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Abstract

We propose a numerical inverse Laplace transformation method without overshoot which is derived from
matrix exponential (ME) distributions with minimal coefficient of variation. We discuss the properties of
the method through an integral based interpretation of numerical inverse Laplace transformation methods
belonging to the Abate–Whitt framework. Compared to the previously applied non-overshooting alternative,
the “Erlang” method, the error of the proposed method improves from O(1/n) to O(1/n2) while it maintains
the same computational complexity.
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1 Introduction

The implementation of numerical inverse Laplace transformation in stochastic mod-

els where the original function is a probability or probability distribution requires

that the inverse transformation procedure preserves the property that the numer-

ical inverse transform is between zero and one. Most numerical inverse transform

methods generate positive or negative overshoot which might result in numerical
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inverse transform values below zero or above one, which is an unacceptable quali-

tative error in stochastic modelling. That is why we focus on the numerical inverse

transformation procedures without overshoot in this work.

There are plenty of numerical inverse Laplace transformation methods published

in the literature, whose survey is out of the scope of the current work. For a rela-

tively recent initial pointer we refer to [13] and the references therein, however the

application field of our focus is significantly different. While a large part of the

literature, including mentioned one, lists plenty of methods, a clear and systematic

classification of these methods is not easy to find. One exception that significantly

helped the intuitive understanding of the authors is by Abate and Whitt in [8],

which we refer to as Abate–Whitt framework. Indeed, this framework implicitly

defines function families in which various optimizations can be performed in order

to obtain optimal inverse Laplace transformation methods. We propose a procedure

which is based on the most general function family of the Abate–Whitt framework

(referred to as Class III, later on) where we adopt a restriction coming from the

non-overshooting requirement. It turns out that the obtained functional optimiza-

tion problem is known in probability theory as the problem of Matrix exponential

distribution with minimal coefficient of variation. As a result, in the current work

we apply available extremal results for Matrix exponential distribution for optimal

numerical inverse Laplace transformation without overshooting in the Abate–Whitt

framework.

The rest of the paper is organized as follows. Section 2 provides general intro-

duction to inverse Laplace transformation and presents the Abate–Whitt framework

together with some of its methods. Section 3 is devoted to the integral based inter-

pretation of the framework. The proposed matrix exponential distribution based

procedure is described in Section 4 and its performance is compared with other

methods from the Abate–Whitt framework in Section 5. The paper is concluded in

Section 6.

2 Inverse Laplace transformation and the Abate–Whitt
framework

For a real or complex valued function h(t) the Laplace transform is defined as

h∗(s) =

∫ ∞
t=0

e−sth(t)dt. (1)

and the inverse transform problem is to find an approximate value of h at point T

(i.e., h(T )) based on h∗(s).

Remark 2.1 We assume that
∫∞
t=0 e

−sth(t)dt is finite for Re(s) > 0 thus h∗(s) is

well-defined by (1) for Re(s) > 0. For Re(s) ≤ 0, h∗(s) is the analytic continuation

of h∗(s) for Re(s) > 0.

Remark 2.2 We assume that h(t) is real in this work. As a result, h∗(s̄) = h̄∗(s)

and h∗(s̄) + h∗(s) = 2Re(h∗(s)).

Our main interest is inverse Laplace transformation without overshooting. Due

2



Horvath, Talyigas and Telek

to this reason we restrict our attention to the Abate–Whitt framework which we

summarize below.

2.1 The Abate–Whitt framework

The idea is to approximate h by a finite linear combination of the transform values,

via

h(T ) ≈ hn(T ) :=
n∑
k=1

ηk
T
h∗
(
βk
T

)
, T > 0, (2)

where the nodes βk and weights ηk are complex numbers, which depend on n, but

not on the transform h∗ or the time argument t. This framework was introduced

and investigated by Abate and Whitt in [8]. When h(t) in (1) is real valued it can

be approximated by the real part of the weighted transform values:

Re(h(T )) ≈ Re(hn(T )) =

n∑
k=1

Re

(
ηk
T
h∗
(
βk
T

))
.

