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Abstract. Garbage collection is a fundamental component of memory
management in several software frameworks. We present a general two-
dimensional Markovian model of a queue with garbage collection where
the input process is Markov-modulated and the memory consumption
can be modeled with discretisation. We derive important performance
measures (also including garbage collection-related measures like mean
garbage collection cycle length). The model is validated via measure-
ments from a real-life data processing pipeline.
Keywords: memory management, garbage collection, stochastic mod-
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1 Introduction

Some of the most popular languages such as Java and C# require efficient mem-
ory management including garbage collection (GC): the automated process of
identifying and recovering the storage space that is occupied by objects that
are no longer required. The physical memory is a limited resource so designing
more sophisticated garbage collectors and providing a theoretical framework are
of particular research interest.

A huge number of different garbage collection techniques have been pro-
posed throughout the years. For surveys and evaluation of garbage collection
algorithms we refer the reader to [30], [12] and [23]. More recent GC techniques
include Garbage First for multi-processors with large memory [10], Metronome, a
real-time GC integrated with the scheduling system [4], MMTk, a memory man-
agement toolkit for Java [6], the concurrent-copy collector, a real time garbage
collector for Java [25], and FeGC, an efficient GC scheme for flash memory
based storage systems [14]. Virtual machine garbage collection optimization was
addressed in [5]; the model shares the main idea with the present paper (discreti-
sation of the memory), with an overall simpler, essentially 1-dimensional model
with focus on optimising parameters for garbage collection.

A more recent tendency has been to consider formal models therefore provide
a rigorous method to characterize GC algorithms and analyze their performance



independently of the programming system. In particular, analytical modeling of
garbage collection algorithms in flash-based solid-state drive (SSD) systems has
received significant research interest [28], [16], [31], [29], [9].

The majority of the analytical studies on garbage collection process have
focused on the following specific algorithms: greedy GC, FIFO GC, Windowed
GC, d-choices GC. For more details, see [28], [31].

An important issue regarding garbage collection in SSD systems is the so-
called write amplification phenomenon. For more details, see [31].

A number of analytical frameworks have been proposed by the abstraction
of the block state space and the stochastic modeling of the selection process. In
[9] a Markov chain model is provided to characterize the performance of SSD
operation for uniformly distributed random small user writes and considering
the greedy scheme. They find that write amplification increases as the system
occupancy increases as the number of pages per block increases but decreases
as the number of block increases. In [16] a Markov chain model is employed to
capture the dynamics of large-scale SSDs, and mean-field theory is applied to
derive the asymptotic steady state, the performance/durability trade-off of GC
algorithms is analyzed. Yang et al. also apply mean field analysis and show that
the system dynamics can be represented by a system of ordinary differential
equations and the steady state of the write amplification can be predicted for a
class of GC algorithms (including d-choices) [31].

Another modeling approach is providing a theoretical framework of dis-
tributed garbage collection [17], [22], [8]. The increasing use of distributed sys-
tems implies that distributed garbage collectors should be considered. A formal
model of distributed garbage collection is Surf [8] that can describe a wide range
of GCs and is amenable to rigorous analysis.

In our work, we focus on a Markovian approach that models of the effect of
garbage collection on memory management. We present the model in two steps.
In Section 2.1, we present a 2-dimensional Markov-modulated fluid description
of the model. The fluid approach is easy to define but difficult to solve analyti-
cally. Then we present the corresponding Markovian model in Section 2.2, which
is essentially a discretisation of the memory level. The Markovian model can
be solved efficiently numerically, with the analysis and performance measures
derived in Section 3.

Section 4 contains an application to an actual data processing system. The
model of Section 2.2 is then validated by comparison to performance measure-
ments of the actual system.

2 Queue with garbage collection

In the model, data arrives at a server and is stored in the memory. When it is
processed, it does not flush (empty) immediately from the memory, but is only
flushed when the memory reaches a certain level.

Memory level is described by two variables: in-use memory (V ) and junk
memory (U). In-use memory contains all data that has not been processed yet



(that is, the queue), while junk memory contains data that has been processed
since the last GC period. Data processing may generate extra memory usage;
we assume that this extra memory usage is proportional to the size of the data
with multiplicative constant C (that is, processing 1 byte of data creates a total
of C bytes of memory usage in addition to the original 1 byte). We also make
the assumption that the service time of data is proportional to the amount of
data; this assumption means that V is proportional to the service queue length.
These assumptions typically hold for systems with relatively simple processing.

