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Abstract—In this paper, we investigate dimension reduction
possibilities of multidimensional time series data and we in-
troduce a graph based clustering approach using the cross-
correlation between time series. The proposed solution consists
of two main steps: introducing a novel similarity measure
for measuring cross-correlations and a graph-based clustering
technique. These two parts are both compared to existing
techniques, including noise tolerance and our solution performs
better in a noisy environment. The proposed solution is applied
to performance metrics of a specific data processing system in
order to identify and efficiently visualize connections among
the collected metrics. The introduced method provides a more
balanced clustering than classic ones, and it is suitable to reveal
dependencies and connections among performance metrics time
series data.

I. INTRODUCTION

Application fingerprinting with respect to resource con-
sumption is a methodology to characterize the behavior and
performance of a software system. The main goal of the
technique is to capture the timely performance characteristics
of a software system.

The basis of a performance modeling is to collect per-
formance metrics of a system. These metrics can describe
not only available hardware resources such as CPU usage,
available physical memory or transmitted bytes but also ap-
plication level resources such as queue lengths, number of
received messages etc. These metrics are sampled at specific
time intervals to obtain a set of time series data. Even a small
distributed system can provide hundreds of metrics therefore
to identify the relevant ones are important.

There are two main techniques to reduce the complexity of
high dimensional multivariate time series:

o dimension reduction: determining the most important

attributes,

o clustering: grouping the similar attributes together.
These topics are highly investigated and several paper were
published during the past years e.g., [7], [12], [27], [22], [21],
[10], [32], just to mention a few. The similarity or dissimilarity
measure is basis of the clustering and various methods exist
to define them [7], [12] and [27].

The main objective of this work is to identify connections
among various performance metric and to identify central

elements of the found clusters in order to reduce the num-
ber of performance metrics to track. We introduce a novel
similarity measure of time-series based on cross-correlations
and associate a weighted graph to the similarity matrix. Time
series clustering based on this similarity measures produce
more stable and reliable clustering results even in a noisy
environment. This noise tolerance is investigated with different
noise model and is introduced in Section IV.

Although the introduced solution is evaluated by monitoring
and optimizing the necessary performance metrics of a stream
processing application, which calculates high level network
KPIs, the described method can be applicable in other scenar-
ios as our method keeps background assumptions as minimal
as possible.

The rest of the paper is organized as follows. First, an
overview of existing dissimilarity measures and dimension
reduction methods are given in Section II. Then we propose
a cross-correlation based dissimilarity measure and clustering
in Section III. Evaluation of the proposed methods and com-
parison to some traditional techniques is provided in Section
IV. Finally, Section V concludes the work.

II. OVERVIEW OF CLUSTERING AND DIMENSION
REDUCTION FOR MULTIVARIATE TIME SERIES

Data in the form of time series infuses several scientific
fields, including medicine, finance, economics, hydrology,
engineering and the analysis of time series has become a
well-established topic [13], [16]. There has been an increased
interest recently in multidimensional time series [25], [29] as
the result of the growing number of available multidimensional
time series data due to the development of data collection
technology [30].

A time series is a series of successive measurements, x;(t);
[i = 1,...,d; t = 1,...n] made sequentially over a time
interval where ¢ indexes the variables observed at each time
point t. A time series is univariate if d = 1 and multivariate
if d > 2. A natural representation of a multivariate time series
is a data matrix A € R™*¢, where n (the number of rows)
denotes the cardinality of the index set, i.e., the number of time
stamps and d (the number of columns) refers to the number
of variables (also known as attributes, features or sensors),



i.e., the dimension. Each column A ; of the matrix can be
considered as a one-dimensional time series.

Some key issues when dealing with multidimensional (occa-
sionally extremely high dimensional) time series are determin-
ing important attributes (dimension reduction)and grouping
the similar features together (clustering). As for the latter,
the usual way of determining similar attributes of a multi-
dimensional time series is using distance based clustering
approaches. The data points are one dimensional time series
objects and the task is to perform time series clustering.
Undoubtedly, the dissimilarity measure (or distance) is the
most essential ingredient of time series clustering. Throughout
the years, several time series similarity measures have been
proposed; for extensive reviews, comparative studies with
rigorous evaluation we refer the reader to [7], [12] and [27].
From among the many available (dis-)similarity measures,
we specifically mention auto-correlation function (ACF) and
Euclidean distance (EUCL) [4].