In the special case when there is a complex conjugate pair among the nodes and

weights (that is, ηi = η̄j and βi = β̄j) then

ηi
T
h∗
(
βi
T

)
+
ηj
T
h∗
(
βj
T

)
= 2Re

[
ηi
T
h∗
(
βi
T

)]
.

We consider three classic algorithms of the Abate–Whitt framework: the Gaver–

Stehfest method, the Euler method and the Talbot method. All three were already

investigated by Abate and Whitt [8]. We now give a different approach and also

compare them with the matrix exponential method we propose.

The Gaver–Stehfest algorithm is based on the sequence of Gaver approximants,

derived by Gaver [5]. Since the convergence of the Gaver approximants was only

logarithmic, it needed acceleration. A linear acceleration method was proposed by

Stehfest [10], using the Salzer acceleration scheme. As it is observed in [8], the

accelerated version fits in framework (2), so we can investigate it in this class.

Euler’s method and its derivation can be found e.g. in [1]. In [8] it is rewritten

in a form that fits the structure of (2).

Talbot’s algorithm was first introduced by A. Talbot in 1979 in [11]. The version

of the form of (2) is derived in [8] based on an earlier work of Abate and Valko [12].

The three methods in question all approximate h(t) by hn(t), where hn(t) has

structure (2) with weights ηk and nodes βk, k = 1, 2, . . . n. The weights and nodes

for the considered algorithms are given below.

Gaver–Stehfest method (for even n)

βk = k ln(2), 1 ≤ k ≤ n

ηk = ln(2)(−1)n/2+k

min(k,n/2)∑
j=b(k+1)/2c

jn/2+1

(n/2)!

(
n/2

j

)(
2j

j

)(
j

k − j

)
, 1 ≤ k ≤ n

where bxc is the greatest integer less than or equal to x.
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Figure 1. Location of βk nodes on the complex plane for Gaver (n = 10), Euler (n = 11), Talbot (n = 10)
methods

Euler method (for odd n)

βk =
(n− 1) ln(10)

6
+ πi(k − 1), 1 ≤ k ≤ n

ηk = 10(n−1)/6(−1)kξk, 1 ≤ k ≤ n

where

ξ1 =
1

2
ξk = 1, 2 ≤ k ≤ (n+ 1)/2

ξn =
1

2(n−1)/2

ξn−k = ξn−k+12−(n−1)/2

(
(n− 1)/2

k

)
for 1 ≤ k < (n− 1)/2.

Talbot method

β1 =
2n

5

βk =
2(k − 1)π

5

(
cot

(
(k − 1)π

n

)
+ i

)
, 2 ≤ k ≤ n

η1 =
1

5
eβ1

ηk =
2

5

[
1 + i

(k−1)π

n

(
1+

[
cot

(
(k−1)π

n

)]2
)
− i cot

(
(k−1)π

n

)]
eβk , 2 ≤ k ≤ n.

Figure 1 depicts the location of the βk nodes of the three methods. The Gaver–

Stehfest method operates with real βk values which is beneficial when complex

arithmetic is not supported, while the Euler and Talbot methods apply complex

βk values as well. Both assume nodes with positive imaginary parts. The Talbot

method applies βk values with negative real part as well, which is commonly outside

of the convergence region of (1), but the analytic continuation of h∗(s) may exist.
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Remark 2.3 The set of real valued functions
∑

k ηke
−βkt with potentially complex

valued coefficients has the following real representations.

Class I If both ηk and βk are real then
∑

k ηke
−βkt is a real representation.

Class II If ηk is real and βk is complex then

Re

(∑
k

ηke
−βkt

)
=
∑
k

ηke
−bkt cos(ωkt)

is its real representation, where βk = bk + iωk.

