem 2.4.3 With the notations above we have

JNJ = N ′ and (2.14)

σt(N ) = N , t ∈ R. (2.15)

σt is a one parameter automorphism group on N , the so-called modular

automorphism group. The modular automorphism group is the one of
the most useful elements in the further analysis of von Neumann algebras.
For details many excellent books should be proposed [16, 17, 27, 73]. Our
next example is crucial from the point of view of our further investigations.

Example 2.4.4 If N = B(H), where H is separable, then as we have seen
before, each normal state φ is given by a density operator ρ in the form

φ(x) = Tr (ρx),

moreover φ is faithful if and only if ρ is invertible. In this case one may
calculate that the modular automorphism group is given by

σt(x) = ρitxρ−it. (2.16)

�

The following theorem of M. Takesaki clarifies the existence of the condi-
tional expectation compatible with a given state by means of the modular
automorphism group of the state [52].

Theorem 2.4.5 Let M be a von Neumann subalgebra of the von Neumann
algebra N and let φ be a faithful normal state of N . Then the φ-preserving
conditional expectation of N onto M exists if and only if M is stable under
the modular group of φ, i.e.

σt(M) ⊂ M, t ∈ R. (2.17)

If a conditional expectation exists, then it is unique.
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An immediate consequence of the theorem above, that the conditional expec-
tation compatible with a faithful tracial state τ always exists. A remarkable
property of the conditional expectation is the so called commuting square

property. We briefly collect the facts applying to us, for details we suggest
[21, 26].

Theorem 2.4.6 Let A123 be a matrix algebra with subalgebras A12, A23 and
A2, with A2 ⊂ A12,A23. Assume that a conditional expectation E123

12 :
A123 → A12 , E23

2 : A23 → A2 and E12
2 : A12 → A2 exist. Then the fol-

lowing conditions are equivalent:

1. E123
12 |A23 = E23

2

2. E123
23 |A12 = E12

2

3. E123
12 E123

23 = E123
23 E123

12 and A12 ∩A23 = A2

4. E123
12 E123

23 = E123
2

5. E123
23 E123

12 = E123
2 .

Note that if any of these properties hold, then the following diagram is com-
mutative,

A2

A123

A12 A23

�
�

�
�

��

�
�

�
�

��

�
�

�
�

��

�
�

�
�

��

E123
2

E123
12

where the arrows ↖ consist of embeddings and the arrows ↙ consist of
conditional expectations.

2.5 Coarse-grainings

Let A and B be C*-algebras. Recall that 2-positivity of the map α : A → B
means that [

α(A) α(B)
α(C) α(D)

]
≥ 0, whenever

[
A B
C D

]
≥ 0,

where A, B, C, D ∈ A. It is well known that a 2-positive unit preserving
mapping α satisfies the Schwarz inequality

α(x)∗α(x) ≤ α(x∗x), ∀x ∈ A. (2.18)
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Indeed, since [
x∗x x
x∗ 1

]
≥ 0, ∀x ∈ A,

for a unit preserving, 2-positive α, we have[
α(x∗x) α(x)
α(x∗) 1

]
≥ 0,

which implies (2.18). A 2-positive unital mapping between C*-algebras is
called a coarse-graining.

Example 2.5.1 Let A = B(H) and let B be the infinite tensor product
A⊗A⊗ . . . . If γ denotes the right shift on B, then we can define a sequence
αn of coarse grainings A → B as follows

αn(A) :=
1

n
(A + γ(A) + · · ·+ γn−1(A)).

αn can be regarded to the non-commutative analogue of the sample mean.

One can check easily that the set

Aα := {x ∈ A : α(x)∗α(x) = α(x∗x) and α(x)α(x)∗ = α(xx∗)} (2.19)

is a C*-algebra, and the restriction of α to Aα is a C*-algebra morphism.
Moreover, a stronger multiplicativity property

α(x)α(y) = α(xy), x ∈ Aα, y ∈ A (2.20)

holds. This suggests to call Aα to be the multiplicative domain of α.
Consider the fixed point set Fα of the 2-positive unital map α : A → A

Fα := {x ∈ A : α(x) = x}. (2.21)

In general Fα is a linear subspace of A, that is also closed under the *-
operation. Moreover, the following is true.

Theorem 2.5.2 If there exists a faithful invariant state φ of α, i.e. φ ◦α =
φ, then Fα is an algebra.

Proof. Assume, that x ∈ Fα. Then α(x∗x) − α(x)∗α(x) ≥ 0 by the Schwarz
inequality, and by using the invariance of φ, we get

φ(α(x∗x) − α(x)∗α(x)) = φ(α(x∗x) − x∗x) = 0.
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Then the faithfulness of φ implies α(x∗x)−α(x)∗α(x) = 0. Taking the linear
combinations of fixed points, and repeating the above argument, we obtain
the statement. �

We say that Fα is the fixed point algebra of α. We also get the relation

Fα ⊂ Aα. (2.22)

Example 2.5.3 Let α : A → A be a coarse graining, and φ a faithful α-
invariant state. If A is endowed with the inner product

〈x|y〉φ := φ(x∗y), x, y ∈ A,

then the Schwarz inequality implies that α is a contraction in the norm in-
duced by 〈.|.〉φ. Due to the von Neumann ergodic theorem the following
limit exists:

sn(x) :=
1

n
(x + α(x) + · · ·+ αn−1(x)) → E(x), (2.23)

where E is the projection onto Fα the fixed point algebra of α, self-adjoint
in the scalar-product 〈.|.〉φ. Since sn’s are coarse-grainings, so is their limit
E. In fact, E is a conditional expectation onto Fα. This result, namely:
the limit of sn is a conditional expectation E : A → Fα onto the fixed point
algebra, if there is a faithful state left invariant by α, is the special case of
the so-called Kovács-Szücs theorem.

As an immediate consequence of Theorem 2.4.5 we get the following.

Corollary 2.5.4 The modular group of a faithful α-invariant state leaves
the fixed point algebra of α invariant.

Note that the conditional expectation given by the limit (2.23) is independent
of the invariant state φ, we have only used the existence of such φ.

Let us make an important remark regarding the physical applications.
A quantum mechanical system is described by a C*-algebra, observables
correspond to self-adjoint elements and the physical states of the system are
modelled by the states of the algebra. The evolution of the system A can be
described in the Heisenberg picture in which an observable x ∈ A moves
into α(x), where α is a coarse-graining, i.e. 2-positive, unital map, which
transforms an observable to observable. The Schrödinger picture is dual,
it gives the transformation of states. Let α : A → B be a unital, 2-positive
linear map between the C*-algebras A and B. Its adjoint map Φ := α∗ is also
2-positive and trace-preserving map and maps a density matrix to density
matrix, and it will be called coarse-graining as well.
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2.6 The von Neumann entropy

In this section we give a brief overview about the quantities related to the
information used in the non-commutative probability theory. From the point
of view of information theory, as well as physics, it is very interesting to
know what kind of inequalities hold among these quantities and when these
inequalities are saturated. We will also investigate these questions. Our main
references are [50, 52, 59]. We have seen that in the classical probability
the Shannon entropy measures the uncertainty associated with a classical
probability. In the non-commutative case, in a similar fashion, the probability
distributions are replaced with states.

Consider a non-commutative probability space (A, φ) , where A is a finite
C*-algebra, and φ is a normal, faihful state on A given by a density matrix
ρ. The von Neumann entropy is defined by the formula

S(φ) ≡ S(ρ) := −Tr ρ log ρ. (2.24)

Usually, the logarithms are taken to base two. From the definition it is clear
that

S(ρ) ≥ 0,

and the equality holds if and only if ρ is a one-rank projection, i.e. the state
is pure. As the von Neumann entropy is the trace of a continous function of
the density matrix, hence it is a continous function on the states. To deduce
some properties of the von Neumann entropy, it is useful to introduce the
concept of relative entropy. Originally the relative entropy was introduced
by H. Umegaki in the setting of von Neumann algebras [75]. Later it was
widely used in the mathematical physics by G. Lindblad [39] and extended
to arbitrary von Neumann algebras by H. Araki [10]. Assume that ρ and σ
are density matrices of the states φ and ω, respectively on a Hilbert space
H, then their relative entropy is defined by

S(φ||ω) ≡ S(ρ||σ) =

{
Tr ρ(log ρ − log σ) if supp ρ ⊂ supp σ,

+∞ otherwise.
(2.25)

Theorem 2.6.1 S(ρ||σ) ≥ 0 with equality if and only if ρ = σ.

Proof. If ρ and σ are statistical operators one can check [52], that

Tr ρ(log ρ − log σ) ≥ 1

2
Tr (ρ − σ)2, (2.26)

with an immediate consequence for the non-negativeness of the relative en-
tropy. �
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The theorem above motivates to consider the relative entropy as some kind
of a distance measure on the set of states, even though it is not symmetric in
its arguments and does not satisfy the triangle inequality. However, relative
entropy can be interpreted as a measure of statistical distinguishability in
a simple decision scheme [59]. In a d-dimensional Hilbert space apply the
non-negativity for the tracial state τ with the density matrix 1d/d.

0 ≤ S(ρ||1d/d) = −S(ρ) + log d

shows that the relative entropy can be regarded to the extension of the von
Neumann entropy.

If we consider a composite system ’AB’ (for example a bipartite system),
it corresponds to tensor product in mathematical terms. Let B(HA) and
B(HB) be the algebras of bounded operators acting on HA and HB. The
Hilbert space of the composite system ’AB’ is HAB = HA ⊗ HB and a
state of the composite system is given by a density matrix ρAB ∈ B(HAB) =
B(HA)⊗B(HB). The marginal states ρA and ρB on HA and HB, respectively
are determined by the relations

Tr (ρAa) = Tr (ρABa) for all a ∈ B(HA),

Tr (ρBb) = Tr (ρABb) for all b ∈ B(HB).

The subsystems of a bipartite system are independent if and only if the
state of the composite system is the product of marginals, i.e. ρAB = ρA ⊗
ρB. A possible way to quantify correlation between the subsystems is to
measure it by the relative entropic distance of the state from the product of
its marginals, by the so called mutual information:

I(A : B) := S(ρAB||ρA ⊗ ρB). (2.27)

Theorem 2.6.2 The von Neumann entropy is subadditive, i.e.

S(ρAB) ≤ S(ρA) + S(ρB), (2.28)

with equality if and only if the subsystems are independent.

Proof. The non-negativity of relative entropy implies that mutual informa-
tion is positive, unless the two marginals are independent. Since

S(ρAB||ρA ⊗ ρB) = S(ρA) + S(ρB) − S(ρAB),

the non-negativity implies the subadditivity of the von Neumann entropy. �

As relative entropy is interpreted as statistical distinguishability of states, it
is interesting to ask what happens if the states are subjected to a stochastic
operation? The answer is given by the important Uhlmann’s monotonic-

ity theorem [74].

34



Theorem 2.6.3 Let α : A → B be a unital, 2-positive linear map between
the C*-algebras A and B. Then its adjoint map T := α∗ is also 2-positive and
trace-preserving map and maps a density matrix to density matrix. Then, for
states φ and ω on A with densities ρ and σ, respectively we have

S(Tρ||Tσ) ≤ S(ρ||σ), (2.29)

or equivalently
S(ω ◦ α||φ ◦ α) ≤ S(ω||φ). (2.30)

We can get a remarkable property of the von Neumann entropy as a conse-
quence of Uhlmann’s theorem.

Theorem 2.6.4 The von Neumann entropy is strongly subadditive, i.e.

S(ρABC) + S(ρB) ≤ S(ρAB) + S(ρBC). (2.31)

Proof. As we have seen before, a conditional expectation which preserves
the tracial state τ always exists. Consider a three-partite state ρABC on
HABC = HA ⊗ HB ⊗ HC and the trace preserving conditional expectation
EABC

AB : B(HABC) → B(HAB), where HAB = HA ⊗ HB. By the commuting
square property of the conditional expectation we have for the marginals

EABC
AB (ρABC) = ρAB (2.32)

and
EABC

AB (ρBC) = ρB. (2.33)

As EABC
AB is completely positive and trace preserving, we have

S(ρAB||ρB) ≤ S(ρABC ||ρBC),

which is equivalent with the strong subadditivity. �

It is interesting to find the states which saturate the strong subadditivity of
von Neumann entropy with equaliy. Uhlmann’s theorem gives an immediate
characterization of such states [46, 58, 60].

Theorem 2.6.5 Let T be a coarse graining, i.e. a trace preserving, 2-
positive linear map. For states ρ and σ,

S(ρ||σ) = S(Tρ||Tσ)

holds if and only if there exists a coarse graining T̂ such that

T̂ Tρ = ρ, and T̂T (σ) = σ.
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The strong subadditivity of von Neumann entropy has got important
consequences in the mathematical physics. D.W. Robinson and D. Ruelle
first noted the importance of classical strong subadditivity for statistical
physics [69]. The non-commutative, in other words quantum version was
conjectured in 1968 by O.E. Lanford and Robinson [36]. Obtaining a proof
of the result was rather difficult however. It is important remark that in
contrast to the classical case, the strong subadditivity of the von Neumann
entropy does not follows from the subadditivity. Finally, in 1973 the theorem
was proved in two papers: [37] contains E.H. Lieb famous theorem which is a
generalization of the crucial Wigner-Yanase-Dyson conjecture made in 1963,
while the surprising connection to strong subadditivity was developed by
Lieb and M.B Ruskai [38]. The proof based on the Uhlmann’s monotonicity
theorem comes from [74]. A simple proof based on the relative modular
operators can be found in [54].

Because of its importance we give an alternative proof for the strong
subadditivity of von Neumann entropy with a condition for equality based on
E.H. Lieb’s extension of Golden-Thompson inequality. The original Golden-

Thompson inequality says, that if A and B are selfadjoint matrices, then
the inequality

Tr eAeB ≥ Tr eA+B

holds. It is really an inequality except for the trivial case [A, B] = 0 and
one may deduce it from the monotonicity of the relative entropy [52]. The
so called Golden-Thompson-Lieb inequality is the following [52].

Theorem 2.6.6 Let A be a matrix algebra, and A, B, C ∈ A selfadjoint
operators. Then the following inequality holds:

Tr eA+B+C ≤
∫ ∞

0

Tr (t + e−A)−1eB(t + e−A)−1eC dt. (2.34)

One can check, that the B = 0 case leads back to the original inequality.
Now we are ready to prove the following theorem [65].

Theorem 2.6.7 Supposing that ρABC is invertible, with the notation as be-
fore, the strong subadditivity of von Neumann entropy, i.e. (2.31) holds. We
have equality if and only if

log ρABC + log ρB = log ρAB + log ρBC . (2.35)

Proof. Since the operator

exp(log ρAB − log ρB + log ρBC) (2.36)
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is positive it can be written as λσ for a density matrix σ with a suitable
normalizing constant λ > 0. Then we have

S(ρAB) + S(ρBC) − S(ρABC) − S(ρB)

= Tr ρABC(log ρABC − (log ρAB − log ρB + log ρBC))

= S(ρABC ||λσ) = S(ρABC ||σ) − log λ.

We can observe that λ ≤ 1 implies the non-negativity of the left-hand-side,
i.e. the strong subadditivity. Due to Theorem 2.6.6, with the choices A =
− log ρB, B = log ρBC and C = log ρAB we have

Tr exp(log ρAB − log ρB + log ρBC)

≤
∫ ∞

0

Tr
{
ρAB(t1 + ρB)−1ρBC(t1 + ρB)−1

}
dt.

Now applying the existence of the trace preserving conditional expectation
EABC

AB , with (2.33) and by the Theorem 2.4.6 on the commuting square prop-
erty, we have

Tr
{
ρAB(t1 + ρB)−1ρBC(t1 + ρB)−1

}
= Tr

{
ρB(t1 + ρB)−1ρB(t1 + ρB)−1

}
.

Now we are able to integrate out by the formula∫ ∞

0

λ2

(t + λ)2
dt = λ (2.37)

where λ > 0 and we get:∫ ∞

0

Tr
{
ρAB(t1 + ρB)−1ρBC(t1 + ρB)−1

}
dt = Tr ρB = 1.

