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Abstract

The mean-field limit of stochastic models with exponential and deterministic delays has been proved for the
case when the deterministic delays cannot be interrupted by an exponential one.

In this paper we extend the mean-field limit for the class of stochastic models with exponential and
deterministic delays where the activities with exponential delays can interrupt the ones with deterministic
delays. Our main focus is the rigorous proof of the mean-field limit for this case.
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1. Introduction

The classic result of Kurtz [18] states that the mean-field limit of a density dependent Markov population
process can be described as the solution of a system of ordinary differential equations (ODEs) corresponding
to the system. In this paper, we extend this result to a class of processes called population generalised semi-
Markov processes (PGSMPs), where individuals can enable both Markovian and deterministic transitions.
The main novelty of the paper is that it encompasses the race case, e.g. deterministic transitions compete
with exponential transitions (as opposed to delay-only PGSMPs). The main focus is the mathematically
rigorous setup and proof of the transient mean-field convergence. To the best of our knowledge, this is the
first rigorous result that deals with the race case.

The main motivation is that the delay-only restriction may be severe even in the most simple models.
Allowing the race between exponential and deterministic transitions offers more flexibility in modelling. This
will be addressed in more detail in the running example.

Interruptible delays arise naturally in many applications in many different fields whenever multiple effects
apply simultaneously. In computer systems, for example, searches for software updates are interrupted when
an update is found (actually, a peer-to-peer software update model will serve as our running example).
Another example is disease spreading, when the situation of a patient may change due to effects such as
vaccination, diagnosis or quarantine.

Previous research for PGSMP models have been initiated in various fields, each carrying various notation
and focusing on different aspects of the topic. Closest related work is due to [15] and [17]. [15] presents
essentially the same framework, but with the deterministic transitions delay-only, that is, deterministic tran-
sitions are non-interruptible by Markovian transitions. [17] discusses generally-timed delay-only transitions.
[6] presents a different approach, highlighting to connection to ODE approximations of DDEs [20] which is
analogous to the Erlang approximation of the delay in the PGSMP. These papers approach the problem
with an eye to accurate modelling of real-world computer and networking protocols.

Other related work is present in biology and chemistry literature. DDEs have been used to approximate
reaction networks where deterministic delays occur after reactions [3, 7, 21]. However, these models are
typically very specific to the given application, while the current paper takes a general modeling approach,
making it suitable for a much larger class of population models. Some recent related work in biology may
be found in [4], where mean-field methodology is applied in a slightly different manner, with a more detailed
(and thus more precise) system of equations, albeit for a less general model.

The motivation for the mean-field approach is the same as in the continuous-time Markov chain (CTMC)
case [18] — unsurprisingly, GSMP models with many components also become computationally intractable
to explicit state techniques [8, 10] rapidly as a result of the familiar state-space explosion problem. Our
approach is based on the derivation of delayed differential equations (DDEs) from PGSMP models and
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generalises the traditional mean-field approach as applied to CTMC models based on ordinary differential
equations (ODEs) [2, 13, 5, 16].

The class of models to which our approach applies is very broad — the only significant restriction we
make is that at most one deterministic transition may be enabled by each individual in any given local state.
However, globally, there is no restriction on the concurrent enabling of deterministic transitions by different
individuals.

Handling interruptible delays presents a new challenge and calls for technology to handle them. In the
present paper, the classic concept of Poisson representation that keeps track of the number of transitions
according to transition type is enhanced by indicator variables that correspond to the survival or interruption
of deterministic clocks (see (1)). The novel elements of the proof also focus on these terms. In the mean-field
limit, the indicators turn into exponential terms (see (2)), keeping the formulas relatively simple. Numerical
solutions are still feasible as well.

The rest of the paper is structured as follows. In Section 2, we set up notation and give a precise definition
of the model, the evolution of the system; the mean-field limit is also described, and an example is included.
In Section 3, we state the main result and give a mathematically rigorous proof. In Section 4, we conclude
and give an outlook at further related questions. The Appendix contains proofs of some of the lemmas used
along the way and also a numerical example.

2. Setup

2.1. Definitions and assumptions

A PGSMP model consists of N interacting components (individuals), each of which is in a state from a
finite set of local states S.

Each component is subject to Markovian transitions in continuous time. When it is in state i ∈ S, it
transitions to state j ∈ S with rate rNij (rNij : ZN → [0,∞]). The rates may depend on the global state of
the system; the global state of the system is defined as the total number of individuals in each state, that
is, a vector xN ∈ ({0, 1, . . . , N})S with xN1 + · · · + xN|S| = N . The normalized global state of the system is

defined as x̄N = xN

N , so x̄N ∈ [0, 1]S with x̄N1 + · · ·+ x̄N|S| = 1. x̄N (t) tracks the ratio of the components in
each state at time t, and will be used as the underlying stochastic process of the model.

