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Chapter 1

Introduction

Markov processes have been widely examined; the theory is well developed and applications are abun-

dant. Different fields of applications include statistical mechanics, chemistry, economics, population

dynamics and queueing theory.

As models become more and more complicated, a natural need arises to extend results available

for Markov processes to systems where the Markov property does not fully hold, that is, to random

processes with long memory. The exact nature of the memory in such systems can be very different;

in mathematical physics, examples include interacting particle systems or a single particle moving

in a random environment. In these cases, the memory corresponds to the state of the environment.

In queueing theory, non-exponential service or interarrival times lead to M/G/1 and G/M/1 queues

respectively; in such cases, the memory corresponds to the age of non-exponential clocks.

Non-Markovian behaviour can be handled using several different approaches. First, the state space

may be extended to include more information about the process in order to make it Markovian. The

difficulty of this approach is that the state space may end up being extremely large and difficult to

handle. Nevertheless, this approach works for many physical systems, and theory has been constantly

developed over the last decades. Two chapters of this thesis are related to this approach; Chapter 2

provides new theoretical tools called ‘sector conditions” for such systems and Chapter 3 deals with a

specific class of physical models (the so-called “true self-avoiding random walk”).

For basic queueing models, matrix analytic methods are available, and direct calculations are

also possible using Laplace–Stieltjes transform. These are established and straightforward methods

[6], [44]. For more involved queuing models, another way to handle non-Markovian behaviour is via

approximation by Markovian processes. General distributions may be approximated by specific classes

of distributions that result in Markovian models. One of the most relevant classes of distributions for

Markovian modelling is phase-type distributions. Chapter 4 deals with a question related to phase-type

distributions.

Chapter 5 discusses a non-Markovian population model where generally-timed (non-exponential)

transitions are allowed. The main goal is to find the mean-field limit of such a model (called population

generalized semi-Markov process, PGSMP), and give a rigorous proof.
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While all results in the present thesis deal with random processes with long memory, the results of

Chapters 2 and 3 are fundamentally different from Chapters 4 and 5; Chapters 2 and 3 are based on

the papers [28] and [29], coauthored with Bálint Tóth and Bálint Vető and require a background on

operators in infinite-dimensional Hilbert spaces. Chapters 4 and 5 are based on the papers [26] and

[23], which are coauthored with Miklós Telek and [23] also with Richard Hayden; Chapter 4 requires

a background on matrix analysis, elementary functions and approximations, while Chapter 5 relies on

Poisson representation and a number of classical probability concentration results.

The rest of this chapter gives an introduction and a varying level of setup to each of the four main

topics.

1.1 Sector conditions

The theory of central limit theorems for additive functionals of Markov processes via martingale ap-

proximation was initiated in the mid-1980-s with applications to tagged particle diffusion in stochastic

interacting particle systems and various models of random walks in random environment.

The Markov process is usually assumed to be in a stationary and ergodic regime. There are,

however, also other types of related results, see e.g. [40], [14], which use partly different techniques.

In their celebrated 1986 paper [31], C. Kipnis and S. R. S. Varadhan proved a central limit theorem

for the reversible case with no assumptions other than the strictly necessary ones, namely finiteness of

the asymptotic variance of the properly scaled random variable. For an early non-reversible extension

see [58] where the martingale approximation was applied to a particular model of random walk in

random environment.

The theory has since been widely extended by Varadhan and collaborators to include processes

with a varying degree of non-reversibility. Sufficient conditions for the central limit theorem are

traditionally called sector conditions; for a detailed account of sector conditions and the different

models they are applied to, see the surveys [47], [33] and [32].

In Chapter 2, we will discuss an improved version of the so-called graded sector condition [53],

along with a new type of sector condition called the relaxed sector condition [28].

An application for the graded sector condition called the true self-avoiding random walk is given in

Chapter 3; the graded sector condition guarantees Gaussian scaling limit in dimensions 3 and higher.

No application for the relaxed sector condition is given in the present thesis; however, an application

is given in [34] for random walks in divergence-free random drift fields.

1.2 True self-avoiding random walk

The ‘true’ (or myopic) self-avoiding walk model (TSAW) was introduced in the physics literature by

Amit, Parisi and Peliti in [1]. This is a nearest neighbor non-Markovian random walk in Zd which

prefers to jump to those neighbors which were less visited in the past. Long memory effects are caused
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by a path-wise self-repellence of the trajectories due to a push by the negative gradient of (softened)

local time.

Let t 7→ X(t) ∈ Zd be a continuous time nearest neighbor jump process on the integer lattice Zd

whose law is given as follows:

P
(
X(t+ dt) = y

∣∣ Ft, X(t) = x
)
= 11{| x−y |=1}w(ℓ(t, x)− ℓ(t, y)) dt+ o(dt) (1.1)

where

ℓ(t, z) := ℓ(0, z) + | {0 ≤ s ≤ t : X(s) = z} | z ∈ Zd (1.2)

is the occupation time measure of the walk X(t) with some initial values ℓ(0, z) ∈ R, z ∈ Zd, and the

self-interaction rate function w is assumed to be increasing (more precisely formulated assumptions

follow in Chapter 2). This is a continuous time version of the ‘true’ self-avoiding random walk defined

in [1].

Non-rigorous (but nevertheless convincing) scaling and renormalization group arguments suggest

the following dimension-dependent asymptotic scaling behaviour (see e.g. [1], [45], [48]):

– In d = 1: X(t) ∼ t2/3 with intricate, non-Gaussian scaling limit.

– In d = 2: X(t) ∼ t1/2(log t)ζ and Gaussian (that is Wiener) scaling limit expected. (We note that

actually there is some controversy in the physics literature about the value of the exponent ζ in the

logarithmic correction.)

– In d ≥ 3: X(t) ∼ t1/2 with Gaussian (i.e. Wiener) scaling limit expected.

In d = 1, for some particular cases of the model (discrete time TSAW with edge, rather than

site repulsion and continuous time TSAW with site repulsion, as defined above), the limit theorem

for t−2/3X(t) was established in [59], respectively, [61] with the truly intricate limiting distribution

identified. The limit of the process t 7→ N−2/3X(Nt) was constructed and analyzed in [62].

In d = 2, for the isotropic model exposed above, we expect the value ζ = 1/4 in the logarithmic

correction. For a modified, anisotropic version of the model where self-repulsion acts only in one

spatial (say, the horizontal) direction, the exponent ζ = 1/3 is expected. Superdiffusive lower bounds

of order t1/2(log log t)1/2 for the isotropic case, respectively, of order t1/2(log t)1/4 for the anisotropic

case, have been proved for these two-dimensional models, cf. [60].

We address the d ≥ 3 case in Chapter 3.

First, we identify a natural stationary (in time) and ergodic distribution of the environment (the

local time profile) as seen from the moving particle. The main results are diffusive limits. For a wide

class of self-interaction functions, we establish diffusive lower and upper bounds for the displacement

and for a particular, more restricted class of interactions, we prove full CLT for the finite dimensional

distributions of the displacement.

These results settle part of the conjectures in [1]. The proof of the CLT follows the non-reversible

version of Kipnis –Varadhan theory. On the way to the proof, we slightly weaken the so-called graded

sector condition.
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A closely related model to the TSAW is the so-called self-repelling Brownian polymer, which

is essentially the continuous-space counterpart of TSAW. For diffusive bounds for the self-repelling

Brownian polymer in 1-dimension, see [56], and for dimensions d ≥ 3, see [28] and the PhD thesis of

Bálint Vető [64].

1.3 Phase-type distributions

Consider a continuous-time Markov chain on n + 1 states with exactly one absorbing state. We

assume that the initial probability distribution of the absorbing state is 0. Let X denote the time of

absorption; its probability density function (pdf) is the following function f : R+ → R+:

f(t) = −αAetA1, t ≥ 0, (1.3)

where α is the initial row vector of size n (not including the absorbing state), and A is the vanishing

infinitesimal generator; it is essentially the infinitesimal generator of the Markov chain, with the

absorbing state removed. That is, A is a substochastic matrix of size n× n, where the sum of row i

is equal to the negative of the rate of absorption from state i. 1 is the column vector of size n whose

elements are all equal to 1. The 0 initial probability of absorption corresponds to α1 = 1; equivalently,

X does not have a probability mass at 0.

Distributions that can be obtained in the above form are called phase-type distributions; the

class of all such distributions will be denoted by PH. Phase-type distributions can be regarded as a

generalization of exponential distributions (which correspond to n = 1 in the above definition) that

can exhibit a wide range of behaviour while still being subject to Markovian modelling techniques due

to the stochastic interpretation above.

Phase-type distributions can be used to approximate general distributions; PH is dense in total

variation distance among all absolutely continuous positive distributions [6].

The pdf of a phase-type distribution is always analytic and takes the form

f(t) =
∑
i

ni∑
j=1

cλi,jt
j−1e−λit

where −λi are the eigenvalues of A, ni is the multiplicity of λi and cλi,j are constants.

For a given f in PH, α and A are not unique; not even their dimensions are unique. Hence it

makes sense to call the pair (α,A) a representation for f if (1.3) holds.

Before proceeding, we give the following precise definition of the class PH:

Definition 1. The nonnegative random variable X with density function fX is in the class PH if

there exists a vector α of size n and a matrix A of size n× n for some finite n such that

fX(t) = −αAetA1, t ≥ 0,
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and

• α is nonnegative,

• α1 = 1, where 1 denotes the column vector of size n whose elements are all equal to 1 (0

probability mass at zero),

• Aij ≥ 0 for i ̸= j

• A1 is nonpositive, and

• the MC is eventually absorbed with probability 1.

In this case, we will also say that fX is PH(α,A)-distributed.

Note that eventual absorption can also be characterized in a purely algebraic manner, based only

on the position of nonzero elements in α and A: for any index i for which there exists a sequence of

indices i−k, . . . , i−1, i0 = i such that αi−k
> 0 and Ai−j ,i−j+1 > 0 for every j = −k, . . . ,−1 (that is, the

Markov chain enters state i with a positive probability) there must exist a sequence i = i0, i1, . . . , il

such that Aij−1,ij > 0 for every j = 1, . . . , l and (A1)il < 0 (the Markov chain vanishes from state i

with a positive probability).

The size n of α (and A) is called the order of the representation. A matrix satisfying the above

conditions will be called Markovian; similarly, a nonnegative vector will be called a Markovian vector.

The states of the Markov chain are often called phases.

A minimal PH representation is defined simply as a PH representation of minimal order. Finding

a minimal PH representation for a given PH distribution is generally very difficult; no method is

available that always succeeds in finding a minimal PH representation.

The class of matrix exponential functions (ME) is defined as follows:

Definition 2. A nonnegative random variable X with probability density function f is in the class

ME if there exists a vector α of size n and a matrix A of size n× n for some finite n such that

f(t) = −αAetA1, t ≥ 0,

In this case, we will also say that f (and X) is ME(α,A)-distributed.

The difference of an ME pdf compared to a PH pdf is that we do not pose nonnegativity conditions

on α and A (α and A are usually assumed to be real; that said, during calculations, complex numbers

work just as well). If either α has negative or A has negative offdiagonal elements, the stochastic

interpretation that X is the time of absorption of a Markov chain is no longer available. The condition∫∞
0
f(t)dt = 1 implies α1 = 1.

Clearly, PH is a subclass of ME. Again it makes sense to define a minimal ME representation for any

ME (or PH) distribution as an ME representation of minimal order. For any PH distribution X, the

order of a minimal ME representation is a lower bound on the order of a minimal PH representation.
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The order of the minimal ME representation (and an actual minimal ME representation) can be found

easily (see Lemma 4.2). Further properties of minimal ME representations are examined in Chapter

4.

In practice, the lack of stochastic interpretation for matrix-exponential functions can be an issue.

The nonnegativity of the pdf can not be taken for granted, and may have to be checked. Without a

stochastic interpretation, stochastic simulations are not possible either.

Many approximation methods are insensitive of the signs of elements of α and A, and may thus

result in a matrix-exponential representation instead of a phase-type representation. It is often useful

to transform ME representations into PH representations if possible.

The difference between the two classes is characterized due to O’Cinneide [46]. Before that, we

need two more definitions.

Definition 3. f satisfies the positive density condition if

f(t) > 0 ∀t > 0.

Note that the definition allows the density at 0 to be equal to 0.

Definition 4. f satisfies the dominant eigenvalue condition if for some minimal ME representation

(α,A) of f , A has a single eigenvalue with maximal real part.

The dominant eigenvalue is always real to avoid oscillation of f around 0; the above definition

excludes the case when a is the dominant real eigenvalue and there is a pair of complex eigenvalues

with the same real part. However, the multiplicity of a may be higher than 1. We also remark that if

the dominant eigenvalue condition holds for some minimal ME representation, it holds for all minimal

ME representations of f . This is further discussed in Chapter 4.

Now we are ready to state O’Cinneide’s characterization theorem.

Theorem 1.1. [46] If fX is ME(α, A) distributed, then fX has a finite dimensional PH(β, B)

representation iff the following two conditions hold:

• fX satisfies the dominant eigenvalue condition and

• fX satisfies the positive density condition.

The main importance of the theorem is the sufficient direction; that is, if the dominant eigenvalue

condition and the positive density condition hold, then a PH representation always exists. For the

necessary direction, the positive density condition follows directly from the stochastic interpretation,

and the dominant eigenvalue condition is essentially a consequence of the Perron–Frobenius theorem.

Nevertheless, proofs for the necessary direction are also included in Chapter 4.

A possible interpretation of the theorem is that ME distributions that violate either the dominant

eigenvalue condition or the positive density condition are on the “border” of ME, while PH is the

interior of the set ME in some sense (we do not define these intuitive ideas more precisely). A pdf
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from ME\PH may be approximated by a sequence of PH distributions; however, the order of those

representations goes to infinity. From this, one may easily get the idea that ME distributions that

violate either the dominant eigenvalue condition or the positive density condition are analogous to

the time of absorption of a Markov chain on an infinite state space. This is not the case; the time

of absorption of an infinite vanishing Markov chain still satisfies the positive density condition (see

Lemma 4.9; the proof works for the infinite case as well).

The original proof of O’Cinneide for the sufficient direction of the theorem is rather involved,

using geometric properties of certain subspaces of PH distributions in high-dimensional spaces. A

quite different approach from Maier [38] uses Soittola’s automata-theoretic algorithms [54].

Both [38] and [46] prove the characterization theorem, but use complex mathematical concepts,

such as polytopes, or positive rational sequences.

The main contribution of Chapter 4 is a constructive proof for the sufficient part of the charac-

terization theorem. We propose an explicit procedure for computing a PH representation of a matrix

exponential function and showing that the procedure always terminates successfully if the matrix

exponential function satisfies the positive density condition and the dominant eigenvalue condition.

Compared to existing results, one of the main advantages of the presented constructive proof is

that it is rather elementary, using basic function and matrix theory and stochastic interpretation of

Markov processes. It also links more recent results (such as the sparse monocyclic representation of

[12]) to the characterization theorem.

1.4 Generalized semi-Markovian population models

A (homogeneous) Markov population model is defined as follows. Fix a positive integer N . Each of

N individuals is inhabiting a state from a finite set S. Each individual performs Markov transitions

in continuous time: an individual in state i transitions to state j with rate rNij . The rates may depend

on the global state of the system; the global state of the system is defined as the total number of

individuals in each state, that is, a vector xN ∈ ({0, 1, . . . , N})|S| with xN1 + · · ·+xN|S| = N . It is easy

to see that the global state of the system xN (t) is a continuous-time Markov chain.

We are interested in the behaviour of such a system for large values of N . A usual assumption is

that a family of Markov population models is density-dependent ; this means that the transition rates

depend only on the normalized global state of the sytem, independent of N . The normalized global

state of the system is defined as x̄N = xN

N .

Density-dependence commonly occurs in real-life scenarios in the field of chemistry (chemical

reaction speed may be affected by concentration), biology and many computer network applications.

We will use a peer-to-peer software update model as a detailed example.

While the global state of the system is Markovian, an explicit analysis of this Markov chain is

infeasible because the size of the state space increases exponentially in N .

The classic result of Kurtz [35] says that, upon some further regularity conditions (namely that

rij are Lipschitz-continuous and the initial conditions converge), the evolution of a density-dependent
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Markov population model converges to the solution of a system of ordinary differential equations

(ODEs) as N → ∞. The main advantage of Kurtz’s approach is that the size of the system of

equations is |S| regardless of N , thus avoiding the state-space explosion issue. Another consequence

is that the limit is deterministic: for large values of N , the behaviour of the global state of the system

is very close to deterministic. (Of course, on an individual level, it is still random.) The deterministic

limit is called the mean-field limit of the system. A precise formulation of Kurtz’s theorem will follow

in Chapter 5.

Our main goal in Chapter 5 is to extend the mean-field methodology of Kurtz to a class of models

where non-Markovian transitions are also allowed. We will define a class of population generalized

semi-Markov processes (PGSMP). The notation used here is different from the usual notation for

PGSMPs, which has its roots in formal modelling and Petri nets; we will stick to a notation close to

classic Markov-chain notation.

Just like for the Markov population model described above, a PGSMP has a finite local state space

S; each of N individuals is inhabiting a state from S, but apart from each individual making Markov

transitions, some of the states have a so-called active clock. When an individual enters a state with

an active clock, a generally-timed clock starts. The distribution of the time before the clock goes off

may depend on the state. Once the clock goes off, the individual makes a transition to another state.

The two main assumptions concerning active clocks are that in each state, there is either zero or

one active clock, and that active clocks do not compete with Markovian transitions; that is, if state i

has an active clock, all Markovian rates rij are 0. This assumption is usually referred to as delay-only,

as the non-Markovian transitions cause delays of random length between Markovian transitions.

In Chapter 5, we formulate and prove a result analogous to Kurtz’s theorem; the main difference

is that the mean-field limit is the solution of a system of delayed differential equations (DDEs), where

the evolution of the system depends not just on the current state of the system, but also on its entire

past. The change from ODEs to DDEs corresponds to the fact that a “memory” has been introduced

to the system by the generally-timed clocks.

The motivation for the mean-field approach is the same as in the Markov case — unsurprisingly,

generalized semi-Markov process models with many components also become computationally in-

tractable to explicit state techniques [10, 13] rapidly as a result of the familiar state-space explosion

problem.

Numerical DDE solvers are also available, making this approach practically applicable; that said,

our focus is the precise formulation and rigorous proof of the mean-field convergence.

Related work can be found in the biology and chemistry literature. Systems of DDEs have been

derived to approximate stochastic models of reaction networks where deterministic delays are possible

after reactions occur [3, 9, 51]. However, these models differ from those considered here in a num-

ber of critical ways; most importantly, the current presentation lacks the severe rigidity of models

encountered in biology and chemistry, making it suitable for a much larger class of population models.

There has been a recent interest for PGSMPs in a general framework; closest related work is

due to [24] and [5] which both deal with deterministic delay-only PGSMPs in different ways. Our
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presentation is closer in spirit to [24], but the upgrade from deterministic delays to generally-timed

delays calls for a careful and involved analysis.

The approach in [5] highlights the connection to ODE approximations of DDEs [39] which is directly

analogous to the Erlang approximation of the delay in the PGSMP. The current approach, however,

avoids any Erlang approximations whatsoever, proving the mean-field limit directly via probability

concentration theorems.
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Chapter 2

Sector conditions

In this chapter we give a short overview of the classic martingale approximation and central limit

theorem à la Kipnis –Varadhan [31] and the sufficient conditions that guarantee central limit ap-

proximation called sector conditions (strong sector condition [63] and graded sector condition [53]).

Then we will present an improved version of the graded sector condition, and we will also present

a new condition, which we call the relaxed sector condition (RSC) that generalizes the strong sector

condition (SSC) and the graded sector condition (GSC) in the case when the self-adjoint part of the

infinitesimal generator acts diagonally in the grading. The main advantage being that the proof of

the GSC in this case is more transparent and less computational than in the original versions.

An application for the improved graded sector condition called the true self-avoiding random walk

is given in Chapter 3; the graded sector condition guarantees Gaussian scaling limit in dimensions 3

and higher.

No application for the relaxed sector condition is given in the present thesis; however, an application

is given in [34] for random walks in divergence-free random drift fields.

2.1 Setup, abstract considerations

We recall the non-reversible version of the abstract Kipnis –Varadhan CLT for additive functionals of

ergodic Markov processes, see [31] and [58].

Let (Ω,F , π) be a probability space: Ω is the state space of a stationary and ergodic Markov

process t 7→ η(t). We put ourselves in the Hilbert space H := L2(Ω, π). Denote the infinitesimal

generator of the semigroup of the process by G, which is a well-defined (possibly unbounded) closed

linear operator on H.

The adjoint G∗ is the infinitesimal generator of the semigroup of the reversed (also stationary and

ergodic) process η∗(t) = η(−t). It is assumed that G and G∗ have a common core of definition C ⊆ H.
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We denote the symmetric and antisymmetric parts of the generators G, G∗, by

S := −1

2
(G+G∗), A :=

1

2
(G−G∗).

(We prefer to use the notation S for the positive semidefinite operator defined above, so the in-

finitesimal generator will be written as G = −S + A.) These operators are also extended from C by

graph closure and it is assumed that they are well-defined self-adjoint, respectively, skew-self-adjoint

operators:

S∗ = S ≥ 0, A∗ = −A.

Summarizing: it is assumed that the operators G, G∗, S and A have a common dense core of definition

C. Note that −S is itself the infinitesimal generator of a Markovian semigroup on L2(Ω, π), for which

the probability measure π is reversible (not just stationary). We assume that −S is itself ergodic:

Ker(S) = {c11 : c ∈ C}.

We shall restrict ourselves to the subspace of codimension 1, orthogonal to the constant functions.