After choosing the dissimilarity measure any properly cho-
sen conventional clustering algorithm can be employed; an
overview of various general-purpose clustering procedures that
have been used in recent time series clustering studies can be
found in [18]. A time series oriented approach is k-Shape a
robust partional clustering algorithm that preserves the shapes
of time series [36].

Reducing the dimensonality of a high-dimensional time
series is an important issue from many respects: relieving the
curse of dimensionality, interpreting the variability, reducing
the computational and storage capacity by monitoring only a
few common factors/subset of features. There are two gen-
eral approaches to address dimensionality reduction: feature
extraction and feature selection. Feature extraction refers to
mapping the existing features into a lower dimensional space
while feature selection means identifying a subset of original
features without a transformation.

There are several standard tools available to perform feature
extraction on multivariate time series, including methods based
on canonical correlation analysis [6], factor modeling [24],
independent component analysis [5], principal component
analysis [28]; a literature review can be found in [14]. Several
more recent works have proposed improved methods such
as distance covariance based independent component analysis
[22], dynamic orthogonal components [21], time series central
subspace analysis [23].

Feature selection techniques for multivariate time series
have also received a lot of research interest recently. Feature
selection methods are usually preferred by domain experts
since the connection of the selected subset of features to
the originally acquired ones is preserved. The widely used
methods include techniques based on common principal com-
ponents (CLeVer) [33], recursive feature elimination and sup-
port vector machine [34], correlation analysis [32], mutual
information and class separability [10]. A comparative study
on the applicability of a range of feature selection methods
for domain specific data can be found in [9].

The main motivation behind the proposed method presented

in Section III is to provide a relatively balanced clustering
with keeping background assumptions as minimal as possible.
Other existing time series models can be fitted to the data, but
they require certain assumptions that may or may not be valid,
and various models may exhibit certain types of behaviour.
Our only assumption for the proposed method is weak (wide
sense) stationarity of the time series, which allows for cor-
relation and cross-correlation based calculations. Apart from
this, no background model is fitted. Weak stationarity is an
essential prerequisite for meaningful performance evaluation
of the system [35].

III. DESCRIPTION OF THE PROPOSED METHOD

A. Cross-correlation based similarity measure

We are given a multi-dimensional time series data set,
represented by a data matrix A € R"*<. Each column A ;
of the matrix can be considered as a one-dimensional time
series. First, we calculate the sample cross-correlation function
of each pair (4 ;, A4 ;),1<14,j <d.

Strictly speaking, the cross-correlation of a pair of jointly
wide sense stationary (second order stationarity, see Section
2.4 in [8]) stochastic processes (X (), Y (t)) is given by

pxy(r) = E[(X(t) — px) Y(E+7) — py)] ,

0Xx0y

where px, py and ox, oy are the mean and standard
deviation of the processes (X (t)), (Y'(¢)) respectively. (The
cross-correlation is independent of ¢ due to the requirement
that (X (¢), Y (t)) are jointly wide-sense stationary.) In partic-
ular, the sample cross-correlations of two times series can be
estimated by averaging the product of samples measured from
one process and samples measured from the other [31]:

LM X)) - Y)
pxy(T) = — —
VI (X (6) - X2\ /S, (Y () - V)2

where X = Y7  X(¢)/nand Y = >} Y(t)/n .

After calculating the sample cross-correlation function of
the columns (i.e., determining pa_, 4 ,(7) forall 1 <4,5 <d
and for all possible values of 7 = 0,41,+2,...) we define
the similarity of two attributes as the maximum of the absolute
values of the sample cross-correlations of the corresponding
one-dimensional time series. More precisely, the similarity of
ith and jth attribute is defined as:

9

sim(A ;, A ;) = max ’pA_’i’A_’j (T)’ .