We assume rNij to be density-dependent, that is, for each pair i, j ∈ S

rNij (Nx) = rij(x)

for a common function rij : [0, 1]S → [0,∞] independent of N (in fact, rij needs to be defined only on the
simplex x1 + · · ·+ xN = 1). To simplify notation, we assume rii ≡ rNii ≡ 0.

We assume that rij are Lipschitz-continuous with common Lipschitz-constant RL. RM is an upper bound
on rij . Let R = max{RL, RM}.

We also include deterministic transitions. Some of the states have a so-called active clock. We will
call these active states and denote the set of active states by SA ⊆ S and the set of inactive states by
SI = S \SA. When an individual enters a state i ∈ SA, a deterministic clock with a deterministic clock time
Ti is initialized.

If the component performs a Markovian transition before the deterministic clock goes off, we say that
the deterministic clock is interrupted; in other words, the Markovian transitions race with the deterministic
transitions. If no Markovian transitions occur in the component for time Ti after the deterministic clock
started, the component makes a deterministic transition. We assume that the deterministic transition from
state i always targets the same state j; we formulate this by introducing a transition vector associated with
type i deterministic transitions. If a component makes a type i deterministic transition from state i to state
j then pij is equal to 1 and pih = 0 for ∀h ∈ S \ j. This technical restriction on the same destination of
deterministic transitions is easy to relax on the expense of handling more cases and notations. The important
modelling restriction is that deterministic transitions may not follow each other directly. That is if for some
i ∈ SA pij = 1 then j ∈ SI . For notational convenience we also define pij for i ∈ SI such that pij = 0 for
∀i ∈ SI , j ∈ S. Note that a Markovian transition from an active state to another active state is allowed;
that is, in case a Markovian transition interrupts an active clock, we allow the target state of the Markovian
transition to be active.

We also assume that the initial state of the system is concentrated on SI ; in other words, no generally-
timed clocks are active initially. For a model where general initial condition is examined, see [6].
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We are interested in the evolution of the process x̄N (t). x̄N (t) in itself is not a continuous-time Markov-
process since it does not include the times when the deterministic clocks are set to go off. However, this
information is available from the past of the process, as we shall see in the next subsection.

2.2. Evolution of the process

The formal definition of the evolution of the process x̄N is done by Poisson representation:

x̄Ni (t) = x̄Ni (0)−
∑
j∈S

1

N
Pij

(
N

∫ t

0

x̄Ni (u)rij(x̄
N (u))du

)
+
∑
j∈S

1

N
Pji

(
N

∫ t

0

x̄Nj (u)rji(x̄
N (u))du

)

+
∑
j∈SA

∫ t−Tj

z=0

pjiB
j,N∑

h∈SI
Phj(N

∫ z
0
x̄N
h (u)rhj(x̄N (u)) du)

(z)
1

N
d

(∑
h∈SI

Phj

(
N

∫ z

0

x̄Nh (u)rhj(x̄
N (u)) du

))

−
∑
j∈S

∫ t−Ti

z=0

pijB
i,N∑

h∈SI
Phi(N

∫ z
0
x̄N
h (u)rhi(x̄N (u)) du)

(z)
1

N
d

(∑
h∈SI

Phi

(
N

∫ z

0

x̄Nh (u)rhi(x̄
N (u)) du

))
(1)

for i ∈ S. For each i, j, let Pij be an independent Poisson-process with rate 1. Bi,Nk (z) is an indicator
random variable that is equal to 1 if clock number k of type i (which refers to active clocks in state i) starts
at time z, it is not interrupted by Markovian transitions, and, after time Ti, makes a transition to state j.
(The clocks are ordered by starting time.)

Remarks for the formula (1):

1. The first term corresponds to the initial condition.

2. The second and third term correspond to Markovian transitions to and from state i. Note that

Nx̄Ni (t)rij(x̄
N (t)) = xNi (t)rNij (xN (t))

is the aggregate rate of an i→ j Markovian transition at time t, that is, the rate that any of the xNi (t)
components in state i makes a transition to state j.