In the sequel the operators (λI + S)±1/2, λ ≥ 0, will play an important role. These are defined

by the spectral theorem applied to the self-adjoint and positive operator S. C is also a core for the

operators (λI+S)1/2, λ ≥ 0. The operators (λI+S)−1/2, λ > 0, are everywhere defined and bounded,

with
∥∥ (λI + S)−1/2

∥∥ ≤ λ−1/2. The operator S−1/2 is defined on

Dom(S−1/2) :=

{
f ∈ H :

∥∥∥S−1/2f
∥∥∥2 := lim

λ→0

∥∥∥ (λI + S)−1/2f
∥∥∥2 ≤ ∞

}
= Ran(S1/2). (2.1)

Let f ∈ H, such that (f, 11) =
∫
Ω
f dπ = 0. We ask about CLT/invariance principle for

N−1/2

∫ Nt

0

f(η(s)) ds (2.2)

as N → ∞.

Assume

f ∈ Ran(S1/2). (2.3)

We shall refer to (2.3) as the H−1-condition. From standard variational arguments (see e.g. [32], [47]

and [53]) it follows that (2.3) is a sufficient condition for the diffusive upper bound:

lim
t→∞

t−1E

(
(

∫ t

0

f(η(s)) ds)2
)

≤ 2
∥∥∥S−1/2f

∥∥∥ . (2.4)
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We denote by Rλ the resolvent of the semigroup s 7→ esG:

Rλ :=

∫ ∞

0

e−λsesGds =
(
λI −G

)−1
, λ > 0, (2.5)

and given f ∈ H as above, we will use the notation

uλ := Rλf.

The following theorem is direct extension to the general non-reversible setup of the Kipnis –

Varadhan Theorem from [31]. It yields the efficient martingale approximation of the additive func-

tional (2.2). To the best of our knowledge this non-reversible extension appears first in [58].

Theorem KV. With the notation and assumptions as before, if the following two limits hold in H:

lim
λ→0

λ1/2uλ = 0, (2.6)

lim
λ→0

S1/2uλ =: v ∈ H, (2.7)

then

σ2 := 2 lim
λ→0

(uλ, f) = 2 ∥ v ∥2 ∈ [0,∞),

exists, and there also exists a zero mean L2-martingale M(t) adapted to the filtration of the Markov

process η(t), with stationary and ergodic increments and variance

E
(
M(t)2

)
= σ2t,

such that

lim
N→∞

N−1E

((∫ N

0

f(η(s)) ds−M(N)
)2)

= 0.

In particular, if σ > 0, then the finite dimensional marginal distributions of the rescaled process

t 7→ σ−1N−1/2
∫ Nt

0
f(η(s)) ds converge to those of a standard 1d Brownian motion.

Remarks. ◦ For the historical record it should be mentioned that the idea of martingale approxima-

tion and an early variant of this theorem under the much more restrictive condition f ∈ Ran(G),

appears in [22]. For more exhaustive historical account and bibliography of the problem see the

recent monograph [32].

◦ The reversible case, when A = 0, was considered in the celebrated paper [31]. In that case conditions

(2.6) and (2.7) are equivalent. The proof of the Theorem KV in the reversible case relies on spectral

calculus.
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◦ Conditions (2.6) and (2.7) of Theorem KV are jointly equivalent to the following:

lim
λ,λ′→0

(λ+ λ′)(uλ, uλ′) = 0. (2.8)

Indeed, straightforward computations yield:

(λ+ λ′)(uλ, uλ′) =
∥∥∥S1/2(uλ − uλ′)

∥∥∥2 + λ ∥uλ ∥2 + λ′ ∥uλ′ ∥2 .

◦ The non-reversible formulation appears – in discrete-time Markov chain, rather than continuous-

time Markov process setup and with condition (2.8) – in [58] where it was applied, with bare hands

computations, to obtain CLT for a particular random walk in random environment. Its proof

mainly follows the original proof of the Kipnis –Varadhan theorem from [31] with the difference

that spectral calculus is replaced by resolvent calculus.

◦ In continuous-time Markov process setup, it was formulated in [63] and applied to tagged particle

motion in non-reversible zero mean exclusion processes. In this paper, the strong sector condition

(SSC) was formulated, which, together with the H−1-condition (2.3) on the function f ∈ H, provide

sufficient conditions for (2.6) and (2.7) of Theorem KV to hold.

◦ In [53], the so-called graded sector condition (GSC) was formulated and Theorem KV was applied

to tagged particle diffusion in general (non-zero mean) non-reversible exclusion processes, in d ≥ 3.

The fundamental ideas related to the GSC have their origin partly in [36].

◦ For a list of applications of Theorem KV together with the SSC and GSC, see the surveys [47],

[32], and for a more recent application of the GSC to the so-called myopic self-avoiding walks and

Brownian polymers, see [28].

2.2 Sector conditions

In Subsection 2.2.1 we recall the SSC. In Subsection 2.2.2 we present an improved version of the GSC.

In subsection 2.2.3 we formulate the RSC, then we show how the SSC and the diagonal version of the

GSC follow in a very natural way from RSC. The main gain is in simplifying the proof of the diagonal

GSC; the proof of the RSC may be called the “proof from the book”.

2.2.1 Strong sector condition

From abstract functional analytic considerations [31], it follows that the H−1-condition (2.3) jointly

with the following bound jointly imply (2.8), and hence the martingale approximation and CLT of

Theorem KV:

sup
λ>0

∥∥∥S−1/2Guλ

∥∥∥ <∞. (2.9)
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Theorem SSC. With notations as before, if there exists a constant C <∞ such that for any φ,ψ ∈ C,
the common core of S and A,

| (ψ,Aφ) |2 ≤ C2(ψ, Sψ)(φ, Sφ) (2.10)

then for any f ∈ H for which (2.3) holds, (2.9) also follows. So for every function f for which (2.3)

holds, the martingale approximation and CLT of Theorem KV applies automatically.

Remark. ◦ Condition (2.10) is equivalent to requiring that the operator S−1/2AS−1/2 defined on

the dense subspace S1/2C := {S1/2φ : φ ∈ C} be bounded in norm by the constant C. Hence, by

continuous extension, condition (2.10) is the same as∥∥∥S−1/2AS−1/2
∥∥∥ ≤ C <∞. (2.11)

2.2.2 Improved version of the graded sector condition

In the present section, we recall the non-reversible version of the Kipnis –Varadhan CLT for additive

functionals of ergodic Markov processes and present an improved version of the graded sector condition

of Sethuraman, Varadhan and Yau, [53].

We reformulate the graded sector condition from [47] and [32] in a somewhat enhanced version.

Again, the next two conditions jointly imply (2.6) and (2.7) [31]:

f ∈ Ran(S1/2), (2.12)

sup
λ>0

∥∥∥S−1/2Guλ

∥∥∥ <∞. (2.13)

Assume that the Hilbert space H = L2(Ω, π) is graded

H = ⊕∞
n=0Hn, (2.14)

and the infinitesimal generator is consistent with this grading in the following sense:

S =
∞∑

n=0

r∑
j=−r

Sn,n+j , Sn,n+j : Hn → Hn+j , S∗
n,n+j = Sn+j,n, (2.15)

A =
∞∑

n=0

r∑
j=−r

An,n+j , An,n+j : Hn → Hn+j , A∗
n,n+j = −An+j,n (2.16)

for some finite positive integer r. Here and in the sequel, the double sum
∑∞

n=0

∑r
j=−r · · · is meant

as∑∞
n=0

∑r
j=−r 11{n+j≥0} · · · .

Theorem 2.1 (GSC). Let the Hilbert space and the infinitesimal generator be graded in the sense

specified above. Assume that there exists an operator D = D∗ ≥ 0 which acts diagonally on the grading
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of H:

D =
∞∑

n=0

Dn,n, Dn,n : Hn → Hn (2.17)

such that

0 ≤ D ≤ S. (2.18)

Assume also that, with some C <∞ and 2 ≤ κ <∞, the following bounds hold:∥∥∥D−1/2
n,n (Sn,n +An,n)D

−1/2
n,n

∥∥∥ ≤ Cnκ, (2.19)∥∥∥D−1/2
n+j,n+jAn,n+jD

−1/2
n,n

∥∥∥ ≤ n

12r2κ
+ C, j = ±1, . . . ,±r, (2.20)∥∥∥D−1/2

n+j,n+jSn,n+jD
−1/2
n,n

∥∥∥ ≤ n2

6r3κ2
+ C, j = ±1, . . . ,±r, (2.21)

Under these conditions on the operators, for any function f ∈ ⊕N
n=0Hn, with some N <∞, if

D−1/2f ∈ H, (2.22)

then (2.12) and (2.13) follow. As a consequence, the martingale approximation and CLT of Theorem

KV hold.

Remark 2.1. In the original formulation of the graded sector condition (see [53], [32] and [47]), the

bound imposed in (2.21) on the symmetric part of the generator was of the same form as that imposed

in (2.20) on the skew-symmetric part. We can go up to the bound of order n2 (rather than of order n)

in (2.21) due to decoupling of the estimates of the self-adjoint and skew self-adjoint parts. The proof

follows the main lines of the original one with one extra observation which allows the enhancement

mentioned above.

Proof. We present a proof following the main steps and notations used in [47] or [32]. The main

difference, where we gain more in the upper bound imposed in (2.21) is in the bound (2.32). The

expert should jump directly to comparing the bounds (2.31) and (2.32) to the bounds in the original.

Let

f =
N∑

n=0

fn, uλ =
∞∑

n=0

uλn, fn, uλn ∈ Hn. (2.23)

From (2.19), (2.20) and (2.21), it follows that∥∥∥S−1/2Guλ

∥∥∥2 ≤ C
∑
n

n2κ
∥∥∥D1/2uλn

∥∥∥2 (2.24)

with some C <∞. So it suffices to prove that the right-hand side of (2.24) is bounded, uniformly in

λ > 0.

Let

t(n) := nκ111{0≤n<n1} + nκ11{n1≤n≤n2} + nκ211{n2<n<∞} (2.25)

21



with the values of 0 < n1 < n2 < ∞ to be fixed later, and define the bounded linear operator

T : H → H,

T �Hn= t(n)I �Hn . (2.26)

In the end, n1 will be large but fixed, and n2 will go to ∞.

We start with the identity

λ(Tuλ, Tuλ) + (Tuλ, STuλ) = (Tuλ, T f)− (Tuλ, [A, T ]uλ) + (Tuλ, [S, T ]uλ) (2.27)

obtained from the resolvent equation by manipulations. The key to the proof is controlling the order

of the commutator terms on the right as precisely as possible. We point out here that separating the

last two terms on the right-hand side rather than handling them jointly as (Tuλ, [T,G]uλ) (as done

in the original proof [47]) will allow for gain in the upper bound imposed in (2.21).

We get the following bounds via Schwarz:

λ(Tuλ, Tuλ) ≥ 0, (2.28)

(Tuλ, STuλ) =
∑
n

t(n)2(uλn, Suλn)

=
∑
n

t(n)2(S1/2uλn, S
1/2uλn) ≥

∑
n

t(n)2
∥∥∥D1/2uλn

∥∥∥2 , (2.29)

(Tuλ, T f) =
∑
n

t(n)2(uλn, fn)

=
∑
n

t(n)2
(

1√
2
D1/2uλn,

√
2D−1/2fn

)
≤ 1

4

∑
n

t(n)2
∥∥∥D1/2uλn

∥∥∥2 +∑
n

t(n)2
∥∥∥D−1/2fn

∥∥∥2 . (2.30)

Now, the last two terms on the right-hand side of (2.27) follow. The second term (containing A)

is treated just like in the original proof, the third term (containing S) slightly differently.

(Tuλ, [A, T ]uλ) =
1

2
(uλ, (AT

2 − T 2A)uλ) (2.31)

=
1

2

∑
n

r∑
j=−r

(
t(n)2 − t(n+ j)2

)
(uλ(n+j), An,n+juλn)

≤ 1

2

∑
n

r∑
j=−r

∣∣ t(n)2 − t(n+ j)2
∣∣ ( n

12r2κ
+ C

)∥∥∥D1/2uλn

∥∥∥ ∥∥∥D1/2uλ(n+j)

∥∥∥ ,
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(Tuλ, [S, T ]uλ) =
1

2
(uλ, (2TST − ST 2 − T 2S)uλ) (2.32)

= −1

2

∑
n

r∑
j=−r

(
t(n)− t(n+ j)

)2
(uλ(n+j), Sn,n+juλn)

≤ 1

2

∑
n

r∑
j=−r

(
t(n)− t(n+ j)

)2( n2

6r3κ2
+ C

)∥∥∥D1/2uλn

∥∥∥∥∥∥D1/2uλ(n+j)

∥∥∥ .
Note the difference between the coefficients in the middle lines of (2.31), respectively, (2.32). Choosing

n1 sufficiently large, we get

sup
n

max
−r≤j≤r

∣∣ t(n)2 − t(n+ j)2
∣∣

t(n)2

( n

12r2κ
+ C

)
≤ sup

n

∣∣n2κ − (n+ r)2κ
∣∣

t(n)2

( n

12r2κ
+ C

)
≤ 1

2(2r + 1)
(2.33)

since the main term in
∣∣n2κ − (n+ r)2κ

∣∣ is 2rκn2κ−1 and the main term in the entire expression is
1
6r . Smaller order terms are arbitrarily small when n1 is chosen large enough.

Similarly,

sup
n

max
−r≤j≤r

(
t(n)− t(n+ j)

)2
t(n)2

(
n2

6r3κ2
+ C

)
≤ 1

2(2r + 1)
. (2.34)

and hence, via another Schwarz,

| (Tuλ, [A, T ]uλ) |+ | (Tuλ, [S, T ]uλ) | ≤
1

2

∑
n

t(n)2
∥∥∥D1/2uλn

∥∥∥2 . (2.35)

Putting (2.28), (2.29), (2.30) and (2.35) into (2.27), we obtain:

∑
n

t(n)2
∥∥∥D1/2uλn

∥∥∥2 ≤ 4
∑
n

t(n)2
∥∥∥D−1/2fn

∥∥∥2 = 4
N∑

n=0

t(n)2
∥∥∥D−1/2fn

∥∥∥2 . (2.36)

Finally, letting n2 → ∞, we get indeed (2.13) via (2.22) and (2.24).

2.2.3 Relaxed sector condition

Let, as before, C ⊂ H be a common core for the operators G, G∗, S and A. Note that for any λ > 0,

C ⊆ Dom((λI + S)1/2) and the subspace

(λI + S)1/2C := {(λI + S)1/2φ : φ ∈ C}

is dense in H. The operators

Bλ : (λI + S)1/2C → H, Bλ := (λI + S)−1/2A(λI + S)−1/2, λ > 0, (2.37)
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are densely defined and skew-Hermitian, and thus closable. Actually it is the case that they are

not only skew-Hermitian, but essentially skew-self-adjoint on (λI + S)1/2C. Indeed, let χ ∈ C, φ =

(λI + S)1/2χ and ψ ∈ H, then

(ψ, (I ±Bλ)φ) = ((λI + S)−1/2ψ, (λI + S ±A)χ).

So, ψ ⊥ Ran(I ±Bλ) implies (λI +S)−1/2ψ ⊥ Ran(λI +S±A) and thus, since the operators −S±A
are Hille-Yosida-type, (λI + S)−1/2ψ = 0, and consequently ψ = 0 holds for any λ > 0. That is

Ran(I ± Bλ) is dense in H. By slight abuse of notation we shall denote by the same symbol Bλ the

skew-self-adjoint operators obtained by closure of the operators defined in (2.37).

The main point of the following theorem is that if there exists another skew-self-adjoint operator

B, formally identified as

B := S−1/2AS−1/2, (2.38)

and a sufficiently large subspace on which the sequence of operators Bλ converges pointwise (strongly)

to B, as λ → 0, then, the H−1-condition (2.3) implies (2.6) and (2.7), and thus the martingale

approximation and CLT of Theorem KV follow.

Theorem 2.2 (Relaxed sector condition). Assume that there exist a subspace C̃ ⊆ ∩λ>0 Dom(Bλ)

which is still dense in H and an operator B : C̃ → H which is essentially skew-self-adjoint and such

that for any vector φ ∈ C̃

lim
λ→0

∥Bλφ−Bφ ∥ = 0. (2.39)

Then, the H−1-condition (2.3) implies (2.6) and (2.7), and thus the martingale approximation and

CLT of Theorem KV follow.

Remarks. ◦ Finding the appropriate subspace C̃ and defining the skew-Hermitian operator B : C̃ →
H comes naturally. The difficulty in applying this criterion lies in proving that the operator B is

not just skew-Hermitian, but actually skew-self-adjoint. That is, proving that

Ran(I ±B) = H. (2.40)

This is the counterpart of the basic criterion of self-adjointness. See e.g. Theorem VIII.3. of [49].

Checking this is typically not easy in concrete cases.

◦ The statement and the proof of this theorem show close similarities with the Trotter-Kurtz theorem.

See Theorem 2.12 in [37].

◦ Theorem SSC follows directly: In this case the operator B is actually bounded and thus automati-

cally skew-self-adjoint, not just skew-Hermitian. In order to see (2.39) note that

Bλ = S1/2(λI + S)−1/2BS1/2(λI + S)−1/2 st.op.top.−→ B, (2.41)
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where
st.op.top.−→ denotes convergence in the strong operator topology.

Proof. Since the operators Bλ, λ > 0, defined in (2.37) are a priori and the operator B is by assumption

essentially skew-self-adjoint, we can define the following bounded operators (actually contractions):

Kλ := (I −Bλ)
−1, ∥Kλ ∥ ≤ 1, λ > 0,

K := (I −B)−1, ∥K ∥ ≤ 1.

Hence, we can write the resolvent (2.5) as

Rλ = (λ+ S)−1/2Kλ(λ+ S)−1/2. (2.42)

Lemma 2.3. Assume that the sequence of bounded operators Kλ converges in the strong operator

topology:

Kλ
st.op.top.−→ K, as λ→ 0. (2.43)

Then for any f satisfying the H−1-condition (2.3), (2.6) and (2.7) hold.

Proof. From the spectral theorem applied to the self-adjoint operator S, it is obvious that∥∥∥λ1/2(λ+ S)−1/2
∥∥∥ ≤ 1, λ1/2(λ+ S)−1/2 st.op.top.−→ 0, (2.44)∥∥∥S1/2(λ+ S)−1/2
∥∥∥ ≤ 1, S1/2(λ+ S)−1/2 st.op.top.−→ I, (2.45)

By condition (2.3) we can write

f = S1/2g

with some g ∈ H. Now, using (2.42), we get

λ1/2uλ = λ1/2(λ+ S)−1/2Kλ(λ+ S)−1/2S1/2g, (2.46)

S1/2uλ = S1/2(λ+ S)−1/2Kλ(λ+ S)−1/2S1/2g. (2.47)

From (2.43), (2.46), (2.47), (2.44) and (2.45), we readily get (2.6) and (2.7) with

v = Kg.

In the next lemma, we formulate a sufficient condition for (2.43) to hold. This is reminiscent of

Theorem VIII.25(a) from [49]:
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Lemma 2.4. Let Bn, n ∈ N, and B = B∞ be densely defined closed operators over the Hilbert space

H. Assume that

(i) Some (fixed) µ ∈ C is in the resolvent set of all operators Bn, n ≤ ∞, and

sup
n≤∞

∥∥ (µI −Bn)
−1
∥∥ <∞. (2.48)

(ii) There is a dense subspace C̃ ⊆ H which is a core for B∞ and C̃ ⊆ Dom(Bn), n < ∞, such that

for all h̃ ∈ C̃:

lim
n→∞

∥∥∥Bnh̃−Bh̃
∥∥∥ = 0. (2.49)

Then

(µI −Bn)
−1 st.op.top.−→ (µI −B)−1. (2.50)

Proof. Since C̃ is a core for the densely defined closed operator B and µ is in the resolvent set of B,

the subspace

Ĉ := {ĥ = (µI −B)h̃ : h̃ ∈ C̃}

is dense in H. Thus, for any ĥ from this dense subspace, we have

{
(µI −Bn)

−1 − (µI −B)−1
}
ĥ = (µI −Bn)

−1(Bnh̃−Bh̃) → 0,

due to (2.48) and (2.49). Using again (2.48), we conclude (2.50).

Putting Lemmas 2.3 and 2.4 together, we obtain Theorem 2.2.

As a direct consequence we formulate a version of Theorem GSC. The main advantage is actually

in the proof: our proof is considerably less computational, more transparent and natural than the

original one from [53], reproduced in a streamlined way in [47] and [32].

Assume the setup of Theorem GSC: the grading of the Hilbert space and the infinitesimal generator

G acting consistently with the grading: (2.15) and (2.16). We assume that S is diagonal, that is,

Sn,n+j = 0 for j ̸= 0.

Proposition 1 (GSC from RSC). If there exist two positive nondecreasing sequences dn and cn,

such that

dn <∞,
∞∑

n=1

c−1
n = ∞, (2.51)
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and for any n,m ∈ N and ψm ∈ Cm, φn ∈ Cn the following bounds hold:

| (ψm, Am,nφn) |2 ≤ (δm,ndn + (1− δm,n)cn) (ψm, Sm,mψm)(φn, Sn,nφn), (2.52)

then the conditions of Theorem 2.2 hold with C̃ = ⊕∞
n=1Hn (no closure!).

Proof. Let

C̃ = ⊕∞
n=1Hn.

Note that there is no closure of the orthogonal sum on the right hand side. Then the operator

B = S−1/2AS−1/2 is defined on C̃ and is graded as

B =
∑

m,n≥1
|n−m |≤r

Bm,n, Bm,n : Hn → Hm, Bm,n := S−1/2
m,m Am,nS

−1/2
m,m , B∗

m,n = −Bn,m.

Indeed, due to (2.52)

∥Bn,m ∥ ≤ δm,ndn + (1− δm,n)cn. (2.53)

The operator B : C̃ → C̃ is clearly skew-Hermitian. In order to prove that it is actually essentially

skew-self-adjoint we have to check (2.40).

For φ ∈ H we use the notation

φ = (φ1, φ2, . . . ), φn := (φ1, φ2, . . . , φn, 0, 0, . . . ).

In order to simplify the notation in the forthcoming argument we assume that r = 1. The cases

with r > 1 are done exactly the same way, only notation becomes heavier.

Assume φ ⊥ Ran(I −B), then

0 = (φ, (I −B)φn) = ∥φn ∥2 − (φn+1, Bn+1,nφn).