We note that this similarity measure is a symmetric measure,
thus sim(A ;, A ;) = sim(A_ ;, A ;) and its values ranges
from O (no relation) to 1 (strong relation). We also note that
in practice, there is a limit on parameter 7; in the present
study, we use |7| < 20 (which corresponds to 40 seconds in
this case). The value was settled upon after investigation of
several cross-correlation functions; at that point, all relevant
correlations are already captured.



B. Graph based clustering method

For any (dis)similarity matrix A, a weighted undirected
graph G can be constructed: every vertex i € V(G) corre-
sponds to an attribute (i.e. the A ; column of matrix A) and
two vertices ¢ and j are connected with an edge ¢; ; € E(G)
of weight w(e; ;) := sim(A_;, A ;). In order to uncover the
connections in the multi-dimensional time series A, in other
words, to find attributes that are similar (i.e., the clusters) we
have to reveal the community structure of the graph G. There
are several methods to do so; one of the easiest is to construct
a graph G’ on the same vertex set V(G) = V(G’) but we only
keep the edges with weight above a certain threshold § (e.g.
we remove an e; ; if w(e; ;) < 6, then we can identify the
communities (or clusters) as the connected components of G’
(similarly to the concept of clique cluster from [19]). Clearly,
the number of clusters obtained is monotone increasing in d;
in practice, the value of ¢ offers great scalability in how strong
connections we intend to measure. Typically, 6 > 0.7 shows
a very strong connection.

There are several other sophisticated algorithms for com-
munity detection (or graph partition) of weighted graphs, for
a survey we refer the reader to [11].

C. Dimension reduction through finding “central” nodes

Next, central nodes are selected within each cluster ac-
cording to the sum of the weight of the edges from each
node, taking the node with maximal value as the center.
This centrality measure corresponds to the weighted degree
of vertices in G, i.e., only edges with weight above a certain
threshold are taken into consideration. Dimension reduction is
then carried out by selecting cluster centers from among all
attributes, thus the reduced number of attributes is equal to the
number of clusters.

IV. VALIDATION OF THE PROPOSED METHOD

In this section we evaluate the proposed methods using
performance metrics from a stream processing application.
First the experimentation environment is described than some
motivation for cross-correlation based similarity metrics is pro-
vided. Then the validation is accomplished in two steps: first,
we provide a sensitivity analysis for the dissimilarity measures,
then the result of graph based clustering are evaluated.

A. Experimentation environment

The basis of the experimentation is a storm-based data
processing system, which calculates higher level network per-
formance KPIs (key performance indicators). The investigated
system is a simplified version of a real one and works as
follows:

o The network elements (e.g. base stations) send com-
pressed XML status reports periodically (e.g. every five
minutes). The network elements send their reports at
different points in time to avoid overloading the data
processing system.
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Fig. 1: Various cross-correlation profiles

o The data processing system receives the reports and cal-
culates KPIs. During this experimentation the calculation
was done by a four stage pipeline:

1) Parser: It parses the XML documents and retrieves the
measurements from them.

2) Enrich: It extends the measurements with additional
information, coming from different sources.

3) Filter: It is possible to filter out measurements from
the stream that allows to refresh only the selected part
of the KPIs.

4) Aggregate: It calculates the new value of the KPIs.
The experimentation took place in our lab environment, with
status reports stored in an HDFS [2] storage and played back
with real traffic timing or accelerated playback. Monitoring
was done using the Ganglia monitoring system [1]. The
monitoring assist server gathers second-precision status data
from the other computers in real time. Mainly CPU, memory,
disk and network usage is being monitored on all nodes among
some other metrics.

B. Cross-correlation profiles

We include a few different cross-correlations between cer-
tain pairs of performance metrics just to illustrate the very
different types of behavior the cross-correlations may exhibit.
In Figure 1, lag between the two performance metrics is shown
on the x axis, and cross-correlation with the given lag is
displayed on the y axis. Note that the various behaviors may
be due to very distinct computer engineering reasons. For
example, periodicity may be due to read and write operations
alternating on the file server. In the present study, we only want
to identify high correlation between performance metrics with
any lag without giving a sophisticated background model of
the system.