Class III If both ηk and βk are complex then

Re

(∑
k

ηke
−βkt

)
=
∑
k

ake
−bkt cos(ωkt+ φk)

is its real representation, with Re(ηke
−βkt) = ake

−bkt cos(ωkt + φk) where βk =

bk + iωk and ak, φk are real and obtained from the real and imaginary parts of ηk
[6].

The Gaver–Stehfest method falls into Class I, the Euler method falls into Class II,

the Talbot method falls into Class III. The matrix exponential method (described

in detail in Section 4.4) falls into Class III.

3 Integral interpretation of the Abate–Whitt frame-
work

For Re(βk) > 0,∀k, we can reformulate the inverse Laplace transformation methods

of the Abate–Whitt framework as

hn(T ) =
1

T

n∑
k=1

ηkh
∗
(
βk
T

)
=

1

T

n∑
k=1

ηk

∫ ∞
0

e−
βk
T
th(t)dt =

∫ ∞
0

h(t)fnT (t)dt, (3)

where the numerical approximation of the Laplace inverse at point T is obtained as

the integral of the original function, h(t), with

fnT (t) =
1

T

n∑
k=1

ηke
−βk
T
t. (4)

If fnT (t) was the Dirac impulse function at point T then the Laplace inversion would

be perfect, but depending on the order of the approximation (n), the applied inverse

transformation method (weights ηk, nodes βk) and the time point (T ), function fnT (t)

only approximates the Dirac impulse function with a given accuracy.

The shape of fnT (t) is similar to the shape of

fn1 (t) =

n∑
k=1

ηke
−βkt (5)

5



Horvath, Talyigas and Telek

because, according to (4),

fnT (t) =
1

T
fn1

(
t

T

)
. (6)
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Figure 2. fnT (t) for the Gaver–Stehfest (n = 10) and
the Euler (n = 11) methods for T = 1
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Figure 3. fnT (t) for the Gaver–Stehfest (n = 22) and
the Euler (n = 23) methods for T = 1

The Re(βk) > 0,∀k property holds for the Euler and the Gaver–Stehfest meth-

ods, but not for the Talbot method (c.f. Fig. 1). Figure 2 and 3 depicts the

approximate Dirac impulse functions for n = 11 and n = 23 for the Euler and

n = 10 and n = 22 for the Gaver–Stehfest methods at T = 1. In accordance

with expectations, the functions get visually “narrower” (more concentrated) for

higher orders in both cases. For a more quantitative comparison we collected some

properties of the functions fnT (t) in Table 1.

We introduce a measure of concentration from probability theory, the coefficient

of variation (cv). For a random variable X with probability density function f ,

cv(X) is defined as

cv(X) =
var(X)

(E(X))2
=
m2

m2
1

− 1, where mi =

∫
t
tif(t)dt.

Our goal is to measure how concentrated fnT is. Note that fnT is not necessarily

a proper normalized pdf, since we allow its integral to be different from 1 and fnT
may take negative values. However, it is possible to introduce cv for fnT , and it will

be informative later on. The coefficient of variation for fnT is defined as

cv =
m0m2

m2
1

− 1, with mi =

∫
t
ti|fnT (t)|dt.

(The use of m0 is necessary if fnT is not normalized.)

We introduce some further measures that help quantify the concentration of fnT :

peak denotes the maximal value of fnT , while min and max denote the first point

and the last point where fnT (t) = 0.01peak (where 0.01 is arbitrarily chosen). The

main impulse of the Euler method is much higher and narrower than the one for

the Gaver–Stehfest method for both orders as indicated by the peak values and the

distance of the zeros (fnT (t) = 0) closest to t = 1. This trend is also visible on the

min and max values (min increases/max decreases with n, and Euler is narrower

than Gaver–Stehfest), except the min value of the Euler method. The particular

value, min = 0.376047, is due to a local maximum only a little larger than 0.01max

(if that peak was less than 0.01max then min would be around 0.474721, see Fig.
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Figure 4. Local peak of fnT (t) at around 0.01peak (horizontal line) with Euler n = 11, T = 1

4), but the increase of min for the Euler method is significantly slower than the one

for the Gaver–Stehfest method.