3. The fourth term counts the deterministic transitions to i up to time t. Per our assumption that an
active state is always followed by an inactive state the fourth term may be nonzero only if i ∈ SI ,
otherwise pji = 0,∀j ∈ SA. Consider an active state j with pji = 1. Clocks of type j are activated
whenever a Markov transition to j occurs from some state h. z denotes the points in time of such
activations: the counting process

∑
h∈SI Phj

(
N
∫ z

0
x̄Nh (u)rhj(x̄

N (u)) du
)

jumps whenever a transition
to state j from some state h occurs. So the notations for a single clock are the following: a Markovian
transition from h to j at time z activates a clock of type j. If z > t− Tj , this clock will have no effect
before time t. If z ≤ t−Tj , the clock will result in a deterministic transition before time t iff it has not

been interrupted by Markovian transitions; this event is encoded in Bj,Nk (z). The variables Bj,Nk (z)
are further discussed later.

4. Note that in case clock j can not be interrupted because rji = 0 for all i ∈ S, then Bj,Nk (z) = 1.

5. The fifth term counts the deterministic transitions from i. Similarly, because an active state is always
followed by an inactive state, the fifth term may be nonzero only for i ∈ SA, otherwise pij = 0,∀j ∈ S.
So at most one of the fourth and fifth terms may be nonzero for each state i.

6. The Poisson representation offers a coupling of the system for various different values of N , placing
all models (for different values of N) in the same probability space. This allows to state some results
which hold almost surely. Nevertheless, for the main result, we will stick to convergence in probability.

The Poisson representation also offers a pseudo-algorithm for discrete event simulation; nevertheless, we
describe how to generate such a process in more detail.

2.3. Simulation

The simulator represents the system state by the population vector x̄N and by the set of markers of each
type indicating the scheduled transition time of active deterministic transitions.

Initially no element of the population is in an active state and consequently there is no active marker.
Thus the first transition will be Markovian. Since an individual transition from i to j occurs with total
rate Nx̄i(0)rij(x̄

N (0)), the first transition may be generated by considering the first arrival from among all
processes Pij(Nx̄i(0)rij(x̄

N (0))t), e.g. select i and j according to

argmin(i,j) inf
t>0

{
t : Pij(Nx̄i(0)rij(x̄

N (0))t) = 1
}
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and let s1 be the time of this first arrival. In the (0, s1) interval the population vector is x̄N (0). After the
transition the new population vector is x̄N − ei/N + ej/N (where ei is the ith unit vector of size |S|) and
the rates of all Poisson-processes change according to the change of the population vector.

We say that after this initial step the simulation time advances to time s1 and the simulation goes on
based on the system state at the current simulation time. That is, the next interval is simulated similarly
based on the population vector (and the active markers, if any) at the beginning of the next interval.

In general, when deterministic clocks might also be initialized, the elementary step of the simulation
modifies as follows. Assuming the simulation time is tn we find the next Markovian transition by

argmin(i,j) inf
t>0

{
t : Pij(Nx̄i(tn)rij(x̄

N (tn))t) = 1
}

and the associated time sn (to avoid cumbersome notation, here we assume that a new Poisson process is
used in each step) and check if the minimum of all markers is less than tn + sn or not.

• In case the first Markovian transition at tn + sn precedes all the deterministic markers, a Markovian
transition from state i to state j will occur. Depending on whether i and j are active or not we have
the following cases.

– i ∈ SI , j ∈ SI : the occupation vector changes to x̄N (tn)− ei/N + ej/N and the simulation time
advances to tn + sn.

– i ∈ SA, j ∈ SI : the occupation vector changes to x̄N (tn) − ei/N + ej/N , the simulation time
advances to tn+sn and the transition interrupts the active clock in one of the components in state
i. The interrupted clock is uniformly selected from the Nx̄Ni (tn) active clocks. In the simulation
it is implemented by deleting a uniformly sampled marker of type i. (If the selected clock was the

kth activated type i clock then it means that Bi,Nk is 0.)

– i ∈ SI , j ∈ SA: the occupation vector changes to x̄N (tn) − ei/N + ej/N , the simulation time
advances to tn + sn, and a new deterministic clock of type j is activated. That is a new marker
of type j is set to tn + Tj .

– i ∈ SA, j ∈ SA: the occupation vector changes to x̄N (tn) − ei/N + ej/N , the simulation time
advances to tn + sn, a new deterministic clock of type j is activated, and an active clock of type
i is interrupted (as detailed above).

• In case a deterministic marker of type m is minimal among the markers and is less than the first
Markovian transition at tn+sn, the corresponding deterministic transition from state m to state ` will
occur (where ` is such that pm` = 1) and the occupation vector changes accordingly; the simulation
time advances to the time of this minimal marker; and the marker with minimal time gets deleted.
(If the clock with the minimal marker was the kth activated type m clock then it means that Bm,Nk

is 1. The activation of a new deterministic clock is not possible in this case because a deterministic
transition can not activate deterministic clock.)