Hence, by (2.53) and letting n so large that ∥φn ∥2 ≥ ∥φ ∥2 /2,

∥φn ∥2 + ∥φn+1 ∥2 ≥ 2

cn
∥φn ∥2 ≥ 1

cn
∥φ ∥2 .

Summing over n we obtain that φ = 0. This implies that Ran(I−B) is dense in H. Identical argument

works for Ran(I +B). This proves (2.40) and B is indeed essentially skew-self-adjoint on C̃.
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Checking condition (2.49) is done exactly like in (2.41):

(Bλ)m,n = S1/2
m,m(λIm,m + Sm,m)−1/2Bm,nS

1/2
n,n(λIn,n + Sn,n)

−1/2

st.op.top.−→ Bm,n,

as λ→ 0, since ∥Bm,n ∥ <∞ and S
1/2
m,m(λIm,m + Sm,m)−1/2 st.op.top.−→ Im,m.

2.3 Outlook

An application of the relaxed sector condition is given in [34] for stationary and ergodic random

walks in divergence-free random drift fields. The RSC helps proving central limit theorem under more

general conditions than previously and also simplifies the proof considerably.

For some models, the RSC might not be easy to verify directly. It would be interesting to formulate

other consequences (apart from the graded sector condition) which are easier to check for specific

models.
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Chapter 3

Diffusive limits for “true” (or

myopic) self-avoiding random walks

in dimensions 3 and higher

The main structure of this chapter is as follows: In Section 3.1, we make the necessary formal prepara-

tions and formulate the main results of the chapter. In Section 3.2, the appropriate functional analytic

formalism is prepared: the suitable L2 Hilbert spaces and the relevant linear operators are introduced

and partly analyzed. Section 3.3 contains the so-called H−1-bounds (that is: diffusive bounds) for the

compensators appearing in the decomposition of displacement of the random motions investigated.

In Section 3.4, the graded sector condition of Section 2.2.2 is verified. Section 3.5 gives an outlook.

We mention a very similar model, the self-repelling Brownian polymer model (SRBP), initiated in

the probabilistic literature by Durrett and Rogers in [17]. It is effectively the continuous space-time

counterpart of TSAW: a diffusion in Rd pushed by the negative gradient of the (mollified) occupation

time measure of the process. The SRBP model can be handled using very similar machinery as the

TSAW. This model is not part of the present thesis; for more details, see [28] and [64].

3.1 Formal setup and results

Let t 7→ X(t) ∈ Zd be a continuous time nearest neighbor jump process on the integer lattice Zd

whose law is defined by (1.1), with w : R → (0,∞) a fixed smooth “rate function” for which

inf
u∈R

w(u) := γ > 0, (3.1)

and denote by s and r its even, respectively, odd part:

s(u) :=
w(u) + w(−u)

2
− γ, r(u) :=

w(u)− w(−u)
2

. (3.2)
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Beside (3.1), we make the following assumptions: there exist constants c > 0, ε > 0 and C <∞ such

that

inf
u∈R

r′(u) > c, (3.3)

s(u) < C exp{(c− ε)u2/2}, (3.4)

and, finally, we make the technical assumption that r(·) is an analytic function which satisfies:

∞∑
n=0

(
2

c− ε

)n/2 ∣∣∣ r(n)(0) ∣∣∣ <∞. (3.5)

(The ε of (3.5) and the ε of (3.4) actually have different roles, but we can choose the smaller ε for

both). Condition (3.1) is ellipticity which ensures that the jump rates of the random walk considered

are minorated by an ordinary simple symmetric walk. Condition (3.3) ensures sufficient self-repellence

of the trajectories and sufficient log-convexity of the stationary measure identified later. Conditions

(3.4) and (3.5) are of technical nature and their role will be clarified later.

We consider the d ≥ 3 cases. First, we identify a rather natural stationary and ergodic (in time)

distribution of the environment (essentially: the local time profile) as seen from the position of the

moving point. In this particular stationary and ergodic regime, we prove diffusive (that is of order t)

bounds on the variance of X(t) and diffusive limit (that is non-degenerate CLT with normal scaling)

for the displacement.

It is natural to consider the local time profile as seen from the position of the random walker

η(t) =
(
η(t, x)

)
x∈Zd η(t, x) := ℓ(t,X(t) + x). (3.6)

It is obvious that t 7→ η(t) is a c.a.d.l.a.g. Markov process on the state space

Ω := {ω =
(
ω(x)

)
x∈Zd : ω(x) ∈ R, (∀ε > 0) lim

|x |→∞
|x |−ε |ω(x) | = 0}. (3.7)

Note that we allow initial values ℓ(0, x) ∈ R for the occupation time measure and thus ℓ(t, x) need

not be non-negative. The group of spatial shifts

τz : Ω → Ω, τzω(x) := ω(z + x), z ∈ Zd (3.8)

acts naturally on Ω.

Let

U := {e ∈ Zd : | e | = 1}. (3.9)

Throughout this chapter, we will denote by e the 2d unit vectors from U and by el, l = 1, . . . , d, the

unit vectors pointing in the positive coordinate directions.
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The infinitesimal generator of the process t 7→ η(t), f : Ω → R, is

Gf(ω) =
∑
e∈U

w(ω(0)− ω(e))
(
f(τeω)− f(ω)

)
+Df(ω) (3.10)

where the (unbounded) linear operator

Df(ω) := ∂f

∂ω(0)
(ω) (3.11)

is well-defined for smooth cylinder functions.

The meaning of the various terms on the right-hand side of (3.10) is clear: the terms in the sum

are due to the random shifts of the environment caused by the jumps of the random walker while

the last term on the right-hand side is due to the deterministic linear growth of local time at the site

actually occupied by the random walker.

Next, we define a probability measure on Ω which will turn out to be stationary and ergodic for

the Markov process t 7→ η(t). Let

R : R → [0,∞), R(u) :=

∫ u

0

r(v) dv. (3.12)

R is strictly convex and even. We denote by dπ(ω) the unique centered Gibbs measure (Markov field)

on Ω defined by the conditional specifications for Λ ⊂ Zd finite:

dπ
(
ωΛ

∣∣ ωZd\Λ
)
= Z−1

Λ exp

−1

2

∑
x,y∈Λ

| x−y |=1

R(ω(x)− ω(y))−
∑

x∈Λ,y∈Λc

| x−y |=1

R(ω(x)− ω(y))

 dωΛ (3.13)

where ωΛ is the Lebesgue measure on Λ. Note that the (translation invariant) Gibbs measure given

by the specifications (3.13) exists only in three and more dimensions. For information about gradient

measures of this type, see [20]. The measure π is invariant under the spatial shifts and the dynamical

system (Ω, π, τz : z ∈ Zd) is ergodic.

Remark on terminology: The notion of ergodicity is used throughout this chapter in two

ways: ergodicity with respect to space shifts and ergodicity time-wise. By time-wise ergodicity of

a stationary Markov process t 7→ η(t) on the state space (Ω, π) with a.s. c.a.d.l.a.g. sample paths,

we mean ergodicity with respect to time-shifts of the stationary measure over the path space. This

is equivalent to the fact that 0 is non-degenerate eigenvalue of the infinitesimal generator of the

semigroup acting on the Hilbert space L2(Ω, π).

In the particular case when r(u) = u, R(u) = u2/2, the measure dπ(ω) is the distribution of the

massless free Gaussian field on Zd, d ≥ 3 with expectations and covariances∫
Ω

ω(x) dπ(ω) = 0,

∫
Ω

ω(x)ω(y) dπ(ω) = (−∆)−1
x,y =: C(y − x) (3.14)
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where ∆ is the lattice Laplacian: ∆x,y = 11{| x−y |=1} − 2d11{| x−y |=0}. We will refer to this special

setup as the Gaussian case.

We are ready now to formulate the results regarding the lattice model.

Proposition 2. The probability measure π(ω) is stationary and ergodic for the Markov process t 7→
η(t) ∈ Ω.

The law of large numbers for the displacement of the random walker follows:

Corollary 1. For π-almost all initial profiles ℓ(0, ·), almost surely

lim
t→∞

X(t)

t
= 0. (3.15)

For the proof, see Section 3.3.

The main results of this chapter refer to the diffusive scaling limit of the displacement.

Theorem 3.1. (1) If conditions (3.1), (3.3), (3.4) and (3.5) hold for the rate function, then

0 < γ ≤ inf
| e |=1

lim
t→∞

t−1E
(
(e ·X(t))2

)
≤ sup

| e |=1

lim
t→∞

t−1E
(
(e ·X(t))2

)
<∞. (3.16)

(2) Assume that

r(u) = u, s(u) = s4u
4 + s2u

2 + s0, (3.17)

and we also make the technical assumption that s4/γ is sufficiently small. Then the matrix of

asymptotic covariances

σ2
kl := lim

t→∞
t−1E (Xk(t)Xl(t)) (3.18)

exists and it is non-degenerate. The finite dimensional distributions of the rescaled displacement

process

XN (t) := N−1/2X(Nt) (3.19)

converge to those of a d dimensional Brownian motion with covariance matrix σ2.

Remarks. (1) We do not strive to obtain optimal constants in our conditions. The upper bound

imposed on the ratio s4/γ which emerges from the computations in the proof in Section 3.4 is rather

restrictive but far from optimal.

(2) A drawback of the ”Kipnis-Varadhan approach” explored in this chapter is that CLT for the

displacement is obtained in probability with respect to the stationary initial distribution π. This

method doesn’t provide so-called quenched results, valid for particular or for almost all initial

conditions, in some natural sense.
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(3) It is clear that, in dimensions d ≥ 3, other stationary distributions of the process t 7→ η(t) must

exist. In particular, due to transience of the process t 7→ X(t), the stationary measure (presumably)

reached from starting with “empty” initial conditions ℓ(0, x) ≡ 0 certainly differs from our π. Our

methods and results are valid for the particular stationary distribution dπ.

3.2 Spaces and operators, general case

For simplicity, assume that s(.) is a polynomial of even degree; we will upgrade the proof to general

analytic s in part (c) of Lemma 3.3.

We put ourselves in the Hilbert space H := L2(Ω, π) and define some linear operators. The

following shift and difference operators will be used:

Tef(ω) := f(τeω), ∇e := Te − I, ∆ :=
∑
e∈U

∇e = −1

2

∑
e∈U

∇e∇−e. (3.20)

Their adjoints are

T ∗
e = T−e, ∇∗

e = ∇−e, ∆∗ = ∆. (3.21)

Occasionally, we shall also use the notation ∇l := ∇el .

We also define the multiplication operators

Mef(ω) := s(ω(0)− ω(e))f(ω), (3.22)

Nef(ω) := r(ω(0)− ω(e))f(ω), N :=
∑
e∈U

Ne. (3.23)

These are unbounded self-adjoint operators. The following commutation relations hold:

MeTe − TeM−e = 0 = NeTe + TeN−e. (3.24)

The (unbounded) differential operator D is defined in (3.11), a priori on the dense subspace of smooth

cylinder functions. It is a closable operator and the subspace of smooth cylinder functions serve as

a core for the closure. We denote the closed operator by the same symbol. Integration by parts on

(Ω, π) yields

D +D∗ = 2N. (3.25)

Next, we express the infinitesimal generator (3.10) of the L2-semigroup of the Markov process

t 7→ η(t). The infinitesimal generator will be acting on a dense domain within the Hilbert space

L2(Ω, π). Denote

S := −1

2
(G+G∗), A :=

1

2
(G−G∗) (3.26)
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the self-adjoint, respectively, skew self-adjoint parts of the infinitesimal generator. Using (3.24) and

(3.25), we readily obtain

S = −γ∆+ S1, (3.27)

S1 = −
∑
e∈U

Me∇e =
1

2

∑
e∈U

∇−eMe∇e, (3.28)

A =
∑
e∈U

NeTe +
(
D −N

)
. (3.29)

Note that both −γ∆ and S1 are positive operators. Actually, γ∆ is the infinitesimal generator of the

process of “scenery seen by the random walker” (in the so-called RW in random scenery) and −S1 is

the infinitesimal generator of “environment seen by the random walker in a symmetric RWRE”.

It is also worth noting that, defining the unitary involution

Jf(ω) := f(−ω), (3.30)

we get

JSJ = S, JAJ = −A, JGJ = G∗. (3.31)

Stationarity drops out: indeed, G∗11 = 0. Actually, (3.31) means slightly more than stationarity: the

time-reversed and flipped process

t 7→ η̃(t) := −η(−t) (3.32)

is equal in law to the process t 7→ η(t). This time reversal symmetry is called Yaglom reversibility and

it appears in many models with physical symmetries. See e.g. [15], [66], [67].

Ergodicity: for the Dirichlet form of the process t 7→ η(t) we have

(f,−Gf) = (f, Sf) ≥ γ(f,−∆f) =
1

2

∑
e∈U

∥∇ef ∥2 , (3.33)

and hence, Gf = 0 implies ∇ef = 0, e ∈ U , which, in turn, by ergodicity of the shifts on (Ω, π),

implies f = const.11. Hence, Proposition 2. Corollary 1 will be proved in section 3.3.

3.2.1 Spaces and operators, the Gaussian case

Spaces

In the case where r(u) = u, the stationary measure defined by (3.13) is Gaussian, and we can build

up the Gaussian Hilbert space H = L2(Ω, π) and its unitary equivalent representations as Fock spaces

in the usual way.
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We use the following convention for normalization of Fourier transform

û(p) =
∑
x∈Zd

eip·xu(x), u(x) = (2π)−d

∫
(−π,π]d

e−ip·xû(p) dp, (3.34)

and the shorthand notation

x = (x1, . . . , xn) ∈ Zdn, xm = (xm1, . . . , xmd) ∈ Zd, (3.35)

p = (p1, . . . , pn) ∈ (−π, π]dn, pm = (pm1, . . . , pmd) ∈ (−π, π]d, (3.36)

m = 1, . . . , n.

We denote by Sn, respectively, Ŝn, the Schwartz space of symmetric test functions of n variables

on Zd, respectively, on (−π, π]d:

Sn : = {u : Zdn → C : u of rapid decay, u(ϖx) = u(x), ϖ ∈ Perm(n)}, (3.37)

Ŝn : = {û : [−π, π]dn → C : û ∈ C∞, û(ϖp) = û(p), ϖ ∈ Perm(n)}. (3.38)

In the preceding formulas Perm(n) denotes the symmetric group of permutations acting on the n

indices.

As noted before, in the case of r(u) = u, the random variables
(
ω(x) : x ∈ Zd

)
form the massless

free Gaussian field on Zd with expectation and covariances given in (3.14). The Fourier transform of

the covariances Ĉ : [−π, π]d → C is

Ĉ(p) = D̂(p)−1 (3.39)

where D̂ : [−π, π]d → R is the Fourier transform of the lattice Laplacian:

D̂(p) :=
d∑

l=1

(
1− cos(pl)

)
. (3.40)

We endow the spaces Sn, respectively, Ŝn with the following scalar products

⟨u, v⟩ :=
∑

x∈Zdn

∑
y∈Zdn

C(x− y)u(x)v(y), (3.41)

⟨û, v̂⟩ :=
∫
[−π,π]dn

Ĉ(p)û(p)v̂(p) dp (3.42)

where

C(x− y) :=
n∏

m=1

C(xm − ym), Ĉ(p) :=
n∏

m=1

Ĉ(pm). (3.43)

Let Kn and K̂n be the closures of Sn, respectively, Ŝn with respect to the Euclidean norms defined

by these inner products. The Fourier transform (3.34) realizes an isometric isomorphism between the
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Hilbert spaces Kn and K̂n.

These Hilbert spaces are actually the symmetrized n-fold tensor products

Kn := symm
(
K⊗n

1

)
, K̂n := symm

(
K̂⊗n

1

)
. (3.44)

Finally, the full Fock spaces are

K := ⊕∞
n=0Kn, K̂ := ⊕∞

n=0K̂n. (3.45)

The Hilbert space of our true interest is H = L2(Ω, π). This is itself a graded Gaussian Hilbert

space

H = ⊕∞
n=0Hn (3.46)

where the subspaces Hn are isometrically isomorphic with the subspaces Kn of K through the identi-

fication

ϕn : Kn → Hn, ϕn(u) :=
1√
n!

∑
x∈Zdn

u(x) :ω(x1) . . . ω(xn): . (3.47)

Here and in the rest of this chapter, we denote by :X1 . . . Xn: the Wick product of the jointly Gaussian

random variables (X1, . . . , Xn); the Wick product is an orthogonalized product of the variables defined

recursively [21]:

:Xi: := Xi −E (Xi) (3.48)

and

∂ :X1 . . . Xn:

∂Xi
=:X1 . . . Xi−1Xi+1 . . . Xn: (3.49)

E (:X1 . . . Xn: ) = 0. (3.50)

(For example, :X1X2: = X1X2 −X1E (X2)−X2E (X1) + 2E (X1)E (X2)−E (X1X2).)

As the graded Hilbert spaces

H := ⊕∞
n=0Hn, K := ⊕∞

n=0Kn, K̂ := ⊕∞
n=0K̂n (3.51)

are isometrically isomorphic in a natural way, we shall move freely between the various representations.

Operators

First, we give the action of the operators∇e, ∆, etc. introduced in Subsection 3.2 on the spacesHn, Kn

and K̂n. The point is that we are interested primarily in their action on the space L2(Ω, π) = ⊕∞
n=0Hn,

but explicit computations in later sections are handy in the unitary equivalent representations over

the space K̂ = ⊕∞
n=0K̂n. The action of various operators over Hn will be given in terms of the Wick

monomials :ω(x1) . . . ω(xn): and it is understood that the operators are extended by linearity and
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graph closure. For technical details see [30].

• The operators ∇e, e ∈ U map Hn → Hn, Kn → Kn, K̂n → K̂n, in turn, as follows:

∇e :ω(x1) . . . ω(xn):=:ω(x1 + e) . . . ω(xn + e): − :ω(x1) . . . ω(xn): , (3.52)

∇eu(x) = u(x1 − e, . . . , xn − e)− u(x1, . . . , xn), (3.53)

∇eû(p) =
(
exp (i

∑n
m=1 pm · e)− 1

)
û(p). (3.54)

• The operator ∆ maps Hn → Hn, Kn → Kn, K̂n → K̂n, in turn, as follows:

∆ :ω(x1) . . . ω(xn):=
∑
e∈U

:ω(x1 + e), . . . , ω(xn + e): −2d :ω(x1) . . . ω(xn): , (3.55)

∆u(x) =
∑
e∈U

u(x1 + e, . . . , xn + e)− 2du(x), (3.56)

∆û(p) = −2D̂ (
∑n

m=1 pm) û(p). (3.57)

• The operators |∆ |−1/2 ∇e map Hn → Hn, Kn → Kn, K̂n → K̂n. There is no explicit expression

for the first two. The action K̂n → K̂n is as follows:

|∆ |−1/2 ∇eû(p) =
exp (i

∑n
m=1 pm · e)− 1√

2D̂ (
∑n

m=1 pm)
û(p). (3.58)

These are bounded operators with norm∥∥∥ |∆ |−1/2 ∇e

∥∥∥ ≤ 1. (3.59)

• The creation operators a∗e, e ∈ U map Hn → Hn+1, Kn → Kn+1, K̂n → K̂n+1, in turn, as

follows:

a∗e :ω(x1) . . . ω(xn):=:(ω(0)− ω(e))ω(x1) . . . ω(xn): , (3.60)

a∗eu(x1, . . . , xn+1) =
1√
n+ 1

n+1∑
m=1

(
δxm,0 − δxm,e

)
u(x1, . . . ,��xm, . . . , xn+1), (3.61)

a∗eû(p1, . . . , pn+1) =
1√
n+ 1

n+1∑
m=1

(
eipm·e − 1

)
û(p1, . . . ,��pm, . . . , pn+1). (3.62)

The creation operators a∗e restricted to the subspaces Hn, Kn, respectively, K̂n are bounded

with operator norm

∥ a∗e �Hn ∥ = ∥ a∗e �Kn ∥ =
∥∥∥ a∗e �K̂n

∥∥∥ =
√

2C(0)− C(e)− C(−e)
√
n+ 1. (3.63)

• The annihilation operators ae, e ∈ U map Hn → Hn−1, Kn → Kn−1, K̂n → K̂n−1, in turn, as
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follows:

ae :ω(x1) . . . ω(xn):=
n∑

m=1

(
C(xm + e)− C(xm)

)
:ω(x1) . . .���ω(xm) . . . ω(xn): , (3.64)

aeu(x1, . . . , xn−1) =
√
n
∑
z∈Zd

(
C(z + e)− C(z)

)
u(x1, . . . , xn−1, z), (3.65)

aeû(p1, . . . , pn−1) =
√
n(2π)−d

∫
[−π,π]d

(
e−iq·e − 1

)
Ĉ(q)û(p1, . . . , pn−1, q) dq. (3.66)

The annihilation operators ae restricted to the subspaces Hn, Kn, respectively, K̂n are bounded

with operator norm

∥ ae �Hn ∥ = ∥ ae �Kn ∥ =
∥∥∥ ae �K̂n

∥∥∥ =
√
2C(0)− C(e)− C(−e)

√
n. (3.67)

As the notation a∗e and ae suggests, these operators are adjoints of each other.

In order to express the infinitesimal generator in the Gaussian case, two more observations are

needed. Both follow from standard facts in the context of Gaussian Hilbert spaces or Malliavin

calculus. First, the operator of multiplication by ω(0) − ω(e), acting on H, is a∗e + ae. Hence, the

multiplication operators Me and Ne defined in (3.22) and (3.23), in the Gaussian case, are

Ne = a∗e + ae, Me = s(a∗e + ae). (3.68)

Second, from the formula of directional derivative in H, it follows that

D =
∑
e∈U

ae. (3.69)

The identity (3.69) is checked directly on Wick polynomials and extends by linearity.

Using these identities, after simple manipulations, we obtain

S1 =
1

2

∑
e∈U

∇−es(a
∗
e + ae)∇e, (3.70)

A =
∑
e∈U

∇−eae −
∑
e∈U

a∗e∇−e =: A− −A+. (3.71)

Note that

A± : Hn → Hn±1, S1 : Hn → ⊕q
j=−qHn+2j (3.72)

where 2q is the degree of the even polynomial s(u).
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3.3 Diffusive bounds

We now prove Corollary 1 and part (1) of Theorem 3.1.