For a properly scaled numerical inverse Laplace transformation method, fnT (t)

should preserve the integral property of the Dirac impulse, that is,∫
t
fnT (t)dt = 1,

and the weight and node parameters of the Gaver–Stehfest and the Euler methods

are indeed such that the unit integral is ensured for all orders. Having the unit

integral property, a larger m0 indicates that the function fnT (t) is “waving” between

positive and negative values more. m0 is higher and more rapidly increasing with the

order for the Euler method. This fact together with the slowly increasing min value

indicate that the fnT (t) function of the Euler method is sharply alternating mainly

before the main impulse and this strong waving behaviour gets more significant with

increasing order (see Figures 2 and 3 again).

A cumulative effect of the properties discussed above is reflected in the cv values.

For n = 11, the Euler method provides much lower cv due to the relatively narrow

non-vanishing curve (from min to max), but with increasing order the min value of

the Euler method does not increase as fast as for the Gaver–Stehfest method and

the waving of the Euler curve from min to the main impulse gets more and more

dominant. As a consequence of these two effects, the cv value of the Euler method

decreases much slower than the one of the Gaver–Stehfest method.

n m0 cv peak min max

Gaver

10 1.32819 0.261505 1.65108 0.0969432 3.94368

22 1.46379 0.0950682 3.53038 0.359999 2.10102

Euler

11 1.79425 0.0395198 8.26811 0.383763 1.34461

23 2.47539 0.0299859 17.6272 0.376047 1.16585

Table 1
Properties of fnT (t) with the Gaver–Stehfest (n = 10, 22) and the Euler (n = 11, 23) methods at T = 1

As we have seen, for a given order the fnT (t) function by the Euler method is

much narrower than the one by the Gaver–Stehfest method. This difference comes

also from the fact that the βk values of the Gaver–Stehfest method are real, while

they are complex in case of the Euler method, while the ηk values are real in both

cases (c.f., Remark 2.3). As a result fnT (t) =
∑n

k=1
ak
T e
− bk
T
t (with real ak, bk) for the

Gaver–Stehfest method and fnT (t) =
∑n

k=1
ak
T e
− bk
T
t sin(ωkT t) (with real ak, bk, ωk) for

7
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the Euler method, that is, the Euler method approximates the Dirac impulse using

a larger set of exponential functions.

Up to this point we investigated the main properties of the fnT (t) functions.

Below we study the effect of these properties on the inverse transform computed

by the Gaver–Stehfest and the Euler methods. The Gaver–Stehfest and the Euler

Laplace inversion of the unit step function at 1 (denoted by h(t) and with Laplace

transform) h∗(s) = e−s

s , are depicted in Figure 5 for n = 10/11 and in Figure 6 for

n = 22/23.

Euler

Gaver

0.5 1.0 1.5 2.0 2.5 3.0

0.2

0.4

0.6

0.8

1.0

1.2

Figure 5. Inverse Laplace transform of the unit step
function with Gaver–Stehfest (n = 10) and Euler
(n = 11) methods
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Figure 6. Inverse Laplace transform of the unit step
function with Gaver–Stehfest (n = 22) and Euler
(n = 23) methods

The increase of the inverse Laplace curve at around t = 1 is the steepest for the

Euler method with n = 23 and slowest for the Gaver–Stehfest method with n = 10.

This steepness is associated with the width of the main peak in the fnT (t) function

(see also the related discussion on the waves based on (7)).

In general, a wider fnT (t) function makes the h(t)fnT (t) product non-vanishing

for t values far from T and as a consequence the
∫
t h(t)fnT (t)dt integral is affected

by h(t) for values of t far from T as well. The error caused by the width of fnT (t) is

less significant if h(t) is almost constant around T , but it gets to be very significant

when h(t) sharply changes around T in the range of the width of fnT (t) (like in the

case of the unit step function).