When the total memory U+V reaches a certain level M , GC turns on. During
GC, the junk memory flushes at a fixed rate g, but data may keep arriving (and
stored entirely in in-use memory). For simplicity, we assume that there is no
service during GC. When GC finishes, service is resumed.

We assume that arrivals are Markov-modulated with a finite state space S
and generator Q. The arrival process itself is denoted by X(t). The arrival rate
in state i ∈ S is ri, and the service rate is constant s.

In Section 2.1, we present a fluid approach to model the memory level. While
the model definition is relatively straightforward and tidy from the behaviour of
the system, it leads to a 2-dimensional fluid queue with special behaviour on the
boundaries.

2.1 Fluid description

Fluid modeling approach is an efficient way of describing and analyzing a wide
range of real systems for domains as diverse as job scheduling [20] and battery
life [13]. An overview of the basic concepts of fluid models with the potential
usage in performance analysis can be found in [11].

A fluid description of the queue is obtained when data is assumed to be
continuous; in this case, U (junk memory level) and V (queue) are fluid variables
governed by the arrival process (a continuous time Markov chain) and the switch
between service and GC modes.

The behaviour of the system is governed by the equations

dU(t)/dt = Cs
dV (t)/dt = rX(t) − s

}
if V (t) > 0 during service

dU(t)/dt = Cs
dV (t)/dt = rX(t) − s

}
if V (t) = 0 and rX(t) > s during service

dU(t)/dt = CrX(t)

dV (t)/dt = 0

}
if V (t) = 0 and rX(t) < s during service (1)

dU(t)/dt = −g
dV (t)/dt = rX(t)

}
during GC

and the forced transitions:

– when U(t) + V (t) reaches M during service, we switch to GC mode;
– when U(t) reaches 0 during GC, we switch to service mode.



In (1), V (t) = 0 corresponds to no queue; if rX(t)<s, all incoming data is
processed immediately, while if rX(t)>s, the queue starts growing. As long as
V (t) > 0, the server is working at a full service rate. During garbage collection,
there is no service, so all incoming data goes in the queue.

The above system is difficult to solve analytically. For 2-dimensional fluid
queues, very few results available. Instead, we present a discretised Markovian
version of the model in Section 2.2 where U and V are both discretised; stationary
analysis of the Markovian model is carried out in Section 3. A detailed analysis
of the original fluid model is subject to further research.

The Markov model of Section 2.2 is applied to a data processing application
in Section 4 with the performance measures predicted by the model compared
with measurements from the real system. We note that only some of the measures
derived in Section 3 are measured in the application. We nevertheless included
these and other measures as well in Section 3, with possible different future
applications in mind.

2.2 Markovian description

Markovian queuing theory is a well-established topic with diversified domains of
application. For a detailed introduction to queuing theory with computer science
and telecommunication applications we refer the reader to [7], [27] and [19].

In this approach, we replace the fluid queues U and V by a discrete memory
level to obtain a Markovian model with a discrete state space. We note that we
allow U and V to be discretised with different granularity; assume the possible
values of U are divided into NU different sections, while the possible values of V
are divided into NV different sections. The reason to allow a different granularity
lies in the fact that the behaviour of the system depends highly on whether
V = 0 or V > 0: as long as V > 0 (there is a queue), the system will work at
full capacity. Thus it makes sense to select NV relatively high in order to be
able to identify V > 0 more precisely. Since the exact value of U is less relevant
in the behaviour of the system (apart from the total memory reaching M), the
granularity of U may be allowed to be less fine. For simplicity, we assume NV is
an integer multiple of NU .

The maximal possible memory level M corresponds to a full memory, while
the value 0 corresponds to an empty memory that contains no data. In correspon-
dence with this, in the Markovian description U and V refer to the level of junk
memory and in-use memory, respectively, and can only take (non-negative) in-
teger values such that 0 ≤ U ≤ NU and 0 ≤ V < NV . Note that in applications,
the memory level corresponds to memory used exclusively for the processing of
data; memory usage by other system processes is not included.