This means that Tr (λσ) ≤ 1 which implies that λ ≤ 1 and the strong
subadditivity follows. Moreover we have got equality if and only if λ = 1,
i.e. exp(log ρAB − log ρB + log ρBC) is a density matrix and

S(ρABC || exp(log ρAB − log ρB + log ρBC)) = 0

implies
log ρABC = log ρAB − log ρB + log ρBC ,

as we stated. This is a necessary and sufficient condition for the equality. �

Actually, this condition is strongly related to statistical sufficiency and we
have further equivalent conditions [58, 60, 32].
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Theorem 2.6.8 We have equality in (2.31) if and only if the following equiv-
alent conditions hold.

(i) ρit
ABCρ−it

BC = ρit
ABρ−it

B for all t ∈ R.

(ii) ρ
1/2
ABCρ

−1/2
BC = ρ

1/2
ABρ

−1/2
B .

(iii) log ρABC = log ρAB − log ρB + log ρBC .

(iv) There are positive matrices X, Y ∈ B(HAB) and 0 ≤ Z ∈ B(HABC),
such that ρABC = XZ, ρAB = Y Z and the commutation relation ZX =
XZ and ZY = Y Z hold.

Remark that some of the equivalent conditions are valid also in infinite dimen-
sional Hilbert space, for example, the equivalence of (i) and (iv) is obtained
in [32].

2.7 Operator monotone functions

In this section we briefly study an important class of functions called opera-
tor monotone functions. Recall that for selfadjoint matrices A and B, we use
the notation A ≤ B to mean B − A is positive. The relation ≤ is a partial
order on selfadjoint matrices. Let f be a real function defined on an interval
I. If a diagonal matrix D = diag(λ1, . . . , λn), with λi ∈ I for all i = 1, . . . , n,
we define f(D) = diag(f(λ1), . . . , f(λn)). If A is a selfadjoint matrix whose
eigenvalues λj are in I, we choose a unitary U such that A = UDU∗, where
D is diagonal, and then define f(A) = Uf(D)U∗. In this way we can define
f(A) for all selfadjoint matrices of any order whose eigenvalues are in I. The
operator monotone functions are real functions whose extensions to selfad-
joint matrices preserve order. They are closely related to operator convex
functions, so we shall study both of these together. All results with proofs
can be found in [15, 31].

Definition 2.7.1 A real function f is said to be matrix monotone of

order n if on n by n selfadjoint matrices A ≤ B implies f(A) ≤ f(B). If f
is matrix monotone of order n for all n we say f is matrix monotone or
operator monotone. A real function f is said to be matrix convex of

order n if for all n × n selfadjoint matrices A and B and for all λ ∈ [0, 1],

f((1 − λ)A + λB) ≤ (1 − λ)f(A) + λf(B).

If f is matrix convex of all orders, we say that f is matrix convex or
operator convex. A function f is called operator concave if the function
−f is operator convex.
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It is clear that the set of operator monotone functions and the set of operator
convex functions are both closed under positive linear combinations and also
under pointwise limits. From the fact that any convex function f : R → R is
continous it follows that operator convexity is equivalent to operator mid-

point convexity, f(A+B
2

) ≤ f(A)+f(B)
2

. The next two theorems are among
the several results that describe the connections between operator convexity
and operator monotonicity.

Theorem 2.7.2 Let f be a continous function mapping the positive half-line
[0, +∞) into itself. Then f is operator monotone if and only if it is operator
concave.

Theorem 2.7.3 Let f be a continous real function on [0, α). Then f is

operator convex and f(0) ≤ 0 if and only if f(x)
x

is operator monotone on
(0, α).

We find some important cases in the next example.

Example 2.7.4 Some computation shows that α+βt, (β ≥ 0), tr on [0,∞)
for 0 ≤ r ≤ 1, −1

t
on (0,∞) and log t on (0,∞) are operator monotone

functions, but tr is not operator monotone, whenever r > 1.
The functions tr for 1 ≤ r ≤ 2, 1

t
and t log t are operator convex, but for

example t3 is not, as a simple computation shows.

It is a remarkable fact, that operator monotone functions are smooth to
all orders, in fact they are analytic. This result is used to establish the
following integral representation for operator monotone functions, the so-
called Löwner theorem [15].

Theorem 2.7.5 If f is an operator monotone function on R+, then

f(t) = f(0) + βt +

∫ ∞

0

λt

λ + t
dμ(λ), (2.38)

where μ is a measure such that the integral∫ ∞

0

λ

λ + 1
dμ(λ)

is finite.

The Löwner theorem represents a real breakthrough that allows us to connect
the theory of operator monotonicity to complex analysis. In particular, we
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see that we can define an analytic continuation of f to the entire complex
plane except for z ∈ (−∞, 0):

f(z) = f(0) + βz +

∫ ∞

0

λz

λ + z
dμ(λ).

Defining the upper half plane H+ ≡ {z ∈ C : Imz > 0}, one can observe that
f maps H+ into itself. These observations can be used to prove the forward
implication in the following theorem.

Theorem 2.7.6 A function f is operator monotone on (a, b) if and only if
f has an analytic continuation to the upper half plane H+ that maps H+ into
itself.

The following lemma is very useful for our further investigations.

Lemma 2.7.1 The function

κ(t) = −t log t + (t + 1) log(t + 1) (2.39)

is operator monotone on (0,∞).

Proof. The integral representation

κ(x) =

∫ ∞

1

t−2 log(tx + 1)dt

and the fact, that log x is an operator monotone function implies the state-
ment. �

In next chapter we overview the concept of Markovianity in the non-commutative
probability.

40



Chapter 3

Markovianity in the

non-commutative probability

3.1 Markov chains, states and triplets

In classical probability theory, Markov chains are defined on abelian C*-
algebras and there is a standard way to associate a Markov chain to a given
initial distribution and a given sequence of transition matrices as in the Ex-
ample 1.1.3 was shown. The notion of non-commutative or quantum Markov
chains was introduced by L. Accardi extending this technique [2, 3, 7].

Recall that a pair (A, φ) consisting of an C*-algebra and its state φ is
called an algebraic probability space. An algebraic random variable is an
embedding j : B → A of an algebra B into A. The state φ ◦ j of B is called
the distribution of the random variable j. By an algebraic stochastic

process we mean a family of algebraic random variables jt : B → A, indexed
by a set T . The simplest example of an algebraic stochastic process is an
infinite tensor product over the natural numbers. To each i ∈ N a copy
Ai of the finite dimensional C*-algebra B is associated and A is the infinite
C*-tensor product ⊗i∈NAi. In this case the algebraic random variable Ai

is the ith factor of the tensor product. For example, let Ai = Md(C) the
d × d complex matrix algebra, for i ∈ N with the identity 1 and A be the
infinite C*-tensor product ⊗∞

i=0Ai. The algebra A is often called a spin

chain algebra. We denote AΛ = ⊗i∈ΛAi for arbitrary subset Λ ⊂ N. If φ is
a state on A, we write φ[0,n] for the restriction φ|A[0,n], and particularly φ0

for n = 0. The right shift automorphism of the algebra A will be denoted
by γ. A state φ is called stationary if it is γ-invariant, i.e. φ ◦ γ = φ.

Let Ei : Md(C) ⊗ Md(C) → Md(C) be a completely positive unital
mapping, for all i ∈ N, called transition expectation. Then there exists a
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unique completely positive identity-preserving map E0] : A ≡ ⊗i∈NAi → A0

such that for each positive integer n, and for any a0, a1, . . . , an ∈ Md(C),
one has

E0](a0 ⊗ a1 ⊗ · · · ⊗ an ⊗ 1 ⊗ 1 ⊗ . . . ) = E0 (a0 ⊗ E1(a1 ⊗ · · · ⊗ En(an ⊗ 1))) .
(3.1)

We can use the map E0] to lift any state φ0 on A0 to a state φ on A ≡ ⊗i∈NAi

defined by
φ = φ0 ◦ E0]. (3.2)

Now we are ready to generalize the notion of Markov chains in the non-
commuting setting, followed Accardi:

Definition 3.1.1 The state φ on A ≡ ⊗i∈NAi associated to (φ0, {Ei}), is
called a Markov chain if (3.2) holds, i.e.

φ(a0⊗a1⊗· · ·⊗an⊗1⊗1⊗ . . . ) = φ0 {E0 (a0 ⊗ E1(a1 ⊗ · · · ⊗ En(an ⊗ 1)))} ,
(3.3)

for each positive integer n, where φ0 is the initial distribution and {Ei} is
a sequence of transition expectations. If for each n ∈ N, En = E0 ≡ E holds,
then we speak of an homogenous Markov chain.

A light modification of quantum (non-commutative) Markov chains was in-
troduced by M. Fannes, B. Nachtergaele and R.F. Werner in a quite different
context [23].

Definition 3.1.2 A state φ on A is called a C*-finitely correlated state

generated by (B, E, ω) if B is a finite C*-algebra called an auxiliary al-

gebra, E : Md(C) ⊗ B → B is a unital completely positive map called a
transfer operator and ω is a state on B such that

ω(a) = ω(E(1⊗ a)) (3.4)

for all a ∈ B and

φ(a1 ⊗ a2 ⊗ · · · ⊗ an) = ω(E(a1 ⊗ E(a2 ⊗ . . . E(an ⊗ 1B) . . . ))) (3.5)

for all a1, a2, . . . , an ∈ Md(C).

From (3.4) follows that the C*-finitely correlated states are translation-
invariant automatically, moreover the class of C*-finitely correlated states
is shown to be a *-weakly dense convex subset of the set of translation-
invariant states, which is important for the possibility of using these states
as trial states in variational computations [23]. It is clear that a C*-finitely
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correlated state is a homogenous quantum Markov chain with the choice
B = Md(C) and ω = φ0. The topic of finitely correlated states is an extend-
edly investigated field in mathematical physics [23, 24, 42].

We arrived to the quantum Markov chains based on the generalization
of the concept of transition matrix, but it is possible to make the non-
commutative generalization via the concept of conditional expectation too.
As we have seen in the Example 2.4.2, a state-preserving conditional expec-
tation does not exist in general: states compatible with norm one projections
tend to be trivial in the extremely non-commutative case, i.e. factorial case,
that is algebras with trivial center. This fact led L. Accardi and C. Cecchini
to modify the definition in the following way [5].

Definition 3.1.3 Consider a triplet C ⊂ B ⊂ A of C*-subalgebras. A
quasi-conditional expectation w.r.t the given triplet, is a completely pos-
itive, identity-preserving linear map E : A → B such that

E(ca) = cE(a), a ∈ A, c ∈ C. (3.6)

One can check that E(ac) = E(a)c also holds for all a ∈ A and c ∈ C. Equiv-
alently E can be characterized as a completely positive identity-preserving
map A → B whose fixed point algebra contains C. Condition (3.6) implies
that

E(A \ C) ⊂ B \ C (3.7)

and is natural to refer (3.7) as quantum Markov property. The termi-
nology is justified by the fact that if A,B, C are abelian algebras and E is a
conditional expectation in the usual sense, then (3.7) is an equivalent form of
the classical Markov property. L. Accardi and A. Frigerio give the definition
of the Markov state on A ≡ ⊗iAi in the following way [7].

Definition 3.1.4 A state φ on A is called a Markov state with respect
to the localization {A[0,n]} if for each n ∈ N there exists a quasi-conditional
expectation En with respect to the triple A[0,n−1] ⊂ A[0,n] ⊂ A[0,n+1] such that

φ(a) = φ[0,n](En(a)), a ∈ A[0,n+1]. (3.8)

Instead of (3.8) we can write φ[0,n+1] = φ[0,n] ◦ En too, and we shall say
that the quasi-conditional expectation En is compatible with the state φ.
Moreover,

φ[0,n+1] = φ0 ◦ E1 ◦ E2 ◦ · · · ◦ En (3.9)

holds, which is the analogoue of (1.5). It is clear that the quantum Markov
property (3.7) has got the following form:

En(A[n,n+1]) ⊂ An. (3.10)
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In the light of the Example 2.5.3, we can take a conditional expectation
instead of the quasi-conditional expectation En, as the following theorem
shows [52, 57, 59].

Theorem 3.1.5 For all a ∈ A[0,n+1], there exists

Fn = lim
k→∞

1

k + 1

k∑
i=0

Ei
n(a),

and Fn is a conditional expectation from A[0,n+1] into A[0,n], with

A[0,n−1] ⊂ Ran(Fn) = F(En),

where F(En) is the fixed point algebra of En. Moreover Fn satisfies

φ[0,n+1] = φ[0,n] ◦ Fn.

To clarify the connection between Markov states and Markov chains, observe
that A[0,n−1] ⊂ Ran(En) and En acts on A[0,n−1] identically, so there exists a
conditional expectation En : Md(C) ⊗Md(C) → Md(C) such that

En = 1A[0,n−1]
⊗ En

holds for all n ∈ N. According to (3.9), one can give the following character-
ization.

Theorem 3.1.6 The following statements are equivalent.

1. φ is a Markov state on A.

2. There exists a sequence of conditional expectation En : A[0,n+1] → A[0,n],
with A[0,n−1] ⊂ Ran(En) such that

φ[0,n+1] = φ[0,n] ◦ En.

3. There exists a sequence of conditional expectation En : Md⊗Md → Md

such that

φ(a1 ⊗ a2 ⊗ · · · ⊗ an) = φ0(E1(a1 ⊗ E2(a2 ⊗ . . . En−1(an−1 ⊗ an) . . . )))
(3.11)

for all a1, a2, . . . , an ∈ Md(C).
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We have seen in the Theorem 1.2.1, that in the classical case the Markov
chains of three random variables are completely characterized by the strong
additivity of Shannon entropy. This induces to restrict ourself to three-
partite Markov systems, which can be regarded to the building bricks of
Markov chains or states. Our general definition is the following.

Definition 3.1.7 Consider a triplet C ⊂ B ⊂ A of C*-subalgebras. A state
φ on A is called a short Markov state or Markov triplet, if there exists
a quasi-conditional expectation E w.r.t the given triplet, i.e. a completely
positive, identity-preserving linear map E : A → B such that

1. E(ca) = cE(a), a ∈ A, c ∈ C,

2. E(A \ C) ⊂ B \ C
compatible with φ, that is

φ = φB ◦ E. (3.12)

Our goal is the analysis of such systems.

3.2 Characterization of Markov triplets in

the three-fold tensor product case

Forming direct sums and tensor products of Hilbert spaces provides two
general ways of building larger spaces from given ones. If we like to describe
a composite system of different particles it is usual to use the tensor product.
In the tensor product case the characterization of the Markov triplets is well
known [59].

Theorem 3.2.1 Let φ123 be a state on the tensor product of matrix algebras
A123 ≡ A1 ⊗A2 ⊗A3. The reduced states will be denoted by φ12, φ23 and φ2.
The following conditions are equivalent.

(i) φ123 is a Markov triplet on A123.

(ii) The equality
S(φ123) + S(φ2) = S(φ12) + S(φ23)

holds in the strong subadditivity of the von Neumann entropy.

(iii) If τ denotes the tracial state of A1, then

S(φ123‖τ ⊗ φ23) = S(φ12‖τ ⊗ φ2).
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(iv) There exists a subalgebra B and a conditional expectation from A123

onto B such that
A1 ⊂ B ⊂ A12

and E leaves the state φ123 invariant.

(v) There is a state transformation

E : A2 → A23

such that (11 ⊗ E)(φ12) = φ123.

Moreover, it is possible to give the exact form of the density matrix of Markov
triplets: every Markov state is the convex combination of orthogonal product
type states [29].

Theorem 3.2.2 Let ρABC be a density matrix on the finite dimensional ten-
sor product Hilbert space HA ⊗ HB ⊗ HC. Then ρABC is a density matrix
of a Markov triplet if and only if there exists an orthogonal decomposition of
HB

HB =
⊕

k

HL
k ⊗HR

k

and for every k there are density matrices ρk
AL ∈ B(HA ⊗ HL

k ) and ρk
RC ∈

B(HR
k ⊗HC) such that ρABC is a convex combination

ρABC =
∑

k

pkρ
k
AL ⊗ ρk

RC .