We refer to [1] for a simulation code of this procedure in Wolfram Mathematica.

2.4. The mean-field equation

We define the mean-field equation corresponding to a PGSMP defined in Section 2.1 as

d

dt
vi(t) =−

∑
j∈S

vi(t)rij(v(t)) +
∑
j∈S

vj(t)rji(v(t))

+
∑
h∈SI

∑
j∈SA

pji exp

(
−
∫ Tj

τ=0

qj(v(t− Tj + τ))dτ

)
vh(t− Tj)rhj(v(t− Tj))

−
∑
h∈SI

∑
j∈S

pij exp

(
−
∫ Ti

τ=0

qi(v(t− Ti + τ))dτ

)
vh(t− Ti)rhi(v(t− Ti)), (2)

where

qi(v) =
∑
j∈S

rij(v).
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Figure 1: Example: peer-to-peer software update

qi may be interpreted as the rate of risk for a component in local state i to be interrupted by a Markovian
transition. qi are Lipschitz-continuous with Lipschitz constant Q = |S|R.

Existence and uniqueness for the solution of (2) follows from Theorems 2.1 and 2.3 in [14].
Rewriting the equations in integral form gives

vi(t) =vi(0)−
∑
j∈S

∫ t

0

vi(u)rij(v(u))du+
∑
j∈S

∫ t

0

vj(u)rji(v(u))du

+
∑
h∈SI

∑
j∈SA

∫ t−Tj

z=0

pji exp

(
−
∫ z+Tj

τ=z

qj(v(τ))dτ

)
vh(z)rhj(v(z))dz

−
∑
h∈SI

∑
j∈S

∫ t−Ti

z=0

pij exp

(
−
∫ z+Ti

τ=z

qi(v(τ))dτ

)
vh(z)rhi(v(z))dz . (3)

The main result of the paper, stated and proved in Section 3, is that the mean-field equations are indeed
the mean-field limit of the corresponding PGSMP. Before that, we include an example.

2.5. Example: peer-to-peer software update model

We recall an example of a peer-to-peer software update model from [17] and demonstrate through this
example the more general possibilities opened up by allowing the race between deterministic and Markovian
transitions.

Each component corresponds to a computer in a network. A certain software is updated throughout the
network in a peer-to-peer manner; components try to obtain the update from other components which are
already udpated. Also, each computer may be turned on or off.

Our model is the following. Components that are updated may be turned on or off. When a component
that is not yet updated (“old”) is turned on, it is searching for an update for some time; the probability
(rate) of finding an update is proportional to the number of updated components turned on. If it finds an
update, it applies it, otherwise, it gives up after some time, but stays turned on. After some more time, it
is turned off. Accordingly, S = {a, b, c, d, e} where the local states are the following:

(a) updated component turned on

(b) updated component turned off

(c) old component searching for an update

(d) old component turned on, but not searching for an update

(e) old component turned off

Altogether, the structure of the local states and transitions is depicted in Figure 1.
In a purely Markovian version of this model, all the transitions in the above model are Markovian, that

is, the waiting times are exponential. We intend to make the above model more general by replacing some of
the Markovian transitions with deterministic transitions. The question is: which transition may be replaced?

In the version of this example in [17], the transitions (e→c) and (b→a) were replaced by generally dis-
tributed delays. These correspond to non-interruptible delays since there are no other transitions originating
from either state e or state b.

This is not the case for state c though, where transitions (c→a) and (c→d) are competing. Replacing
either one by a deterministic transition results in a racing situation which is not covered by [17] (or any
other result in the literature that we are aware of).

So, to finish the proper setup of the example, we set the following Markovian transition rates:
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Figure 2: Peer-to-peer software update with transition types and rates

• a component in state (a) transitions to state (b) with rate rab = ρ (rate of turning off);

• a component in state (b) transitions to state (a) with rate rba = γ (rate of turning on);

• a component in state (c) transitions to state (a) with rate rca = βx̄a, where x̄a denotes the ratio of
components in state (a) (rate of update);

• a component in state (d) transitions to state (e) with rate rde = ρ (rate of turning off);

• a component in state (e) transitions to state (c) with rate rec = γ (rate of turning on).

Additionally,

• a component in state (c) transitions to state (d) after a deterministic delay D (unless it “loses the
race” and makes a Markovian transition to (a) first).