C. Sensitivity analysis of similarity measures

Here we compare the cross-correlation based similarity
measure (CRC) against some established (dis)similarity mea-
sures such as auto-correlation function (ACF), conditionally
independent dyads (CID), partial auto-correlation function
(PACF), periodogram based dissimilarity (PER), correlation-
based dissimilarity (COR) and euclidean distance (EUCL);
using the TSclust package for R [4]. The performance of the
various methods is difficult to compare directly; we conduct a
sensitivity analysis of time series similarity measures adopted
from [17].

For cross-correlation, the lag was considered up to |7| < 20,
which corresponds to 40 seconds.

Let k£ denote the number of objects (performance metrics
in our case) represented by a time series. Let D, = (a; ;)
denote the (dis)similarity matrix of size & X k where =x
refers to the type of the measure. Now we perturbate the
ith object according to a certain effect that determines the
different aspects of sensitivity detailed in the next paragraph.
Let P;* = p;%, be a matrix of size k x k, where sx
stands for the perturbation type and * for the measure, and an
element of P: p, ; the distance between the perturbated object
1 and unaffected object j. We consider the average effect of
perturbation ** as an averaged ratio of the distances:

k *k
ok 1 pij *
b = T (D
2;1 k(k —1) ai
1#]

Since the perturbation types have stochastic components, the
px* values should be averaged for more simulations.

The different perturbation types are

o Amplitude scaling: 25(¢t) = z(t) - B where B ~

N(1,02).
o Amplitude translation: 2T(t) = z(t) + B where B ~
N(0,0?).

The amount of variability introduced in the perturbation is
driven by the o parameters. We conducted experiments with a
range of levels of introduced variability to understand the ef-
fect of levels on performance. For both types of perturbations,
the range is o = 0.04,0.08, ...,0.4.

Figures 2-3 display the results of the sensitivity analysis
for the different perturbation types. The figures were obtained
from the average of several perturbations and averaged out
among all components of the pipeline.

The most information comes from Figure 2; for amplitude
scaling perturbations, CRC is less sensitive than CID, PER
and EUCL while more sensitive than ACF, COR or PACF.
Figure 3 shows that CID and EUCL are more sensitive than
the others.

D. Validation of the graph based clustering method

The graph based clustering approach (GBC) is compared
to two algorithms that are commonly used in time series
clustering studies: partitioning around medoids (PAM) that is a
realization of k-medoids algorithm [15], and a p-value based
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Fig. 3: Sensitivity for amplitude translation perturbations

clustering algorithm (PVAL). The p-value of a pair of time
series (4, j) corresponds to the p-value obtained from checking
whether the i-th and j-th series come from the same generating
model; the cluster solution is formed by series with associated
p-values greater than a pre-specified level of significance, for
more details see [20].

Many of these clustering methods can be parameterized in
order to either produce a given number of clusters directly, or
the number of clusters produced can be changed through other
parameters indirectly. We parameterized all methods to give
roughly the same number of clusters. Apart from the number
of clusters, we are also interested in providing a relatively
balanced and robust clustering, with no giant cluster but a
relatively high number of medium-sized clusters. The main
motivation for this is that neither clusters of size 1 nor huge
clusters carry too much information about the connections
between the various performance metrics.

Comparison is done regarding the number and size of
the clusters for each combination of the GBC/PAM/PVAL
clustering methods using any of the similarity measures
ACF/EUCL/CRC. Table I includes a summary of the total
number of clusters, the number of clusters of size at least 4,
and the size of the largest cluster for each combination of the
ACL, EUCL, CRC similarity measures and the GBC, PAM
and PVAL clustering methods.