The theorem also holds in infinite dimensional Hilbert space if all the von
Neumann entropies S(ρAB), S(ρB) and S(ρBC) are finite [32]. It is a remark-
able fact that the restriction ρAC is a product state of its marginals, i.e. the
’past’ and the ’future’ are indepedent in the tensor product case.

In the next chapter we turn to a system which localization does not follow
the tensor product localization, hence the conditions of the Theorems 3.2.1
and 3.2.2 are not realized.
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Chapter 4

CAR algebras and quasi-free

states

4.1 The CAR algebra

The quantum-mechanical states of n identical point particles in the configu-
ration space Rν are given by vectors of the Hilbert space H := L2(Rνn). If
ψ ∈ H is normalized, then

dp(x1, . . . , xn) = |ψ(x1, . . . , xn)|2dx1 . . .dxn

is the probability density for ψ to describe n particles at the infinitesimal
neighborhood of the points x1, . . . , xn. The normalization of ψ corresponds
to the normalization of the total probability to unity. But in microscopic
physics identical particles are indistinguishable and this is reflected by the
symmetry of the probability density under interchange of the particle coordi-
nates. This interchange defines an unitary representation of the permutation
group and the symmetry is assured if the ψ transform under a suitable sub-
representation. There are two cases of paramount importance. The first
arises when ψ is symmetric under change of coordinates. Particles whose
states transform in this manner are called bosons and are said to satisfy
Bose-Einstein statistics. The second case corresponds to anti-symmetry
of ψ under interchange of each pair of coordinates. The associated particles
are called fermions and said to satisfy Fermi-Dirac statistics. The ele-
mentary constituents of matter seem to be fermions, while interactions are
mediated by bosons. Our goal to investigate both systems from the wievpoint
of Markovianity. We start with the fermions.

The models of interacting fermions should suffice to understand the prop-
erties of matter in standard conditions, but some quasi-particles in solid state
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physics are also well-described as fermionic systems. Systems of fermions,
even if they are non-interacting, still exhibit some strong correlations due to
their statistics. In this section we introduce the abstract CAR algebra (the
algebra of the canonical anti-commutation relation), which is used to the
description of fermion systems and we will pass to a particular, but very im-
portant and suggestive representation in the next one. The works [8, 11, 16]
contain all what we need with other details.

Definition 4.1.1 For I ⊂ Z, the unital C*-algebra A(I) generated by the
elements satisfying the canonical anti-commutation relations, i.e.

aiaj + ajai = 0, (4.1)

aia
∗
j + a∗

jai = δi,j1 (4.2)

for i, j ∈ I is called a CAR algebra over I. The operators a∗ and a are
often called creation and annihilation operators, respectively.

It is easy to see that A(I) is the linear span of the identity and monomials
of the form

Ai(1)Ai(2) . . . Ai(k), (4.3)

where i(1) < i(2) < · · · < i(k) and each factor Ai(j) is one of the four
operators ai(j), a

∗
i(j), ai(j)a

∗
i(j) and a∗

i(j)ai(j). The CAR algebra A is defined by

A ≡
∨
l∈Z

A ({l})
C∗

.

It is known that for I = {1, 2, . . . , n}, A(I) is isomorphic to a matrix

algebra M2n(C) � M2(C)
1
�⊗· · ·⊗M2(C)

n
�

. An explicit isomorphism is given
by the so-called Jordan-Wigner isomorphism. Namely, the relations

e
(i)
11 : = aia

∗
i e

(i)
12 : = Vi−1ai

e
(i)
21 : = Vi−1a

∗
i e

(i)
22 : = a∗

i ai

Vi :=
i∏

j=1

(I − 2a∗
jaj)

determine a family of mutually commuting 2×2 matrix units for i ∈ I. Since

ai =

i−1∏
j=1

(
e
(j)
11 − e

(j)
22

)
e
(i)
12 ,
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the above matrix units generate A(I) and give an isomorphism between A(I)
and the n-fold tensor product M2(C) ⊗ · · · ⊗ M2(C):

e
(1)
i1j2

e
(2)
i2j2

. . . e
(n)
injn

←→ ei1j1 ⊗ ei2j2 ⊗ · · · ⊗ einjn
. (4.4)

(Here eij stand for the standard matrix units in M2(C).) For any subset
J ⊂ Z, there exists a unique automorphism ΘJ of A(Z), called parity au-

tomorphism such that

ΘJ(ai) = −ai and ΘJ(a∗
i ) = −a∗

i , whenever i ∈ J

ΘJ(ai) = ai and ΘJ(a∗
i ) = a∗

i , whenever i /∈ J.

In particular, we write Θ instead of ΘZ. ΘJ is inner i.e. there exists a
self-adjoint unitary vJ in A(J) given by

vJ ≡
∏
i∈J

vi, vi ≡ a∗
i ai − aia

∗
i , (4.5)

such that ΘJ(A) = (AdvJ )A ≡ vJAv∗
J for any A ∈ A(J). Then the odd and

even parts of AI are defined as

A(I)+ := {A ∈ A(I) : ΘI(A) = A}, A(I)− := {A ∈ A(I) : ΘI(A) = −A}.
(4.6)

Remark that A(I)+ is a subalgebra but A(I)− is not. The graded commu-

tation relation for CAR algebras is known: if A ∈ A(K) and B ∈ A(L)
where K ∩ L = ∅ , then

AB = ε(A, B)BA (4.7)

where

ε(A, B) =

{ −1 if A and B are odd
+1 otherwise.

(4.8)

The parity automorphism is the special case of the action of the gauge

group {αϑ : 0 ≤ ϑ < 2π} with

αϑ(ai) = e−iϑai.

An element A ∈ A is gauge-invariant if αϑ(A) = A for all 0 ≤ ϑ < 2π. A
state φ on the CAR algebra A is called even state if it is Θ-invariant:

φ(Θ(A)) = φ(A) (4.9)

for all A ∈ A. Note that φ(A) = 0 for all A ∈ A− is equivalent to the
condition that φ is an even state of A. Let I and J be two disjoint subsets
of Z. We say that φ is a product state with respect to A(I) and A(J), if

φ(AB) = φ(A)φ(B) (4.10)
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holds for all A ∈ A(I) and B ∈ A(J). If a state φ of the joint system A(I∪J)
(which is the same as the C*-algebra generated by A(I) and A(J)) coincides
with φI on A(I) and ωJ on A(J), i.e.

φ(A) = φI(A), ∀A ∈ A(I), (4.11)

φ(B) = ωJ(B), ∀B ∈ A(J), (4.12)

then φ is called the joint extension of φI and ωJ . As a special case, if

φ(AB) = φI(A)ωJ(B) ≡ φI ∧ ωJ(AB), (4.13)

then φ = φI ∧ ωJ is called a product state extension of φI and ωJ . A
product state extension does not exist unconditionally. Indeed, suppose that
both A and B are odd elements. If the product state extension of φI and ωJ

exist, then

φI(A)ωJ(B) = φI ∧ ωJ(AB) = φI ∧ ωJ((AB)∗)

= φI ∧ ωJ(B∗A∗) = −φI ∧ ωJ(A∗B∗)

= −φI(A∗)ωJ(B∗) = −φI(A)ωJ(B),

where we have used (4.7). This shows that at least one of two states must be
even, i.e. must vanish on odd elements. This result was generalized in [12]
in the following form:

Theorem 4.1.2 Let I1, I2, . . . be an arbitrary (finite or infinite) number of
mutually disjoint subsets of Z and φi be a given state of A(Ii) for each i.

1. A product state extension of φi, i = 1, 2, . . . exists if and only if all
states φi except at most one are even. It is unique if it exists. It is
even if and only if all φi are even.

2. Suppose that all φi are pure. If there exists a joint extension of φi,
i = 1, 2, . . . , then all states except at most one have to be even. If this
is the case, the joint extension is uniquely given by the product state
extension and is a pure state.

A state τ is called tracial state if τ(AB) = τ(BA) for all A, B ∈ A. We
remark that the existence of a tracial state follows from the isomorphism
(4.4) immediately. We will use the following lemma [11].

Lemma 4.1.1 A tracial state τ is an even product state.
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The right shift automorphism γ on A ≡ A(Z) is defined by γ(ai) = ai+1

and γ(a∗
i ) = a∗

i+1 for all ai, a
∗
i ∈ A, i ∈ Z. A state φ on A is translation-

invariant if φ ◦ γ = φ holds. It is important to know that any translation-
invariant state is automatically even [16]. Recall, that for a subset B of a
C*-algebra A the commutant of B is defined by

B′ = {A ∈ A : AB = BA for all B ∈ B}. (4.14)

It is a unital subalgebra of A and plays an important role in our investi-
gations. The commutants in the CAR algebra are given by the following
theorem [11].

Theorem 4.1.3 For a finite I ⊂ Z,

1. A(I)′ ∩ A = A (Ic)+ + vIA (Ic)−

2. (A(I)+)
′ ∩A = A (Ic) + vIA (Ic) ,

where Ic denotes the complementer set of I.

As we have seen, the fundamental object of the Markov states is the con-
ditional expectation. Now we investigate the existence of the conditional
expectation in the CAR algebra case. Recall that by a (Umegaki) condi-
tional expectation E : A → B ⊂ A we mean a norm-one projection of the
C∗-algebra A onto the C∗-subalgebra B. One can check that the map E
is automatically a completely positive identity-preserving B-bimodule map.
For CAR algebras the existence of a conditional expectation which preserves
the tracial state τ follows from generalities about conditional expectations
or the isomorphism (4.4). Inspite of these, it is useful to give a construction
for it followed the original proof [11].

Lemma 4.1.2 Let J ⊂ I. Then A(J) ⊂ A(I) and there exists a unique
conditional expectation EI

J : A(I) → A(J) which preserves the trace, i.e.
τ ◦ EI

J = τ .

Proof. The C*-algebra generated by the commuting subalgebras A(I) and
A(I \ J)+ is isomorphic to their tensor product. We have a conditional
expectation

F1 : A(I) → A(J) ⊗A(I \ J)+, F1(A) =
1

2

(
A + ΘI\J(A)

)
(4.15)

and another

F2 : A(J) ⊗A(I \ J)+ → A(J), F2(A ⊗ B) = τ(B) A. (4.16)

The composition F2 ◦ F1 is EI
J . �

51



Example 4.1.4 Assume that I = [1, 4], J = [1, 2] and consider the ac-
tion of the above conditional expectations on terms like (4.3). F1 keeps
a1a

∗
2a2a

∗
3a4 fixed and F2 sends it to a1a

∗
2a2τ(a∗

3)τ(a4) = 0. Moreover, EI
J

sends a1a
∗
2a2a3a

∗
3a

∗
4a4 to a1a

∗
2a2τ(a3a

∗
3)τ(a∗

4a4).

One can observe, that for arbitrary subsets J1, J2 ⊂ I,

EI
J1
|A(J2) = EJ2

J1∩J2
(4.17)

holds. This means that we have a commuting square, as in general:

A(J1 ∩ J2)

A(I)

A(J1) A(J2)

�
�

�
�

��

�
�

�
�

��

�
�

�
�

��

�
�

�
���

EJ1
J1∩J2

EI
J1

where the arrows ↖ consist of embeddings and the arrows ↙ consist of
conditional expectations.

4.2 The anti-symmetric Fock space

In the previous section we summerized the elements of the abstract CAR
algebra. Now we pass to a particular, but very important representation of
this algebra: to the Fock representation. Assume that the states of each
particle form a complex Hilbert space H and let Hn⊗ := H ⊗H ⊗ . . . ⊗ H
denote the n-fold tensor product of H with itself. We introduce the Fock

space F(H) over the Hilbert space H by

F(H) = ⊕n≥0Hn⊗, (4.18)

where H0⊗ ≡ C. In general, the permutation group Sn of n objects acts
naturally on the n-fold tensor product Hn⊗:

Uπ(f1 ⊗ f2 ⊗ . . . ⊗ fn) = fπ(1) ⊗ fπ(2) ⊗ . . . ⊗ fπ(n),

where π ∈ Sn and Uπ is a unitary representation of Sn on Hn⊗. A vector
ψ ∈ Hn⊗ is totally anti-symmetric if

Uπψ = ε(π)ψ

for all π ∈ Sn, where ε(π) = ±1 according to whether π is even or odd
permutation. The anti-symmetric vectors form the closed subspace Hn∧ of
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Hn⊗. We introduce the notation f1 ∧ f2 ∧ . . . ∧ fn for the anti-symmetrized
tensor product of n vectors and Pa for the projection onto their subspace
Hn∧:

f1∧f2∧. . .∧fn ≡ Pa(f1⊗f2⊗. . .⊗fn) =
1√
n!

∑
π∈Sn

ε(π)fπ(1)⊗fπ(2)⊗· · ·⊗fπ(n) ,

where f1, f2, . . . , fn ∈ H. We have Hn∧ ≡ PaHn⊗ with this notation. One
can compute easily the inner product of two totally anti-symmetric vectors:

< f1 ∧ f2 ∧ . . . ∧ fn|g1 ∧ g2 ∧ . . . ∧ gn >= Det ([< fi|gj >]i,j) . (4.19)

We can construct an orthonormal base of Hn∧ by anti-symmetrizing a prod-
uct basis of Hn⊗. Assume that {e1, e2, . . . , em} is a basis in H. Then the
vectors

{ei(1) ∧ ei(2) ∧ · · · ∧ ei(n)|i1 < i2 < . . . < in}
form an orthonormal base in Hn∧. The dimension of Hn∧ is therefore given
by

dim (Hn∧) =

(
dimH

n

)
.

In particular, the anti-symmetric tensor powers of H becomes trivial for n >
dimH. If H is separable, then Hn∧ is also separable. The anti-symmetric

or fermionic Fock space Fa is then defined by

Fa(H) := PaF(H) = ⊕n=≥0Hn∧

where H0∧ ≡ C. The element 1 ∈ H0∧ ≡ C plays an important role. One
denotes it by Φ and one calls it the vacuum vector, which describes the state
without particles. In this spirit the summand Hn∧ is called the n-particle
subspace. By (4.19) the dimension of Fa(H) with a finite-dimensional one-
particle state H is

dim (Fa(H)) =
dimH∑
n=0

(
dimH

n

)
= 2dimH. (4.20)

This suggests that if H = H1 ⊕H2, then

Fa(H) = Fa(H1) ⊗Fa(H2). (4.21)

Indeed, if {f1, f2, . . . } and {g1, g2, . . . } are orthonormal bases of H1 and H2,
respectively, then a basis of Hn∧ is given by

fi(1) ∧ fi(2) ∧ · · · ∧ fi(l) ∧ gj(1) ∧ gj(2) ∧ · · · ∧ gj(n−l)
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can be identified for any ordered set (i(1), . . . , i(l)) and (j(1), . . . , j(n − l))
with

fi(1) ∧ fi(2) ∧ · · · ∧ fi(l) ⊗ gj(1) ∧ gj(2) ∧ · · · ∧ gj(n−l)

which is a basis vector in Hl∧
1 ⊗ H(n−l)∧

2 . We remark that the isomorphism
(4.21) is crucial in statistical physics, for example this implies that the en-
tropy of a free fermion gas in equilibrium is an extensive quantity: it is pro-
portional to the volume occupied by the system. The isomorphism would fail
without the anti-symmetrization procedure and therefore lead to the Gibbs

paradox, namely, that the entropy density is always infinite or zero. We will
see that a similar isomorphism holds in the case of the symmetric or bosonic
Fock spaces.