As a counterpart of the sharp increase the Euler inverse Laplace curve has a

strongly waving behaviour mainly after the jump, while the Gaver–Stehfest curve

settles more quickly. To better relate fnT (t) and hn(T ) in this special case (where

h(t) = 1 for t > 1 and zero otherwise) we write

hn(T ) =

∫ ∞
0

h(t)fnT (t)dt =

∫ ∞
1

fnT (t)dt (7)

and depict f11
1.14(t) of the Euler method in Figure 7, because the first peak of the

Euler n = 11 inverse Laplace curve on Figure 5 after the step is at t = 1.14.

The integral of f11
1.14(t) from 1 to infinity is maximal, because it starts right at the

end of the largest negative wave. Following the same reasoning one can see that

the waves of the Euler inverse Laplace curve after the step are related with the

waves of the fnT (t) function before the main impulse and similarly the waves of the

Euler inverse Laplace curve before the step are related with the waves of the fnT (t)

function after the main impulse. Since the fnT (t) function of the Euler method is

heavily alternating before the main impulse the Euler inverse transform curve of

8
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Figure 7. f111.14(t) with the Euler method. Its inte-
gral from 1 to ∞ is maximal.
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Figure 8. Scaling at T = 10: f111 (t) and f1110 (t) with
the Euler method

any jump have small waves before the jump and larger waves after the jump (as it

is seen e.g. in Fig. 5 and 6).

The unit step function at 1 is a valid probability function in the sense that

0 ≤ h(t) ≤ 1, ∀t > 0. As it is discussed in details the alternating nature of fnT (t)

generates waves in the transform domain curve, which goes below zero before the

step and above one after the step. That is, both, the Euler and the Gaver–Stehfest

method overshoots at a jump of h(t) and provide numerical inverse outside the

[0, 1] interval. To obtain a numerical inverse of the unit step function inside the

[0, 1] interval, fnT (t) should be nonnegative, which is violated by both the Euler and

the Gaver–Stehfest methods and which is the subject of the next sections.

4 Matrix exponential distributions

4.1 Probability background

Probability density functions (pdf) similar to the form (5) have been examined for

a long time [2]. The class of matrix exponential distributions of order N , denoted

ME(N), contains all distributions X with pdf of the form

fX(t) = −αAeAt1, t ≥ 0, (8)

where α is a row vector of length N , A is a matrix of size N ×N and 1 is a column

vector of ones of size N .

Rewriting (8) based on the Jordan decomposition of A, we obtain the following

general form of ME functions:

fX(t) =
k∑
i=1

`i−1∑
j=0

ci,jt
jeλit, (9)

where λ1, . . . , λk are eigenvalues of A, and λi has multiplicity `i. The form (9)

is not quite consistent with (5) since (9) may contain polynomial factors as well;

nevertheless, if fn1 (t) (as defined in (5)) is nonnegative, then fn1 (t) ∈ ME(N).

For a given fX(t), α and A are not unique; if (8) holds, we say that X is matrix

exponentially distributed with representation (α,A), or X ∼ ME(α,A) for short.

fX(t) is normalized (that is,
∫∞

0 fX(t)dt = 1) iff α1 = 1. This is usually assumed.

9
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The nonnegativity of fX(t) does not follow from either (8) or (9), and needs to be

checked separately.

A special subclass of ME(N) is the phase-type distributions PH(n): if, in addi-

tion to (8), we also assume that

• αi ≥ 0,

• Ai,j ≥ 0 for i 6= j, Aj,j < 0,

• A1 ≤ 0

then we say X is phase type (PH) distributed. Phase type distributions have a nice

stochastic interpretation: X is the absorption time of an absorbing continuous time

Markov chain with a finite state space of size N with infinitesimal generator A and

initial distribution α. As a consequence, nonnegativity of fX(t) follows from the

additional assumptions.