We write the displacement X(t) in the standard martingale + compensator decomposition:

X(t) = N(t) +M(t) +

∫ t

0

φ(η(s)) ds+

∫ t

0

φ̃(η(s)) ds. (3.73)

Here, N(t) is the martingale part due to the jump rates γ and M(t) is the martingale part due to the

jump rates w − γ.

The compensators are

φ : Ω → Rd, φl(ω) = s(ω(0)− ω(el))− s(ω(0)− ω(−el)), (3.74)

φ̃ : Ω → Rd, φ̃l(ω) = r(ω(0)− ω(el))− r(ω(0)− ω(−el)). (3.75)

From this representation (and ergodicity of the process η(t), cf. Proposition 2), Corollary 1 drops out

for free. Indeed, N(t) and M(t) are martingales with stationary and ergodic increments, thus almost

surely N(t)/t → 0, M(t)/t → 0, and due to Birkhoff’s individual ergodic theorem the corresponding

ergodic averages of the integrals on the right hand side of (3.73) also converge to 0, as t→ ∞ [52].

Note that, since s(·) is even, φl, l = 1, . . . , d are actually gradients:

φl = ∇lψl where ψl : Ω → R, ψl(ω) := s(ω(0)− ω(−el)). (3.76)

The diffusive lower bound follows simply from ellipticity (3.1). The martingale N(t) in the decom-

position (3.73) is uncorrelated with the other terms. Hence, the lower bound in (3.16).

The main point is the diffusive upper bound which is more subtle. Since the martingale terms in

(3.73) scale diffusively [52], we only need to prove diffusive upper bound for the compensators. From

standard variational arguments, it follows (see e.g. [32], [47] and [53]) that

lim
t→∞

t−1E

(
(

∫ t

0

φ(η(s)) ds)2
)

≤ 2(φ, S−1φ). (3.77)

In our particular case, from (3.27), it follows that it is sufficient to prove upper bounds on (φ, (−∆)−1φ)

and (φ̃, (−∆)−1φ̃). The first one drops out from (3.76):

(φl, (−∆)−1φl) = (∇lψl, (−∆)−1∇lψl) ≤ ∥ψl ∥2 = E
(
s(ω(0)− ω(el))

2
)
. (3.78)

We need

E
(
s(ω(0)− ω(el))

2
)
<∞. (3.79)

40



Dropping the index l, denote

Z(λ) := E
(
exp{λ(ω(0)− ω(e))2}

)
∈ [1,∞]. (3.80)

In Lemma 3.2 below, we formulate a direct consequence of Brascamp-Lieb inequality which will

be used for proving the diffusive bound on the second integral on the right-hand side of (3.73).

Lemma 3.2. For any smooth cylinder function F : Ω → R and 0 ≤ λ < c/2:

1

Z(λ)
E
(
F (ω)2 exp{λ(ω(0)− ω(e))2}

)
(3.81)

≤ 1

c

1

Z(λ)
E

 ∑
x,y∈Zd

∂xF (ω)(−∆)−1
xy ∂yF (ω) exp{λ(ω(0)− ω(e))2}


+

1

Z(λ)2
E
(
F (ω) exp{λ(ω(0)− ω(e))2}

)2
.

∂x denotes ∂
∂ω(x) .

Proof. We apply Brascamp –Lieb inequality as stated in e.g. Proposition 2.1 in [4] with the measure

Eλ(·) = 1
Z(λ)E

(
· exp{λ(ω(0)− ω(e))2}

)
. The measure Eλ(·) has density exp{−V } where V (ω) =

−λ(ω(0) + ω(e))2 + 1
2

∑
|x−y|=1R(ω(x) − ω(y)) is convex (and thus Brascamp-Lieb applicable) for

λ < c/2.

Then

Varλ(F ) ≤ Eλ

(∑
x,y

∂xF (ω)(V
′′)−1

xy ∂yF (ω)

)
, (3.82)

or, equivalently,

1

Z(λ)
E
(
F (ω)2 exp{λ(ω(0)− ω(e))2}

)
− 1

Z(λ)2
E
(
F (ω) exp{λ(ω(0)− ω(e))2}

)2 ≤ (3.83)

1

Z(λ)
E

(∑
x,y

∂xF (ω)(V
′′)−1

xy ∂yF (ω) exp{λ(ω(0)− ω(e))2}

)
.

Since V ′′ ≥ inf R′′(−∆) ≥ c(−∆), rearranging gives (3.81).

In order to prove (3.79), choose F (ω) = ω(0) − ω(e) in (3.81) and note that the second term on

the right-hand side of the inequality vanishes. We get

d

dλ
Z(λ) ≤ β

c
Z(λ) (3.84)

with some explicit constant β <∞. Hence, for λ ∈ [0, c/2),

Z(λ) ≤ C exp

(
λβ

c

)
<∞. (3.85)
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Now, (3.79) follows from (3.4) and (3.85).

We also need to get

(φ̃l, (−∆)−1φ̃l) <∞. (3.86)

We fix l = 1 and drop the subscript. Denote

C(x) := E (φ̃(ω)φ̃(τxω)) , Ĉ(p) :=
∑
x∈Zd

eip·xC(x), p ∈ [−π, π]d. (3.87)

The bound (3.86) is equivalent to the infrared bound

∫
[−π,π]d

Ĉ(p)

D̂(p)
dp <∞ (3.88)

where D̂ is the Fourier transform of the lattice Laplacian, defined in (3.40). Since d ≥ 3,∫
[−π,π]d

1

D̂(p)
dp <∞ and it is sufficient to prove

sup
p∈[−π,π]d

∣∣∣ Ĉ(p) ∣∣∣ <∞. (3.89)

Lemma 3.3. (a) Let f : R → R be smooth and denote

C(x) := Cov
(
f(ω(0)− ω(e)), f(ω(x)− ω(x+ e))

)
, (3.90)

C ′(x) := Cov
(
f ′(ω(0)− ω(e)), f ′(ω(x)− ω(x+ e))

)
, (3.91)

m′ := E (f ′(ω(0)− ω(e))) . (3.92)

Then

sup
p∈[−π,π]d

∣∣∣ Ĉ(p) ∣∣∣ ≤ (cd)−1 sup
p∈[−π,π]d

∣∣∣ Ĉ ′(p)
∣∣∣+ c−1(m′)2. (3.93)

(b) Let

Cnm(x) := Cov
(
(ω(0)− ω(e))n, (ω(x)− ω(x+ e))m

)
. (3.94)

Then

sup
p∈[−π,π]d

∣∣∣ Ĉnm(p)
∣∣∣ ≤ (Z((c− ε)/2))2n!m!

(
2

c− ε

)(n+m)/2

(3.95)

where ε
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(c) If r is an analytic function and it satisfies condition (3.5), then

sup
p∈[−π,π]d

∣∣∣ Ĉ(p) ∣∣∣ <∞. (3.96)

Proof. (a) We apply (3.81) with λ = 0 and

F (ω) :=
∑
x∈Zd

α(x)f(ω(x)− ω(x+ e)) (3.97)

where α : Zd → R is finitely supported and
∑

z∈Zd α(z) = 0. Straightforward computations yield

E
(
F (ω)2

)
=

∑
x,y∈Zd

α(x)C(x− y)α(y) ≤ c−1
∑

x,y∈Zd

α(x)Γ(x− y)
(
C ′(x− y) + (m′)2

)
α(y) (3.98)

where Γ is the matrix

Γ := ∇1(−∆−1)∇1 (3.99)

well-defined in any dimension. Its Fourier transform is

Γ̂(p) =
1− cos p1

D̂(p)
. (3.100)

The bound (3.98) is equivalent to

Ĉ(p) ≤ c−1
(
Γ̂ ∗ Ĉ ′(p) + (m′)2Γ̂(p)

)
. (3.101)

Convolution is meant periodically in [−π, π]d. Hence,

sup
p∈[−π,π]d

∣∣∣ Ĉ(p) ∣∣∣ ≤ c−1 sup
p∈[−π,π]d

∣∣∣ Ĉ ′(p)
∣∣∣ ∫

[−π,π]d
Γ̂(p) dp+ c−1(m′)2 sup

p∈[−π,π]d
Γ̂(p)

≤ (cd)−1 sup
p∈[−π,π]d

∣∣∣ Ĉ ′(p)
∣∣∣+ c−1(m′)2. (3.102)

(b) We apply (3.93) to the function f(u) = un and use the notation

mn := E ((ω(0)− ω(e))n) (3.103)

to get

sup
p∈[−π,π]d

∣∣∣ Ĉnn(p)
∣∣∣ ≤ (cd)−1n2 sup

p∈[−π,π]d

∣∣∣ Ĉn−1,n−1(p)
∣∣∣+ c−1n2m2

n−1. (3.104)

Induction on n yields

sup
p∈[−π,π]d

∣∣∣ Ĉnn(p)
∣∣∣ ≤ n∑

k=1

(n!)2

((n− k)!)2
m2

n−k

ckdk−1
. (3.105)
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By (3.85), we have the finiteness of

E
(
exp

(
(c− ε)(ω(0)− ω(e))2

)
/2
)
= Z((c− ε)/2) <∞. (3.106)

Hence, by expanding the exponential,

mn = E ((ω(0)− ω(e))n) ≤ Z((c− ε)/2)
2n/2⌊n/2⌋!
(c− ε)n/2

(3.107)

follows. We neglect the fact that the odd moments are 0 by symmetry. Combining the last inequality

with (3.105), we obtain

sup
p∈[−π,π]d

∣∣∣ Ĉnn(p)
∣∣∣ ≤ (Z((c− ε)/2))2(n!)2(c− ε)−n

n∑
k=1

(⌊(n− k)/2⌋!)2

((n− k)!)2
2n−k

dk−1
(3.108)

≤ (Z((c− ε)/2))2(n!)2
(

2

c− ε

)n

, (3.109)

which proves (3.95) for n = m. The constant 2/(c− ε) is far from optimal here, but the order (n!)2

is the best one can get with this argument.

The general case n ̸= m follows by Schwarz’s inequality.

(c) By power series expansion of the analytic function r, and using (3.75), (3.95) and (3.5), one gets

∣∣∣ Ĉ(p) ∣∣∣ ≤ 4

∞∑
n=0

∞∑
m=0

∣∣ r(n)(0) ∣∣
n!

∣∣ r(m)(0)
∣∣

m!

∣∣∣ Ĉnm(p)
∣∣∣ (3.110)

≤ 4(Z(c− ε/2))2

( ∞∑
n=0

∣∣∣ r(n)(0) ∣∣∣ ( 2

c− ε

)n/2
)2

<∞.

Finally, we apply Lemma 3.3 to prove (3.89) and the diffusive bound.

3.4 Checking the graded sector condition

Next we prove the second part of Theorem 3.1. We have to show that the martingale approximation

of Theorem KV is valid for the integrals in on the right-hand side of (3.73). We apply the graded

sector condition formulated in Theorem 2.1 with D = γ |∆ | and the operators S and A given in

graded form in (3.70) and (3.71). (2.18) clearly holds and (2.22) was already proved in Section 3.3.

We still need to verify conditions (2.19), (2.20) and (2.21).

Checking (2.21) is straightforward: If s(u) is an even polynomial of degree 2q, then using in turn
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(3.59), (3.63) and (3.67), we obtain∥∥∥ |∆|−1/2∇−es(ae + a∗e)∇e|∆|−1/2 �Hn

∥∥∥ ≤ ∥ s(ae + a∗e) �Hn ∥ ≤ cnq + C (3.111)

with the constant c proportional to the leading coefficient in the polynomial s(u) and C <∞. Hence,

if q = 2 (that is: s(u) quartic polynomial) and the leading coefficient is sufficiently small, then (2.21)

follows. The bound (2.19) with κ = 2 also drops out from (3.111).

Finally, we check (2.20). By (3.59),∥∥∥ |∆|−1/2a∗−e∇e|∆|−1/2 �Hn

∥∥∥ ≤
∥∥∥ |∆|−1/2a∗e �Hn

∥∥∥ . (3.112)

We prove ∥∥∥ |∆|−1/2a∗e �Hn

∥∥∥ ≤ Cn1/2 (3.113)

with some finite constant C.

For û ∈ Hn,

|∆ |−1/2
a∗eû(p1, . . . , pn+1)

=
1√
n+ 1

1√
D̂(
∑n+1

m=1 pm)

n+1∑
m=1

(
eipm·e − 1

)
û(p1, . . . ,��pm, . . . , pn+1). (3.114)

Hence,∥∥∥ |∆ |−1/2
a∗eû

∥∥∥2 (3.115)

=
1

n+ 1

∫
(−π,π]d(n+1)

1

D̂(
∑n+1

m=1 pm)

×

∣∣∣∣∣
n+1∑
m=1

(
eipm·e − 1

)
û(p1,. . . ,��pm, . . . , pn+1)

∣∣∣∣∣
2 n+1∏
m=1

1

D̂(pm)
dp1 . . .dpn+1

≤ (n+ 1)

∫
(−π,π]d(n+1)

1

D̂(
∑n+1

m=1 pm)

×
∣∣ eipn+1·e − 1

∣∣2 | û(p1, . . . , pn) |2 n+1∏
m=1

1

D̂(pm)
dp1 . . . dpn+1

= (n+ 1)

∫
(−π,π]dn

| û(p1, . . . , pn) |2
n∏

m=1

1

D̂(pm)

×

(∫
(−π,π]d

∣∣ eipn+1·e − 1
∣∣2

D̂(pn+1)

1

D̂(
∑n+1

m=1 pm)
dpn+1

)
dp1 . . . dpn.

Schwarz’s inequality and symmetry was used. Note that on the right-hand side, for the innermost
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term, since d ≥ 3, we have

∫
(−π,π]d

∣∣ eipn+1·e − 1
∣∣2

D̂(pn+1)

1

D̂(
∑n+1

m=1 pm)
dpn+1 ≤ C2. (3.116)

Hence, ∥∥∥ |∆ |−1/2
a∗eû

∥∥∥2 ≤ C2(n+ 1) ∥ û ∥2 , (3.117)

and (3.113) follows. This proves (2.20).

3.5 Outlook

This is the first rigorous result for central limit theorem for the TSAW. That said, the class of rate

functions for which part (2) of Theorem 3.1 applies is somewhat restricted. It seems reasonable to

conjecture that martingale approximation and the central limit theorem are valid for a larger class of

rate functions.

Proving central limit theorem for finite-dimensional distributions of the rescaled process is not quite

invariance principle (convergence to Brownian motion). For the full invariance principle, tightness is

also necessary, which was not addressed here. Proving tightness is generally a technical affair, that

has been done for a number of models; for more on this topic, we refer to [32].
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Chapter 4

A constructive proof of the

phase-type characterization

theorem

4.1 Preliminaries

We continue from 1.3. As mentioned, an ME representation is not unique; we show how different ME

representations can be transformed into each other.

Theorem 4.1. [7] Let ME(α,A) of order n and ME(γ,G) of order m be two ME representations

that correspond to pdf’s fX(t) and fY (t), respectively.

If there exists a matrix W of cardinality n×m such that

γ = αW, AW = WG, 1n = W1m,

then ME(α,A) ≡ ME(γ,G) (that is, fX(t) = fY (t)).

Proof.

fY (t) = −γGetG1m = −αWGetG1m = −αAetAW1m = −αAetA1n = fX(t).

Theorem 4.1 will be used as a representation transformation tool. The size of column vector 1 is

explicitly indicated in the theorem as a subscript.

Next, we turn to additional properties of minimal ME representations.

In a minimal ME representation, there are no “extra” or “redundant” eigenvalues in matrix A.

More precisely a minimal ME representation has the following properties [57]:
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P1) All Jordan blocks of A have different eigenvalues.

P2) All eigenvalues contribute to the distribution with maximal multiplicity. For example, a Jordan

block of size ni corresponding to eigenvalue −λi results in the terms
∑ni

j=1 cλi,jx
j−1e−λix in

fX(x), where cλi,ni ̸= 0.

P3) α is not orthogonal to any of the right-eigenvectors of A.

P4) 1 is not orthogonal to any of the left-eigenvectors of A.

P5) The Jordan block structures of all minimal ME representations of an ME distribution are iden-

tical.

These properties are explained further in Section 4.4. Based on these properties, a minimal ME

representation can be obtained directly from fX . If f takes the form

f(x) =
m∑
i=1

ni∑
j=1

cλi,jx
j−1e−λix

where λi are different and cλi,ni ̸= 0, then we will consider the following representation (α,A):

A =


J1 0 . . . 0

0 J2 0 . . . 0
...

0 . . . 0 Jm

 ,

where

Ji =


λi 1 . . . 0

0 λi 1 . . . 0
...

0 . . . 0 λi

 .

and Ji is of size ni. α can be calculated by solving

−αeAxA1 = fX(x);

this equation can be solved because the left-hand side contains all the terms xj−1e−λix up to j ≤ ni

for i = 1, . . . ,m.

Lemma 4.2. The representation (α,A) is minimal for fX .

The proof is essentially due to properties P1-P5 and the fact that no Jordan block of size smaller

than ni can represent the term xni−1e−λix. Section 4.4 elaborates more on this topic.

If ME representation (α,A) is minimal then there are some straightforward necessary conditions

for vector α and matrix A to define a valid distribution according to Definition 2:
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C1) The eigenvalues of A have negative real part (to avoid divergence of fX(x) as x→ ∞).

C2) There is a real eigenvalue of A with maximal real part (to avoid oscillations to negative values

as x→ ∞).

C3) α1 = 1 (normalizing condition which ensures
∫∞
0
fX(x)dx = 1).

C4) If for all i ∈ {0, 1, . . . , j−1}, −αAi1 = 0, then −αAj1 ≥ 0 (to avoid decreasing behavior around

f(x) = 0; note that −αAi1 is the i-th derivative of f at x = 0).

If any of these necessary conditions are violated then the tuple consisting of the vector α and matrix

A does not define a valid ME distribution. Note that non-minimal ME representations might contain

any additional eigenvalues, including, for example, positive ones.

Properties P1-P5 ensure that if C1-C4 hold for one minimal representation ME(α, A), they hold for

all equivalent minimal ME representations. Additionally, if the dominant eigenvalue has multiplicity

higher than 1, then it belongs to a Jordan-block whose size is equal to the multiplicity of the dominant

eigenvalue.

The rest of this Chapter is structured as follows. Section 4.2 contains the proof for the sufficient

direction of Theorem 1.1 along with the constructive algorithm. Section 4.3 contains a worked exam-

ple that demonstrates the algorithm step-by-step. Section 4.4 contains the proofs for the necessary

direction. Section 4.5 gives an outlook.

4.2 Procedure and proof

Our main goal is an algorithm that provides a constructive proof for the sufficient direction of Theorem

1.1, that is, given that the dominant eigenvalue condition and the positive density condition hold for

ME(α, A), find a PH-representation equivalent to ME(α, A); in other words, find a vector-matrix

pair (β, B) where β and B are Markovian and define the same distribution as ME(α, A).

This section is devoted to the algorithmic construction, also stating and proving the theorems used

along the way.

4.2.1 Sketch of the algorithm

The algorithm consists of five main steps. Steps 1 and 2 are preparatory, and Step 5 is just correction

related to Step 2.

• Step 1. We find an equivalent minimal ME representation (α1,A1) for (α, A) if it is not minimal

by eliminating any “extra” eigenvalues of A, which does not contribute to the pdf (the pdf will

be denoted by fX). We refer to Lemma 4.2 and [7] for a different, computationally stable

method of finding a minimal ME representation.

• Step 2. This step applies only if density is zero at 0, that is, fX(0) = 0. This step is essentially

what may be called “deconvolution”: we represent fX as the convolution of some fY matrix
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exponential density function with fY (0) > 0 and an appropriate Gamma (Erlang) distribution

Erlang(k, µ) (see Lemma 4.3); if fY has a Markovian representation, then it gives a straightfor-

ward Markovian representation for fX as well (see Lemma 4.4). Thus we only need to find a

Markovian representation for fY (and the corresponding representation, which is obtained from

Lemma 4.3), where fY (0) > 0. If this step is applied, Steps 3 and 4 are applied for fY instead

of fX , and we switch back to fX in Step 5.

• Step 3. An equivalent ME representation (γ, G) is given with Markovian matrix G, while γ may

still have negative elements. The main tool of this step is the so-called monocyclic structure

(with Feedback-Erlang blocks). Typically, the size of G is larger than that of A1 (because each

pair of complex conjugate eigenvalues is represented with at least 3 phases); that said, G is

a sparse matrix with a simple block bi-diagonal structure. For this step only the dominant

eigenvalue condition is necessary.

• Step 4. γ and G are transformed further into β and B where β is Markovian (and the Markovity

ofB is also preserved) essentially by adding an “Erlang-tail” (a number of sequentially connected

exponential phases with identical rates) of proper order and rate to the monocyclic structure

described by the Markovian matrix G. The main mathematical tool of this step is the ap-

proximation of elementary functions. The skeleton of this step is composed of the following

elements:

– Find τ such that γeτG > 0 (element-wise). Such τ always exists if the dominant eigenvalue

and the positive density conditions hold and G has Feedback-Erlang structure. We remark

that if G does not have Feedback-Erlang structure, such a τ may not exist, even if G is

Markovian. This is further explained after Lemma 4.8.

– Find λ′ such that

γ

(
I+

G

λ

)τλ

> 0 ∀λ ≥ λ′

which is always possible since
∥∥γ(I+ G

λ )
τλ − γeτG

∥∥→ 0 as λ→ ∞.

– Let ϵ = inft∈(0,τ) fX(t). ϵ > 0 because of the positive density condition and the result of

Step 2. Find λ′′ such that∣∣∣∣∣−γeGτG1+ γ

(
I+

G

λ

)τλ

G1

∣∣∣∣∣ < ϵ ∀λ ≥ λ′′.

This ensures that −γ
(
I+ G

λ

)k
G1 > 0 for k = 1, . . . , n where n = τλ′′. This is always

possible when ϵ > 0.