The peculiar structure of Fock space allows the amplification of operators
on H to the whole space Fa(H) by a method commonly referred to as second
quantization. Consider an operator U ∈ B(H) acting on the one-particle
space. Denote

Un(f1 ∧ f2 ∧ · · · ∧ fn) = Uf1 ∧ Uf2 ∧ · · · ∧ Ufn, (4.22)

and
Γ(U) =

⊕
n≥0

Un. (4.23)

This operator Γ(U) is called the second quantization of U on Fa(H). It
is easy to see that

Γ(U1U2) = Γ(U1)Γ(U2) and Γ(U∗) = Γ(U)∗,

moreover
Γ(U)s = Γ(Us), ∀s ∈ R (4.24)

are holds. In particular if U is a unitary, then Γ(U) is unitary as well.
Moreover, if U(t) is a strongly continuous one-parameter group of unitary
operators, then so is Γ(U(t)). In other words, if U(t) = eitA for some self-
adjoint operator A, then Γ(U(t)) = eitΔ(A) for some self-adjoint operator
Δ(A) called differential second quantization of A. From this reason
sometimes it is denoted by dΓ(A) in the literature. One easily checks that

Δ(A) ≡ dΓ(A) =
⊕
n≥0

An, (4.25)

where

An(f1 ∧ f2 ∧ · · · ∧ fn) =

n∑
i=1

f1 ∧ · · · ∧ fi−1 ∧ Afi ∧ fi+1 ∧ · · · ∧ fn. (4.26)
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A simple computation shows, that if H = H1⊕H2 and U = U1⊕U2 such that
U1 and U2 acts on H1 and H2 respectively, then Γ(U1 ⊕U2) = Γ(U1)⊗Γ(U2)
holds.

Lemma 4.2.1 Consider an operator U ∈ B(H), where H is a finite dimen-
sional Hilbert space. Then

TrΓ(U) = Det (1 + U). (4.27)

Proof. Suppose that dimH = N and let {λi} be the eigenvalues of the
operator U with multiplicities. Denote Λn the subsets of {1, . . . , RankU}
with n elements. Then

Tr Γ(U) =
∑N

n=0

∏
i∈Λn

λi =

N∏
i=1

1 + λi = Det (1 + U). (4.28)

�

Consider the dense linear subspace Fn
a (H) spanned by vectors

0 ⊕ · · · ⊕ 0 ⊕ (f1 ∧ · · · ∧ fn) ⊕ 0 ⊕ . . . .

For f ∈ H the creation operator a∗(f) is defined on Fn
a (H) as

a∗(f) : 0 ⊕ · · · ⊕ 0 ⊕ (f1 ∧ · · · ∧ fn) ⊕ 0 ⊕ . . . �→
0 ⊕ · · · ⊕ 0 ⊕ (f ∧ f1 ∧ · · · ∧ fn) ⊕ 0 ⊕ . . . .

a∗(f) is linear in the variable f and it maps the n-particle subspace into the
(n + 1)-particle subspace. Some computation shows that its adjoint is given
by

a(f) : 0 ⊕ · · · ⊕ 0 ⊕ (f1 ∧ · · · ∧ fn) ⊕ 0 ⊕ . . . �→
n∑

j=1

(−1)j+1〈f |fj〉0 ⊕ · · · ⊕ 0 ⊕ (f1 ∧ · · · ∧ fj−1 ∧ fj+1 ∧ · · · ∧ fn) ⊕ 0 ⊕ . . .

and called the annihilation operator. One can check that they satisfy the
anticommutation relations

a(f)a(g) + a(g)a(f) = 0, (4.29)

a(f)a(g)∗ + a(g)∗a(f) = 〈f |g〉1 (4.30)

on Fn
a (H) and a(f) and a∗(f) continously extends to bounded linear oper-

ators on Fa(H), which will denoted by the same letters and this extensions
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also satisfy (4.29). Hence, we arrive to a representation of the CAR algebra
on the anti-symmetric Fock space. Indeed, consider the Hilbert space l2(Z)
with the canonical orthonormal basis {δk : k ∈ Z}. For I ⊂ Z, the CAR
algebra A(I) is isomorph with the C*-algebra generated by {a(δk) : k ∈ I}.
Any annihilation operator a(f) kills the vacuum, i.e.

a(f)Φ = 0

for all f ∈ H and if we apply successively n creation operators on Φ, then
we end up with an n-particle vector

a∗(f1)a
∗(f2) . . . a∗(fn)Φ = f1 ∧ f2 ∧ · · · ∧ fn. (4.31)

(This fact motivates the title ’creation’.) Note that if fi = fj for some pair
i, j with 1 ≤ i < j ≤ n, then

a∗(f1)a
∗(f2) . . . a∗(fn)Φ = f1 ∧ f2 ∧ · · · ∧ fn = 0,

by anti-symmetry. This is the famous Pauli principle, which tells that it
is impossible to create two fermions in the same state. It is a remarkable
property that all bounded linear operators on the antisymmetric Fock space
can be approximated by non-commutative polynomials in the a(f) and a∗(f)
in the weak operator topology. For details we refer [8, 16].

4.3 Quasi-free states

In classical probability, a Gaussian measure leads to a characteristic function
which is the exponential of a quadratic form. Its logarithm is therefore a
quadratic polynomial, and all correlations beyond the second order vanish.
In the CAR case for even states it is also possible to define the useful concept
of the correlation function (cumulants or truncated function in other words),
see [16] for details. E. Baslev and A. Verbeure defined a quasi-free state of the
CAR algebra to be an even state for which the correlation functions vanish
for n ≥ 3 [13]. For gauge-invariant states this is equivalent to the earlier
definition of D. Shale and W. Stinespring [70]. Before giving the definition,
we introduce some notations. Let H be a separable Hilbert space. The CAR
algebra A(H) is the universal C*-algebra generated by the unit element 1

and by {a(f)|f ∈ H} such that the map f �→ a(f) is complex antilinear and
the usual canonical anticommutation relations (4.29) and (4.30) are hold.
With this notations one can define the following state.
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Definition 4.3.1 Let Q be a bounded linear operator on H, such that 0 ≤
Q ≤ 1. A linear functional ωQ on the CAR algebra A(H) defined by

ωQ(1) = 1, (4.32)

ωQ(a∗(f1) . . . a∗(fm)a(gn) . . . a(g1)) := δmnDet
(
[〈gi|Qfj〉]ij

)
(4.33)

is called a quasi-free state with the symbol Q.

We remark that the choice of Q to be a positive contraction is necessary
and sufficient to having a state. A state ωQ is gauge-invariant automatically
by the construction. (4.33) shows that for a gauge-invariant quasi-free state,
the n-point functions, that is the correlations are wholly determined by these
2-point functions. That was the origin of the earlier definition of Baslev and
Verbeure [13].

Example 4.3.2 Suppose an interaction-free fermionic system described by
a Hamiltonian H with discrete spectrum {hi}, such that e−βĤ is a trace-class
operator for β > 0, where Ĥ ≡ dΓ(H) is the second-quantized Hamiltonian.
The Gibbs state ρβ of the system in the Fock representation has density op-

erator e−βĤ

Tr e−βĤ
, and its value on monomials can be expressed as

ρβ(a∗(f1) . . . a∗(fm)a(gn) . . . a(g1)) := δmn det [〈gi, Qfj〉]ni,j=1 , (4.34)

where Q has the same eigenvectors as H with corresponding eigenvalues
e−βhi

Tr e−βhi
. So the quasi-free states can be considered as the generalization of

canonical Gibbs states for non-interacting systems.

We give the statistical operator of a fermionic quasi-free state in Fock repre-
sentation.

Lemma 4.3.1 The density of a quasi-free state ωQ in the Fock representa-
tion is given by

ρQ =
Γ(Q(1 − Q)−1))

TrΓ(Q(1 − Q)−1))
. (4.35)

Proof. Since ωQ is normal, there exists a positive trace class operator S which
for

ρQ =
Γ(S)

Tr Γ(S)
. (4.36)

One can check easily that

Γ(U)a∗(f) = a∗(Uf)Γ(U) (4.37)
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holds for any U ∈ B(H). From (4.33) follows that the 2-point functions are

ωQ(a∗(f)a(g)) = 〈g|Qf〉. (4.38)

Then we have

ωQ(a∗(f)a(g)) =
1

Tr Γ(S)
Tr (Γ(S)a∗(f)a(g))

=
1

Tr Γ(S)
Tr (a(g)a∗(Sf)Γ(S))

= 〈g|Sf〉 − ωQ (a∗(Sf)a(g))

= 〈g|Sf〉 − 〈g|QSf〉 = 〈g|Qf〉,
for all f, g ∈ H, where we have use the trace property and (4.37) in the second
line and the anticommutation relations for the creation and the annihilation
operators in the third one. This means that Q = S − QS which gives

S =
Q

1 − Q

as we stated. �

We collect some facts about the quasi-free states. All these results with
proofs can be found in [8, 16, 21, 72]. Obviously the quasi-free states are
even. A quasi-free state is pure if and only if its symbol is a projection.

Consider the Hilbert space l2(Z) with the canonical orthonormal basis
{δk : k ∈ Z}, then for any I ⊂ Z, the C*-algebra A(I) generated by {ak ≡
a(δk) : k ∈ I} satisfies the anticommutation relations (4.29). Let Pn be
the projection from l2(Z) onto the finite-dimensional subspace spanned by
{δ1, . . . δn}. The restriction of ωQ to the subalgebra A(Pnl

2(Z)) is again quasi-
free with symbol PnQPn. The quasi-free state ωQ is translation-invariant if
and only if its symbol Q is a Töplitz-operator, i.e. there exists a sequence
{qk : k ∈ Z} such that Qlk = q(k − l). By the Fourier transform,

q̂(ϑ) =
∑
k∈Z

qke
ikϑ (4.39)

and its inverse

qk =
1

2π

∫
T

dϑq̂(ϑ)e−ikϑ, (4.40)

with the circle T parametrized by [0, 2π), the symbol of a translation-invariant
quasi-free state is unitarily equivalent with the multiplication operator by q̂
on L2(T, dϑ). Moreover, 0 ≤ q̂ ≤ 1 holds almost everywhere. For a pure (i.e.
Q is a projection) translation-invariant quasi-free state ωQ this means that
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the Fourier transform of the symbol is a characteristic function, i.e. there
exists a measurable set K ⊂ T such that q̂(ϑ) = χK(ϑ).

Now we turn to the characterization of quasi-free product states. This
result can be found in [63]. At first let us recall the basic notions. For a
pair of disjoint subsets I1 and I2 of Z, let φ1 and φ2 be given states of the
CAR algebras A(I1) and A(I2), respectively. If for a state φ of the joint
system A(I1 ∪ I2) (which coincides with the C∗-algebra generated by A(I1)
and A(I2))

φ(A1A2) = φ1(A1)φ2(A2) (4.41)

holds for all A1 ∈ A(I1) and all A2 ∈ A(I2), then φ is called a product state

extension of φ1 and φ2 (or with respect to the subalgebras A(I1) and A(I2)).
We will use the notation φ = φ1 ◦φ2. As we have seen in the Theorem 4.1.2,
for an arbitrary (finite or infinite) number of given subsystems, a product
state extension is shown to exist if and only if all states of subsystems except
at most one are even. Since any restriction of a quasi-free state is again quasi-
free, it is clear that if a quasi-free state is product state it must be a product
of quasi-free states. Let Q ∈ Mn(C) be a positive contraction, the symbol
of the gauge-invariant CAR quasi-free state ωQ. Denote I = (i1, . . . , ik) and
J = (j1, . . . , jl) two disjoint ordered subsets of the index set K = (1, . . . , n) ⊂
Z, such that I ∪ J = K, i.e. k + l = n. Let PI be the projection from Cn

onto the finite-dimensional subspace spanned by the subset of the canonical
orthonormal basis {δi1 , . . . , δik}. Obviously PJ = 1n − PI is a projection
onto the orthogonal subspace spanned by {δj1, . . . , δjl

}. Consider the CAR
algebras A (PI l

2(Z)) and A (PJ l2(Z)) as the subsystems of a bipartite system.
The symbols of the restrictions of the quasi-free state ωQ to the subalgebras
are given by QI = PIQPI and QJ = PJQPJ . Then for the quasi-free product
states the following is hold.

Theorem 4.3.3 With the conditions above ωQ is a product state with respect
to the subsystems A(I) and A(J), i.e. ωQ = ωQI

◦ ωQJ
if and only if for its

symbol Q the condition
Qir,js

= 0 (4.42)

holds for all r = 1, . . . , k and s = 1, . . . , l.

Proof. For the necessity let suppose that ωQ is a product state, i.e.

ωQ(AIAJ) = ωQI
(AI)ωQJ

(AJ)

holds for all AI ∈ A(I) and AJ ∈ A(J). As the quasi-free states are even
states, it must be disappear on the products AIAJ either AI or AJ is odd.
Particularly

ωQ(a∗
irajs

) = Qir ,js
= 0, (4.43)
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as we stated. We show that it is also a sufficient condition. Indeed, this con-
dition make possible to arrange Q to a block-diagonal form by interchange-
ments of columns and rows. Suppose that by interchanging the columns N
times we can obtain a matrix in which the indices of the first k columns
are i1, . . . , ik respectively. Since Q is symmetric, with N appropriate inter-
changements of the rows we arrive to the following block-diagonal matrix:[

QI 0
0 QJ

]
. (4.44)

As we get this matrix by 2N interchangements of rows and columns, the
determinant did not changed. We get

det Q = det QI det QJ , (4.45)

which is equivalent with our statement. �

In the next section we compute some entropy quantities of CAR quasi-free
states.

4.3.1 Entropy related quantities of CAR

quasi-free states

A great advantage of the quasi-free states ωQ that the most of entropy related
quantities have an explicit expression by their symbol Q. For details we refer
[8, 19].

Lemma 4.3.2 Let ωQ be a gauge-invariant quasi-free state determined by
the symbol Q =

∑
i qi|ei〉〈ei|. Then the density matrix of ωQ on the anti-

symmetric Fock space Fa(C
n) factorizes into

ρQ = ⊗n
j=1

(
qi 0
0 1 − qi

)

with respect to the decomposition

Fa(C
n) = ⊗n

j=1Fa(C|ej〉) ≡ ⊗n
C

2 ≡ C
2n

.

Its spectrum is given by

Sp(ρQ) = {rΛ|Λ ⊂ {1, 2, . . . , n}}
with

rΛ =
∏
j∈Λ

qj

∏
l∈{1,2,...,n}/Λ

(1 − ql).
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Proof. All of the expression is based on the following observations: we can
always find a 1-dimensional decomposition of the finite dimensional Hilbert
space H = ⊕iHi such that it is amenable with the eigen-decomposition of Q,
that is

Q =
∑

i

qi|ei〉〈ei|

and Hi = C|ei〉. It is straightforward that ωQ = ∧iωQi
, with Qi = qi|ei〉〈ei|.

For the 1-dimensional Hilbert space Hi, the anti-symmetric Fock space Fa(Hi)
is 2-dimensional and the associated representation can be expressed on C2 as

Qi =

(
qi 0
0 1 − qi

)
.

According to the uniqueness of the product extension of the even states by
the Theorem (4.1.2), the statements are immediate. �

From the above lemma the expression of the von Neumann entropy is a simple
corollary.

Theorem 4.3.4 The von Neumann entropy of a CAR quasi-free state ωQ is
given by

S(ωQ) = −TrQ log Q − Tr (1 − Q) log(1 − Q). (4.46)

Proof. It is immediate from the spectrum of the density matrix ρQ. �

We remark that, the p-Rényi entropy of a quasi-free state ωQ was computed
recently [19], as

Hp(ωQ) =
1

1 − p
Tr log ((1 − Q)p + Qp) . (4.47)

The von Neumann entropy (4.46) can be also deduced from the p-Rényi
entropy by taking the limit p ↘ 0. Now we compute the relative entropy of
two quasi-free states.