Figure 4 displays a CRC/GBC cluster with the red, respec-
tively, blue edges corresponding to the correlation between
the performance metrics in the aggregate, respectively, filter
component. It should be noted that the correlation values are



GBC PAM PVAL
ACF 59/4128  60/4/18  55/4/25
EUCL || 62/2/47  60/3/36  59/2/35
CRC 58/7/11 60/5/8 64/2/4

TABLE I: No. of clusters / no. of clusters of size > 4 / size
of largest cluster

almost identical for the two processing units. This cluster
means that these 8 performance metrics are redundant, and
it would make sense to measure and log only 1 out of the 8.

Next, we present a confusion matrix between GBC and ei-
ther PAM or PVAL in order to compare the actual clusterings.
For both GBC/PAM and GBC/PVAL, we count the number of
pairs of performance metrics that are

o in the same cluster for both methods,

« in the same cluster for the first method but not the second,

e in the same cluster for the second method but not the
first,

o in different clusters for both methods.

In general, two clusterings are similar if the diagonal
elements are high compared to off-diagonal elements.

Confusion matrices in Table II and III are calculated for
EUCL, ACF and CRC similarity measures. A confusion matrix
compares two setups of clustering method plus dissimilarity
measure by counting the number of pairs of performance
metrics that ended up in the same cluster or different clusters
with either setup. Note that the sum of the elements in each
2 x 2 confusion matrix is 1152 (the total number of pairs of
performance metrics). In general, high diagonal values mean
the two setups provide similar clustering.

EUCL diff. same ACF diff. same
diff. 1485 14 diff. 583 6
same 820 10906 same 402 12234
CRC diff. same
diff. 367 4
same 102 12752

TABLE II: PAM vs GBC confusion matrices

TABLE III: PVAL vs GBC confusion matrices

E. Central nodes

EUCL diff. same ACF diff. same
diff. 115 1310 diff. 115 994
same 2190 9610 same 870 11246

CRC diff. same
diff. 117 128
same 352 12628

Just as an illustration, we include the cluster centers of clus-
ters of size at least 4 according to CRC/GBC clustering (our
proposed process). Further details about the actual clustering
are omitted due to lack of space.

e r352n06_cpu_sintr - a CPU metric related to ex-
ception handling

e r3s2n06_mem_cached - corresponds to the number
of cached files (before sending them through the network)
in the file server

e r3s2n06_multicpu_steall - corresponds to idle
time of CPU core 1 on the file server (due to waiting for
the file server)

e r3s2nl10_pkts_out - corresponds to the amount of
packets sent through the network interface by the test
server — including overhead

e r3s2nl10_cpu_idle - corresponds to idle time per-
centage of the CPU of the test server

e r3s2nl0_multicpu_steall - corresponds to idle
time of CPU core 1 on the test server (due to reading
files from the hard drive)

e r3s2nl10_tx_pkts_eth0 - corresponds to
amount of packets sent by the test server

the

We note that the clusters generally correspond to memory
usage, CPU usage and I/O load of the file server and the test
server. One should keep in mind that large clusters typically
have several performance metrics “close” to the center, which
may be just as suitable for cluster center.

By using only the central nodes, it is possible to log
only 60 of the 280 performance metrics in total, which is
a considerable reduction in numbers.

V. CONCLUSIONS AND OUTLOOK

We have presented a novel method to automatically find
connections between variables in multivariate time series. The
proposed approach consists of two major phases: a novel
similarity measure (for measuring cross-correlations) and a
graph based clustering algorithm (using the correlations). It
was applied to performance metrics in a stream processing
system. We also compared our findings to the results of other
(dis)similarity measures and techniques of multivariate time
series clustering. The noise tolerance of the provided methods
is also investigated and it performs better then the traditional
ones.

The method may be refined in certain ways. One possible
generalization of the graph based clustering is to consider
the k-edge-connected components in order to identify stronger
connections or using community detection techniques. Also,
in the application, many of the clusters contained only a single
performance metric. Identifying the importance of such per-
formance metrics and modeling them with classic clustering
methods is difficult. A better model that naturally includes
singletons may be a so-called hybrid model, where large
clusters and singletons are treated separately. Such a model
may be versatile enough to warrant further research.
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