The transition types and rates are denoted in Figure 2.
For the peer-to-peer software update model, the Poisson representation is the following:

x̄a(t) =x̄a(0)− 1

N
Pab

(
N

∫ t

0

ρx̄a(u)du

)
+

1

N
Pca

(
N

∫ t

0

βx̄c(u)x̄a(u)du

)
+

1

N
Pba

(
N

∫ t

0

γx̄b(u)du

)
x̄b(t) =x̄b(0)− 1

N
Pba

(
N

∫ t

0

γx̄b(u)du

)
+

1

N
Pab

(
N

∫ t

0

ρx̄a(u)du

)
x̄c(t) =x̄c(0)− 1

N
Pca

(
N

∫ t

0

βx̄c(u)x̄a(u)du

)
+

1

N
Pec

(
N

∫ t

0

γx̄e(u)du

)
−
∫ t−D

z=0

BPec(N
∫ z
0
γx̄e(u)du)(z)

1

N
d

(
Pec

(
N

∫ z

0

γx̄e(u)du

))
(4)

x̄d(t) =x̄d(0)− 1

N
Pde

(
N

∫ t

0

ρx̄d(u)du

)
+

∫ t−D

z=0

BPec(N
∫ z
0
γx̄e(u)du)(z)

1

N
d

(
Pec

(
N

∫ z

0

γx̄e(u)du

))
x̄e(t) =x̄e(0)− 1

N
Pec

(
N

∫ t

0

γx̄e(u)du

)
+

1

N
Pde

(
N

∫ t

0

ρx̄d(u)du

)
.

The corresponding set of DDEs is the following:

d

dt
va(t) =− ρva(t) + βvc(t)va(t) + γvb(t)

d

dt
vb(t) =− γvb(t) + ρva(t)

d

dt
vc(t) =− βva(t)vc(t)− exp

(
−
∫ D

τ=0

βva(t−D + τ)dτ

)
γve(t−D) + γve(t) (5)

d

dt
vd(t) =− ρvd(t) + exp

(
−
∫ D

τ=0

βva(t−D + τ)dτ

)
γve(t−D)

d

dt
ve(t) =− γve(t) + ρvd(t).
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Figure 3: Peer-to-peer model for N = 200

5 10 15 20 25 30

0.2

0.4

0.6

0.8

a b c d e

Figure 4: Peer-to-peer model for N = 1000

The novel term that appears in (4) is∫ t−D

z=0

BPec(N
∫ z
0
γx̄e(u)du)(z)

1

N
d

(
Pec

(
N

∫ z

0

γx̄e(u)du

))
. (6)

(6) counts the total number of c → d deterministic transitions up to time t. Only active clocks started by
time t−D may fire before t. An active clock starts whenever an e→ c Markovian transition occurs, which
is at times z when the Poisson process Pec

(
N
∫ z

0
γx̄e(u)du

)
jumps. For example, if the Poisson process

jumps at w1, w2, w3, . . . , wK , then the integral is equal to 1
N

∑K
k=1B

i,N
k (wk). For the total number of c→ d

deterministic transitions, we only need to count the ones that survived (were not interrupted).
(5) is the differential form of the mean-field equation for the example. The novel term in (5) is

exp

(
−
∫ D

τ=0

βva(t−D + τ)dτ

)
γve(t−D). (7)

The integral form of (7) can be written as∫ t

z=0

exp

(
−
∫ D

τ=0

βva(z −D + τ)dτ

)
γve(z −D)dz. (8)

In the mean-field limit, (6) (or, equivalently, the sum 1
N

∑K
k=1B

i,N
k (wk)) turns into (8). (7) represents

the occurrence of deterministic transition at time t. For that, a transition at time t−D with γve(t−D) is
required, and this deterministic transition should not be interrupted by a competing Markovian transition

whose probability is exp
(
−
∫D
τ=0

βva(t−D + τ)dτ
)

.

2.5.1. Numerical simulation

In order to demonstrate how the Poisson representation turns into a simulation, a step-by-step simulation
of the peer-to-peer software update model for a small population size is carried out in Appendix A.

We also carried out larger simulations to compare x̄N with the solution v of the system of equations (5).
Figures 3-5 display simulation results for N = 200, 1000 and 5000 along with the (numerical) solution of

the system of equations (5). The graphs a–e show the ratio of components in each class as time progresses;
the smooth lines are the solution of (5) and the thick jagged lines are the results of the simulation. The
parameters used are γ = 0.2, β = 10, ρ = 0.1, D = 1. The initial condition for both x̄N and vN is v(0) =
x̄N (0) = (0.1, 0, 0, 0.9, 0), so 1/10 of the components start from state (a) (updated, on) and 9/10 of the
components start from state (d) (old, not searching for updates). The time horizon is T = 30. Wolfram
Mathematica code for the simulations can be accessed at [1].