Theorem 4.3.1 Let Q1 and Q2 be two symbols such that kerQ2 ⊂ kerQ1

and ker(1−Q2) ⊂ ker(1−Q1), then the relative entropy of ωQ1 with respect
to ωQ2 is given by

S(ωQ1||ωQ2)

= Tr {Q1 (log Q1 − log Q2) + (1 − Q1) (log(1 − Q1) − log(1 − Q2))} .
(4.48)
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Proof. We use the following formula for the relative entropy

S(ρ||σ) = Tr ρ(log ρ − log σ) = −S(ρ) − d

dp
Tr ρσp|p=0 . (4.49)

Thinking to the form of the statistical operator of a quasi-free state (4.35),
we use the notations D1 = Q1(1 − Q1)

−1 and D2 = Q2(1 − Q2)
−1.

d

dp
Tr ρQ1ρ

p
Q2

=
d

dp
Tr

Γ(D1)

Tr Γ(D1)

[
Γ(D2)

Tr Γ(D2)

]p

=
1

Tr Γ(D1)

d

dp

{
1

(Tr Γ(D2))p
Tr Γ(D1D2

p)

}

=
1

Tr Γ(D1)

d

dp

{
(Det (1 + D2))

−pDet (1 + D1D2
p)
}

,

where we have used (4.24) and the Lemma (4.2.1) for the trace of the sec-
ond quantized operator. After using Jacobi’s formula for differentiating a
determinant [15]

d

dp
Det A = Tr

(
A−1dA

dp

)
DetA, (4.50)

and after taking p = 0, we get

d

dp
Tr ρQ1ρ

p
Q2

∣∣∣∣
p=0

=
1

Det (1 + D1)
{− log Det (1 + D2)Det (1 + D1) +

Det (1 + D1)Tr (1 + D1)
−1D1 log D2}

= −Tr log(I + D2) + Tr (I + D1)
−1D1 log D2

= Tr Q1 log Q2 + Tr (1 − Q1) log(1 − Q2),

where we used the remarkable fact, that log DetA = Tr log A. Substituting
this result into (4.49) and using the Theorem 4.3.4 for the von Neumann
entropy of quasi-free states, the statement is obtained. We remark that the
conditions for the kernels of symbols are necessary to the finiteness of the
relative entropy. �
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Chapter 5

Markov states on CAR algebras

5.1 The strong additivity of von Neumann

entropy and the Markov property

It has been shown that the Markovianity is tightly related to the strong
subadditivity of von Neumann entropy. Namely, Theorem 3.2.1 shows, that
a state of a three-composed tensor-product system forms a Markov triplet
if and only if it takes the equality for the strong subadditivity inequality
of entropy. Moreover Theorem 3.2.2 gives the complete characterization of
Markov triplets in this case. It is also possible to extend this result to an
infinite tensor product system: a translation invariant quantum Markov state
of the quantum spin algebra has a constant entropy increment at each step
by the strong additivity, see Proposition 11.5 in [52]. Our goal to investigate
this situation in the CAR case.

The root of the problem is the difference between the three-fold tensor
product system and the CAR algebra from the point of view of the com-
mutation of the subsystems. Indeed, however when the set I is countable,

the CAR algebra is isomorphic to the C∗-infinite tensor product ⊗IM2(C)
C∗

as we saw, but the isomorphism does not preserve the natural localization.
The elements of the disjoint subsystems do not commute in contrast to the
tensor product case. In spite of these difficulties the strong subadditivity of
von Neumann entropy also holds for CAR algebras as was proved by Araki
and Moriya [11] and as our proof of Theorem 2.6.7 shows: let I and J be two
arbitrary subsets of Z and denote A(I ∪ J), A(I), A(J) and A(I ∩ J) the
CAR algebras corresponding to the sets I ∪ J , I, J and I ∩ J , respectively
with the states ρI∪J , ρI , ρJ and ρI∩J , as usual. Then

S(ρI) + S(ρJ) ≥ S(ρI∩J) + S(ρI∪J) (5.1)
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holds. We prove that the equality case is equivalent with the Markov property
also for CAR algebras if we restrict ourself for even states [43, 65, 64].

Theorem 5.1.1 Let I and J be two arbitrary subsets of Z. Let φI∪J be an
even state on the CAR algebra A(I ∪ J) with the density matrix ρI∪J . Then
φI∪J is a Markov triplet corresponding to the localization {A(I \ J),A(I),
A(I ∪ J)}, i.e. there exists a quasi-conditional expectation γ w.r.t the triplet
A (I \ J) ⊂ A(I) ⊂ A(I ∪ J) satisfying

φI ◦ γ = φI∪J , (5.2)

E (A(J)) ⊂ A(I ∩ J), (5.3)

if and only if it saturates the strong subadditivity inequality of entropy with
equality, ie.

S(ρI) + S(ρJ) = S(ρI∩J) + S(ρI∪J), (5.4)

where ρJ , ρI and ρI∩J are the density matrices of the appropriate restrictions
of φI∪J .

Proof. At first remember, that a quasi-conditional expectation w.r.t the given
triplet, is a completely positive, identity-preserving linear map γ : A(I∪J) →
A(I) such that

γ(xy) = xγ(y), x ∈ A(I \ J), y ∈ A(I ∪ J). (5.5)

Let suppose that we (5.4) holds, then by expressing with the relative entropy
we have

S(ρI∪J ||ρJ) = S(ρI ||ρI∩J). (5.6)

Let’s define the map

γ(X) = ρI∩J
−1/2EI∪J

I (ρJ
1/2XρJ

1/2)ρI∩J
−1/2, X ∈ A(I ∪ J), (5.7)

where EI∪J
I is the trace preserving conditional expectation onto A(I), con-

structed in Lemma 4.1.2. It is clear, that γ : A(I ∪ J) → A(I). We show
that γ is a quasi-conditional expectation with respect to the desired triplet,
which preserves the even state φI∪J , that is φI∪J is a Markov state. It is ob-
vious that γ is completely positive and preserves the identity. We show that
A(I \ J) ⊂ Fix(γ), the fixpoint algebra of γ. For any X ∈ A(I \ J) ⊂ A(I)
we have

γ(X) = ρI∩J
−1/2EI∪J

I (ρJ
1/2XρJ

1/2)ρI∩J
−1/2

= XρI∩J
−1/2EI∪J

I (ρJ)ρI∩J
−1/2 = X,
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where we have used that ρI∩J commutes with any element of A(I \ J) as a
consequence of Theorem 4.1.3, since φI∪J and its all restrictions are even. We
also used, that EI∪J

I (ρJ) = ρI∩J follows from the commuting square property.
So, we get that γ leaves the elements of the algebra A(I\J) fixed. We remark
that

A(I \ J)+ ⊂ Fix(γ) (5.8)

holds, even if φI∪J is not an even state. If X ∈ A(I \ J) and Y ∈ A(I ∪ J),
then

γ(XY ) = ρI∩J
−1/2EI∪J

I (ρJ
1/2XY ρJ

1/2)ρI∩J
−1/2 (5.9)

= XρI∩J
−1/2EI∪J

I (ρJ
1/2Y ρJ

1/2)ρI∩J
−1/2 = Xγ(Y ), (5.10)

which shows the modular property. We remark again, that γ(XY ) = Xγ(Y )
holds for all X ∈ A(I \ J)+, Y ∈ A(I ∪ J), even if φI∪J is not even. For any
X ∈ A(J)

γ(X) = EI∪J
I (ρI∩J

−1/2ρJ
1/2XρJ

1/2ρI∩J
−1/2)

= EI∪J
I

(
EI∪J

J (ρI∩J
−1/2ρJ

1/2XρJ
1/2ρI∩J

−1/2)
)

= EI∪J
I∩J (ρI∩J

−1/2ρJ
1/2XρJ

1/2ρI∩J
−1/2),

by the commuting square property, that is γ(A(J)) ⊂ A(I ∩J) holds. These
properties show that γ is a quasi-conditional expectation with respect to the
triple

A(I \ J) ⊂ A(I) ⊂ A(I ∪ J).

Our assumption (5.6), according to the Theorem 2.6.8, is equivalent with

ρI∪J
itρJ

−it = ρI
itρI∩J

−it, t ∈ R,

or by the analytic continuation for t = −i we have

ρI∪JρJ
−1 = ρIρI∩J

−1. (5.11)

With the help of this relation we get for any X ∈ A(I ∪ J)

φI (γ(X)) = τ
(
ρIE

I∪J
I (ρI∩J

−1/2ρJ
1/2XρJ

1/2ρI∩J
−1/2)

)
= τ

(
EI∪J

I (ρI
1/2ρI∩J

−1/2ρJ
1/2XρJ

1/2ρI∩J
−1/2ρI

1/2)
)

= τ
(
ρI

1/2ρI∩J
−1/2ρJ

1/2XρJ
1/2ρI∩J

−1/2ρI
1/2
)

= τ
(
ρI∪J

1/2XρI∪J
1/2
)

= φI∪J(X),

which means that φI ◦ γ = φI∪J , so φI∪J is a Markov state, as we stated.
For the converse statement let consider a Markov state φI∪J ie.

φI ◦ F = φI∪J (5.12)
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and
F (A(J)) ⊂ A(I ∩ J) (5.13)

where F is a quasi-conditional expectation with respect to the triple
A(I \ J) ⊂ A(I) ⊂ A(I ∪ J). Let denote F ∗ the dual map of F with respect
to the Hilbert-Schmidt scalar product 〈X, Y 〉 = τ(X∗Y ). In this case for any
X ∈ A(I ∪ J) we have

φI∪J (X) = τ (ρI∪JX) = 〈ρI∪J , X〉
= φI (F (X)) = τ (ρIF (X))

= 〈ρI , F (X)〉 = 〈F ∗(ρI), X〉
which yields

F ∗(ρI) = ρI∪J . (5.14)

Now suppose that X ∈ A(J). Then

φI∪J (X) = φJ (X) = τ (ρJX)

= 〈ρJ , X〉 = φI (F (X))

= φI∩J (F (X)) = τ (ρI∩JF (X))

= 〈ρI∩J , F (X)〉 = 〈F ∗(ρI∩J), X〉
holds, where we used that (5.12) and (5.13). The computation above shows
that

F ∗(ρI∩J) = ρJ (5.15)

also holds. As F ∗ is a dual of a quasi-coditional expectation, it is completely
positive and trace preserving, i.e. it is a coarse graining, so with the equations
(5.14) and (5.15) F ∗ fulfill the the necessary and sufficient conditions of the
Theorem 2.6.5. We proved that we have equality in the strong subadditivity
of von Neumann entropy for all Markovian state without any restriction for
its evenness. �

From the proof it turns out attending to (5.8) and the remark after (5.9),
that we can leave the condition of the evenness of our state, if we require a
stronger condition to our localization:

Corollary 5.1.2 Let I and J be two arbitrary subsets of Z. Let φI∪J be any
state on the CAR algebra A(I∪J) with the density matrix ρI∪J . Then φI∪J is
forms a Markov triplet corresponding to the localization {A(I\J)+,A(I),A(I∪
J)} if and only if it saturates the strong subadditivity inequality of entropy ,
ie.

S(ρI) + S(ρJ) = S(ρI∩J) + S(ρI∪J),

where ρJ , ρI and ρI∩J are the density matrices of the appropriate restrictions
of φI∪J . �
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It is natural to consider the Markov triplets, as the builduing blocks of
Markov states.

Corollary 5.1.3 An even state φ on A is quantum Markov state, ie. for
each n ∈ N, there exists a quasi-conditional expectation En w.r.t the triplet
A (n − 1]) ⊂ A (n]) ⊂ A (n + 1]) satisfying

φn] ◦ En = φn+1],

En (A ([n, n + 1])) ⊂ A ({n}) .

if and only if

S
(
φn+1]

)
+ S

(
φ{n}

)
= S

(
φ[n,n+1]

)
+ S

(
φn]

)
for all n.

Proof. For a fixed n, with the choice I = n] , J = [n, n + 1] the quantum
Markov state become a short quantum Markov state. By using the theorem
above for all n we get the statement. �

Further characterization of CAR Markov states and chains can be found in
[6]. In the next section we investigate the structure of Markovian quasi-free
states.

5.2 Characterisation of quasi-free Markov

states on CAR algebras

Let Q ∈ Mn(C) be a positive contraction, the symbol of the gauge-invariant
quasi-free state ωQ on the CAR algebra A (P l2(Z)), where P is the projection
from l2(Z) onto the finite-dimensional subspace spanned by the subset of the
canonical orthonormal basis {δ1, . . . δn}. Similarly, let R1, R2 and R3 be
the projections from l2(Z) onto the finite dimensional subspaces spanned
by {δ1, . . . δk} , {δk+1, . . . δk+l} and {δk+l+1, . . . δk+l+m}, respectively, where
k+ l+m = n. Obviously R1, R2 and R3 are mutually orthogonal projections.
The restrictions of ωQ to the subalgebras A12 ≡ A ((R1 ∨ R2)l

2(Z)) , A23 ≡
A ((R2 ∨ R3)l

2(Z)) and A2 ≡ A (R2l
2(Z)) are again quasi-free with symbols

Q12 = (R1 ∨ R2)Q(R1 ∨ R2) , Q23 = (R2 ∨ R3)Q(R2 ∨ R3) and Q2 = R2QR2

, respectively. It is useful to write Q in the following block-matrix form

Q =

⎡
⎣ A X Z

X∗ B Y
Z∗ Y ∗ C

⎤
⎦ , (5.16)
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where A = A∗ ∈ Mk(C) , B = B∗ ∈ Ml(C) , C = C∗ ∈ Mm(C) , X ∈
Mk,l(C) , Y ∈ Ml,m(C) and Z ∈ Mk,m(C). Here Mk,l(C) denotes the k by
l complex matrices, and Mk(C) ≡ Mk,k(C) for simplicity. Our goal is the
characterization of quasi-free states which form a Markov triplet.

Theorem 5.2.1 A quasi-free state on a CAR algebra form a Markov triplet
if and only if it is the product of its reduced states.

Proof. As a quasi-free state is even state, by Theorem 5.1.1 it forms a Markov
triplet if and only if it saturates the strong subadditivity of von Neumann
entropy with equality. We define the following auxiliary density matrices on
the matrix algebra M2n(C)

ρQ :=
1

n

[
Q 0
0 1n − Q

]
, (5.17)

ρQ12 :=
1

n

[
W12 0
0 1n − W12

]
, (5.18)

ρQ23 :=
1

n

[
W23 0
0 1n − W23

]
, (5.19)

and finally

ρQ2 :=
1

n

[
W2 0
0 1n − W2

]
, (5.20)

where 1n is the identity matrix in Mn(C) and we have used the following
notations for the block matrices:

W12 =

⎡
⎣ A X 0

X∗ B 0
0 0 1

2
1m

⎤
⎦ =

[
Q12 0
0 1

2
1m

]
, (5.21)

W23 =

⎡
⎣ 1

2
1k 0 0
0 B Y
0 Y ∗ C

⎤
⎦ =

[
1
2
1k 0
0 Q23

]
, (5.22)

and finally

W2 =

⎡
⎣ 1

2
1k 0 0
0 B 0
0 0 1

2
1m

⎤
⎦ =

⎡
⎣ 1

2
1k 0 0
0 Q2 0
0 0 1

2
1m

⎤
⎦ . (5.23)

One can check that ρQ12 , ρQ23 and ρQ2 are the reduced density matrices
of the state ρQ of the composite system B ≡ M2n(C) for the subalgebras
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B12 ≡ Mk+l(C)⊕1m ⊕Mk+l(C)⊕1m , B23 ≡ 1k ⊕Ml+m(C)⊕1k ⊕Ml+m(C)
and B2 ≡ 1k ⊕ Ml(C) ⊕ 1m ⊕ 1k ⊕ Ml(C) ⊕ 1m, respectively. A simple
computation shows that the von Neumann entropy of these density matrices
can be expressed by the von Neumann entropy of the corresponding quasi-free
states, namely

S(ρQ) =
S(ωQ)

n
+ log n, (5.24)

S(ρQ12) =
S(ωQ12)

n
+ log n +

m

n
log 2, (5.25)

S(ρQ23) =
S(ωQ23)

n
+ log n +

k

n
log 2, (5.26)

S(ρQ2) =
S(ωQ2)

n
+ log n +

k + m

n
log 2. (5.27)

With the help of these formulas the strong subadditivity of the von Neumann
entropy of the quasi-free states is given by

S(ωQ12) + S(ωQ23) − S(ωQ) − S(ωQ2)

= n {S(ρQ12) + S(ρQ23) − S(ρQ) − S(ρQ2)} ≥ 0.