Evidently, PH(N) ⊆ ME(N); however, the difference is not well understood in

general.

4.2 Concentrated PH and ME distributions

For the class PH(N), the minimal cv is known. Aldous and Shepp [4] have proven

the following theorem:

Theorem 4.1

min
X∈PH(N)

cv(X) =
1

N
, (10)

and the minimum is obtained for the Erlang distribution with parameters (N,λ)

where λ > 0 is arbitrary.

For the class ME(N), the minimal cv has been calculated in [6], with the follow-

ing conjecture based on numerical optimization for odd values of N up to N = 47:

min
X∈ME(N)

cv(X) ∼ 2

N2
, (11)

and the optimal matrix exponential distribution was of the following form (assuming

odd N):

fME(t) = c e−λt
(N−1)/2∏
i=0

cos2(ωt− φi) (12)

with the real values of c, λ, ω and φ1, . . . , φ(N−1)/2 obtained from numerical opti-

mization.

4.3 Erlang distribution-based inverse Laplace transformation

In this paper, we would like to emphasize the benefit of using ME-based inverse

Laplace transformation compared to the commonly applied non-overshooting in-

10
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verse Laplace transformation method, based on Erlang distribution [3,9]. The Er-

lang distribution has pdf

fErlang(t) =
λN

(N − 1)!
tN−1e−λt,

which is not consistent with (5) due to the polynomial factor tN−1.

For the inverse Laplace transformation, the polynomial factor tN−1 corresponds

to
dN−1

dsN−1
h∗(s),

which technically does not fit in Class III. While calculating or approximating the

(N − 1)th derivative may be infeasible in general, efficient methods are available

for some applications. For example, Asmussen, Avram and Usabel [3] use it to

approximate the probability of ruin in a fluid model before a fixed time T .

4.4 ME distribution-based inverse Laplace transformation

Our main focus is the application of the concentrated ME distribution described in

(12) for inverse Laplace transformation. (12) can be rewritten in a form consistent

with either (8) or (5):

fME(t) = c e−λt
(N−1)/2∏
i=0

cos2(ωt− φi) =
N∑
i=1

ηie
−βit = η1e

−β1t + 2
n∑
i=2

Re
(
ηie
−βit

)
(13)

where n = (N + 1)/2, η1, β1 are real, and the values β2, . . . , βn have positive imagi-

nary parts. For details, see the Appendix of [6]. Using the function (13) in (4) and

(3) is what we call the ME based inverse Laplace transformation method.

A full list of the values of η1 . . . ηn, β1, . . . , βn for each n up to n = 24 is available

online at [7]. As an example, we include the values for n = 4 (N = 7). The

imaginary parts of β1, . . . , βn form an arithmetic sequence due to the special form

of (12) (see the Appendix in [6]).

i 1 2 3 4

ηi 38.5032 −18.9855− 23.2984i −2.70326 + 13.374i 2.47829 − 1.37694i

βi −3.93763 −3.93763 + 3.48448i −3.93763 + 6.96896i −3.93763 + 10.4534i

5 Numerical comparison with the ME based method

In this section we compare the proposed matrix exponential method (ME method)

with the three known algorithms from the Abate–Whitt framework (Euler, Talbot,

Gaver–Stehfest) via numerical examples. It is investigated how well the methods

approximate h when h∗ is given. We compare the different algorithms for the same

order n, where n refers to the number nodes at which h∗ is evaluated. Note that

the Euler method is only applicable for odd order and the Gaver-Stehfest method

11
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is only applicable for even order. Thus for each n tested, either the order of the

Euler method or the order of the Gaver–Stehfest method is shifted by 1 compared

to the others.