– Extend the (γ,G) representation with an Erlang tail of rate λ = max(λ′, λ′′) and order

n = ⌈λτ⌉.

• Step 5. If Step 2 was applied, at this point we have a Markovian representation for fY . To

switch back to fX , we use Lemma 4.4. If Step 2 was not applied, Step 5 does not apply either.
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4.2.2 Step 1: Minimal ME representation

Starting from ME representation (α,A), we can obtain a minimal ME representation (α1,A1) with

the application of a representation minimization method. A minimal ME representation can be

obtained through several approaches. One possibility is directly from the pdf f(x) = −αAeAx1 as in

Lemma 4.2. Another, computationally stable order reduction method is the Staircase method from

[7], which uses singular value decomposition. In any case, the minimal ME representation (α1,A1)

enjoys properties P1-P5.

There are two important properties that can be determined from a minimal ME representation (or

the density function directly). These are the value and the multiplicity of the dominant eigenvalue

and the validity of the dominant eigenvalue condition. We denote the dominant eigenvalue (which is

real and negative) by −λ1 and its multiplicity by n1. Indeed, λ1 and n1 determine the asymptotic rate

of decay of the pdf: it decays like cλ1,n1t
n1−1e−λ1t, where cλ1,n1 is a positive constant, more precisely

lim
t→∞

f(t)

tn1−1e−λ1t
= cλ1,n1 .

4.2.3 Step 2: Positive density at zero

In the case when ME(α1,A1) is such that fX(t) > 0 for positive values of t, but fX(0) = 0, then based

on the following lemma, we represent ME(α1,A1) as the convolution of an Erlang distribution and a

matrix exponential distribution ME(α2,A1) whose density is positive at 0. Note that the generator

remains the same (thus the dominant eigenvalue condition is automatically preserved for fY ).

Lemma 4.3. If fX(t) = −α1e
tA1A11 is a matrix exponential pdf with

fX(t) > 0 ∀t > 0, f
(i)
X (t)

∣∣∣
t=0

= 0 i = 0, . . . , l − 1, f
(l)
X (t)

∣∣∣
t=0

> 0, (4.1)

then fX can be written in the form

fX = fY ∗ g(l, µ, ·),

for some large enough µ, where g(l, µ, t) = µltl−1e−µt

(l−1)! is the Erlang(l, µ) pdf, ∗ denotes convolution

and fY (t) is a matrix exponential function with

fY (t) > 0 ∀t ≥ 0

and ME representation (α2, A1).

Proof. The intuitive behavior of the convolution of the pdf of a non-negative r.v. (Y ) and the

Erlang(l, µ) pdf is the following: assume fY (0) > 0; for large values of µ, the Erlang pdf decays

rapidly, so the function fY is very close to fX , except around 0, since convolution of a pdf fY with an

Erlang(l, µ) pdf increases the multiplicity of 0 by l. Lemma 4.3 utilizes this relation in the opposite

direction.

52



fY can be calculated in the Laplace-transform domain as follows. The Laplace-transform of the

Erlang(l, µ) pdf is

f∗l,µ(s) =

(
µ

s+ µ

)l

.

Denote by f∗X(s) and f∗Y (s) the Laplace-transform of fX and fY , respectively. Then from fX(t) =

fY (t) ∗ fl,µ(t) we have f∗X(s) = f∗Y (s) ·
(

µ
s+µ

)l
, and so

f∗Y (s) = f∗X(s)

(
s+ µ

µ

)l

= f∗X(s)

(
1 +

s

µ

)l

.

For l = 1, the inverse transform of f∗X(s)
(
1 + s

µ

)
gives

fY (x) = fX(t) +
1

µ
(f ′X(t) + fX(0)) = fX(t) +

1

µ
f ′X(t).

For l > 1, induction (or the binomial theorem) gives

fY (t) =
l∑

i=0

(
l

i

)
1

µi
f
(i)
X (t) = −α1

l∑
i=0

(
l

i

)(
A1

µ

)i

A1e
tA11.

The fact that fY (t) is a matrix-exponential function is clear from the above formula. Also, it has

a representation of the form ME(α2,A1) where

α2 = −α1

l∑
i=0

(
l

i

)(
A1

µ

)i

.

That said, we still have to check the positivity of fY . For technical reasons, this is carried out in

3 parts: first around 0, then for the tail, then for the main body of the function.

We fix a value δ > 0 (independent from µ) such that

f
(l)
X (t) > 0, t ∈ (0, δ].

This is possible since f
(l)
X (0) > 0 and f

(l)
X is continuous. This in turn implies by integration that

f
(i)
X (t) ≥ 0, t ∈ (0, δ].

for every i = l, l − 1, . . . , 1, 0 and thus

fY (t) =
l∑

i=0

(
l

i

)
1

µi
f
(i)
X (t) > 0 t ∈ (0, δ).

This holds for any value of µ.

We examine the tail of fY next. Recall that as t → ∞, fX(t) decays as cλ1,n1t
n1−1e−λ1t where
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cλ1,n1
> 0.

fY (t)− fX(t) =

l∑
i=0

(
l

i

)
1

µi
f
(i)
X (t)− fX(t) = −α2

l∑
i=1

(
l

i

)(
A1

µ

)i

A1e
tA11. (4.2)

Since etA1 decays with rate tn1−1e−λ1t,

−α1

(
l

i

)
A1

iA1e
tA11 ∼ cit

n1−1e−λ1t

for each i = 1, . . . , l for some constants ci.

Select K1 such that ∣∣∣∣∣−α1

(
l
i

)
A1

iA1e
tA11

tn1−1e−λ1t

∣∣∣∣∣ ≤ 2|ci| ∀t > K1

for i = 1, . . . , k, Then

|fY (t)− fX(t)| ≤
l∑

i=1

2|ci|
µi

tn1−1e−λ1t.

Note that K1 is also independent from µ.

The constant
∑l

i=1
2|ci|
µi is decreasing in µ and goes to 0. Select µ0 such that

l∑
i=1

2|ci|
µi

≤ 1

2
cλ1,n1 ∀µ > µ0.

Select K2 such that

fX(t) ≥ 1

2
cλ1,n1t

n1−1e−λ1t ∀t > K2.

Set K = max(K1,K2). At this point, δ and K are fixed (independently of µ), and for any µ > µ0

it holds that

fY (t) ≥ fX(t)− |fY (t)− fX(t)| ≥ 1

2
cλ1,n1x

n1−1e−λ1t − 1

2
cλ1,n1t

n1−1e−λ1t = 0 ∀t > K.

We now have positivity of fY at [0, δ] and [K,∞]. For [δ,K], we use the formula (4.2) again, and

note that

sup
t∈[δ,K]

∣∣∣∣∣α1

l∑
i=1

(
l

i

)(
A1

µ

)i

A1e
tA11

∣∣∣∣∣ ≤
l∑

i=1

(
1

µ

)i

sup
t∈[δ,K]

∣∣∣∣α1

(
l

i

)
Ai

1A1e
tA11

∣∣∣∣ ,
where supt∈[δ,K]

∣∣∣α1

(
l
i

)
Ai

1A1e
tA11

∣∣∣ is finite for each i = 1, . . . , l, while 1
µi → 0, so there exists a µ1

such that for any µ > µ1,

|fY (t)− fX(t)| ≤ inf
t∈[δ,K]

fX(t),
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which is positive due to the positive density condition (specifically that fX is strictly positive on a

bounded closed interval not containing 0).

Selecting any µ > max(µ1, µ2) finishes the lemma.

The representation (α2,A1) can be constructed either from fY via Lemma 4.2 or by calculating

α2 from the appropriate linear equations.

Lemma 4.3 and the following composition ensures that fX(t) and fY (t) have a Markovian repre-

sentation and satisfy the dominant eigenvalue condition at the same time if µ > λ1.

Lemma 4.4. If fY (t) is ME distributed with representation (α2,A1) of order m and µ > λ1 then

fX(t) = fY (t) ∗ g(l, µ, t),

is ME distributed with initial vector β = {1, 0, 0, . . . , 0} and generator matrix

B =


−µ µ

. . .
. . .

−µ µα2

A1

 ,

where the first l blocks of the matrix are of size one and the last block is of size m. Additionally, if

(α2,A1) is a Markovian representation then (β,B) is Markovian as well.

Proof. In the case (α2,A1) is a PH representation, the following probabilistic argument works: based

on the structure of B, the time to leave the first l phases is Erlang(l, µ) distributed and the time spent

in the set of phases from l + 1 to m is ME(α2,A1) distributed. Technically, this argument does not

apply if either α2 or A1 are not Markovian, but the equality

fX = fY ∗ g(l, µ, ·)

nevertheless holds, since it is independent of the actual representation of fY and fX .

Also, this lemma will be applied only in Step 5, where a PH representation of fY is already

available.

Based on Lemma 4.3 and 4.4 it remains to prove that the matrix exponential density function f(x)

with f(0) > 0 satisfying the dominant eigenvalue and the positive density conditions has a Markovian

representation.

4.2.4 Step 3: Markovian generator

The aim of this subsection is to transform the ME representation (α1,A1) to a representation (γ,G)

where G is Markovian. If Step 2 was applied, the transformation is carried out for (α2,A1) instead of
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Figure 4.1: FE-diagonal block.
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Figure 4.2: FE-diagonal representation of a generator with a real eigenvalue (σ1) and a pair of complex
ones.

(α1,A1); nevertheless, we will stick to the use of the notation (α1,A1) throughout the subsection. For

matrix G, we apply the matrix structure proposed in [43]. It is a block bi-diagonal matrix structure,

where each block represents a real eigenvalue or a pair of complex conjugate eigenvalues of A1. The

blocks associated with real eigenvalue −λi (−λi < 0) are of size one, the diagonal element is −λi and
the first sub-diagonal element is λi. The blocks associated with complex eigenvalues are composed by

Feedback-Erlang (FE) blocks.

Definition 5. [43] A Feedback-Erlang (FE) block with parameters (b, σ, z) is a chain of b states with

transition rate σ and one transition from the bth state to the first state, with rate zσ (c.f. Figure 4.1).

The probability z ∈ [0, 1) is called the feedback probability.

A FE block (b, σ, z) with length b = 1 and z = 0 corresponds to a real eigenvalue −σ and is referred

to as degenerate FE blocks. Matrix G contains as many FE blocks (degenerate or non-degenerate)

associated with a real eigenvalue or a pair of complex conjugate eigenvalues as the multiplicity of the

eigenvalue. A non-degenerate FE block where b is odd has a real eigenvalue and (b − 1)/2 complex

conjugate eigenvalue pairs. A non-degenerate FE block where b is even has 2 real eigenvalues and

(b− 2)/2 complex conjugate eigenvalue pairs. In both cases the eigenvalues are equidistantly located

on a circle in the complex plane around −σ. The dominant eigenvalue of the FE block (the one with

the largest real part) with parameters (b, σ, z) is always real and equals to r = −σ
(
1− z

1
b

)
[43].

Denote the eigenvalues of matrix A1 by −λj ; the dominant eigenvalue (which is real) is −λ1. The FE
blocks representing the eigenvalues are composed as follows
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• if λj is real, the corresponding FE block is a degenerate block; thus the parameters are:

σj = λj , bj = 1, zj = 0,

• if λj = aj ± icj (aj > λ1 > 0, cj > 0) is a complex conjugate pair, the parameters are:

bj =


2π

π − 2 arctan

(
cj

−λ1 + aj

)
 ,

σj =
1

2

(
−2aj − cj tan

π

bj
+ cj cot

π

bj

)
,

zj =

(
1−

(
−aj − cj tan

π

bj

)
/(2σj)

)bj

,

where ⌈x⌉ denotes the smallest integer greater than or equal to x.

This construction of the FE blocks ensures that λ1 remains the dominant eigenvalue of matrix G,

that is, the dominant eigenvalue of any FE block (rj) is less than −λ1 except the one(s) associated

with −λ1.
Connecting the obtained FE blocks such that the exit transition of an FE block (whose rate is

λj(1− zj), see Figure 4.1, in case of non-degenerate FE block and λj in case of a degenerate one) is

connected to the first state of the next FE block composes a block bi-diagonal matrix (c.f. Figure 4.2).

The obtained matrix G is Markovian and its Jordan form contains all Jordan blocks of matrix A1.

We order the FE blocks such that the first n1 FE blocks are the n1 degenerate FE blocks associated

with −λ1. The order of the rest of the FE blocks is irrelevant. The FE blocks based finite Markovian

representation of the eigenvalues of A1 is always feasible when the dominant eigenvalue condition

holds. If there was a pair of complex conjugate eigenvalues aj ± icj which violates the dominant

eigenvalue condition such that aj = λ1 then the denominator of bj would be zero.

Figure 4.2 depicts an example of a Markovian generator which is the monocyclic representation of

a generator with a dominant real eigenvalue (−λ1 = −σ1) and a pair of complex conjugate eigenvalues

in FE-diagonal form. In this representation there are two FE blocks, one of length b1 = 1 with rate σ1,

and one of length b2 = 3 with rate σ2 and feedback probability z2. The associated generator matrix is

G =


−σ1 σ1 0 0

0 −σ2 σ2 0

0 0 −σ2 σ2

0 zσ2 0 −σ2

 .

In order to find an equivalent representation of ME(α1,A1) with matrix G we need to compute

vector γ, for which ME(α1,A1) ≡ ME(γ,G), with the help of Theorem 4.1. Let n and m (n ≤ m) be
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the order of A1 and G, respectively. Compute matrix W of size n×m as the unique solution [43] of

A1W = WG, W1 = 1,

and based on W vector γ is

γ = α1W.

Since G is Markovian, the obtained (γ,G) representation is already a PH representation if γ is non-

negative, but this is not necessarily the case. The case when γ has negative elements is considered in

the following subsection.

4.2.5 Step 4: Markovian vector

At this point in the algorithm, the ME distribution is described by representation (γ,G) of order u

which has a block bi-diagonal, Markovian matrix G, and a vector γ with at least one negative element.

In the next step we extend the (γ,G) representation with an additional n phases in the following way.

B =


G −G1

−λ λ

. . .
. . .

−λ

 , (4.3)

where B is of order u+n (the size of the upper left block of B is u, the remaining n blocks are of size

one). −G1 is a non-negative column vector of size u. Due to the structural properties of G it contains

exactly one non-zero element, which is the last element and it contains the exit rate from the last FE

block. The transformation matrix W of size u× (u+n), which transforms from representation (γ,G)

to representation (β,B) is the unique solution of GW = WB, W1u+n = 1n. Fortunately, due to the

special structure of matrix B, W is rather regular.

Lemma 4.5. W has the following form:

W =
( (

I+ G
λ

)n (
I+ G

λ

)n−1 −G1
λ

(
I+ G

λ

)n−2 −G1
λ . . . −G1

λ

)
,

where the size of the first block is u× u, the size of each remaining block is 1× u.

Proof. Substituting this expression of W into GW = WB and W1u+n = 1n results in identities.

Our goal is to find n and λ such that β = γW is Markovian (that is non-negative), where

γW =
(
γ
(
I+ G

λ

)n
γ
(
I+ G

λ

)n−1 −G1
λ γ

(
I+ G

λ

)n−2 −G1
λ . . . γ −G1

λ

)
. (4.4)
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The first block of this vector is of size u and the remaining n blocks are of size 1. We need to prove

that this vector is nonnegative for an appropriate pair (λ, n).

Theorem 4.6. There exists a pair (λ, n) such that γW is strictly positive.

The rest of this subsection is devoted to proving Theorem 4.6. We assume everything that was

done so far, for example that the dominant eigenvalue condition and the positive density condition

hold, the density is positive at zero and also that the matrix G is Markovian and in FE block form

such that the degenerate FE block(s) representing the dominant eigenvalue −λ1 are the first one(s).

First we present a heuristic argument, then the formal proof.

Heuristic argument

λ and n are typically chosen to be large (see [43]). However, finding an appropriate pair is not as

simple as choosing some large λ and a large n. For each n, the set of appropriate values of λ forms

a finite interval. If n is large enough, this interval is nonempty, but – without further considerations

– it is impossible to identify this interval (or even one element of it). Vice versa, for each λ there is

a finite set of appropriate values for n. This means that the naive algorithm of increasing the values

of n and λ – without further considerations – may possibly never yield an appropriate pair. For this

reason, we instead propose a different parametrization, which takes the dependence between n and λ

into account better.

Let τ = n/λ. τ turns out to be a value interesting in its own right. The ME pdf resulting from

the pair (γW,B) has a term coming from the first block of B and it has n terms coming from the

Erlang-tail. We argue that the terms coming from the Erlang-tail can be regarded as an approximation

of the original pdf on the interval [0, τ ], while the term coming from the first block is some sort of

correction that makes the approximation exactly equal to the original pdf. Each of the terms in the

Erlang-tail contribute an Erlang pdf with rate λ and order k ∈ [1, . . . , n] to the pdf. The Erlang(λ, k)

pdf is concentrated around the point k
λ = kτ

n . These points are situated along the interval [0, τ ] in an

equidistant way with distance 1
λ .

The weight (initial probability) of the Erlang pdf centered around the point k
nτ is

γ

(
I+

G

λ

)k −G1

λ
≈ γe

kτ
n G−G1

λ
=

1

λ
fX

(
kτ

n

)
,

which means that the weights are approximately equal to samples of the original pdf at points kτ
n ,

k ∈ [1, . . . , n] divided by λ, resulting in a pdf that is approximately equal to the original along the

interval [0, τ ].

The first block of γW is different. From the form of B it is clear that the contribution of the first

block is concentrated after the point τ ; the role of this block is essentially to make a correction in the

interval [τ,∞], where the previous Erlang-approximation does not hold.
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Figure 4.3: Erlang pdf’s approximating the original one

Altogether the previous argument can be depicted nicely in Figures 4.3 and 4.4. We denote

fk(t) = γ

(
I+

G

λ

)k −G1

λ
g(k, λ, t), k = 0, . . . , n− 1

the approximating Erlang terms and

f0(t) = γ

(
I+

G

λ

)n

etG(−G1) ∗ g(n, λ, t)

the correction term. In Figure 4.3, the approximating Erlang terms roughly follow the graph of fX ,

while f0 is concentrated after τ . (The values are τ = 3, λ = 12 and n = 36; to make the figure visually

apprehensible, only some of the approximating Erlang functions were included with slightly increased

weights.)

The value of λ controls how concentrated the approximating Erlang pdf’s are and also controls

how close their weights are to the sampling of the original pdf. Given that fX(t) > 0 for t ≥ 0, this

means that for any choice of τ , the Erlang-approximation has positive weights if λ is large enough.

The choice of τ is only important to make sure that the weights assigned to the correction term are

also positive. Figure 4.4 shows an example where λ is too small (notably λ = 4). In this case, some

of the approximating Erlang functions have negative coefficients.
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Formal proof

Before the actual proof, some results are stated as standalone lemmas.

The first one is essentially a real approximation, so we state it in that form too, along with the

matrix version which is useful for our purposes. The norms we will stick to in this Chapter are: ∥.∥1
for row vectors, ∥.∥∞ for column vectors and ∥.∥∞ for matrices (which happens to be the induced

norm for the vector norm ∥.∥∞ when multiplying a column vector with a matrix from the left, and

the induced matrix norm of the vector norm ∥.∥1 when multiplying a row vector with a matrix from

the right).

Lemma 4.7. i) For any fixed r > 0 and positive integer n,

sup
|z|≤r

∣∣∣ez − (1 + z

n

)n∣∣∣ ≤ r2er

2n
,

and the supremum is obtained at z = r.

ii) For any H square matrix, ∥∥∥∥eH −
(
I+

H

n

)n∥∥∥∥ ≤ r2er

2n
,

where r = ∥H∥.

Proof. We will prove part i) first.

We will begin by showing that the supremum is obtained for z = r.

61



Series expansion gives

ez −
(
1 +

z

n

)n
=

∞∑
k=0

zk

k!
B(n, k),

where

B(n, k) =

{
1− n(n−1)...(n−k+1)

nk if k ≤ n

1 if k > n

Note the following properties of B(n, k):

0 ≤ B(n, k) ≤ 1 ∀n, k; lim
n→∞

B(n, k) = 0 ∀ k.

For every z with |z| ≤ r, we have

∣∣∣ez − (1 + z

n

)n∣∣∣ = ∣∣∣∣∣
∞∑
k=0

zk

k!
B(n, k)

∣∣∣∣∣ ≤
∞∑
k=0

|z|k

k!
B(n, k) ≤

∞∑
k=0

rk

k!
B(n, k) =

∣∣∣er − (1 + r

n

)n∣∣∣ .
Notice that the series expansion ensures er −

(
1 + r

n

)n
> 0, so we only need an upper bound on

er −
(
1 + r

n

)n
. Using the basic inequalities

ln(1 + x) ≥ x− x2

2
(x ≥ 0) and ex ≥ 1 + x (x ∈ R)

we get that

er−
(
1 +

r

n

)n
= er−en ln(1+r/n) ≤ er−er−r2/(2n) = er

(
1− e−r2/(2n)

)
≤ er

(
1−

(
1− r2

2n

))
= er

r2

2n
.

We note that this estimate is asymptotically sharp as n→ ∞.

For part ii), we use the series expansion again:

∥∥∥∥eH −
(
1 +

H

n

)n∥∥∥∥ =

∥∥∥∥∥
∞∑
k=0

Hk

k!
B(n, k)

∥∥∥∥∥ ≤
∞∑
k=0

∥H∥k

k!
B(n, k) ≤

≤
∞∑
k=0

rk

k!
B(n, k) = er −

(
1 +

r

n

)n
≤ r2er

2n
,

where r = ∥H∥.

We state one more lemma. It identifies the main terms in each of the columns of etG when G is

in FE block form.
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Lemma 4.8.

(
etG
)
1j

∼ Cjt
j−1e−λ1t if 1 ≤ j ≤ n1(

etG
)
1j

∼ Cjt
n1−1e−λ1t if n1 < j ≤ u,

lim
t→∞

(
etG
)
ij

(etG)1j
= 0 if 2 ≤ i ≤ u, 1 ≤ j ≤ u,

where Cj denote positive (combinatorial) constants and f(t) ∼ g(t) denotes that limt→∞ f(t)/g(t) = 1.