Note that as N increases, the results of the simulation converge to the mean-field limit. That said, in
the present paper we do not pursue an explicit bound on the speed of convergence.

3. Main result

This section is devoted to the main result and its proof.
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Figure 5: Peer-to-peer model for N = 5000

Theorem 1. Under the assumptions of Section 2.1-2.4, notably:

• the Markovian transition rates rij are Lipschitz-continuous,

• there is at most one deterministic clock in each active state,

• from an active state i, the deterministic transition takes the component to the same inactive state
deterministically,

• the initial conditions x̄N (0) and v(0) are concentrated on SI , and

• for the initial conditions, ‖x̄N (0)− v(0)‖ → 0 in probability.

We have, for any T > 0:
lim
N→∞

sup
t∈[0,T ]

‖x̄N (t)− v(t)‖ = 0

in probability.

Sketch of the proof.

The formulas (1) and (3) are very similar in form and spirit. Both define the corresponding process
from its past behaviour. They both contain terms corresponding to the same types of transition, (1) for the
Poisson representation of a random population model with a finite population, while (3) for the deterministic
mean-field limit. The fact that the two processes have a similar evolution formula makes it natural to apply
Grönwall’s lemma to prove that the two processes are indeed close over a finite interval.

We are going to introduce two auxiliary processes yN and wN . The idea behind these processes is
that they are obtained by gradually “averageing out” the randomness in the process x̄N . Replacing any
process (e.g. x̄N ) with a version of it with some of the randomness averaged out (e.g. yN ) leads naturally to
martingale concentration results (for x̄N −yN ). We provide more specific explanation after the definition of
yN and wN (formulas (9) and (10)).

On to the actual proof now.

Define the auxiliary processes

yNi (t) := x̄Ni (0)−
∑
j∈S

1

N
Pij

(
N

∫ t

0

x̄Ni (u)rij(x̄
N (u))du

)
+
∑
j∈S

1

N
Pji

(
N

∫ t

0

x̄Nj (u)rji(x̄
N (u))du

)

+
∑
h∈SI

∑
j∈SA

∫ t−Tj

z=0

pji exp

(
−
∫ z+Tj

τ=z

qj(x̄
N (τ))dτ

)
1

N
dPhj

(
N

∫ z

0

x̄Nh (u)rhj(x̄
N (u)) du

)

−
∑
h∈SI

∑
j∈S

∫ t−Ti

z=0

pij exp

(
−
∫ z+Ti

τ=z

qi(x̄
N (τ))dτ

)
1

N
dPhi

(
N

∫ z

0

x̄Nh (u)rhi(x̄
N (u)) du

)
, (9)
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and

wNi (t) := x̄Ni (0)−
∑
j∈S

∫ t

0

x̄Ni (u)rij(x̄
N (u))du+

∑
j∈S

∫ t

0

x̄Nj (u)rji(x̄
N (u))du

+
∑
h∈SI

∑
j∈SA

∫ t−Tj

z=0

pji exp

(
−
∫ z+Tj

τ=z

qj(x̄
N (τ))dτ

)
x̄Nh (z)rhj(x̄

N (z))dz

−
∑
h∈SI

∑
j∈S

∫ t−Ti

z=0

pij exp

(
−
∫ z+Ti

τ=z

qi(x̄
N (τ))dτ

)
x̄Nh (z)rhi(x̄

N (z))dz. (10)

The definition of yN is obtained from the definition of x̄N in (1) by replacing the indicator term

Bj,N∑
h∈SI

Phj(N
∫ z
0
x̄N
h (u)rhj(x̄N (u)) du)

(z) inside the formula (1) corresponding to the interruption by its con-

ditional expectation along the trajectory of x̄N .
The definition of wN is obtained from the definition of yN by replacing the Poisson process terms

corresponding to the Markovian transitions by their conditional expectation along the trajectory of x̄N

(which correspond to the actual transition rates).
The above interpretations provide an intuitive explanation as to why x̄N − yN and yN −wN are mar-

tingales; nevertheless, the calculations need to be carried out properly.
The rest of the proof of Theorem 1 is structured as follows: we state Lemmas 2, 3 and 4 that respectively

show that x̄N − yN , yN −wN and wN − v are small. We finish the proof of Theorem 1 using the lemmas,
then the lemmas are proved in separate subsections.