Altogether, the following parameters define the system:

– M , the value of the memory cap;
– the state space S, the generator Q and the rate vector {ri : i ∈ S} define

the arrival process;
– s is the service rate;
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Fig. 1: State space (left-hand side: service, right-hand side: GC)

– g is the rate of garbage collection;
– C is the ratio of memory usage generated during processing compared to the

size of the data;
– NU and NV describe the granularity of the memory.

We obtain a finite 4-dimensional state space Ω with

– dimension 1 representing the arrival process, and
– dimension 2 representing the value of V (in-use memory),
– dimension 3 representing the value of U (junk-memory),
– dimension 4 representing GC or service mode.

We assume GC starts immediately when U/NU + V/NV reaches 1 during
service, and service restarts immediately when U reaches 0 during GC. Thus,
for the service states U/NU + V/NV < 1 holds, which can be depicted as a
triangular shaped array. For the GC states, the value of U is essentially higher
by 1: 1 ≤ U ≤ NU , and service restarts immediately when U reaches 0. The
state space is depicted in Figure 1. Dimension 1 is depicted only in small bubbles;
dimensions 2 and 3 are represented by the large triangular arrays, and dimension
4 only has size 2, which is depicted as the two triangles on the left and right.
Altogether,

Ω = {(i, j, k, service) : i ∈ S, j ≥ 0, k ≥ 0, j/NV + k/NU < 1}∪
{(i, j, k,GC) : i ∈ S, j ≥ 1, k ≥ 0, (j − 1)/NV + k/NU < 1} . (2)

In the following notations, i denotes the state of the background process, j
denotes the value of V , k denotes the value of U , and l denotes the service mode
(either service or GC). The type of transitions possible from a state depend
slightly on where the state is situated within the two triangles; three main types
of transitions are present: transitions corresponding to (1) the changes of the
background process, (2) arrivals, and (3) service. Arrivals are suppressed when
memory is full. Service increases the junk memory and decreases the queue
(decreasing is suppressed when the queue is empty). Also, the forced transitions
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are present at the diagonal border of the service triangle and the bottom row of
the GC triangle.

For clarity, we group the states according to Figure 2. For the service states
(left triangle), TL is the top left corner, L is the left border (except TL). BR is
the bottom right corner. D1 is the rightmost nodes in the diagonal (except BR),
D2 is the rest of the diagonal (the “uppermost” states except D1 and TL). The
remaining states are grouped together in B, the “bulk” of the service states. For
the GC states, D1’ and BR’ are the counterparts of D1 and BR, Z’ is the bottom
row (the states from which service may resume) and B’ is the bulk of the GC
states. We omit a more formal definition of the groups. Note that the groups are
understood within the 3-dimensional subspace of (U, V ) and the service type.

We have the following types of transitions.
The background process may change at any state regardless of memory levels

or service mode:

– for any (i, j, k, l), we may transition from (i, j, k, l) to (i′, j, k, l) according to
the generator Q of the arrival process;

For (j, k, l) ∈ B, that is, the bulk of the service states, we have different
types of transitions depending on whether ri < s or ri > s. If ri < s, we have
the following transitions:

– from (i, j, k, service) to (i, j, k + 1, service) with rate NU · C · s/M ,
– from (i, j, k, service) to (i, j − 1, k, service) with rate NV (s− ri)/M ;

while if ri > s, we have the transitions:

– from (i, j, k, service) to (i, j, k + 1, service) with rate NU · C · s/M ,
– from (i, j, k, service) to (i, j + 1, k, service) with rate NV (ri − s)/M .

The above values ensure that the horizontal and vertical drifts in the Marko-
vian model are in correspondence with the fluid model (1); the factors NU , NV

and 1/M are due to the discretisation.
For (0, k, l) ∈ L, that is, the queue is empty during a service period, the

types of transitions depend on whether ri > s or ri < s. If ri < s, we have the
following transitions:

– from (i, 0, k, service) to (i, 0, k + 1, service) with rate NU · C · ri/M ,

while if ri > s, we have the following transitions:

– from (i, 0, k, service) to (i, 0, k + 1, service) with rate NU · C · s/M ,



– from (i, 0, k, service) to (i, 1, k, service) with rate NV (ri − s)/M ;

For (j, k, l) ∈ D2, ri > s, we also have some transitions corresponding to the
forced transitions from service to GC. If ri < s, we have the transitions:

– from (i, j, k, service) to (i, j, k + 1,GC) with rate NU · C · s/M ,
– from (i, j, k, service) to (i, j − 1, k, service) with rate NV (s− ri)/M ;

while if ri > s, we have the transitions:

– from (i, j, k, service) to (i, j, k + 1,GC) with rate NU · C · s/M ,
– from (i, j, k, service) to (i, j + 1, k, service) with rate NV (ri − s)/M .