The last relation means that the first row dominates all other rows as t tends to infinity.

Proof. According to the FE block composition of G it has the following block structure

G =

[
G11 G12

0 G22

]
, (4.5)

where

G11 =


−λ1 λ1 0 . . . 0

0 −λ1 λ1 . . . 0
...

0 . . . 0 −λ1

 , G12 =


0 0 . . . 0
...

...

0 0 . . . 0

λ1 0 . . . 0

 ,

and G22 contains the rest of the FE blocks. The size of G11 is denoted by n1 (which is the multiplicity

of the dominant eigenvalue −λ1) and the size of G22 by n2. Let

H = G+ λ1I,

and accordingly H11 = G11 + λ1I,H12 = G12 and H22 = G22 + λ1I, where I denotes the identity

matrix of appropriate size. From H = G+ λ1I, it follows that

etG = e−λ1tetH,

and it is enough to investigate the dominant row of etH. In the rest of the proof, (.)11, (.)12, (.)22

denote the corresponding matrix blocks (not single elements). The eigenvalues of H22 have negative

real parts. Their real parts are less than or equal to λ1 −ℜ(λ2), where −λ2 is the eigenvalue with the

second largest real part.

From the series expansion of etH

etH =
∞∑

n=0

tn

n!
Hn,

and from the block triangular structure of H we have that the upper left block is

(etH)11 =
∞∑

n=0

tn

n!
Hn

11,
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where (tH11)
n can be calculated explicitly:

(tH11)
n =



0 . . . 0 (λ1t)
n 0 . . . 0

0 . . . 0 0 (λ1t)
n . . . 0

...

0 . . . (λ1t)
n

0 0
...

0 . . . 0


with the nonzero elements being at positions (1, n+1), (2, n+2), . . . . Specifically, Hn

11 is 0 for n ≥ n1,

so the sum
∑∞

n=0
tn

n!H
n
11, is actually finite, and from the above form it is clear that (etH)11 is upper

diagonal, dominated by its first row, which of course also dominates (etH)21 = 0.

The rest of the proof is devoted to the elements of (etH)12 and (etH)22. For that, we need to

examine (etH)12.

(etH)12 =
∞∑

n=0

tn

n!
(Hn)12.

Here,

(Hn)12 =
n−1∑
k=0

(H11)
kH12(H22)

n−k−1

since H is an upper block bi-diagonal matrix. Thus

(etH)12 =

∞∑
n=1

tn

n!

n−1∑
k=0

(H11)
kH12(H22)

n−k−1

=
∞∑
k=0

(H11)
kH12

∞∑
n=k+1

tn

n!
(H22)

n−k−1

=

n1−1∑
k=0

(H11)
kH12

∞∑
n=k+1

tn

n!
(H22)

n−k−1.

Again, the sum over k is finite.

The inner sum can be calculated as

∞∑
n=k+1

1

n!
tn−k−1 = x−k−1

∞∑
n=k+1

1

n!
tn = t−k−1

(
et −

k∑
l=0

tl

l!

)
,

and accordingly,

∞∑
n=k+1

tn

n!
(H22)

n−k−1 = (H22)
−(k+1)

(
etH22 − I− tH22 − · · · − (tH22)

k

k!

)
.
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Putting it all together, we obtain that

(etH)12 =

n1−1∑
k=0

(H11)
kH12(H22)

−(k+1)

(
etH22 − I− tH22 − · · · − (tH22)

k

k!

)
.

The form of (H11)
kH12 guarantees that for each k

(H11)
kH12(H22)

−(k+1)

(
etH22 − I− tH22 − · · · − (tH22)

k

k!

)
has a single nonzero row, with k = n1 − 1 corresponding to the first row being nonzero, k = n1 − 2 to

the second etc. Within each row, the main term is

−(H11)
kH12(H22)

−(k+1) (tH22)
k

k!
= − t

k

k!
(H11)

kH12(H22)
−1.

Specifically, the main term in each element of the first row is of order tn1−1, and the order in the

other rows within the block (etH)12 is smaller.

We need to calculate H−1
22 . It can be calculated either via Cramer’s rule (which allows for calcu-

lating the constants Cj explicitly, but is left to the reader), or by using the following identity:

H−1
22 = −

∫ ∞

tt=0

etH22dt = −
∫ ∞

t=0

etλ1 · etG22dt.

The integral exists because all eigenvalues of H22 have negative real part. eλ1t is a positive

function (“weight”) and etG22 contains the transition probabilities of a CTMC, so all elements of

etG22 are positive for all t > 0. Thus all elements of H−1
22 are negative, and the single nonzero row of

−(H11)
kH12(H22)

−(k+1) (tH22)
k

k! is strictly positive.

Finally, since the block (H)22 has eigenvalues with negative real part, the elements of (etH)22

decay exponentially, so they are of course dominated by the first row of (etH)12.

Note that the last part of Lemma 4.8 is stated as
(etG)

ij

(etG)1j
→ 0; in fact, the elements

(
etG
)
ij
are in a

form similar to
(
etG
)
1j
, just with either the same exponential term and lower degree polynomial terms,

or lower exponent (and in this case, the polynomial term does not matter). The actual exponents and

polynomial terms, along with the constants Cj can be calculated explicitly from the proof of Lemma

4.8, but will not be used.

We emphasize that Lemma 4.8 relies heavily on the monocyclic structure of G, notably on the fact

that the upper bi-diagonal elements (elements (1, 2), (2, 3), . . . ) of the matrix are strictly positive.

Now we are ready to prove Theorem 4.6.

Proof of Theorem 4.6.

We assume that the matrix exponential density function fX associated with representation (γ,G)

satisfies fX(0) > 0, the dominant eigenvalue and the positive density conditions, and that G is in
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monocyclic block structure with the first block corresponding to the dominant eigenvalue λ1.

First we show that the first coordinate of γ, denoted by γ1, is positive.

If γ1 = 0, then the multiplicity of −λ1 is n1−1 according to the structure of matrix G (see (4.5) in

the proof of Lemma 4.8, which is in conflict with the fact that the multiplicity of −λ1 in the minimal

ME representation is n1.

fX(t) is dominated by the first row of etG for large values of x and consequently the sign of fX(t) is

determined by γ1. The elements of etG are transient probabilities of the Markov chain with generator

G, consequently they are non-negative. The elements of the first row of etG are strictly positive for

t > 0 because the FE-blocks are connected that way that all states are reachable from the first state

(cf. Figure 4.2). According to Lemma 4.8 fX(t) is dominated by the first row of etG for large values

of t and consequently the sign of fX(t) is determined by γ1. More precisely, Lemma 4.8 implies that

0 < fX(t) = γ(−G)etG1 ∼ Cλ1γ1t
n1−1e−λ1t

where C =
∑

j≥n1
Cj > 0 and λ1 > 0.

Next we show that there exists a τ such that γeτG is positive.

For the first row of γeGt we have

(
γetG

)
1j

∼ Cjγ1t
j−1e−λ1t if j < n1,(

γetG
)
1j

∼ Cjγ1t
n1−1e−λ1t if n1 ≤ j ≤ u,

from Lemma 4.8. Thus γetG is positive if t is large enough. For a constructive procedure to find τ ,

one can double t starting from n1/λ1 as long as min(γetG) < 0. It is not necessary to find the smallest

t for which γetG is nonnegative.

After that we show that there exists λ′ such that γ(I+ G
λ )

λτ > 0 for λ ≥ λ′.

Apply Lemma 4.7 with H = Gτ and n = λτ to get that∥∥∥∥∥
(
I+

G

λ

)λτ

− eGτ

∥∥∥∥∥→ 0

as λ→ ∞, and consequently ∥∥∥∥∥γ
(
I+

G

λ

)λτ

− γeGτ

∥∥∥∥∥→ 0,

meaning that γ(I+G
λ )

λτ is also strictly positive if λ is large enough. Let ϵ1 = min(γeGτ ); in accordance

with Lemma 4.7, define λ′ as the solution of

∥γ∥ (gτ)
2egτ

2λτ
= ϵ1. (4.6)

where g = ∥G∥. Then γ(I + G
λ )

λτ > 0 for λ > λ′, because the left-hand side is a strictly monotone
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decreasing function of λ. Note that λ′ is explicitly computable from (4.6).

Next we investigate the sign of the rest of the elements of vector γW. We apply Lemma 4.7 again,

this time for H = kG
λ and n = k to get∥∥∥∥∥e kG

λ −
(
I+

G

λ

)k
∥∥∥∥∥ ≤ e

kg
λ
(kg)2

2kλ2
≤ eτg

τg2

2λ

uniformly in 0 ≤ k ≤ λτ .

Let ϵ2 = inf0≤t≤τ fX(t) = inf0≤t≤τ γe
tG(−G)1 (actually, we do not need the exact value of ϵ2;

any smaller value works as well). Since fX(0) > 0 as a result of Step 3 in Section 4.2.3, ϵ2 is strictly

positive, due to the positive density condition. Let Vk be the k-th coordinate of γW associated with

the Erlang tail in (4.4); that is,

Vk = γ

(
I+

G

λ

)k −G1

λ
.

Then

∣∣λVk − fX( kλ )
∣∣ = ∣∣∣∣∣γ

[
e

kG
λ −

(
I+

G

λ

)k
]
G1

∣∣∣∣∣ ≤ ∥γ∥

∥∥∥∥∥e kG
λ −

(
I+

G

λ

)k
∥∥∥∥∥ ∥G∥∥1∥ ≤ ∥γ∥eτg τg

2

2λ
g∥1∥.

Define λ′′ as the solution of

∥γ∥eτg τg
2

2λ
g∥1∥ = ϵ2. (4.7)

λ′′ is also explicitly computable. (Note that ∥1∥ = 1). For all λ > λ′′ we have Vk > 0 because

fX( kλ ) ≥ ϵ2 and the difference between λVk and fX( i
λ ) is less than ϵ2.

Putting these together, we get that for τ and λ = max(λ′, λ′′) both parts of the vector γW, that is,

γ
(
I+ G

λ

)n
and γ

(
I+ G

λ

)k −G1
λ for k = 0, 1, . . . , n− 1, are positive where n = ⌈τλ⌉ and the obtained

representation is indeed Markovian.

4.2.6 Step 5: Correction related to Step 2

If Step 2 was applied, (β,B) is actually a Markovian representation for fY ; Lemma 4.4 ensures that

β′ = {1, 0, 0, . . . , 0}

B′ =


−µ µ

. . .
. . .

−µ µβ

B


is a Markovian representation for fX(t) = fY (x) ∗ g(l, µ, t).
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4.3 Worked example

Let us consider the following ME representation.

α =
102

139

(
1 1 −1

3
2
3 −5

2
12
17

14
17

)
,

A =



−1 1 0 0 0 0 0

0 −1 0 0 0 0 0

0 0 −1 4 0 0 0

0 0 1 −1 0 0 0

0 0 0 0 −4 0 0

0 0 0 0 0 −5 3

0 0 0 0 0 −3 −5


,

then

f(t) = −αAetA1 =
102

139

(
te−t + e−t + e−3t − 10e−4t + e−5t (8 cos(3t) + 4 sin(3t))

)
.

The eigenvalues of A are −1 (with multiplicity 2), −3,−4,−5 + 3i,−5 − 3i and 1. The eigenvalue 1

is redundant: the corresponding right-eigenvector is orthogonal to α, thus it does not appear in the

pdf. It is eliminated during Step 1.

After Step 1, a minimal ME representation is obtained:

α1 =
102

139

(
1 1 1

3 − 5
2

13+i
17

13−i
17

)
,

A1 =



−1 1 0 0 0 0

0 −1 0 0 0 0

0 0 −3 0 0 0

0 0 0 −4 0 0

0 0 0 0 −5 + 3i 0

0 0 0 0 0 −5− 3i


.

Since f(0) = 0, Step 2 needs to be applied.

f(0) = 0 f ′(0) = 7 > 0,

so the value of l in Lemma 4.3 is l = 1. Setting µ = 10, the transformed pdf after Step 2 (borrowing

the notation fY from Lemma 4.3) is

fY (t) =
102

139

(
9

10
te−t + e−t +

7

10
e−3t − 6e−4t +

13 + i

5
e(−5+3i)t +

13− i

5
e(−5−3i)t

)
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and the corresponding representation for fY is

α2 =
102

139

(
9
10 1 2

5 − 7
15

−2−i
5

−2+i
5

)
,

A2 =



−1 1 0 0 0 0

0 −1 0 0 0 0

0 0 −3 0 0 0

0 0 0 −4 0 0

0 0 0 0 −5 + 3i 0

0 0 0 0 0 −5− 3i


.

From now on, we work with this representation. In Step 3, the eigenvalue pair 5±3i is represented

by a feedback-Erlang block. The order of this pair is b = 4, and the corresponding FE-block is
−5 5 0 0

0 −5 5 0

0 0 −5 5
81
125 0 0 −5

 .

Step 3 results in the representation

γ =
102

139

(
315
2176

10733
21760

6641
32640

8399
21760

147
680 − 67

272 − 45
1088

225
1088

)
,

G =



−1 1 0 0 0 0 0 0

0 −1 1 0 0 0 0 0

0 0 −3 3 0 0 0 0

0 0 0 −4 4 0 0 0

0 0 0 0 −5 5 0 0

0 0 0 0 0 −5 5 0

0 0 0 0 0 0 −5 5

0 0 0 0 81
125 0 0 −5


.

Since γ still contains negative elements, Step 4 needs to be applied.

Following the algorithm in the proof of Theorem 4.6, we obtain the following values:

• τ = 0.5 (from γeGτ > 0),

• g = ∥G∥ = 10,

• ∥γ∥ < 1.5,

• ϵ1 > 0.05 (for τ = 0.5),

• λ′ = 112000 from (4.6),

• ϵ > 0.069, and thus λ′′ = 806600 from (4.7).
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This means that applying Step 4 with λ = 806600 and n = τλ = 403300 we obtain a Markovian

representation for fY in the form of (4.3).

Finally, Step 5 applies, so by Lemma 4.4 with µ = 10 and k = 1, we obtain a Markovian represen-

tation for the original ME(α,A). The representation is of order 403309. Note that the order of this

PH representation is very far from minimal.

The point where the order of the representation gets very large is the calculation of λ in Step 4;

however, the estimates (4.6) and (4.7) are not sharp in the sense that a much smaller value might also

be suitable. For the worked example, λ = 32 is also suitable (this can be checked directly through

(4.4)) and gives a PH representation of order 25. In practice, it might be better to search for the

smallest possible λ instead of relying on (4.6) and (4.7) (which nevertheless provide an upper bound

for the search).

We also note that the value of τ is also subject to optimization; for the worked example, τ = 13/30

and λ = 270/13 yields n = 9 for a representation of order 18. However, this is still not necessarily a

minimal PH representation; we do not pursue a minimal representation any further.

4.4 Proofs for the necessary direction

Definition 6. The PH representation (α, A) is redundant if it contains at least one state which

cannot be visited by the Markov chain with initial distribution α and generator A. Otherwise (α, A)

is non-redundant.

If the ME representation (α, A) is redundant then it is possible to identify and eliminate the

redundant states in the following way. Consider the vector −αA−1. The stochastic interpretation of

its ith coordinate is the mean time spent in state i before absorption. If the ith element of vector

−αA−1 is zero then state i is redundant and the associated elements can be deleted from vector α

and matrix A without changing the distribution of time till absorption.

Lemma 4.9. If X is PH(α,A) distributed, then the positive density condition holds, that is,

fX(t) > 0 ∀t > 0.

Proof. According to the previous remark, we may assume that (α,A) is non-redundant; then there is

a path from every state with positive initial probability to the absorbing state and every state belongs

to one of those paths. Consequently, the Markov chain is in state j at time t with positive probability,

for any time t > 0 and for any state j. Let state i be a transient state from where the absorption rate

gi is positive. Then

fX(t) = αeAt(−A)1 =

n∑
j=1

Pr(Z(t) = j)gj ≥ Pr(Z(t) = i)gi > 0,

where Z(t) denotes the underlying Markov chain.

70



Lemma 4.10. If X is PH(α,A) distributed, then the dominant eigenvalue condition holds.

Before proving Lemma 4.10, we elaborate on the form of a minimal representation. Let ME(γ,G)

be a minimal ME representation for X. Consider its pdf using the Jordan decomposition of G

(G = PJP−1)

fX(t) = −γPJetJP−11 =
l∑

i=1

−γPiJie
tJiP′

i1,

where Ji denotes the Jordan-block corresponding to the eigenvalue −λi and Pi denotes the submatrix

of P containing only the columns corresponding to Ji. P
′
i denotes the submatrix of P−1 that contains

only the rows corresponding to Ji (thus Pi is of size n × ni, where ni is the multiplicity of −λi and
n is the size of G, and P′

i is of size ni × n). In Pi, the first column of each block is the (unique, up

to a constant factor) right eigenvector vi corresponding to that eigenvalue and the other columns are

generalized eigenvectors. Similarly in P′
i, the last row of each block is the (unique, up to a constant

factor) left eigenvector ui corresponding to that eigenvalue and the rest of the rows are generalized

eigenvectors. If i ̸= j, then P′
iPj = 0.

The dominant term of etJi is equal to tni−1e−λit

(ni−1)! (where ni denotes the size of Ji), and it is situated

in the upper right corner. Within −γPiJie
tJiP′

i1 this dominant term is obtained exactly when taking

−γviJie
tJiui1 = (γvi)λi

tni−1e−λit

(ni − 1)!
(ui1).

If any of the coefficients (γvi) and (ui1) were 0, this term would vanish. Properties P3 and P4 ensure

that this is not the case, in other words, all eigenvalues contribute to the pdf with maximal multiplicity

(Property P2).

This allows us to prove the DEC for any (possibly non-minimal) Markovian representation (α,A)

by proving that there exists a real eigenvalue of A that is strictly greater than the real part of all

other eigenvalues AND this eigenvalue contributes to the pdf with maximal multiplicity.

The proof of Lemma 4.10 is based essentially on the Perron–Frobenius lemma. We begin by citing

the Perron–Frobenius lemma along with a necessary definition, see for example [42].

Definition 7. An n×n matrix M is reducible if there exists a nontrivial partition I∪J of {1, 2, . . . , n}
such that

Mij = 0 ∀i ∈ I, j ∈ J.

Otherwise, M is irreducible.

In case M is the transient generator of a PH distribution, then irreducibility means that each

state can be reached from any other state before absorption, in this case we say that M has a single

communicating class. If the Markov chain defined by M has multiple communicating classes, they

correspond to a partition of the states as in the above definition.

Theorem 4.11 (Perron–Frobenius). If the irreducible matrix M has nonnegative elements, then there

exists a positive eigenvalue ν1 of M such that
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• ν1 has multiplicity 1,

• ν1 ≥ |νi| ∀i where vi denote the eigenvalues of M, and

• the corresponding right-eigenvector v1 is strictly positive (note that v1 is unique up to a constant

factor; it can be chosen such that v1 is strictly positive).

See Theorem 3 in [55] for a short, self-contained proof or Chapter 8 in [42] for a more detailed

discussion. Note that the same conclusion holds for the left-eigenvector u1 as well. Note that the fact

that ν1 is positive with multiplicity 1 and ν1 ≥ |νi| mean that ℜ(νi) < ν1 for i ̸= 1.

Proof of Lemma 4.10.

In case A has a single communicating class we apply Theorem 4.11 to the matrix M = A+ωI, where

ω = maxi |aii|. Given that the matrix A is Markovian, M is nonnegative with the same eigenvectors

and the eigenvalues shifted by ω. The dominant eigenvalue ν1 of M corresponds to the dominant

eigenvalue −λ1 of A, that is ν1 = −λ1 + ω and the same relation holds for the other eigenvectors.

Clearly for i ̸= 1

ℜ(νi) < ν1 =⇒ ℜ(−λi) < −λ1.

If A has a single communicating class then Theorem 4.11 guarantees that the multiplicity of −λ1
is 1; this means that the unique dominant term in the pdf is (αv1)λ1e

−λ1t(u11). Strict positivity of

v1 and u1 ensure αv1 > 0 and u11 > 0, so indeed λ1 contributes to the pdf with multiplicity 1.

If A has several communicating classes, the states can be renumbered such that A is an upper

block triangular matrix, where each diagonal block corresponds to a communicating class and the

blocks above the diagonal correspond to transitions between classes. The diagonal blocks are denoted

by B1, . . . ,Bk. The eigenvalues of A are the union of the eigenvalues associated with these diagonal

blocks. Each Bi is itself the generator of a transient Markov chain, and, since Bi is also irreducible,

Theorem 4.11 can be applied to each of them (technically, it is applied for Mi = Bi + ωiI for a

large enough ωi). It follows that each of these blocks (communicating classes) has its own dominant

eigenvalue such that within that class, the real parts of all other eigenvalues are strictly smaller. It

follows directly that the largest eigenvalue of A (denoted by −λ1) is real and has −λ1 > ℜ(−λi) for
all λi ̸= λ1.

However, as opposed to the single class case, the multiplicity of −λ1 may be higher than 1. Also,

there may be several eigenvectors corresponding to −λ1. This means that in order to calculate the

contribution of −λ1 to the pdf, we need to be slightly more meticulous. The proof is essentially a

transformation of the matrix A to a form that is similar to the Jordan form (but not the same),

while preserving some nonnegativity of A and α (where it is important). We also present a numerical

example at the end of this section to demonstrate the steps of the proof.

Let QiJiQ
−1
i = Bi be the Jordan decomposition of Bi. We assume that the first block of Ji

is the single dominant eigenvalue of Bi; Theorem 4.11 thus guarantees that the first column of Qi,

which is the corresponding right eigenvector, is strictly positive, and the first row of Q−1
i , which is

72



the corresponding left eigenvector, is also strictly positive. Create the transformation matrix

Q =


Q1 0 0 . . . 0

0 Q2 0 . . . 0
...

...

0 . . . 0 Qk

 .

Then Q−1AQ is an upper triangular matrix that contains the eigenvalues of A in its diagonal.