Table 2 contains the Laplace transform pairs of the list of test functions, h and

h∗.

h(t) e−t sin t 1(t > 1) 1(t > 1)e1−t btc square wave function

h∗(s) 1
1+s

1
s2+1

1
se
−s/2 e−s

1+s
1
s

1
es−1

1
s

1
es+1

Table 2
Set of test functions

Figures 9 and 10 depict the approximations for h(t) = e−t with the various

methods for order n = 3 (n = 4 for Gaver–Stehfest) and n = 5 (n = 6 for Gaver–

Stehfest) respectively. The approximations are relatively accurate already for order

n = 5 for all methods.
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Figure 9. h(t) = e−t for order n = 3 (Gaver: n = 4)
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Figure 10. h(t) = e−t for n = 5 (Gaver: n = 6)

Figures 11 and 12 depict the approximations for h(t) = sin(t) with the various

methods for order n = 13 (n = 14 for Gaver–Stehfest) and n = 24 (n = 25 for

Euler) respectively. Note that the approximation gets worse for larger values of T .

This is inherent to all Abate–Whitt class methods since in (3), the approximant

for the Dirac impulse function fnT (t) is scaled from fn1 (t) according to (6) and thus

fnT (t) is less concentrated for larger values of T . Figure 8 demonstrates this effect

for f11
1 (t) and f11

10 (t) with the Euler method. Intuitively, when the main impulse of

fnT (t) is wider than a period of the sinus wave, then the integral in (3) averages out

the waves.

That said, the rate at which the approximation becomes worse as T increases

is different for different methods. The Talbot and Gaver–Stehfest methods provide

relatively poor approximations with the functions near constant 0 after only two

periods for n = 13 and three periods for n = 24.

The Euler method provides relatively accurate approximation for 4 periods for

n = 14 and 7 periods for n = 25; the overshooting is visible as the Euler-method also

provides values larger than 1 and values smaller than −1 (outside the range of the

original function sin(t)). The period is also distorted for larger values of t, shifting

the local extrema (due to the strong asymmetry of fnT (t) with the Euler method).
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Also, the “amplitude” of the function provided by the Euler-method decays rather

abruptly.

The matrix exponential method retains the periodic nature of sin(t), it does not

overshoot, retains the period length as well, but the amplitude decays gradually.

Overall, the Euler method provides the best approximation for sin(t), but with some

overshooting.

0 5 10 15 20 25 30 35 40 45 50
−1.5

−1

−0.5

0

0.5

1

1.5

 

 
Exact
ME
Euler
Talbot
Gaver

Figure 11. h(t) = sin(t) for n = 13 (Gaver: n = 14)
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Figure 12. h(t) = sin(t) for n = 24 (Gaver: n = 25)

Figures 13 and 14 depict the approximations for the step function h(t) = 1(t > 1)

for order n = 13 (n = 14 for Gaver–Stehfest) and n = 24 (n = 25 for Euler)

respectively. The Talbot method was omitted since it would sample values of h∗(s)

outside the domain of convergence of the integral. The other methods provide

a reasonable approximation; note that again, the Gaver–Stehfest and the Euler

methods overshoot. Note also that the “size” of the overshooting does not decrease

with the order vertically, only horizontally. The matrix exponential method does

not overshoot, and provides the best approximation overall.
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Figure 13. h(t) = 1(t > 1) for n = 13 (Gaver:
n = 14)
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Figure 14. h(t) = 1(t > 1) for n = 24 (Euler:
n = 25)

Figures 15 and 16 depict the approximations for the shifted exponential function

1(t > 1)e1−t for order n = 13 (n = 14 for Gaver–Stehfest) and n = 24 (n = 25 for

Euler) respectively. The Talbot method was omitted again. Similarly to Figures 13

and 14, the Gaver–Stehfest and the Euler methods overshoot again, and the matrix

exponential method provides the best approximation overall.
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Figure 15. h(t) = 1(t > 1)e1−t for n = 13 (Gaver:
n = 14)
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Figure 16. h(t) = 1(t > 1)e1−t for n = 24 (Euler:
n = 25)