So we have got equality for the quasi-free states if and only if we saturate
the equality for the auxiliary states defined above. Remember that Theorem
2.6.8 gives an equivalent condition for the equlity in terms of density matrices.
Our goal is to find the necessary and sufficient conditions for the matrix Q
for which this equivalent condition holds. By the analytic continuation the
(i) part of the Theorem 2.6.8 also holds for t = −i, i.e.

ρQρ−1
Q23

= ρQ12ρ
−1
Q2

(5.28)

is a necessary condition for the strong additivity of the von Neumann entropy.
If we like to compute the inverse of a block-matrix, the following formula is
very useful.

[
A B
C D

]−1

=

[
A−1 + A−1B(D − CA−1B)−1CA−1 −A−1B(D − CA−1B)−1

−(D − CA−1B)−1CA−1 (D − CA−1B)−1

]
(5.29)

if A and D are square matrices and A is invertible. Its checking is a simple
multiplication, but its constructive proof based on the Schur complement can
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be found in several books on linear algebra [66]. With the help of (5.29), we
have for the inverse

ρ−1
Q23

= n

[
W−1

23 0
0 (1n − W23)

−1

]
, (5.30)

where

W−1
23 =

⎡
⎣ 21k 0 0

0 B−1 + B−1Y R−1Y ∗B−1 −B−1Y R−1

0 −R−1Y ∗B−1 R−1

⎤
⎦ .

We have used the abbreviation R = C − Y ∗B−1Y = R∗ for simplicity. Simi-
larly

(1n − W23)
−1

=

⎡
⎣ 21k 0 0

0 (1l − B)−1 + (1l − B)−1Y S−1Y ∗(1l − B)−1 −(1l − B)−1Y S−1

0 −S−1Y ∗(1l − B)−1 S−1

⎤
⎦ ,

with S = (1m−C)−Y ∗(1m−B)
−1Y = S∗. The inverse of ρQ2 is much more

simple, it is a block diagonal matrix in the form:

ρ−1
Q2

= nDiag
(
21k, B

−1, 21m, 21k, (1l − B)−1, 21m

)
. (5.31)

Substituting our matrices into the equation (5.28), we get that the equality
holds if and only if Y = 0 and Z = 0, so these conditions are necessary
for get equality in the strong subadditivity of von Neumann entropy. If we
consider the (i) part of the Theorem 2.6.8 for t = i we get an other necessary
condition for the equality, namely

ρQ23ρ
−1
Q2

= ρQρ−1
Q12

. (5.32)

With the help of (5.29) we can compute the inverses again as we have done
above, and after the substituting we get that the equation (5.32) holds if and
only if X = 0 and Z = 0. So Q must have the following block-diagonal form:

Q =

⎡
⎣ A 0 0

0 B 0
0 0 C

⎤
⎦ , (5.33)

i.e. the quasi-free state is a product state according the Theorem 4.3.3. �

Since a quasi-free state is translation-invariant if and only if its symbol
is a Töplitz matrix, as a consequence of the Theorem 5.2.1 we get that a
translation-invariant quasi-free state is Markov state if and only if its symbol
is some constant times the identity matrix. This result can be found in [63].

70



Chapter 6

CCR algebras and quasi-free

states

6.1 Introduction to Weyl unitaries

As we have seen in the case of CAR algebra the anti-symmetry of the wave
function had a deep consequence, namely the Pauli principle: It is impossi-
ble to create two fermions in the same state. The main qualitative difference
between fermions and bosons is the absence of a Pauli principle for the latter
particles. There is no bound on the number of particles which can occupy
a given state. Mathematically this is reflected by the unboundedness of the
Bose annihilation and creation operators. This unboundedness leads to a
large number of technical difficulties which are absent for fermions. These
problems can be partially avoided by consideration of bounded functions of
the annihilation and creation operators. This idea yields the Weyl opera-
tors. As an introduction, in this section the basis of Hermite functions of
the Hilbert space L2(R) is described in details, the creation, annihilation
operators and the Weyl unitaries are constructed.

In the Hilbert space formulation of quantum mechanics one considers
the abstract self-adjoint operators Q1, Q2, . . . , Qn, P1, P2, . . . , Pn acting on a
Hilbert space H and satisfying the Heisenberg commutation relations

for n degrees of freedom:

[Qi, Qj ] = [Pi, Pj] = 0,

[Qi, Pj] = iδij1

for all i, j = 1, 2, . . . , n, where any pair of operators A and B on H [A, B] =
AB − BA for the commutator. There is no essential difference between the
case n = 1 and the general n, therefore we restrict ourself for one degree
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of freedom. Then Q is associated to the position and P to the momen-

tum of a single particle. Since the early days of quantum mechanics it has
been the problem to find concrete operators satisfying the Heisenberg com-
mutation relations. If one takes the complex Hilbert space L2(R), Q as the
multiplication operator by the variable, i.e.

(Qf)(x) = xf(x), (6.1)

and P the differentiation, i.e.

(Pf)(x) = −if ′(x), (6.2)

then these operators form a representation of the Heisenberg commutation
relations on L2(R). This representation is called the Schrödinger repre-

sentation. The Hermite polynomials

Hn(x) := (−1)nex2 dn

dxn
e−x2

(n = 0, 1, . . . ) (6.3)

are orthogonal in the Hilbert space L2(R, e−x2
dx), they satisfy the recursion

Hn+1(x) − 2xHn(x) + 2nHn−1(x) = 0 (6.4)

and the differential equation

H ′′
n(x) − 2xH ′

n(x) + 2nHn(x) = 0. (6.5)

The normalized Hermite polynomials

H̃n(x) =
1√

2nn!
√

π
Hn(x) (6.6)

form an orthonormal basis. From this basis of L2(R, e−x2
dx), we can get

easily a basis in L2(R):

ϕn(x) := e−x2/2H̃n(x) . (6.7)

These are called Hermite functions. In terms of the Hermite functions
equation (6.4) becomes

xϕn(x) =

√
nϕn−1(x) +

√
n + 1ϕn+1(x)√

2
. (6.8)

If the operators a and a+ are defined as

aϕn =
√

nϕn−1, a+ϕn =
√

n + 1ϕn+1 (6.9)

72



with aϕ0 = 0, then in accordance with (6.8), the position operator Q is given
by

Q =
1√
2
(a + a+). (6.10)

From the equation

∂

∂x

(
Hn(x)e−x2/2

)
= H ′

n(x)e−x2/2 − xHn(x)e−x2/2,

one can obtain

Pϕn := −iϕ′
n =

√
nϕn−1 −

√
n + 1ϕn+1

i
√

2
, (6.11)

that is

P =
i√
2
(a+ − a) (6.12)

for the momontum operator. Therefore,

a =
1√
2
(Q + iP ), a+ =

1√
2
(Q − iP ).

Lemma 6.1.1 For z ∈ C the identity

e(z) :=

∞∑
n=0

zn

√
n!

ϕn(x) = π−1/4 exp
(
− z2 + x2

2

)
exp(zx

√
2)

holds. Moreover,

e(z) = eza+

ϕ0, ‖e(z)‖ = e|z|
2/2.

Proof. The identity can be deduced from the generator function

∞∑
n=0

tn

n!
Hn(x) = exp(2xt − t2) (6.13)

of the Hermite polynomials. �

The above e(z) is called exponential vector. For z ∈ C, the operator
i(za−z̄a+) is defined originally on the linear combinations of the basis vectors
ϕn and it is a symmetric operator. It can be proven that its closure is self-
adjoint, therefore exp(za − z̄a+) becomes a unitary.

W (z) := eza−z̄a+

(6.14)
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is called Weyl unitary. Note that

W (z) = exp i
√

2(αP + βQ)

if z = α + iβ. Multiple use of the identity

ei(tQ+uP ) = exp(itu/2)eitQeiuP = exp(−itu/2)eiuPeitQ (6.15)

gives the following result.

Theorem 6.1.1

W (z)W (z′) = W (z + z′) exp(i Im(z̄z′))

for z, z′ ∈ C.

With straightforward computation one gets

Lemma 6.1.2

eza−z̄a+

ϕ0 = e−|z|2/2eza+

ϕ0 =
e(z)

‖e(z)‖ .

The functions

Lα
n(x) =

n∑
k=0

(−1)k(n + α)!

k!(n − k)!(α + k)!
xk (α > −1) (6.16)

are called associated Laguerre polynomials. We write simply Ln(x) for
α = 0.

Theorem 6.1.2 For n ≥ m

〈ϕm, W (z)ϕn〉 = e−|z|2/2

√
m!

n!
zn−mLn−m

m (|z|2)

holds.

Proof. First note that definition (6.9) implies

ak(a+)nϕ0 =

⎧⎨
⎩

n!
(n−k)!

(a+)n−kϕ0 if k ≤ n,

0 if k > n.

(6.17)
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If [A, B] commutes with A and B, then the formula eAeB = e[A,B]/2eA+B

holds. Since [−z̄a+, za] = |z|2I, we can write

W (z)ϕn = eza−z̄a+

ϕn = e−|z|2/2e−z̄a+

ezaϕn

=
e−|z|2/2e−z̄a+

√
n!

∞∑
k=0

zk

k!
ak(a+)nϕ0

=
e−|z|2/2e−z̄a+

√
n!

n∑
k=0

zkn!

k!(n − k)!
(a+)n−kϕ0.

Now we can compute the matrix elements:

〈ϕm|W (z)ϕn〉 =
e−|z|2/2

√
m! n!

n∑
k=0

∞∑
�=0

(−z̄)�zkn!

�! k! (n − k)!
〈(a+)mϕ0, (a

+)n−k+�ϕ0〉

=
e−|z|2/2

√
m! n!

n∑
k=0

m∑
�=0

(−z̄)�zkn! m!

�! k! (n − k)!(m − �)!
〈(a+)m−�ϕ0, (a

+)n−kϕ0〉

= e−|z|2/2

n∑
k=0

m∑
�=0

(−z̄)�zk

�! k!

√
m! n!

(n − k)! (m − �)!
〈ϕm−�, ϕn−k〉

= e−|z|2/2
n∑

k=0

m∑
�=0

(−z̄)�zk

�! k!

√
m! n!

(n − k)! (m − �)!
δm−l,n−k,

where δk,� denotes the Kronecker symbol. For n ≥ m, we get non-vanishing
elements if and only if k = n − m + �, where m − n ≤ k ≤ n and by the
formula (6.16) we obtain

〈ϕm, W (z)ϕn〉 = e−|z|2/2

√
m!

n!

m∑
l=0

(−1)�|z|2�zn−mn!

�!(m − l)!(n − m + l)!

= e−|z|2/2

√
m!

n!
zn−mLn−m

m (|z|2),
as we stated. �

Note that the case m ≥ n can be read out from the Theorem 6.1.2, since

〈ϕm, W (z)ϕn〉 = 〈ϕn, W (−z)ϕm〉.
The case m = n involves the Laguerre polynomials. The analogue of (6.13)
is the formula

∞∑
n=0

tnLn(x) =
1

1 − t
exp
(
− xt

1 − t

)
(6.18)
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which holds for |t| < 1 and x ∈ R+. This formula is used to obtain

∞∑
n=0

μn(1 − μ)〈ϕn, W (z)ϕn〉 = exp
(
− |z|2

2

1 + μ

1 − μ

)
(6.19)

for 0 < μ < 1. Note that

D =
∞∑

n=0

μn(1 − μ)|ϕn〉〈ϕn| (6.20)

is a statistical operator (in spectral decomposition). Remark, that in the
corresponding state the self-adjoint operator

za − z̄a+

i
= (−iz)a + (−iz)a+

has Gaussian distribution.

6.2 The symmetric Fock space

We have already introduced the anti-symmetric Fock space in connection
with the fermionic systems. In this section we turn to the bosonic case. Let
H be a Hilbert space. If π is a permutation of the numbers {1, 2, . . . , n},
then on the n-fold tensor product Hn⊗ := H⊗H⊗ . . .⊗H we have a unitary
Uπ such that

Uπ(f1 ⊗ f2 ⊗ . . . ⊗ fn) = fπ(1) ⊗ fπ(2) ⊗ . . . ⊗ fπ(n).

The operator

Ps(f1 ⊗ f2 ⊗ . . . ⊗ fn) :=
1

n!

∑
π

fπ(1) ⊗ fπ(2) ⊗ . . . ⊗ fπ(n)

is a projection onto the symmetric subspace

Hn∨ := {g ∈ Hn⊗ : Uπg = g for every π}
which is the linear span of the vectors

|f1, f2, . . . , fn〉 ≡ f1 ∨ f2 ∨ . . . ∨ fn :=
1√
n!

∑
π

fπ(1) ⊗ fπ(2) ⊗ · · · ⊗ fπ(n) ,

where f1, f2, . . . , fn ∈ H. Obviously,

f1 ∨ f2 ∨ . . . ∨ fn = fπ(1) ∨ fπ(2) ∨ . . . ∨ fπ(n)
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for any permutation π. Assume that e1, e2, . . . , em is a basis in H. When we
consider a vector

ei(1) ∨ ei(2) ∨ · · · ∨ ei(n)

in the symmetric tensor power Hn∨, we may assume that 1 ≤ i(1) ≤ i(2) ≤
· · · ≤ i(n) ≤ m. A vector et may appear several times, assume that its
multiplicity is rt, that is, rt := {� : i(�) = t}. The norm of the vector is√

r1! r2! . . . rm! and{ 1√
r1! r2! . . . rm!

ei(1) ∨ ei(2) ∨ · · · ∨ ei(n) : 1 ≤ i(1) ≤ i(2) ≤ · · · ≤ i(n) ≤ m
}

(6.21)
is an orthonormal basis in Hn∨. Another notation is

|et1
1 , et2

2 , . . . , etm
m 〉 ≡ ei(1) ∨ ei(2) ∨ · · · ∨ ei(n).

The symmetric Fock space is the subspace of the whole Fock space F(H),
spanned by the symmetric vectors, i.e.

Fs(H) := PsF(H) = ⊕n≥0Hn∨

where H0∨ ≡ C. The element 1 ≡ Φ ∈ H0∨ is called the vacuum vector

and in this spirit the summand Hn∨ is called the n-particle subspace. Since
H1∨ is identical with H, the Hilbert space Fs(H) is an extension of H. The
union of the vectors (6.21) (for every n) is a basis of the Fock space.

Lemma 6.2.1 If H = H1 ⊕H2, then Fs(H) = Fs(H1) ⊗ Fs(H2).

Proof. It is enough to see that

(H1 ⊕H2)
n∨ = Hn∨

1 ⊕ (H(n−1)∨
1 ⊗H2) ⊕ . . . (H1 ⊗H(n−1)∨

2 ) ⊕Hn∨
2 .

If e1, e2, . . . , em is a basis in H1 and f1, f2, . . . , fk is a basis in H2, then the
(non-normalized) basis vector

ei(1) ∨ ei(2) ∨ · · · ∨ ei(t) ∨ fj(1) ∨ fj(2) ∨ · · · ∨ fj(n−t)

can be identified with

ei(1) ∨ ei(2) ∨ · · · ∨ ei(t) ⊗ fj(1) ∨ fj(2) ∨ · · · ∨ fj(n−t)

which is a basis vector in Ht∨
1 ⊗H(n−t)∨

2 . �

For f ∈ H the creation operator a+(f) is defined as

a+(f)|f1, f2, . . . , fn〉 = |f, f1, f2, . . . , fn〉. (6.22)
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a+(f) is linear in the variable f and it maps the n-particle subspace into the
(n + 1)-particle subspace. Its adjoint is the annihilation operator which
acts as

a(f)|f1, f2, . . . , fn〉 =
n∑

i=1

〈f, fi〉|f1, . . . , fi−1, fi+1, . . . , fn〉. (6.23)

One computes straightforwardly that the creation and the annihilation oper-
ators satisfy the so-called canonical commutation relations, briefly the
CCR, i.e.

[a(f), a(g)] = [a+(f), a+(g)] = 0 (6.24)

[a(f), a+(g) = 〈f |g〉1. (6.25)

Althoug there is a superficial similarity between the algebraic rules of CAR
(4.29) and CCR case, the properties of the respective operators are radically
different. In applications to physics these differences are thought to be at the
root of the fundamentally disparate behaviours of Bose and Fermi systems
at low temperature.