Applying this transformation to the pdf, we get

fX(t) = −αAetA1 = −(αQ)(Q−1AQ)et(Q
−1AQ)(Q−11).

Take all rows and columns of Q−1AQ that have −λ1 in the diagonal. Denote this submatrix by B.

The submatrix B is responsible for the whole contribution of −λ1. B can be calculated as

B = RQ−1AQRT

where R is a n1 × n binary matrix (whose elements are either 0 or 1) where n1 is the multiplicity of

the dominant eigenvalue in A and n is the size of A; row i in R is equal to the unit vector ej if the

i-th instance of −λ1 in the diagonal of Q−1AQ is at coordinate j, j. (αQ) is strictly positive on the

coordinates corresponding to B since the dominant eigenvectors of Qi are strictly positive and the

block of α associated with Qi is nonnegative and different from 0 (if it was 0 then PH(α,A) would be

redundant). Similarly, (Q−11) is strictly positive on the coordinates corresponding to B.

Finally, we argue that we can identify the dominant term in etB and see that it has a positive

coefficient. This is done directly instead of transforming B to Jordan form. To this end, note that the

offdiagonal elements of B are nonnegative since A originally contained nonnegative elements above

the diagonal, which were then multiplied by the strictly positive dominant left and right eigenvectors

of each block Bi.

The matrix λ1I+B is strictly upper triangular, thus nilpotent; this implies that the series expansion

et(λ1I+B) =

∞∑
k=0

(t(λ1I+B))k

k!

is actually a finite sum, and et(λ1I+B) is a polynomial of t. The dominant term in etB is equal to the

last nonzero term of this polynomial, multiplied by e−λ1t. The coefficient of this term is necessarily

positive since (λ1I+B) and thus powers of (λ1I+B) do not have negative elements.

Consequently, we have proved that λ1 contributes to the pdf

fX(t) = −αAetA1 = −(αA)(Q−1AQ)et(Q
−1AQ)(Q−11).

with maximal multiplicity and with a positive coefficient, and the DEC holds.
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Example 1. Let

A =



−4 1 1 0 0.2 0.4 0 0 0 0.4

1 −2 1 0 0 0 0 0 0 0

2 0 −3 0 0 0 0 0.2 0.4 0.2

0 0 0 −4 3 0.2 0.2 0 0.4 0

0 0 0 1 −2 0 0.2 0.2 0 0.2

0 0 0 0 0 −2 1 0 1/5 0

0 0 0 0 0 1 −2 0 0 0

0 0 0 0 0 0 0 −8 2 0.6

0 0 0 0 0 0 0 6 −7 0

0 0 0 0 0 0 0 0 0 −1



.

A has 5 communicating classes: B1 has size 3 and dominant eigenvalue −1, B2, B3 and B4 are of

size 2 and their dominant eigenvalues are −1,−1 and −4 respectively; B5 is of size 1 with dominant

eigenvalue −1. Thus λ1 = 1.

Q =



1 0 −1 0 0 0 0 0 0 0

2 −1 0 0 0 0 0 0 0 0

1 1 1 0 0 0 0 0 0 0

0 0 0 1 −3 0 0 0 0 0

0 0 0 1 1 0 0 0 0 0

0 0 0 0 0 1 −1 0 0 0

0 0 0 0 0 1 1 0 0 0

0 0 0 0 0 0 0 1 −2 0

0 0 0 0 0 0 0 3 2 0

0 0 0 0 0 0 0 0 0 1


Notice that in Q, the first column in each block is strictly positive. Even though it is not displayed

in this example, Q (and Q−1AQ) may contain complex numbers, but only in rows and columns
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corresponding to non-dominant eigenvalues.

Q−1AQ =



−1 0 0 0.05 0.05 0.10 −0.10 0.25 0.20 0.15

0 −3 0 0.10 0.10 0.20 −0.20 0.50 0.40 0.30

0 0 −5 −0.15 0.30 −0.15 −0.30 0.25 0.20 −0.25

0 0 0 −1 0 0.25 0.15 0.35 0 0.15

0 0 0 0 −5 −0.05 0.05 −0.15 −0.40 0.05

0 0 0 0 0 −1 0 0.20 0.30 0

0 0 0 0 0 0 −3 −0.20 −0.30 0

0 0 0 0 0 0 0 −4 0 9/35

0 0 0 0 0 0 0 0 −11 −6/35

0 0 0 0 0 0 0 0 0 −1



.

The rows and columns that include the dominant eigenvalue are marked and so

R =


1 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 1

 , B = RQ−1AQRT =


−1 0.05 0.10 0.15

0 −1 0.25 0.15

0 0 −1 0

0 0 0 −1

 .

The last nonzero power of the nilpotent matrix λ1I+B is

(λ1I+B)2 =


0 0 0.00125 0.0075

0 0 0 0

0 0 0 0

0 0 0 0


whose nonzero elements are all positive.

4.5 Outlook

The algorithm presented in this chapter is constructive, but the resulting PH representation is usually

not minimal. Finding a minimal PH representation generally seems to be out of reach at the moment.

When searching for relatively small representations, heuristic arguments also perform reasonably well.

For a heuristic argument that improves the FE block structure of Step 3, see [27]. We also refer to the

program package BuTools [8] developed specifically for PH/ME distributions and two classes of related

processes called Markov arrival processes (MAPs)/rational arrival processes (RAPs). For discussion

and results on MAPs and RAPs, see [7]. The package includes a number of iterative methods for

finding Markovian representations.

For results on various transformation techniques, see [41].

For computationally efficient methods to carry out some of the calculations presented here, see
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[50].

We also mention that the order of the representation is not the only option for measuring how

“good” a representation is. Another possibility is to consider the total number of nonzero elements

in the representation. Yet another option is to examine the running time when simulating the actual

Markov process defined by the PH representation. For more on this topic, see [25].
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Chapter 5

Mean-field limit for population

models with generally-timed

transitions

The chapter is structured as follows: Section 5.1 gives a setup for the classic Kurtz theorem for

density-dependent Markov population models including a short, self-contained proof. Section 5.2

gives a proper setup for the generalized semi-Markov population models, stating the main theorem

of this chapter. Section 5.3 provides an example. Section 5.4 contains the proof for the mean-field

convergence.

5.1 Markov population models

We begin by formulating the classic result of Kurtz; the main goal of this section is to familiarize the

reader with the notation and some of the techniques before tackling the semi-Markovian setup.

The notations used are the same as in Section 1.4; N is the population size, each individual is

inhabiting a state from a finite set S and each individual in state i performs Markov transitions to

other states j with rate rNij . The global state of the system is the total number of individuals in each

state, that is, a vector xN ∈ {0, 1, . . . , N}(S) with xN1 + · · · + xN|S| = N . We are interested in the

evolution of the system in time.

We give a construction of the above Markov population model in terms of Poisson processes. Let

Pij(.) be independent Poisson-processes with rate 1 for every i ̸= j ∈ S. The Poisson-representation

of xN (t) is

xNi (t) = xNi (0)−
∑
j:j ̸=i

Pij

(∫ t

0

xNi (u)rNij (x
N (u))du

)
+
∑
j:j ̸=i

Pji

(∫ t

0

xNj (u)rNji (x
N (u))du

)
(5.1)
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for i = 1, . . . , |S|.
To see that the above formula describes the same model as in Section 1.4, note that the total rate

of a jump from i to j for any individual in the system is xNi r
N
ij (x

N ) if the system is in state xN . The

idea behind the above representation is that to track the evolution of xNi it suffices to keep track of

the total number of transitions to and from state i, it does not matter which individual made the

actual transition.

We aim to rewrite the formula to the normalized version of the process. Let x̄N (t) = xN (t)
N . The

density-dependent assumption means that

xNi
N
rNij (x

N ) = rij

(
xN

N

)
for some common rij (independent of N), where rij : [0, 1]S → R. The inclusion of the term xi as a

multiplier on the left hand side means that rij corresponds to the aggregate rate of jumps from i to

j instead of the “individual rate”; the aggregate rate is proportional to the number of individuals in

state i. This notation of rij serves to make the formulas more compact. Also, rij needs to be defined

only on the subset x1 + · · ·+ x|S| = 1, which is an (|S| − 1)-dimensional simplex.

Accordingly, the normalized version of (5.1) is

x̄Ni (t) = x̄Ni (0)−
∑
j:j ̸=i

1

N
Pij

(
N

∫ t

0

rij(x̄
N (u))du

)
+
∑
j:j ̸=i

1

N
Pji

(
N

∫ t

0

rji(x̄
N (u))du

)
(5.2)

for i = 1, . . . , |S|.
The Poisson representation provides an inherent coupling of the Markov population model for

different values of N ; however, this coupling is technical without any deeper meaning.

We further assume that rij are Lipschitz-continuous with some common Lipschitz-constant R (R

will be assumed to also be an upper bound on rij), and that the initial conditions converge to some

v(0). In most applications, x̄N (0) are deterministic, but we may allow random initial conditions as

well, and thus the convergence of the initial condition is formulated as

lim
N→∞

P(∥v(0)− x̄N (0)∥ > ϵ) = 0 ∀ε > 0.

(∥.∥ denotes ∥.∥∞; however, since on a |S|-dimensional space, all reasonable norms define the same

topology, the actual choice of the norm is not that important.)

The mean-field limit is defined by the following system of ODEs:

v̇i(t) = −
∑
j:j ̸=i

rij(v(t)) +
∑
j:j ̸=i

rji(v(t))
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for i = 1, . . . , |S| with initial condition v(0), or, written in integral form:

vi(t) = vi(0)−
∑
j:j ̸=i

∫ t

0

rij(v(u))du+
∑
j:j ̸=i

∫ t

0

rji(v(u))du (5.3)

for i = 1, . . . , |S| with initial condition v(0).

The assumption that rij are Lipschitz continuous guarantees that the solution of (5.3) uniquely

exists.

Theorem (Kurtz). [35] Under the assumptions and setup given above, we have, for any T > 0 and

ϵ > 0:

lim
N→∞

P

{
sup

t∈[0,T ]

∥x̄N (t)− v(t)∥ > ϵ

}
= 0

Proof. Define the auxiliary process yN (t) via

yNi (t) :=vi(0)−
∑
j:j ̸=i

∫ t

0

rij(x̄
N (u))du+

∑
j:j ̸=i

∫ t

0

rji(x̄
N (u))du

and denote

DN
i (T ) = sup

t∈[0,T ]

|x̄Ni (t)− yNi (t)|.

We use the estimate

|x̄Ni (t)− vi(t)| ≤ |x̄Ni (t)− yNi (t)|+ |yNi (t)− vi(t)| ≤ DN
i (T ) + |yNi (t)− vi(t)|. (5.4)

We claim that DN
i (T ) goes to 0 in probability as N → ∞.

|xNi (t)− yNi (t)| ≤|xNi (0)− vi(0)|

+
∑
j:j ̸=i

∣∣∣∣∫ t

0

rij(x̄
N (u))du− 1

N
Pij

(
N

∫ t

0

rij(x̄
N (u))du

)∣∣∣∣
+
∑
j:j ̸=i

∣∣∣∣∫ t

0

rji(x̄
N (u))du− 1

N
Pji

(
N

∫ t

0

rji(x̄
N (u))du

)∣∣∣∣ ;
the first term on the right hand side goes to 0 in probability by our assumptions, and for the second

and third term, note that

sup
t∈[0,T ]

∣∣∣∣∫ t

0

rji(x̄
N (u))du− 1

N
Pji

(
N

∫ t

0

rji(x̄
N (u))du

)∣∣∣∣ ≤ 1

N
sup

s∈[0,RT ]

|Pc(Ns)−Ns| ,

which goes to 0 almost surely by the functional strong law of large numbers (FSLLN) for the Poisson

process ([65], Section 3.2).
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Next we take the last term in (5.4):

|yNi (t)− vi(t)| ≤
∑
j:j ̸=i

∫ t

0

|rij(v(u))− rij(x̄
N (u))|du+

∑
j:j ̸=i

∫ t

0

|rji(v(u))− rji(x̄
N (u))|du

≤2
∑
j:j ̸=i

∫ t

0

R∥v(u)− x̄N (u))∥du = 2R|S|
∫ t

0

∥v(u)− x̄N (u))∥du.

Then

∥x̄N (t)− v(t)∥ ≤ max
i∈S

DN
i (T ) + 2R|S|

∫ t

0

∥x̄N (u)− v(u)∥du (5.5)

and an application of Grönwall’s lemma ([19], page 498) readily yields

∥x̄N (t)− v(t)∥ ≤ max
i∈S

DN
i (T ) exp(2R|S|T ),

proving Kurtz’s theorem.

5.2 Population generalized semi-Markov processes

We extend the model defined in the previous section. Again, N is the population size, each individual

is inhabiting a state from a finite set S and each individual in state i performs Markov transitions

from transitions to other states j with rate rNij . The global state of the system is the total number of

individuals in each state, that is, a vector xN ∈ {0, 1, . . . , N}(S) with xN1 + · · ·+ xN|S| = N .

We also assume that the density-dependent aggregate rates rij(x) = xir
N
ij (Nx) are Lipschitz-

continuous with common Lipschitz-constant R. R will be assumed to also be an upper bound on

rij .

We also include generally-timed transitions. Partition the states into S = S0∪S1, where S0

contains the states where no generally-timed transitions are allowed, while S1 contains the states

where generally-timed transitions are allowed (these will be called active states). For each i ∈ S1, a

distribution function Fi is given; our only assumption on Fi is that it is concentrated on [0,∞).

Whenever an individual enters a state i ∈ S1, it generates a random time according to Fi indepen-

dent of everything (we say that the clock is initialized). After that time has elapsed, the individual

makes a transition to some other state (these types of transitions will be called non-Markovian tran-

sitions). Upon leaving state i, the clock is disabled and will be resampled according to Fi if the

individual returns to i later.

To summarize: a single individual may have at most one active clock at any given time; however,

there is no restriction on the total number of simultaneously active clocks in the entire system.

We have a number of assumptions. We assume that the system is delay-only, that is, if i is an

active state then rij = 0 ∀j.
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We also assume that the non-Markovian transition from an active state i always targets the same

state; we will formulate this by saying that the distribution pi of the target state is deterministic: pij

is equal to 1 for a unique j ∈ S and 0 otherwise. We also assume that the target state is non-active,

that is, j ∈ S0. This is a technical restriction ensuring that non-Markovian transitions do not follow

each other directly. However, it is not a modelling restriction as the state space may be reconfigured

so the generally-timed transition is followed by a (very fast) Markovian transition sampling from an

arbitrary distribution. We set pij = 0 for all other pairs (i, j).

We also assume that the initial state of the system is concentrated on S1; in other words, no

generally-timed clocks are active initially. For a (simpler) model where general initial condition is

examined, see [5].

We are looking to construct the above model via Poisson-representation. Let Pij(.) be independent

Poisson-processes with rate 1 for every i ̸= j ∈ S. Let {T ij
k }∞k=1 be mutually independent sequences

of identically-distributed random variables distributed according to Fi for each i ∈ S1 and j ∈ S0.

(Taking a separate sample for each j will make formulating the Poisson-representation easier.)

The Poisson-representation of x̄N (t) is

x̄Ni (t) =x̄Ni (0)−
∑
j:j ̸=i

1

N
Pij

(
N

∫ t

0

rij(x̄
N (u))du

)
+
∑
j:j ̸=i

1

N
Pji

(
N

∫ t

0

rji(x̄
N (u))du

)

+
∑
h∈S0

∑
j∈S1

∫ t

z=0

pij1

(
T ji

Phj(N
∫ z
0
rhj(x̄N (u))du)

≤ t− z

)
1

N
dPhj

(
N

∫ z

0

rhj(x̄
N (u))du

)

−
∑
h∈S0

∑
j:j∈S0

∫ t

z=0

pji1

(
T ij

Phi(N
∫ z
0
rhi(x̄N (u))du)

≤ t− z

)
1

N
dPhi

(
N

∫ z

0

rhi(x̄
N (u))du

)
(5.6)

for i ∈ S.
The first of the last two terms in the formula (5.6) should be understood as follows. If i is active,

the term is 0 by our assumptions on pij . If i is inactive, consider an active state j with pij = 1 and

an inactive state h. If a Markov transition from h to j occurs at time z, a non-Markovian clock

distributed according to Fj starts. The clock samples from the list {T ji
k }∞k=1; to ensure that a new k

is used for each clock, k is set to Phj

(∫ z

0
rhj((x̄

N (u))du
)
(which increases with each arrival of Phj).

When the indicator variable is 1, the clock has already set off before time t and needs to be counted

among the actual transitions; when the indicator variable is 0, the clock has not yet set off by time t,

so the corresponding j → i transition has not yet occurred, and the contribution of the integral is 0.

Conversely, the last term of (5.6) is nonzero only if i is active; consider an inactive state j

with pji = 1 and an inactive state h. If a Markov transition from h to i occurs at time z, a non-

Markovian clock distributed according to Fi starts. The clock samples from the list {T ij
k }∞k=1 with

k = Pij

(∫ z

0
rij((x̄

N (u))du
)
(which increases with each arrival of Pij). When the indicator variable is

1, the clock has already set off before time t and needs to be counted among the actual transitions

(which decrease the number of individuals in state i, hence the negative sign); when the indicator

variable is 0, the clock has not yet set off by time t, so the corresponding i→ j transition has not yet
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occurred.

The mean-field limit is defined by the following delayed differential equations (written in integral

form):

vi(t) =vi(0)−
∑
j:j ̸=i

∫ t

0

rij(v(u))du+
∑
j:j ̸=i

∫ t

0

rji(v(u))du

+
∑
h∈S0

∑
j∈S1

∫ t

u=0

pijFj(t− u)rhj(v(u))du

−
∑
h∈S0

∑
j:j∈S0

∫ t

u=0

pjiFi(t− u)rhi(v(u))du (5.7)

for i ∈ S.
Lipschitz continuity of rij guarantees that the solution of (5.7) uniquely exists.

Again, we assume convergence of the initial condition:

lim
N→∞

P(∥v(0)− x̄N (0)∥ > ϵ) = 0 ∀ε > 0.

Theorem 5.1. Under the assumptions and setup given above, we have, for any T > 0 and ϵ > 0:

lim
N→∞

P

{
sup

t∈[0,T ]

∥x̄N (t)− v(t)∥ > ϵ

}
= 0

5.3 Example: peer-to-peer software update

In this section, we derive the system of DDEs for a simple example model of a peer-to-peer software

update process.

We consider two general types of nodes in this model which we term old and updated. Old nodes

are those running an old software version and new nodes are those which have been updated to a

new version. Nodes alternate between being on and off ; when an old node turns on, it searches

for an update in peer-to-peer fashion, with the probability of successfully finding an update being

proportional to the number of nodes already updated. If it does not find an update, it gives up after a

timeout. After that, it stays on for some time and then eventually turns off. New nodes do not search

for updates, just alternate between on and off. We assume that the off time of a node is random and

Pareto-distributed. So, nodes have five possible local states: updated nodes can be on and off, which

we denote by a and b, respectively. Old nodes can be on (c), off (e) or in a state representing an old

node which is on but has given up seeking updates (d). In the notation of Section 5.2, the set of local

states is thus S := {a, b, c, d, e} with S0 = {a, c, d}, S1 = {d, e}. The local behaviour of a node is

depicted in Figure 5.1.

In this example, we consider all transitions to be Markovian except for the transitions bringing

nodes from their off state into their on state, which have cumulative distribution function F (s).

The DDEs corresponding to this model are:
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Figure 5.1: Representation of the behaviour of a single node in the delay-only software update model.

v̇a(t) = βva(t)vc(t)− ρva(t) + ρ

∫ t

0

va(t− s)dF (s)

v̇b(t) = ρva(t)− ρ

∫ t

0

va(t− s)dF (s)

v̇c(t) = −κvc(t)− βva(t)vc(t) + ρ

∫ t

0

vd(t− s)dF (s)

v̇d(t) = κvc(t)− ρvd(t)

v̇e(t) = ρvd(t)− ρ

∫ t

0

vd(t− s)dF (s)

5.4 Proof of the mean-field convergence

Proof of Theorem 5.1. Define the auxiliary process yN (t) via

yNi (t) :=vi(0)−
∑
j:j ̸=i

∫ t

0

rij(x̄
N (u))du+

∑
j:j ̸=i

∫ t

0

rji(x̄
N (u))du

+
∑
h∈S0

∑
j∈S1

∫ t

u=0

pijFj(t− u)rhj(x̄
N (u))du

−
∑
h∈S0

∑
j:j∈S0

∫ t

u=0

pjiFi(t− u)rhi(x̄
N (u))du (5.8)

for i ∈ S.
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Then

|x̄Ni (t)− vi(t)| ≤ |x̄Ni (t)− yNi (t)|+ |yNi (t)− vi(t)|

for any i ∈ S.
Denote

DN
i (T ) = sup

t∈[0,T ]

|x̄Ni (t)− yNi (t)|

We estimate ∥yN (t)− v(t)∥ by

|yNi (t)− vi(t)| ≤
∑
j:j ̸=i

∫ t

0

|rij(x̄N (u))− rij(v(u))|du+
∑
j:j ̸=i

∫ t

0

|rji(x̄N (u))− rji(v(u))|du

+
∑
h∈S0

∑
j∈S1

∫ t

u=0

pijFj(t− u)|rhj(x̄N (u))− rhj(v(u))|du

+
∑
h∈S0

∑
j:j∈S0

∫ t

u=0

pjiFi(t− u)|rhi(x̄N (u))− rhi(v(u))|du

≤ ZR

∫ t

0

∥xN (u)− v(u)∥du

where

Z := |S0|+ |S0|+ |S0| · |S1|+ |S0|2

and ∥.∥ is the maximum norm on RS . We aim to show that DN
i (T ) → 0 in probability as N → ∞ for

each i ∈ S; once we have that, we have

∥x̄N (t)− v(t)∥ ≤ max
i∈S

DN
i (T ) + ZR

∫ t

0

∥x̄N (u)− v(u)∥du (5.9)

and an application of Grönwall’s lemma ([19], page 498) readily yields

∥x̄N (t)− v(t)∥ ≤ max
i∈S

DN
i (T ) exp(ZRT ),

proving the theorem.