(j, k, l) ∈ D1 is similar; if ri < s, we have the transitions:

– from (i, j, k, service) to (i, j, k + 1,GC) with rate NU · C · s/M ,
– from (i, j, k, service) to (i, j − 1, k, service) with rate NV (s− ri)/M ;

while if ri > s, we have the transitions:

– from (i, j, k, service) to (i, j, k + 1,GC) with rate NU · C · s/M ,
– from (i, j, k, service) to (i, j + 1, k,GC) with rate NV (ri − s)/M (note that
NU ≤ NV ensures that (i, j + 1, k,GC) ∈ Ω).

For (j, k, l) ∈ TL (which contains a single element, (j, k, l) = (0, NU −
1, service)), for ri < s, we have

– from (i, 0, NU − 1, service) to (i, 0, NU ,GC) with rate NU · ri/M ;

and for ri > s, we have

– from (i, 0, NU − 1, service) to (i, 0, NU ,GC) with rate NU · S · s/M ,
– from (i, 0, NU − 1, service) to (i, 1, NU − 1, service) with rate NV (ri − s)/M .

For (j, k, l) ∈ BR (which is again a single element, (j, k, l) = (NV −
1, 0, service)), for ri < s we have

– from (i,NV − 1, 0, service) to (i,NV − 1, 1,GC) with rate NU · C · s/M ,
– from (i,NV − 1, 0, service) to (i,NV − 2, 0, service) with rate NV (s− ri)/M ,

while for ri > s, we have the transitions:

– from (i,NV − 1, 0, service) to (i,NV − 1, 1,GC) with rate NU · C · s/M ,

and the transition increasing V is suppressed (this corresponds to data loss in
the system).

For (j, k, l) ∈ B′, that is, the bulk of the GC states, we have the following
transitions:

– from (i, j, k,GC) to (i, j, k − 1,GC) with rate NU · g/M ,
– from (i, j, k,GC) to (i, j + 1, k,GC) with rate NV · ri/M ;

For (j, k, l) ∈ D′1, we have the following transitions:



– from (i, j, k,GC) to (i, j, k − 1,GC) with rate NU · g/M ,

and the transition only increasing V is suppressed; this corresponds to data loss
in the system.

For (j, k, l) ∈ Z ′, we have the transitions:

– from (i, j, 1,GC) to (i, j, 0, service) with rate NU · g/M ;

– from (i, j, k,GC) to (i, j + 1, k,GC) with rate NV · ri/M .

For (j, k, l) ∈ BR′, we have the following transitions:

– from (i,NV − 1, 1,GC) to (i,NV − 1, 0, service) with rate NU · g/M

and transitions increasing V are suppressed; these contribute to data loss.

The collection of the above transitions define a CTMC on the state space Ω.

3 Stationary Analysis

From the stationary analysis of such a system, it is possible to derive the following
parameters:

– distribution and mean of memory level (both in-use and junk memory);

– mean period length (of an entire service + GC cycle, or the two separately);

– mean time spent with GC;

– mean utilisation (along with the ratio of CPU usage spent on GC and ser-
vice);

– effective long-term rate of service;

– mean loss ratio and mean loss rate;

– average response time (in Section 3.1).

We calculate them as follows. If vst(i, j, k, l) denotes the stationary distribu-
tion of the system, then the mean memory levels can be calculated as follows:

M̄in-use =
∑
i

∑
j

∑
k

∑
l

kvst(i, j, k, l) M̄junk =
∑
i

∑
j

∑
k

∑
l

jvst(i, j, k, l)

M̄total =
∑
i

∑
j

∑
k

∑
l

(j + k)vst(i, j, k, l) (3)

CPU utilisation rates can be calculated as

ρservice =
∑
i

∑
j≥1

∑
k

vst(i, j, k, service) +
∑
i

∑
k

vst(i, 0, k, service) min(1, ri/s)

ρGC =
∑
i

∑
j

∑
k

vst(i, j, k,GC) ρtotal = ρservice + ρGC

(4)



In order to calculate the mean time of garbage collection intervals, we first
need to calculate the average in-use memory level at the beginning of a garbage
collection period.