Lemma 2.

lim
N→∞

sup
t∈[0,T ]

‖x̄N (t)− yN (t)‖ = 0

almost surely (and in probability).

Lemma 3.

lim
N→∞

sup
t∈[0,T ]

∥∥yN (t)−wN (t)
∥∥ = 0

almost surely (and in probability).

Lemma 4.

‖wN (t)− v(t)‖ ≤ ‖x̄N (0)− v(0)‖+ C

∫ t

u=0

‖x̄N (u)− v(u)‖du

where C is a constant independent of N .

Using Lemma 4 we get that

‖x̄N (t)− v(t)‖ ≤ ‖x̄N (t)− yN (t)‖+ ‖yN (t)−wN (t)‖+ ‖wN (t)− v(t)‖ ≤

DN + C

∫ t

u=0

‖x̄N (u)− v(u)‖ du ,

where
DN = sup

t∈[0,T ]

‖x̄N (t)− yN (t)‖+ sup
t∈[0,T ]

∥∥yN (t)−wN (t)
∥∥+ ‖x̄N (0)− v(0)|.

From Lemmas 2 and 3 (and the assumption on the initial conditions) we get that DN → 0 in probability as
N →∞.

An application of Grönwall’s lemma ([12], Appendix 5) yields that

sup
t∈[0,T ]

‖x̄N (t)− v(t)‖ ≤ DN exp(CT ),

which thus goes to 0 in probability as N →∞, proving Theorem 1.
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3.1. Proof of Lemma 2

Sketch of the proof: x̄N − yN is estimated by a martingale concentration argument in two steps. In
Subsection 3.1.1, the proof goes for a fixed t first; the difference is extended to a continuous time process
which is a sum of a random number of martingales of 0 expectation. Then it is rewritten as a discrete-time
process, sampled at random times. Azuma’s inequality gives an exponential bound on the discrete-time
martingales, and the random number of terms and random time of sampling weaken the estimate only by
a linear factor each. In Subsection 3.1.2, the whole argument is upgraded from a fixed t to supt(.) by
checking the value at the points of a partition and between the points separately. The estimate at the points
introduces yet another linear factor, while between the points we need routine large deviation estimates.
Then Borel–Cantelli lemma is applied.

The proof is rather long and technical; we highlight Lemma 5 and, more specifically, (B.2) as a central
point in the proof, setting up the connection between the interrupts in the population model and the function
q(.), that is, the rate of interrupt for the mean-field model.

Since

xNi (t)− yNi (t) =∑
j∈SA

∫ t−Tj

z=0

pji

[
Bj,N∑

h∈SI
Phj(N

∫ z
0
x̄N
h (u)rhj(x̄N (u)) du)

(z)−

exp

(
−
∫ z+Tj

τ=z

qj(x̄
N (τ))dτ

)]
× 1

N
d

(∑
h∈SI

Phj

(
N

∫ z

0

x̄Nh (u)rhj(x̄
N (u)) du

))

−
∑
j∈S

∫ t−Ti

z=0

pij

[
Bi,N∑

h∈SI
Phi(N

∫ z
0
x̄N
h (u)rhi(x̄N (u)) du)

(z)−

exp

(
−
∫ z+Ti

τ=z

qi(x̄
N (τ))dτ

)]
× 1

N
d

(∑
h∈SI

Phi

(
N

∫ z

0

x̄Nh (u)rhi(x̄
N (u)) du

))
, (11)

to obtain Lemma 2, it is enough to prove

lim
N→∞

sup
t∈[0,T ]

∣∣∣∣∣
∫ t−Ti

z=0

[
Bi,N∑

h∈SI
Phi(N

∫ z
0
x̄N
h (u)rhi(x̄N (u)) du)

(z)−

exp

(
−
∫ z+Ti

τ=z

qi(x̄
N (τ))dτ

)]
× 1

N
d

(∑
h∈SI

Phi

(
N

∫ z

0

x̄Nh (u)rhi(x̄
N (u)) du

)) ∣∣∣∣∣ = 0 (12)

almost surely for each i.