The procedure of second quantization is similar to the anti-symmetric
case, but there is a few differencies. Consider U ∈ B(H) acting on the one-
particle space, we can extend it to the symmetric Fock space in a natural
way. Denote

Un|f1, f2, . . . , fn〉 = |Uf1, Uf2, . . . , Ufn〉 (6.26)

and
Γ(U) :=

⊕
n≥0

Un. (6.27)

This operator Γ(U) is called the second quantization of U , as in the
fermionic case, but one must be careful even if U is a bounded operator,
Γ(U) is not bounded in general. Indeed, if ||U || > 1, then Γ(U) is not
bounded. It is easy to see that

Lemma 6.2.2

Γ(U1U2) = Γ(U1)Γ(U2) and Γ(U∗) = Γ(U)∗,

moreover
Γ(U)s = Γ(Us). (6.28)

In particular if U is a unitary, then Γ(U) is unitary as well. Moreover, if U(t)
is a strongly continuous one-parameter group of unitary operators, then so is
Γ(U(t)). In other words, if U(t) = eitA for some self-adjoint operator A, then
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Γ(U(t)) = eitΔ(A) for some self-adjoint operator Δ(A) called differential

second quantization of A. From this reason sometimes it is denoted by
dΓ(A) in the literature. It easy to see, that

Δ(A) ≡ dΓ(A) =
⊕
n≥0

An, (6.29)

where

An|f1, f2, . . . , fn〉 =

n∑
i=1

|f1, . . . , fi−1, Afi, fi+1, . . . , fn〉. (6.30)

The next lemma can be shown by simple computation.

Lemma 6.2.3 For f, g ∈ H, we have

dΓ(|f〉〈g|) = a+(f)a(g).

We note that the statistical operator (6.20) is (1 − μ)Γ(μ) in the case of a
one-dimensional H.

Example 6.2.1 If H = C, then Fs(H) ≡ l2(N) which is isomorphic with
L2(R). Then there is only one differential second quantization:

dΓ(1) = a+a =
1

2
(Q2 + P 2),

that is the Hamiltonian of the one dimensional harmonic oscillator.

Similarly to the fermionic case, if H = H1 ⊕ H2 and U = U1 ⊕ U2, then
Γ(U1 ⊕ U2) = Γ(U1) ⊗ Γ(U2) holds. The following result will be very useful
in our further investigations.

Lemma 6.2.4 Suppose that dimH = N and let {λi} be the eigenvalues of
the operator U with multiplicities. Then

TrΓ(U) = Det (1 − U)−1. (6.31)

Proof.

Tr Γ(U) =
∑

n≥0

∑
m1+m2+...mN=n

λm1
1 λm2

2 . . . λmN

N

=

N∏
i=1

(1 − λi)
−1

= exp{−Tr log(1 − U)}
= Det (1 − U)−1,
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where we have used, that Tr log a = log DetA. Note that

TrΓ(U) = exp{−Tr log(1 − U)} (6.32)

holds even if H is not finite dimensional. �

In the next section we give the abstract definition of the CCR algebra.

6.3 The CCR algebra

Next we characterize the abstract properties of the C*-algebra generated
by the Weyl operators, mentioned above. We remark that the monographs
[16, 55] contain a very extensive outline of this topic. Let H be a real linear
space equipped with a nondegenerate symplectic bilinear form σ, i.e. σ is a
map from H × H into R such that

σ(f, g) = −σ(g, f)

for all f, g ∈ H and if
σ(f, g) = 0

for all ∈ H , then g = 0. The pair (H, σ) will be refered to as a symplectic

space.

Definition 6.3.1 Let (H, σ) be a symplectic space. The C*-algebra of the
canonical commutation relation over (H, σ), briefly CCR algebra, written
as CCR(H, σ), is a C*-algebra generated by elements {W (f) : f ∈ H} such
that

W (f1)W (f2) = W (f1 + f2) exp(i σ(f1, f2)), (6.33)

W (−f) = W (f)∗ (6.34)

hold for f1, f2, f ∈ H.

Condition (6.33) shows that W (f)W (0) = W (0)W (f) = W (f) for all f ∈ H ,
hence W (0) is the unit of the algebra and it follows that W (f) is unitary
for every f ∈ H . The operators W (f) are called Weyl unitaries. More
generally, if H is a complex pre-Hilbert space then σ given by

σ(f1, f2) := Im〈f1, f2〉
is a nondegenerate symplectic form on the real linear space H. Moreover in
finite dimension this is the typical way to define a symplectic space, hence
the dimension of a nondegenerate symplectic space is even or infinite. We
will follow this line and for the most part we will consider a finite dimensional
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Hilbert space H, with σ(f1, f2) := Im〈f1, f2〉 and the C*-algebra generated
by the Weyl unitaries is denoted by CCR(H). The relation (6.33) shows that
W (f1) and W (f2) commute if f1 and f2 are orthogonal. Therefore for an
n-dimensional H, the algebra CCR(H) is an n-fold tensor product

CCR(C) ⊗ . . . ⊗ CCR(C).

Since W (tf)W (sf) = W ((t + s)f) for t, s ∈ R, the mapping t �→ W (tf) is a
one-parameter unitary group which is not norm continuous since ‖W (f1) −
W (f2)‖ ≥ √

2 when f1 �= f2 [55]. The C*-algebra CCR(H) has a very natural
state

ω(W (f)) := exp
(− ‖f‖2/2

)
(6.35)

which is called Fock state. The GNS-representation of CCR(H) is called
Fock representation and it leads to the the Fock space Fs(H) with cyclic
vector Φ. Since ω is a product state, the GNS Hilbert space is a tensor prod-
uct. (This is another argument to justify Lemma 6.2.1.) We shall identify
the abstract unitary W (f) with the representing unitary acting on the tensor
product GNS-space Fs(H).The map

t �→ πΦ(W (tf))

is a so-continuous 1-parameter group of unitaries, and according to the Stone
theorem we have

W (tf) = exp(itB(f)) and
∂

∂t

∣∣∣
t=0

W (tf) = iB(f)

for a self-adjoint operator B(f), called field operator. The distribution of
a field operator is Gaussian with respect to the Fock state. Let introduce the
operators

B±(f) =
1

2
(B(f) ∓ iB(if)).

Then
[B−(f), B+(g)] = 〈f, g〉I (6.36)

is the canonical commutation relation for the creation operator B+(g) and
the annihilation operator B−(f) and

[B−(f), B−(g)] = [B+(f), B+(g)] = 0 (6.37)

are also hold. The following relations outstanding in the Fock representation
account for the denomination ’creation’ and ’annihilation’

B+(f)|f1, f2, . . . , fn〉 = |f, f1, f2, . . . , fn〉 (6.38)
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and

B(f)|f1, f2, . . . , fn〉 =

n∑
i=1

〈f, fi〉|f1, . . . , fi−1, fi+1, . . . , fn〉. (6.39)

The physical interpretation of these operators is the usual one. Let Φ =
(1, 0, 0, . . . ) be the so called vacuum vector, corresponding to the zero-
particle state. The vectors

|f1, f2, . . . , fn〉 = (n!)−1/2B+(f1) . . .B+(fn)Φ

are n-particle states which arise from successive ”creation” of particles (espe-
cially bosons) in the states fn, fn−1, . . . , f1 and (6.38) expresses the creation
of a plus particle in the state f . Similarly, as (6.39) shows, B−(f) reduce
the number of particles, i.e. they annihilate particles. It is important to
remark, that B+(f) and B−(f) are never bounded and this is the reason of
the absence of a Pauli principle, i.e. in the bosonic case (in contrast to the
fermionic one) there is no bound on the number of particles which can occupy
a given state. It is useful to know the relation of the second quantization of
an operator U and the creation operator. It is easy to check, that

Γ(U)B+(f) = B+(Uf)Γ(U). (6.40)

Note that in the 1-dimensional case H = C

W (z) = exp i(a(z) + a+(z)),

where a+(z) = iz̄a+, and we get back (6.14), our ’original’ Weyl unitary.
Similarly to the CAR algebraic case, in the next section we attend to the
non-commutative analogue of the Gaussian measure.

6.4 Quasi-free states

The Fock state (6.35) can be generalized by choosing a positive operator
A ∈ B(H):

ωA(W (f)) := exp
(− ‖f‖2/2 − 〈f, Af〉). (6.41)

This state, as we will see, can be ragarded as the non-commutative analogue
of the Gaussian measure and so is called Gaussian or quasi-free state with
the symbol A. Indeed, by derivation we get

ωA(B(f)B(g)) = −iσ(f, g) +
1

2

(
〈f, (I + 2A)g〉 + 〈g, (I + 2A)f〉

)
,
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and the value of a quasi-free state ωA on any polynomial of field operators is
completely determined by these two-point functions [16, 55]:

ωA(B(fn)B(fn−1) . . . B(f1)) =

{
0 if n is odd,∑∏

ωA(B(fkm
)B(fjm

)) if n is even,
(6.42)

where the summation is over all partitions {H1, H2, . . . , Hn/2} of {1, 2, . . . , n}
such that Hm = {jm, km} with jm < km, (m = 1, 2, . . . , n/2). Remember that
in the classical probability we met something similar in the case of Gaussian
measure: it leads to a characteristic function which is the exponential of a
quadratic form. Its logarithm is therefore a quadratic polynomial, and all
correlations beyond the second order vanish. Moreover, for the creation and
the annihilation operator we have

ωA(B+(f)B−(g)) = 〈g, Af〉 . (6.43)

It was shown in [67] that if we have a state of the CCR algebra, and all
correlation functions vanish beyond some order, then the state is necessarily
quasi-free. This is the quantum analogue of the theorem of J. Marcinkiewicz
[40]. We compute the statistical operator of a quasi-free state.

Lemma 6.4.1 The statistical operator of a quasi-free state ωA in the Fock
representation is given by

ρA =
Γ(A(1 + A)−1))

TrΓ(A(1 + A)−1))
. (6.44)

Proof. Since ωA is normal, there exists a positive trace class operator S which
for

ρA =
Γ(S)

Tr Γ(S)
. (6.45)

It follows from (6.43) that

ωA(B+(f)B−(g)) =
1

Tr Γ(S)
Tr
(
Γ(S)B+(f)B−(g)

)
=

1

Tr Γ(S)
Tr
(
B−(g)B+(Sf)Γ(S)

)
= 〈g|Sf〉 + ωA

(
B+(Sf)B−(g)

)
= 〈g|Af〉,

for all f and g, where we have use the trace property and (6.40) in the second
line and (6.36) in the third one. By choosing f = (1 − S)−1g, we arrive to

ωA(B+(g)B−(g)) = 〈g|S(1− S)−1g〉, (6.46)
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which gives

S =
A

1 + A

since (6.43) as we stated. �

Example 6.4.1 Assume that H = H1 ⊕H2 and write the positive mapping
A ∈ B(H) in the form of block matrix:

A =

[
A11 A12

A21 A22

]
.

If f ∈ H1, then

ωA(W (f ⊕ 0)) = exp
(− ‖f‖2/2 − 〈f, A11f〉

)
.

Therefore the restriction of the quasi-free state ωA to CCR(H1) is the quasi-
free state ωA11.

If the spectral decomposition of 0 ≤ A ∈ B(H) is

A =
m∑

i=1

λi|ei〉〈ei|, (6.47)

then

Γ(A(I + A)−1)|er1
1 , er2

2 , . . . , erm

m 〉 =

m∏
i=1

(
λi

1 + λi

)ri

|er1
1 , er2

2 , . . . , erm

m 〉

and as we have seen above we have

DA =
1

C
Γ(A(1 + A)−1) , where C = Tr Γ(A(1 + A)−1). (6.48)

This leads to the following result.

Theorem 6.4.1 Let ωA and ωB be quasi-free state of CCR(H) which corre-
spond to the operators 0 ≤ A, B ∈ B(H). Their Connes cocycle is

[DωA, DωB]t = utΓ
(
(A(1 + A)−1)it(B(1 + B)−1)−it

)
(6.49)

where

ut =
(
TrΓ(A(1 + A)−1)

)−it(
TrΓ(B(1 + B)−1)

)it

.

In the nex section we compute some entropy related quantities in connection
with quasi-free states.
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6.4.1 Entropy related quantities of quasi-free states

The following example help us to deduce the von Neumann entropy of a
quasi-free state.

Example 6.4.2 Assume that H is one-dimensional and let A = λ > 0. We
can read out from formulas (6.19) and (6.20) that the statistical operator of
ωλ in the Fock representation is

Dλ =
∞∑

n=0

1

1 + λ

( λ

1 + λ

)n

|ϕn〉〈ϕn|. (6.50)

Moreover,
ωλ(a

+a) = λ, (6.51)

and it is not hard to see, that ωλ is quasi-free. One can easily compute the
von Neumann entropy of the state ωλ from the eigenvalues of the statistical
operator Dλ:

S(ωλ) = κ(λ), (6.52)

where
κ(t) = −t log t + (t + 1) log(t + 1). (6.53)

The case of finite dimensional H can be reduced to the one-dimensional by
the spectral decomposition of the operator A.

Theorem 6.4.3 Assume that the spectral decomposition of 0 ≤ A ∈ B(H)
is

A =
m∑

i=1

λi|ei〉〈ei|. (6.54)

Then the statistical operator of the quasi-free state ωA in the Fock represen-
tation is

DA =

(
m∏

i=1

1

1 + λi

)∑
rj

(
m∏

i=1

( λi

1 + λi

)ri 1

ri!

)
|er1

1 , . . . , erm

m 〉〈er1
1 , . . . , erm

m |,

(6.55)
where summation is over n = 0, 1, 2 . . . and the decompositions n = r1 + r2 +
· · · + rm. Moreover, the von Neumann entropy is

S(ωA) = Trκ(A), where κ(t) = −t log t + (t + 1) log(t + 1). (6.56)
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Proof. The basic idea is the decomposition

ωA = ωλ1 ⊗ ωλ2 ⊗ . . . ⊗ ωλm
(6.57)

when the space H is decomposed into the direct sum of the one-dimensional
subspaces C|ei〉 and F(H) and CCR(H) become tensor product. The statis-
tical operator of ωλi

is

Dλi
=

∞∑
ri=0

1

1 + λi

( λi

1 + λi

)ri 1

ri!
|eri

i 〉〈eri

i |

the tensor product is exactly the stated matrix. The von Neumann entropy
is deduced from (6.52) and (6.57). �

As we have seen, the von Neumann entropy and the relative entropy were
defined originally for statistical operators:

S(ρ) = −Tr ρ log ρ, S(ρ‖σ) = Tr ρ(log ρ − log σ),

where suppρ ⊂ suppσ was supposed. Kosaki’s formula can be used to define
relative entropy of states of a C*-algebra A:

S(ϕ‖ω) = sup
n

sup

{
ϕ(I) log n −

∫ ∞

1/n

(
ϕ(y(t)∗y(t)) + t−1ω(x(t)x(t)∗)

)dt

t

}
,

where the first sup is taken over all natural numbers n, the second one is over
all step functions x : (1/n,∞) → A with finite range and y(t) = I − x(t)
[35]. The von Neumann entropy can be defined via the relative entropy:

S(ϕ) = sup

{∑
i

λiS(ϕi‖ϕ) :
∑

i

λiϕi = ϕ

}
.

Here the supremum is over all decompositions of ϕ into finite (or equivalently
countable) convex combinations of other states.

In our situation ωA is a Gaussian state of the CCR-algebra which has a
normal extension ω̄A in the Fock representation and so S(ωA) = S(ω̄A). If
the state ψ does not have a normal extension, then S(ψ‖ωA) = +∞. When
ψ̄ is the normal extension, then S(ψ‖ωA) = S(ψ̄‖ω̄A), see Chapters 5 and 6
in [52] about the details. It is a consequence that we can work in the Fock
representation. Assume that ψ is a state of CCR(H). If

Cψ(f, g) := ψ(B+(f)B−(g))

can be defined, then it will be called 2-point function of ψ. A positive
operator T , defined by

〈g|Tf〉 = Cψ(f, g), (6.58)
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is called the 2-point operator of ψ. We want to compute the relative
entropy of a state ψ and a Gaussian state ωA.