Figures 17 and 18 depict the approximations for the stepping function h(t) = btc
for order n = 13 (n = 14 for Gaver–Stehfest) and n = 24 (n = 25 for Euler) respec-

tively. Note that the error increases with t, and asymptotically, all approximating

functions become linear (see Figure 19). The Gaver–Stehfest method provides a

poor approximation by converging very fast to the linear asymptote; the other

methods provide a reasonable approximation, but both the Euler and Talbot meth-

ods overshoot, and the Euler method has a considerable error even at the middle

of the steps (halfway between jumps). The matrix exponential method provides a

good approximation without overshooting.
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Figure 17. h(t) = btc for n = 13 (Gaver: n = 14)
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Figure 18. h(t) = btc for n = 24 (Euler: n = 25)

Figures 20 and 21 depict the approximations for the square wave function for

order n = 13 (n = 14 for Gaver–Stehfest) and n = 24 (n = 25 for Euler and

Talbot) respectively, with Figure 22 zooming in on smaller values of t. Similarly to

h(t) = sin(t), the Talbot and Gaver methods provide a poor approximation, with

both functions close to constant after very few periods. The Euler method provides

relatively accurate approximation for 4 periods for n = 14 and 7 periods for n = 25.

The overshooting of the Euler, Talbot and Gaver–Stehfest methods is evident again.

Similarly to h(t) = sin(t), the matrix exponential method retains the periodic-

ity (along with the period length), does not overshoot, but the amplitude decays

gradually.

In Table 3, the absolute maximal error for h(t) = e−t is compared for the various
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Figure 19. h(t) = btc for n = 24 (Euler: n = 25)
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Figure 20. square wave function for n = 13 (Gaver:
n = 14)
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Figure 21. square wave function for n = 24 (Euler,
Talbot: n = 25)

methods for various orders. For this measure, the Talbot method outperforms

the other, with the matrix exponential method and the Gaver–Stehfest method

performing similarly and the Euler method worse than the others. (Note that the

absolute maximal error makes sense only when h(t) is continuous and has a linear

asymptote, which is valid only for e−t from among the test functions examined.)

h n ME Euler Talbot Gaver

e−t 3 0.0230 0.1841 0.0086 0.0334

5 0.007423 0.03915 0.0003 0.006858

Table 3
Errors for h(t) = e−t in ‖ · ‖∞

In Table 4, the ‖ · ‖2 errors in the interval (0, 14) for each test function were

examined. The table reflects the conclusion of the figures that the Euler method

occasionally outperforms the matrix exponential method for periodic functions, but

this error measure of the matrix exponential method is also close to the best one in

each case.
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Figure 22. square wave function for n = 24 (Euler, Talbot: n = 25)

h n ME Euler Talbot Gaver

e−t 3 0.03909 0.08237 0.01206 0.03864

5 0.01233 0.02139 0.0003876 0.01064

sin t 13 3.248 3.345 4.548 4.597

24 1.611 0.2538 4.168 4.405

1(t > 1) 13 0.102 0.1012 0.1957

24 0.06643 0.07439 0.1473

1(t > 1)e1−t 13 0.1022 0.1013 0.197

24 0.06647 0.07442 0.1453

btc 13 0.3984 0.356 0.5683 0.582

24 0.2914 0.295 0.5131 0.5372

square wave function 13 1.24 1.273 1.702 1.719

24 0.8226 0.7228 1.569 1.604

Table 4
Errors in ‖ · ‖2 in the interval (0, 14)

6 Conclusion

Laplace transform functions are often used in stochastic and probability models,

where a numerical inverse transformation method with overshooting might result in

negative values or values larger than 1. In this work we propose a numerical inverse

Laplace transformation method without overshooting based on recent results on ma-

trix exponential distributions, which on one hand falls into the Abate–Whitt frame-

work and inherits some of its main properties (e.g. light computational complexity)

and on the other hand reduces the error of the previously applied non-overshooting

alternative, the “Erlang” method (cf. (10) and (11)).
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