It now remains to show that for each i ∈ S, DN
i (T ) → 0 in probability as N → ∞.
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To see this note that:

DN
i (T ) ≤ |vi(0)− x̄Ni (0)|+

∑
j:j ̸=i

sup
t∈[0,T ]

∣∣∣∣∫ t

0

rij(x̄
N (u))du− 1

N
Pij

(
N

∫ t

0

rij(x̄
N (u))du

)∣∣∣∣
+
∑
j:j ̸=i

sup
t∈[0,T ]

∣∣∣∣∫ t

0

rji(x̄
N (u))du− 1

N
Pji

(
N

∫ t

0

rji(x̄
N (u))du

)∣∣∣∣+
+
∑
h∈S0

∑
j∈S1

pij

∣∣∣∣∫ t

u=0

Fj(t− u)rhj(x̄
N (u))du−

−
∫ t

u=0

1

(
T ji

Phj(N
∫ z
0

rhj(x̄N (u))du)
≤ t− z

)
1

N
dPhj

(
N

∫ z

0

rhj(x̄
N (u))du

)∣∣∣∣
+
∑
h∈S0

∑
j∈S0

pji

∣∣∣∣∫ t

u=0

Fi(t− u)rhi(x̄
N (u))du−

−
∫ t

u=0

1

(
T ij

Phi(N
∫ z
0
rhi(x̄N (u))du)

≤ t− z

)
1

N
dPhi

(
N

∫ z

0

rhi(x̄
N (u))du

)∣∣∣∣ (5.10)

for i ∈ S
The first term in (5.10) converges to 0 in probability per our assumptions. The second and third

terms in (5.10) are essentially the same; they are handled in the following lemma.

Lemma 5.2. For any i, j ∈ S

sup
t∈[0,T ]

∣∣∣∣∫ t

0

rji(x̄
N (u))du− 1

N
Pji

(
N

∫ t

0

rji(x̄
N (u))du

)∣∣∣∣→ 0

almost surely as N → ∞.

Remark. The lemma states almost sure convergence; this makes sense because the coupling pro-

vided by the Poisson representation puts the PGSMP for different values of N in the same probability

space. That said, convergence in probability is enough for our purposes.

Proof of Lemma 5.2. By the Lipschitz-condition, 0 ≤
∫ t

0
rNij (x̄

N (u))du ≤ RT for any t ∈ [0, T ] and

thus

sup
t∈[0,T ]

∣∣∣∣∫ t

0

rji(x̄
N (u))du− 1

N
Pji

(
N

∫ t

0

rji(x̄
N (u))du

)∣∣∣∣ ≤ 1

N
sup

s∈[0,RT ]

|Pc(Ns)−Ns| ,

which goes to 0 almost surely by the functional strong law of large numbers (FSLLN) for the Poisson

process ([65], Section 3.2).

What remains is to prove that the last two terms in (5.10) go to 0 in probability.

Before proceeding, we change the notation a bit. h, i and j will be fixed from now on until the end

of this section. We will thus drop them from notation and use F = Fj , r = rhj , Tk = T ji
k and P = Phj

in (5.10) for the first of the last two terms in (5.10) (and, correspondingly, F = Fi, r = rhi, Tk = T ij
k

and P = Phi for the last term in (5.10)).
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We will also use the shorthand

JN (t) = P

(
N

∫ t

0

r(x̄N (u))du

)
for the (measure generated by the) Poisson process.

Using the above notation, either of the last two terms in (5.10) (without the finite summations∑
h∈S0

∑
j∈S1

· and the bounded constant pji ) simplifies to

∣∣∣∣∫ t

0

F (t− u)r(x̄N (u)) du−
∫ t

0

1
(
TJN (u) ≤ t− u

) 1

N
dJN (u)

∣∣∣∣ (5.11)

We note that ∣∣∣∣∫ t

0

1
(
TJN (u) ≤ t− u

) 1

N
dJN (u)−

∫ t

0

F (t− u)r(x̄N (u)) du

∣∣∣∣ ≤∣∣∣∣∫ t

0

F (t− u)
1

N
dJN (u)−

∫ t

0

F (t− u)r(x̄N (u)) du

∣∣∣∣
+

∣∣∣∣∫ t

0

1
(
TJN (u) ≤ t− u

) 1

N
dJN (u)−

∫ t

0

F (t− u)
1

N
dJN (u)

∣∣∣∣ . (5.12)

The first term on the right hand side will be dealt with in Lemma 5.3 and the second in Lemma

5.4.

We have some more preparations first. From Lemma 5.2 we already have that

sup
t∈[0,T ]

∣∣∣∣ 1N P

(
N

∫ t

0

r(x̄N (u))du

)
−
∫ t

0

r(x̄N (u))du

∣∣∣∣→ 0

almost surely as N → ∞. As a direct consequence of this, we also have

sup
s,t∈[0,T ]

∣∣∣∣ 1N P

(
N

∫ t

s

r(x̄N (u))du

)
−
∫ t

s

r(x̄N (u))du

∣∣∣∣→ 0

almost surely since

sup
s,t∈[0,T ]

∣∣∣∣∫ t

s

·
∣∣∣∣ = sup

s,t∈[0,T ]

∣∣∣∣∫ t

0

· −
∫ s

0

·
∣∣∣∣ ≤ 2 sup

t∈[0,T ]

∣∣∣∣∫ t

0

·
∣∣∣∣

Also as a preparation, we have

sup
t∈[0,T ]

∫ t

0

r(x̄N (u))du ≤ sup
t∈[0,T ]

∫ t

0

R∥x̄N (u)∥du ≤ sup
t∈[0,T ]

Rt = RT

independent of N , again using ∥x̄N∥ ≤ N and r(x̄) ≤ R∥x̄∥. Lemma 5.2 then also implies
1
N

∫ t

0
dJN (u) ≤ RT + εN , where εN → 0 almost surely as N → ∞.
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Lemma 5.3.

sup
t∈[0,T ]

∣∣∣∣∫ t

0

F (t− u)
1

N
dJN (u)−

∫ t

0

F (t− u)r(x̄N (u))du

∣∣∣∣→ 0

almost surely as N → ∞.

Proof. Let ε > 0 be fixed. Write

F (t− u) = gt,ε(u) + ht,ε(u),

where g = gt,ε is a piecewise constant function with 0 ≤ g(u) ≤ 1 and ∥h∥∞ ≤ ε. Their exact definition

is as follows. Take the ε, 2ε, . . . quantiles of F (t − u) (F (t − u) as a function of u is nonincreasing

between 0 and 1); that is, let uk = inf{u : F (t− u) ≤ kε}. Some of these uk’s may be equal if F has

discontinuities. The number of distinct quantiles is certainly no more than ⌈ε−1⌉, independent of N
and t.

Let g be the piecewise constant function

g(u) = F (t− uk) if u ∈ (uk−1, uk],

so g(u) ≤ F (t− u). The choice of uk’s guarantees that h(u) = F (t− u)− g(u) ≤ ε.

Then we can write ∣∣∣∣∫ t

0

F (t− u)
1

N
dJN (u)−

∫ t

0

F (t− u)r(x̄N (u))du

∣∣∣∣ ≤∣∣∣∣∫ t

0

g(u)
1

N
dJN (u)−

∫ t

0

g(u)r(x̄N (u))du

∣∣∣∣+∣∣∣∣∫ t

0

h(u)
1

N
dJN (u)−

∫ t

0

h(u)r(x̄N (u))du

∣∣∣∣
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Since g is piecewise constant,∣∣∣∣∫ t

0

g(u)
1

N
dJN (u)−

∫ t

0

g(u)r(x̄N (u))du

∣∣∣∣ =
1

N

∣∣∣∣∣∣
⌈ε−1⌉∑
k=1

g(uk)

(
JN (uk)− JN (uk−1)−

∫ uk

uk−1

Nr(x̄N (u))du

)∣∣∣∣∣∣ ≤
1

N

⌈ε−1⌉∑
k=1

∣∣∣∣∣g(uk)
(
JN (uk)− JN (uk−1)−

∫ uk

uk−1

Nr(x̄N (u))du

)∣∣∣∣∣ ≤
1

N

⌈ε−1⌉∑
k=1

∣∣∣∣∣JN (uk)− JN (uk−1)−
∫ uk

uk−1

Nr(x̄N (u))du

∣∣∣∣∣ ≤
⌈ε−1⌉∑
k=1

sup
s,t∈[0,T ]

∣∣∣∣ 1N P

(
N

∫ t

s

r(x̄N (u))du

)
−
∫ t

s

r(x̄N (u))

∣∣∣∣ =
⌈ε−1⌉ · sup

s,t∈[0,T ]

∣∣∣∣ 1N P

(
N

∫ t

s

r(x̄N (u))du

)
−
∫ t

s

r(x̄N (u))du

∣∣∣∣→ 0

almost surely as N → ∞ since ε is independent of N .

Since ∥h∥∞ ≤ ε, we have

∣∣∣∣∫ t

0

h(u)
1

N
dJN (u)−

∫ t

0

h(u)r(x̄N (u))du

∣∣∣∣ ≤∣∣∣∣∫ t

0

h(u)
1

N
dJN (u)

∣∣∣∣+ ∣∣∣∣∫ t

0

h(u)r(x̄N (u))du

∣∣∣∣ ≤
ε

N

∣∣∣∣∫ t

0

dJN (u)

∣∣∣∣+ ε

∣∣∣∣∫ t

0

r(x̄N (u))du

∣∣∣∣ ≤ ε(2RT + εN ),

independent of t (with εN → 0 almost surely as N → ∞).

Letting ε→ 0 proves

sup
t∈[0,T ]

∣∣∣∣∫ t

0

F (t− u)
1

N
dJN (u)−

∫ t

0

F (t− u)r(x̄N (u))du

∣∣∣∣→ 0

almost surely as N → ∞.

Lemma 5.4.

sup
t∈[0,T ]

1

N

∣∣∣∣∫ t

0

1
(
TJN (u) ≤ t− u

)
dJN (u)−

∫ t

0

F (t− u)dJN (u)

∣∣∣∣→ 0

almost surely as N → ∞.
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Proof. Let ε > 0 be fixed. Also fix t for now. We want to prove

P

(
1

N

∣∣∣∣∫ t

0

1
(
TJN (u) ≤ t− u

)
dJN (u)−

∫ t

0

F (t− u)dJN (u)

∣∣∣∣ > ε

)
is exponentially small in N via Azuma’s inequality [11, 2]. Once we have that, we can apply Borel–

Cantelli lemma (see e.g. [16] Chapter 2.3) to conclude that for any fixed ϵ, the above event happens

only finitely many times, which is equivalent to almost sure convergence to 0. To apply Azuma, we

need to write the above integral as a martingale with bounded increments. The measure dJN (u) is

concentrated on points u where P has an arrival at N
∫ u

0
r(x̄N (z))dz. Let we denote these random

points by u1, u2, . . . (in fact, the whole sequence depends on the value of N ; we will keep N fixed as

long as we use this sequence, and not include N in the notation). The integral only has contributions

from these points; it is natural to write (using a slightly different notation)

Sl := (1 (T1 ≤ t− u1)− F (t− u1)) + · · ·+ (1 (Tl ≤ t− ul)− F (t− ul))

MN := P

(
N

∫ t

0

r(x̄N (z))dz

)
so that ∫ t

0

1
(
TJN (u) ≤ t− u

)
dJN (u)−

∫ t

0

F (t− u)dJN (u) = SMN
.

We first resolve the difficulty that MN is in fact random.

P

(
1

N

∣∣∣∣∫ t

0

1
(
T e
JN (u)≤t−u

)
dJN (u)−

∫ t

0

F (t− u)dJN (u)

∣∣∣∣ > ε

)
=

P

(∣∣∣∣SMN

N

∣∣∣∣ > ε

)
=

∞∑
l=0

P

(∣∣∣∣Sl

N

∣∣∣∣ > ε, MN = l

)
≤

2RTN∑
l=0

P

(∣∣∣∣Sl

N

∣∣∣∣ > ε

)
+

∞∑
2RTN+1

P(MN = l) =

2RTN∑
l=0

P

(∣∣∣∣Sl

N

∣∣∣∣ > ε

)
+P(MN > 2RTN).

The sum was cut at 2RTN because MN is stochastically dominated by a Poisson distribution with

parameter RTN , so P(MN > 2RTN) is exponentially small due to Cramér’s large deviation theorem

(see e.g. Theorem II.4.1 in [18]):

P(MN > 2RTN) ≤ e−RTN(2 ln 2−1).

(The Cramér rate function of the Poisson-distribution with parameter λ is I(x) = x ln(x/λ)− x+ λ.)

To apply Azuma to each of the terms P
(∣∣Sl

N

∣∣ > ε
)
, we also need to check that Sl is indeed

a martingale with bounded increments. To set it up properly as a martingale, note that {ul} is

an increasing sequence of stopping times, so the filtration {Fl} is well-defined; Fl contains all the
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information known up to time ul, including the values of all of the non-Markovian clocks that started

by the time ul.

Sl has bounded increments, since

|1({Tl ≤ t− ul)− F (t− ul)| ≤ 1.

The last step to apply Azuma is that we need to check that Sl is a martingale with respect to Fl.

It is clearly adapted, and

E(1 (Tl+1 ≤ t− ul+1) |Fl) = E(E(1 (Tl+1 ≤ t− ul+1) |Fl, ul+1)|Fl) =

E(P(Tl+1 ≤ t− ul+1|Fl, ul+1)|Fl) = E(F (t− ul+1)|Fl)

shows that it is a martingale as well. (In the last step, we used the fact that ul+1 is measurable with

respect to σ{Fl∪{ul+1}} while Tl+1 is independent from it.)

We have everything assembled to apply Azuma’s inequality (Theorem 5.2 in [11]):

P (|Sl −E (Sl)| > λ) ≤ 2e−
λ2

2l

and thus (considering E (Sl) = 0)

2RTN∑
l=0

P

(∣∣∣∣Sl

N

∣∣∣∣ > ε

)
≤

2RTN∑
l=0

2e−
ε2N2

2l ≤

≤2RTN · 2e− ε2N2

4RTN = 4RTNe−
ε2N
4RT .

In the last inequality, we estimated each term in the sum by the largest one, which is for l = 2RN .

The estimate obtained is

P

(
1

N

∣∣∣∣∫ t

0

1
(
TJN (u)≤t−u

)
dJN (u)−

∫ t

0

F (t− u)dJN (u)

∣∣∣∣ > ε

)
≤

4RTNe−
ε2N
4RT + e−RTN(2 ln 2−1).

Remember that t was fixed; we need to upgrade this estimate into an estimate that is valid for

supt∈[0,T ](.) before applying Borel–Cantelli lemma. We do this by partitioning the interval [0, T ] into

N subintervals uniformly, and then controlling what happens at the partition points and between the

partition points separately. For the former, we apply the previous estimate. Let

tm :=
mT

N
, m = 0, 1, . . . N,
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then

P

(
max

0≤m≤N

1

N

∣∣∣∣∫ tm

0

1
(
TJN (u)≤t−u

)
dJN (u)−

∫ tm

0

F (t− u)dJN (u)

∣∣∣∣ > ε

)
≤

(N + 1)
(
4RTNe−

ε2N
4RT + e−RTN(2 ln 2−1)

)
,

which is still summable.

Now we turn our attention to the intervals [tm, tm+1]. Since∫ t

0

1
(
TJN (u)≤t−u

)
dJN (u) and

∫ t

0

F (t− u)dJN (u)

are both increasing in t, we only have to check that neither of them increases by more than εN over

an interval [tm, tm+1].

Let m be fixed. We handle the two integrals separately. First, for∫ t

0

F (t− u)dJN (u),

we have ∫ tm+1

0

F (tm+1 − u)dJN (u)−
∫ tm

0

F (tm − u)dJN (u) =∫ tm

0

F (tm+1 − u)− F (tm − u)dJN (u) +

∫ tm+1

tm

F (tm+1 − u)dJN (u) ≤∫ tm

0

F (tm+1 − u)− F (tm − u)dJN (u) +

∫ tm+1

tm

1dJN (u).

The second term is equal to JN (tm+1) − JN (tm). By the Lipschitz-condition, this is stochastically

dominated by Z ∼ Poisson(RT ) since the length of the interval is T/N , and thus

P

(
1

N

∫ tm+1

tm

F (tm+1 − u)dJN (u) > ε

)
≤ P

(
Z

N
> ε

)
= P

(
Z

ε
> N

)
.

Note that the right hand side is summable in N , its sum being equal to the expectation of
⌈
Z
ε

⌉
.

To estimate the other term, note that

u ∈ [tl−1, tl] =⇒F (tm+1 − u)− F (tm − u) ≤ F (tm+1 − tl−1)− F (tm − tl) =

F (tm+1 − tl−1)− F (tm+1 − tl) + F (tm+1 − tl)− F (tm − tl),
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which gives ∫ tm

0

F (tm+1 − u)− F (tm − u)dJN (u) =

m∑
l=1

∫ tl

tl−1

F (tm+1 − u)− F (tm − u)dJN (u) ≤

m∑
l=1

∫ tl

tl−1

F (tm+1 − tl−1)− F (tm − tl)dJ
N (u) =

m∑
l=1

(F (tm+1 − tl−1)− F (tm − tl))(J
N (tl)− JN (tl−1)).

We use two things here: the fact that (JN (tl)−JN (tl−1)) is stochastically dominated by Poisson(RT )

and the fact that the sum

m∑
l=1

(F (tm+1 − tl−1)− F (tm − tl)) =
m∑
l=1

F (tm−l+2)− F (tm−l) =

F (tm+1) + F (tm)− F (1)− F (0) ≤ 2

is telescopic. This means that the whole sum can be stochastically dominated by Poisson(2RT ) (note

that the number of clocks starting at each interval is not independent, but because of the Lipschitz-

condition, we may still use independent Poisson variables when stochastically dominating the sum).

Using the notation Z ∼ Poisson(RT ) again, we get that

∞∑
N=1

P

(
2Z

N
> ε

)
=

∞∑
N=1

P

(
2Z

ε
> N

)
≤ 2RT

ε
+ 1.

(In fact, P
(
2Z
ε > N

)
goes to 0 superexponentially in N .)

The last term to estimate is the increment of∫ t

0

1
(
TJN (u)≤t−u

)
dJN (u).

between tm and tm+1, e.g. the number of clocks expiring between tm and tm+1.

Partition the clocks according to which interval [tl−1, tl] they started in. The number of clocks

starting in [tl−1, tl] is stochastically dominated by Z ∼ Poisson(RT ) by the Lipschitz-condition, and for

each such clock, the probability that it goes off in [tm, tm+1] is less than or equal to F (tm+1)−F (tl−1).

This implies that the number of the clocks starting in [tl−1, tl] and going off in [tm, tm+1] is stochasti-

cally dominated by Wm,l ∼ Poisson(RT (F (tm+1)−F (tl−1))). The total number of clocks going off in

[tm, tm+1] is stochastically dominated by Poisson(RT
∑m

l=1(F (tm+1) − F (tl−1))), where the familiar

telescopic sum appears in the parameter. (Once again, the Lipschitz-condition was used implicitly.)

So the total number of clocks going off in [tm, tm+1] is stochastically dominated by Poisson(2RT ),

which means we arrive at the also familiar P
(
2Z
ε > N

)
value, which we already examined and proved

93



to be summable in N .

Putting it together, we get that

P

(
sup

t∈[0,T ]

1

N

∣∣∣∣∫ t

0

1
(
TJN (u) ≤ t− u

)
dJN (u)−

∫ t

0

F (t− u)dJN (u)

∣∣∣∣ > ε

)
≤ CN,ε

where
∞∑

N=1

CN,ε <∞,

so the Borel–Cantelli lemma gives almost sure convergence as N → ∞.

With Lemmas 5.2-5.4 finished, the proof of Theorem 5.1 is complete.

5.5 Outlook

We have presented a model of PGSMPs where individuals can enable both Markovian transitions that

compete with each other (as opposed to delay-only PGSMPs), and we have given a rigorous proof for

the mean-field convergence.

That said, there are a number of questions left open. A natural generalization is the race case,

when non-Markovian transitions compete with Markovian transitions; when a Markovian transition

occurs in an active state, it disables the non-Markovian clock. The race case is subject to further

research; we expect that the mean-field limit convergence holds for such systems as well, and the limit

is again described by the solution of appropriate DDE’s.

Taking one step further, another generalization would be the case when non-Markovian clocks are

not disabled upon Markovian transitions. Such systems would be widely applicable, yet, to the best of

our knowledge, no rigorous proof has been given for mean-field convergence for any non-trivial model

of this kind.

A question in a different direction is second order approximation, that is, fluctuations around the

mean-field limit. For the original Markov population model, the fluctuations are Gaussian, with the

covariances satisfying a system of ordinary differential equations [35] [19]. For PGSMPs, it is reason-

able to expect Gaussian fluctuations, with the covariance satisfying a system of delayed differential

equations instead, but no results are available yet. The technology presented in this chapter seems to

be geared more towards first-order approximation.
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[41] A. Mészáros, G. Horváth and M. Telek. Representation transformations for finding markovian

representations. Analytical and Stochastic Modeling Techniques and Applications, volume 7984

of Lecture Notes in Computer Science, pages 277–291, Springer, 2013.

[42] C. D. Meyer. Matrix Analysis and Applied Linear Algebra. SIAM, 2004.

[43] S. Mocanu and C. Commault. Sparse representations of phase-type distributions. Commun.

Stat., Stochastic Models, 15(4):759–778, 1999.

[44] M. F. Neuts. Matrix Geometric Solutions in Stochastic Models. Johns Hopkins University Press,

Baltimore, 1981.

[45] S. P. Obukhov and L. Peliti. Renormalisation of the “true” self-avoiding walk. J. Phys. A,

16:L147–L151, 1983.

[46] Colm Art O’Cinneide. Characterization of phase-type distributions. Communications in Statis-

tics. Stochastic Models, 6(1):1–57, 1990.

[47] S. Olla. Central limit theorems for tagged particles and for diffusions in random environment. In
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