Theorem 6.4.4 Consider a state ψ on the algebra CCR(H) with a 2-point
operator T . Then its relative entropy with respect to the quasi-free state ωA

is given by

S(ψ‖ωA) = −S(ψ) − TrT log A(I + A)−1 + Tr log(I + A). (6.59)

Proof. Since
S(ψ||ωA) = −S(ψ) − ψ(log ρA), (6.60)

the point is the computation of the term ψ(log ρA), where ρA is the statistical
operator of ωA given in (6.44). Supposing the decomposition

A =
∑

i

λi|fi〉〈fi|,

we have

log Γ(A(I + A)−1) =
∑

i

log
λi

1 + λi
B+(fi)B

−(fi) (6.61)

and

ψ(log DA) = ψ(log Γ(A(I + A)−1))) − log Tr Γ(A(I + A)−1)

=
∑

i

log
λi

1 + λi

ψ(B+(fi)B
−(fi)) − Tr log(I + A)

=
∑

i

log
λi

1 + λi
〈fi, T fi〉 − Tr log(I + A)

= Tr T log A(I + A)−1 − Tr log(I + A),

where we have used, that

log Tr Γ(A(I + A)−1) = Tr log(I + A), (6.62)

in accordance with (6.32). Substituting into (6.60) the proof is complete. �

We show that the quasi-free state ωA has the largest entropy among states
with 2-point operator A.

Theorem 6.4.2 Let ψ be a state of CCR(H) such that its 2-point function
is ψ(B+(f)B−(g)) = 〈g, Af〉 (f, g ∈ H) for a positive operator A ∈ B(H).
Then S(ψ) ≤ S(ωA) and equality implies ψ = ωA.
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Proof. With substitution A = T into (6.59) and using the non-negativeness
of the relative entropy we get

−S(ψ) + S(ωA) ≥ 0.

�

On the other hand, the relative entropy of the Gaussian states ωB and ωA is
also immediate:

S(ωB‖ωA) = Tr B(log B−log A)−Tr (I+B)(log(I+B)−log(I+A)). (6.63)
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Chapter 7

Markov states on CCR algebras

7.1 Gaussian Markov triplets

As we have seen before, the Markov property invented by Accardi in the
non-commutative (or quantum probabilistic) setting is based on a completely
positive, identity preserving map, so-called quasi-conditional expectation and
it was formulated in the tensor product of matrix algebras. A state of a ten-
sor product system is Markovian if and only if the von Neumann entropy
increase is constant. We also showed the strong subadditive property of the
von Neumann entropy which plays an important role in the investigations of
quantum system’s correlations. The above mentioned constant increase of
the von Neumann entropy is the same as the equality for the strong subad-
ditivity of von Neumann entropy. Assume that the Hilbert space H has the
orthogonal decomposition H1 ⊕H2 ⊕H3. Then

CCR(H) = CCR(H1) ⊗ CCR(H2) ⊗ CCR(H3)

and the equality in the strong subadditivity of the von Neumann entropy can
be the definition of the Markov property [57]:

Definition 7.1.1 Assume that ϕ123 is a state on the composite system
CCR(H1)⊗CCR(H2) ⊗CCR(H3). Denote by ϕ12, ϕ23 the restriction to the
first two and to the second and third factors, similarly ϕ2 is the restriction
to the second factor. We say that ϕ123 form a Markov triplet if

S(ϕ123) − S(ϕ12) = S(ϕ23) − S(ϕ2),

where S denotes the von Neumann entropy.

We have seen, that if ϕ123 is quasi-free (Gaussian), then it is given by a
positive operator (corresponding to the 2-point function) and the main goal
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of this section is to describe the Markov property in terms of this operator.
The technique will be use block matrix methods and linear analysis. The
paper [32] studies this problem under the finite dimensional condition, and
the genearal case is contained in [61].

Consider a Gaussian state ωA ≡ ω123, where A is a positive operator
acting on H. This operator has the block-matrix form

A =

⎡
⎣A11 A12 A13

A∗
12 A22 A23

A∗
13 A∗

23 A33

⎤
⎦ .

and we set

B =

[
A11 A12

A∗
12 A22

]
, C =

[
A22 A23

A∗
23 A33

]
.

In connection with the strong subadditivity of the von Neumann entropy, the
definition of the Markov property is

Tr κ(A) + Tr κ(A22) = Tr κ(B) + Tr κ(C), (7.1)

in accordance with (6.56). Our aim is to characterize the Markov property
in terms of the block-matrix A. Denote by Pi the orthogonal projection from
H onto Hi, 1 ≤ i ≤ 3. Of course, P1 + P2 + P3 = I and we use also the
notation P12 := P1 + P2 and P23 := P2 + P3.

Theorem 7.1.1 Assume that A ∈ B(H) is a positive invertible operator and
the Gaussian state ωA ≡ ω123 on CCR(H) has finite von Neumann entropy.
Then the following conditions are equivalent.

(a) S(ω123) + S(ω2) = S(ω12) + S(ω23)

(b) Trκ(A) + Trκ(P2AP2) = Trκ(P12AP12) + Trκ(P23AP23)

(c) There is a projection P ∈ B(H) such that P1 ≤ P ≤ P1 + P2 and
PA = AP .

Proof. (a) and (b) are different only in notation. Condition (c) tells that the
matrix A has a special form:

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

A11

[
a 0

]
0

[
a∗

0

] [
c 0
0 d

] [
0
b

]

0
[
0 b∗

]
A33

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

[
A11 a
a∗ c

]
0

0

[
d b
b∗ A33

]

⎤
⎥⎥⎥⎥⎥⎥⎦

, (7.2)
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where the parameters a, b, c, d (and 0) are operators. This is a block diagonal
matrix, A = Diag (A1, A2), [

A1 0
0 A2

]
and the projection P is [

I 0
0 0

]

in this setting. The Hilbert space H2 is decomposed as HL
2 ⊕HR

2 , where HL
2

is the range of the projection PP2. Therefore,

CCR(H) = CCR(H1 ⊕HL
2 ) ⊗ CCR(HR

2 ⊕H3) (7.3)

and ω123 becomes a product state ωL ⊗ ωR. This shows that the implication
(c) ⇒ (a) is obvious. The essential part is the proof (a) ⇒ (c) which is based
on Theorem 1.3.2, namely

Tr log(A) + Tr log(A22) ≤ Tr log(B) + Tr log(C). (7.4)

The necessary and sufficient condition for equality is A13 = A12A
−1
22 A23.

Lemma 2.7.1 says that the function κ is operator monotone and the inte-
gral representation

κ(x) =

∫ ∞

1

t−2 log(tx + 1) dt (7.5)

also implies the inequality

Tr κ(A) + Tr κ(A22) ≤ Trκ(B) + Tr κ(C). (7.6)

The equality holds if and only if

tA13 = tA12(tA22 + I)−1tA23

for almost every t > 1. The continuity gives that actually for every t > 1 we
have

A13 = A12(A22 + t−1I)−1A23.

The right-hand-side, A12(A22 + zI)−1A23, is an analytic function on {z ∈ C :
Rez > 0}, therefore we have

A13 = 0 = A12(A22 + sI)−1A23 (s ∈ R
+),

as the s → ∞ case shows. Since A12s(A22+sI)−1A23 → A12A23 as s → ∞, we
have also 0 = A12A23. The latter condition means that Rng A23 ⊂ KerA12,
or equivalently (KerA12)

⊥ ⊂ Ker A∗
23.
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The linear combinations of the functions x �→ 1/(s + x) form an alge-
bra and due to the Stone-Weierstrass theorem A12g(A22)A23 = 0 for any
continuous function g.

We want to show that the equality implies the structure (7.2) of the
operator A. We have A23 : H3 → H2 and A12 : H2 → H1. To show the
structure (7.2), we have to find a subspace H ⊂ H2 such that

A22H ⊂ H, H⊥ ⊂ Ker A12, H ⊂ Ker A∗
23,

or alternatively (H⊥ =)K ⊂ H2 should be an invariant subspace of A22 such
that

Rng A23 ⊂ K ⊂ Ker A12.

Let
K :=

{∑
i

Ani

22A23xi : xi ∈ H3, ni ∈ Z
+
}

be a set of finite sums. It is a subspace of H2. The property Rng A23 ⊂ K
and the invariance under A22 are obvious. Since

A12A
n
22A23x = 0,

K ⊂ Ker A12 also follows. The proof is complete. �

We can compare the structure of a Markov state on the CCR-algebra with
the tensor product of full matrix algebras investigated in Theorem 3.2.2. In
the case Mk(C)⊗Mk(C)⊗Mk(C), the middle factor contains a decomposition

⊕i

(BL
i ⊗ BR

i

)
(7.7)

and the Markov state has the form
∑

i pi ψi ⊗ ϕi, where ψi is a state of
Mk(C) ⊗ BL

i and ϕi is a state of BR
i ⊗ Mk(C) [29]. The CCR situation is

similar, but we do not have direct sum as (7.7), but only tensor product
decomposition.

Now we discuss the minimization of the relative entropy with respect a
quasi-free state on CCR algebras under some conditions. We show that the
minimizer is Markovian similarly to the classical probabilistic case [14].

Theorem 7.1.2 Let ω ≡ ωA be a Markovian a Gaussian state on the CCR-
algebra CCR(H) and let ψ1 be a state of CCR(H1) with a 2-point function. If
ψ is the state minimizing the relative entropy S(ψ||ωA) under the constraint
that ψ|CCR(H1) = ψ1 is fixed, then ψ is a Markov state.

Proof. We have the tensor product structure ω = ωL ⊗ ωR on (7.3). Due to
the monotonicity of the relative entropy

S(ψ||ω) ≥ S(ψ |CCR(H1 ⊕HL
2 ) || ω|CCR(H1 ⊕HL

2 )),
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holds and it is enough to minimize the right-hand-side. The right-hand-
side can be finite, for example if ψ is Gaussian, therefore, the minimizer is
uniquely exists. If the state ψ′ is the minimizer, then ψ = ψ′⊗ωR is the min-
imizer on CCR(H) due to the conditional expectation property, see Chapter
2 in [52]. From the product structure the Markov property follows. �

Note that the minimizer Markovian state ψ has the same conditional expec-
tation than the given state ω. In the probabilistic case the similar statement
is well-known, see [14], for example.

Theorem 7.1.3 Let ω ≡ ωA be a Markovian quasi-free state on the CCR-
algebra CCR(H). There exists a state ψ which is minimizing the relative
entropy S(ψ||ωA) under the constraint that ψ|A1 has a fixed 2-point operator.
Moreover, ψ is a Markov state.

Proof. Let T be the 2-point operator of ψ|A1 = ϕ and assume that ωA

is determined by the matrix (7.2). Similarly to the proof of the previous
theorem, we have to concentrate first to the restrictions of ψ and ωA to
AL := CCR(H1 ⊕HL

2 ). Here they have the block matrices

ϕ :

[
T u
u∗ v

]
and ωA|AL :

[
A11 a
a∗ c

]
.

The unknown entries u and v of the first matrix are uniquely determined by
the minimization of S(ϕ ‖ ωA|AL). When ϕ is obtained, ψ has the matrix⎡

⎢⎢⎣
T u 0 0
u∗ v 0 0
0 0 d b
0 0 b∗ A33

⎤
⎥⎥⎦ .

So ψ = ϕ⊗ωR. From the product structure the Markov property follows. �

7.2 Connection to classical Gaussians

We want to compare the classical Gaussian situation with the CCR setting.
For the sake of simplicity in this subsection we assume that the Hilbert space
H1,H2 and H3 are all k-dimensional.

Let X1,X2,X3 be vector-valued random variables with Gaussian joint
probability distribution√

DetM

(2π)3k
exp
(
− 1

2
〈x, Mx〉

)
, (7.8)
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where M ∈ M3k(C) is positive definite matrix. Theorem 1.3.1 says that the
triplet (X1,X2,X3) has the Markov property if and only if the covariance
matrix S = M−1 of (X1,X2,X3) is of the form⎡

⎣ S11 S12 S12S
−1
22 S23

S∗
12 S22 S23

S∗
23S

−1
22 S∗

12 S∗
23 S33

⎤
⎦ , (7.9)

that is
S13 = S12S

−1
22 S23, (7.10)

see. To show some analogy between the classical Gaussian and the CCR
Gaussian case, we formulate a somewhat similar description to (7.10) in the
CCR setting.

Theorem 7.2.1 The block matrix

A =

⎡
⎣A11 A12 A13

A21 A22 A23

A31 A32 A33

⎤
⎦

gives a quasi-free state with the Markov property if and only if

A13 = A12f(A22)A23 (7.11)

for any continuous function f : R → R.

Proof. If the Markov property holds, then A has the form of (7.2) and we
have

A12f(A22)A23 =
[
a 0

] [f(c) 0
0 f(d)

] [
0
b

]
= 0 = A13.

The converse is part of the proof of Theorem 7.1.1. �

We choose unit vectors ej , 1 ≤ j ≤ 3k such that

e(i−1)k+r ∈ Hi, 1 ≤ i ≤ 3, 0 ≤ r ≤ k − 1 (7.12)

and
〈et, eu〉 is real for any 1 ≤ t, u ≤ 3k. (7.13)

In the Fock representation the Weyl unitaries W (tej) = exp(tiB(ej)) com-
mute and give the (unbounded) field operators B(ej). It follows from [9, 33]
that the classical (multi-valued) Gaussian triplet

(B(e1), . . . , B(ek)), (B(ek+1), . . . , B(e2k)), (B(e2k+1), . . . , B(e3k))
(7.14)
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is Markovian if and only if

(I + 2A)13 = (I + 2A)12(I + 2A)−1
22 (I + 2A)23 (7.15)

which means that (1, 3) element of (I + 2A)−1 is 0. If the quasi-free state
induced by A gives a Markov triplet, then (7.15) is true and the classical
Markov property of (7.14) follows. The converse is not true. However, if for
every λA (λ > 0) the classical Markov property is true, then from (7.15) we
have

A13 = A12(I/(2λ) + A)−1
22 A23

and the Markovianity of the quasi-free state follows.
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[68] M. Rédei, S.J. Summers, Quantum probability theory, arXiv:quant-
ph/0601158v2 , 2006.

[69] D.W. Robinson and D. Ruelle, Mean entropy of states in classical
statistical mechanics, Comm. Math. Phys. 5(1967), 288–300.

[70] D. Shale and W. Stinespring, States on the Clifford algebra, Annals
of Mathematics 80 (1964), 365.

100



[71] F. Slawny, On factor representations and the C*-algebra of canonical
commutation relation, Commun. Math. Phys. 24(1971), 151–170

[72] R.F. Streater, Statistical dynamics: a stochastical approach to
nonequilibrium thermodynamics, Imperial Colleges Press, London, 1995.

[73] M. Takesaki, Theory of operator algebras, Vol.I, II, III, Springer-
Verlag, 2003.

[74] A. Uhlmann, Relative entropy and the Wigner-Yanase-Dyson concav-
ity in an interpolation theory, Comm. Math. Phys. 54(1977), 21–32.

[75] H. Umegaki, Conditional expectations in an operator algebra IV (en-
tropy and information), Kodai Math. Sem. Rep. 14 (1962), 59–85.

101





Buy your books fast and straightforward online - at one of world’s 

fastest growing online book stores! Environmentally sound due to 

Print-on-Demand technologies.

Buy your books online at

www.get-morebooks.com

Kaufen Sie Ihre Bücher schnell und unkompliziert online – auf einer 

der am schnellsten wachsenden Buchhandelsplattformen weltweit!

Dank Print-On-Demand umwelt- und ressourcenschonend produzi-

ert.

Bücher schneller online kaufen

www.morebooks.de
VDM Verlagsservicegesellschaft mbH

Heinrich-Böcking-Str. 6-8 Telefon: +49 681 3720 174 info@vdm-vsg.de
D - 66121 Saarbrücken Telefax: +49 681 3720 1749 www.vdm-vsg.de