M̄in-use at GC start =
∑
i

∑
k

kvst(i,N − k, k,GC)/WGC start, where (5)

WGC start =
∑
i

∑
k

vst(i,N − k, k,GC); (6)

then the mean time of garbage collection intervals is simply calculated as

T̄GC = M̄in-use at GC start/g (7)

and the mean time of an entire cycle of service plus garbage collection can be
calculated as

T̄total period = T̄GC period/ρGC. (8)

For mean loss rate, we use the formula

L̄ =
∑
i

max((ri − s), 0)vst(i,N − 1, 0, service)+∑
i

∑
j<N−1

vst(i, j,N − j,GC) max((ri − g), 0)+ (9)

∑
i

max((ri − g), 0)vst(i,N − 1, 1,GC),

and the mean loss ratio is

l̄ = L̄/r̄, (10)

where r̄ is the average rate of arrival.
The effective rate of service is

se =
gs

g + s
. (11)

since each arrival needs to be served with rate s and (after some time) flushed
with rate g.

Analysis of the average response time requires a more involved calculation.

3.1 Analysis of average response time

For analysis of average response time, we assume the system is FIFO. Average
response time is the total time spent in the system (spent with either service or
waiting for service). It will also be referred to as delay.

The main idea is the following: when a tagged unit of data (“job”) arrives
during state (i, j, k, l), it will enter the queue. We consider this job as in position
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j within the queue, where each position corresponds to a unit segment within
the queue. As the jobs are served, the tagged job will move ahead in the queue,
eventually reaching position 1 and then being served.

The position of the tagged job within the queue as the system progresses
is not included in the state of the system in the previously defined Markov
chain. Instead, we represent it as the level in a quasi birth-death process (QBD)
(see [15]), where the states are ((i, j, k, l),m), with m denoting the position of
the tagged job within the queue (the level). (We remark that matrix-geometric
methods are also a possible alternative to the QBD approach presented, see [21].)
Initially, a job arrives in state ((i, j, k, l), j) with probability

π(i, j, k, l) =
vst(i, j, k, l)ri∑

i,j,k,l vst(i, j, k, l)ri
(12)

since in state (i, j, k, l) jobs arrive with rate ri. π is understood as a row vector
of size |Ω|.

All transitions of the original generator are partitioned into matrices B and
L (of size |Ω|× |Ω|), with B corresponding to transitions that decrease the level,
that is, the transitions corresponding to service. L corresponds to the rest of
the transitions. In order to avoid listing all transitions again, we refer to Section
2.2; from among all transitions listed there, all the transitions where the third
coordinate increases go to B, while the rest of the transitions go to L (including
the negative values in the diagonal). The corresponding QBD represents the
progress of the tagged job along with the state of the entire system. See Figure
3. The process does not contain actual ’births’, since the level may only decrease.
In such a system, let T1 denote the (random) time it takes to go down one level to
some state (i′, j′, k′, l′), assuming we started from state (i, j, k, l), and H denotes
its Laplace-transform:

HT1
(s)(i,j,k,l),(i′,j′,k′,l′) =

E(e−T1s1(first backwards transition is to state (i′, j′, k′, l′)) (13)

|starting from state (i, j, k, l))

H can be calculated as follows [15]:

HT1
(s) = (sI − L)−1B.

The total delay T of the tagged job is equal to the time it takes to cross j
levels from initial distribution π and regardless of the end state (see also Figure



3), which has Laplace transform

HT (s) =
∑
i,j,k,l

π(i,j,k,l) ·Hj
T1

(s) · 1 (14)

where 1 denotes the constant 1 column vector of size |Ω|. Thus

E(T ) = − d

ds
HT (s)

∣∣∣∣
s=0

= − d

ds

∑
i,j,k,l

π(i,j,k,l) ·Hj
T1

(s)
∣∣∣
s=0
· 1 =

− d

ds

∑
i,j,k,l

π(i,j,k,l) · ((sI − L)−1B)j
∣∣
s=0
· 1 =

−
∑
i,j,k,l

π(i,j,k,l) ·
j−1∑
m=0

((sI − L)−1B)m(sI − L)−2B((sI − L)−1B)j−1−m

∣∣∣∣∣
s=0

· 1 =

−
∑
i,j,k,l

π(i,j,k,l) ·
j−1∑
m=0

((−L)−1B)m(−L)−2B((−L)−1B)j−1−m · 1. (15)

Similarly,

E(T 2) =
d2

ds2
HT (s)

∣∣∣∣
s=0

=
∑
i,j,k,l

[
π(i,j,k,l) ·

j−1∑
m=1

m−1∑
l=0

((−L)−1B)l(−L)−2×

×B((−L)−1B)m−1−l(−L)−2B((−L)−1B)j−1−m+

j−1∑
m=0

((−L)−1B)m(−2)(−L)−3B((−L)−1B)j−1−m+

j−2∑
m=0

((−L)−1B)m(−L)−2B

j−2−m∑
l=0

((−L)−1B)l(−L)−2B((−L)−1B)j−2−m−l

]
· 1.

(16)

(15) and (16) are explicit for E(T ) and E(T 2), thus the mean and variance
of the delay can be calculated. However, L and B are sparse matrices of size
|Ω| × |Ω|, which is typically large, so the actual calculations need special care.
In the rest of this section, we sketch an efficient algorithm for the calculation of
the formulas (15) and (16) for large Ω.

The first main point is that for large Ω, we only make calculations with
vectors. To calculate (15), we start with the rightmost vector 1. Then, apart
from summations, only 2 steps are repeated: either multiplication by B, which
is feasible, or multiplication by (−L)−1. The calculation of (−L)−1 is infeasible,
so to calculate (−L)−1v for some v, we solve (−L)x = v instead. L has a special
structure; we show that with a proper reordering of the states, L it will be upper
block diagonal (with small block sizes), which allows (−L)x = v to be solved
block by block.

The ordering is as follows:



– The states for the same values of j, k, l will form blocks of size |Q|. The order
within the block is irrelevant.

– For each value of j, k, the block for l = 1 comes before the block for l = 2.
– Then, for each value of j, the blocks are ordered in an increasing manner

according to k (without changing the order of the blocks belonging to the
same value of k).

– Then the blocks are ordered in a decreasing manner according to the value
of j (without changing the order of the blocks belonging to the same value
of j).

According to Figure 1, this means that the last block is the bottom right corner
of the GC triangle, preceded by the bottom right corner of the service triangle.
Then the bottom rows of the two triangle follow from right to left, with blocks
from the GC triangle and blocks from the service triangle alternating. Then the
left of the rows follow from bottom to top.

The first two blocks (corresponding to the bottom right corners of each tri-
angle) are special in the sense that L contains transitions between them in both
directions. However, from all other blocks, L only contains transitions that go
to later blocks (according to the above ordering), so in the above ordering, L is
indeed block-upper-triangular, with a single diagonal block of size 2|Q| and all
other diagonal blocks of size |Q|.

This allows us to solve (−L)x = v for any v efficiently.
Starting from the vector 1, we keep multiplying by B and (−L)−1 until we

obtain the vectors ((−L)−1B)m(−L)−2B((−L)−1B)j−1−m · 1 (from (15)). This
process can be sped up by storing the vectors ((−L)−1B)j ·1 for separate values
of j. Then the final summation can be made more efficient by pre-splitting π
into vectors π =

∑
j πj , where πj only contains the elements of π whose second

coordinate is j (that is, πj corresponds to a single row in the service and GC
triangles). Then

E(T ) =
∑
j

πj ·
j−1∑
m=0

((−L)−1B)m(−L)−2B((−L)−1B)j−1−m · 1. (17)

(16) can be calculated efficiently using similar techniques (albeit with more
steps). We do not go into further details due to lack of space here.

4 Experimental results

4.1 Calculating network performance KPIs

The basis of the experimentation is a storm-based data processing system that
uses reports from a large number of network elements (e.g. base stations) to cal-
culate higher level network performance KPIs (key performance indicators). The
topology of the processing system is a four-stage pipeline. We examine the first
stage, called Parser, which parses the reports and retrieves the measurements
from them.



The experimentation took place in the lab environment of Nokia, Bell Labs,
with status reports stored in an HDFS storage and played back with real traf-
fic timing. The processing software is implemented within the Apache Storm
framework [2]. For monitoring, the Ganglia monitoring system was used [1].
Measurements were registered at intervals of length 500ms.

4.2 Application of the model

We apply the model to the Parser unit. First, the input data stream was approx-
imated by a stationary Markov-modulated fluid model using k-means clustering
to obtain the background Markov process with generator Q. Technically, input
is given in discrete units (files), but the file size is relatively small compared to
the total memory size.

Initial measurements showed that file size of the input data is proportional
to both the amount of memory used during service, and also to the service time
necessary. The corresponding constant factors were measured and are used as
an input to the model. Service rate was also measured.

First, we are interested in the effect of discretisation: we model the same input
process with several different setups of (NU , NV ) pairs. The input parameters
are (r and Q are not included in their entirety; input was clustered to 6 clusters):

s = 14.6MB/s, g = 64440MB/s, C = 40.81,M = 252MB (18)

r̄ = 0.78MB/s, max(r) = 20.9MB/s.

Service rate was measured using an artificially overloaded system, while the
constant C was obtained by comparing the junk memory and the size of the
incoming data. We note that the parameters in (18) reflect a relatively low load
of the system. With a high load, certain processes such as memory swapping
may be initiated which are not included in the model.

Table 1 contains the values of several performance measures obtained from
the stationary analysis of the model for various (NU , NV ) pairs.

(4,8) (10,20) (20,40) (10,50)
mean period length 7.8282 7.8196 7.8193 7.8195

utilisation 0.05421 0.05429 0.05429 0.05433
mean loss ratio 1.17e-6 6.51e-10 1.69e-12 2.87e-13

Table 1: Effect of discretisation

The mean period length and the utilisation change very little as (NU , NV )
are increased. On the other hand, the mean loss ratio is small and decreases
rapidly as (NU , NV ) increases. For the above input, it should be considered 0.

Analysis showed that the effect of the discretisation is relatively small, in
other words, the model performs well with moderately large values of NU and NV



(at least for utilisation and mean period length); from now on, we set (NU , NV ) =
(10, 20) but with various inputs for actual validation.

From among the performance measures calculated in Section 3, we use the
mean period length for validation with real life data. Mean period length is the
mean time of an entire cycle of a service plus garbage collection period. The
mean period length is easy to measure reliably: the real life monitoring system
keeps count of the number of garbage collections over a sustained period of time.
Several other performance measures are difficult to measure reliably: CPU usage
relates to utilisation but may be distorted by other system processes. Loss ratio
is known to be 0 from the actual monitoring, and this is approximated fairly well
by the model, but relative error does not make sense in this case. Delay and the
length of the queue was not possible to measure with the monitoring system.

The memory cap is slightly different for each run, ranging between 190MB
and 252MB. The input process also varies slightly, with the minimal input rate
0, maximal input rate changing between 17 MB/s and 21 MB/s, and average
input rate changing between 0.72 MB/s and 0.78 MB/s.

input run 1 2 3 4 5 6 7
from model 7.8196 8.2805 7.6990 7.2829 6.8598 6.6874 6.7157

monitored 7.6585 8.1437 7.5303 7.1277 6.7030 6.5090 6.5090
relative error 1.02% 1.02% 1.02% 1.02% 1.02% 1.03% 1.03%

Table 2: Validation of mean period length

Overall, the relative error is around 1%, with the model consistently overesti-
mating the mean period length according to actual monitored results. The exact
explanation and correction to the model is subject to further research, along with
a more direct validation of the model. We also believe that the model presented
models garbage collection on a realization level (not just stationary behaviour),
but again, this is difficult to validate due to the fact that measurements made
too often will distort the results themselves.

Close results in the literature are due to [5], but differences in the models (for
example, description of the arrival process) make a direct comparison difficult.

5 Conclusion

The model is only applicable for a certain region of parameters. Under certain
conditions, processes like memory swapping may be initiated. These are not
included in the model.

The current model only includes one “type” of memory. However, in many
memory management applications, there are “young” and “old” sections of the
memory to store data for short and long term calculations. Such sections may
be integrated in the model naturally with the expansion of the state space. This
is subject to future work.



The computation of the stationary distribution (and the derived performance
measures of Section 3) may be infeasible for very large values of NU and NV .
Possible future work includes the application of dimension-reduction techniques
based on tensor decomposition [18].

The model is sophisticated enough to allow modelling of a process on a
realization level. This may be explored further.

Another natural option is to examine a transient version of the model; this
would allow the examination of unstable systems as well.

An explicit solution for the original fluid model of Section 2.1 is also an
interesting challenge.
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