3.1.1. Estimate of ‖x̄N (t)− yN (t)‖ for fixed t

We rewrite (12) as∫ t−Ti

z=0

[
Bi,N∑

h Phi(N
∫ z
0
x̄N
h (u)rhi(x̄N (u)) du)

(z)−

exp

(
−
∫ z+Ti

τ=z

qi(x̄
N (τ))dτ

)]
× 1

N
d

(∑
h

Phi

(
N

∫ z

0

x̄Nh (u)rhi(x̄
N (u)) du

))
=

1

N

K∑
k=1

Bi,Nk (wk)− exp

(
−
∫ wk+Ti

τ=wk

qi(x̄
N (τ))dτ

)
, (13)

where wk = wk,i (to simplify notation we neglect explicit reference to state i) denotes the starting time of
clock number k from deterministic clocks of type i, and K = Ki = max{k : wk < t − Ti} denotes the total

number of such clocks up to time t − Ti. Bi,Nk (wk) denotes the indicator variable that clock number k of
type i is not interrupted. K and wk are random. First we will show that a single term in the above sum is
a martingale; then we will deal with the fact that K is random.
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Denote

Zk = Zk,i := Bi,Nk (wk)− exp

(
−
∫ wk+Ti

τ=wk

qi(x̄
N (τ))dτ

)
,

and

Mk
u :=

{
0 , if u < wk ,
E(Zk|Fu) , if u ≥ wk ,

(14)

where the filtration {Fu} is defined as follows: Fu contains all the information known up to time u, notably
the following:

• the type and time of all Markovian transitions happened before time u;

• all deterministic delays started before time u;

• for each deterministic delay, whether it was interrupted or not up to time u.

Technically, in an actual simulation it is enough to keep track of the following information:

• the global state of the system at time u;

• the list of active deterministic delays at time u (that is, deterministic delays that are set for a transition
after time u which have not yet been interrupted).

A natural way to define martingales is as the conditional expectation of a random variable with respect
to a filtration. (14) defines Mk

u almost in this manner (as Mk
u = E(Zk|Fu)), but not quite; in order to prove

it is indeed a martingale with respect to {Fu}, we need the following lemma.

Lemma 5.

E(Zk|Fwk
) = 0.

The proof of Lemma 5 can be found in Appendix B.
It follows from Lemma 5 that for any fixed s,

∑s
k=1M

k
u is also a continuous-time martingale with 0

expectation. To apply Azuma’s inequality, we set it up as a discrete-time martingale.
Let us consider the following three types of points in time (between 0 and T ):

• whenever a Markovian jump occurs,

• all points in time when a deterministic clock is set to go off (regardless of whether the clock actually
goes off or is interrupted before that time),

• all points of the form a
N , a = 0, 1, . . . , bNT c.

Let zm denote the m-th such point in increasing order. These points are an increasing sequence of
stopping times with respect to the filtration Fu, so it makes sense to define the discrete-time filtration

Fm := Fzm .

We argue that for any fixed s, the corresponding discrete-time process

Ns
m :=

s∑
k=1

Mk
zm , m = 1, 2, . . .

is indeed a discrete-time martingale due to the Optional Sampling Theorem (see for example Theorem 10.10
in [24]); the stopping times are all bounded by T , and Ns

m has bounded increments: it may increase only
by 1 (since any Zk may increase only by 1 and the process is stopped whenever this happens) and decrease
only by sQ/N (since Zk may decrease only via the exponential term, which, in a time interval of length at
most 1/N , may decrease at most Q/N due to being Lipschitz-continuous). For s ≤ 2NRT ,

sQ/N ≤ 2RTQ.

11



For simplicity, we assume 2RTQ ≥ 1; otherwise, just increase Q (or R) so that it holds. In this case, the
martingale Ns

m has increments bounded by 2RTQ.
Now (13) is equal to

K∑
k=1

Zk =

K∑
k=1

Mk
zP = NK

P ,

where K is the total number of deterministic clocks of type i which are initialized to go off before time t and
zP is the time when clock number K is set to go off (note that zP is inherently included among the points
{zk}). Note that K and P are both random, so we can not apply Azuma’s inequality directly at this point;
instead, we first prove a concentration estimate (Azuma) for

∑s
k=1M

k
zp for fixed s and p.

Let ε > 0 be fixed, and let k ≤ 2NRT, p ≤ N(3R+ 1)T . Azuma’s inequality ([9], page 94, Theorem 5.2)
guarantees that

P
(∣∣Nk

p

∣∣ > εN
)
≤ 2 exp

(
− (εN)2

(kQ/N)2p

)
≤ 2 exp(−C1N) ,

where

C1 =
ε2

4R2T 3Q2(3R+ 1)
.

Then we upgrade from a fixed p and k to random P and K. The main point here is that K and P are not
likely to be larger than linear in N .

P
(∣∣NK

P

∣∣ > εN
)
≤

2NRT∑
k=1

N(3R+1)T∑
p=NT

P
(∣∣Nk

p

∣∣ > εN
)

+ P(K > 2NRT ) + P(P > N(3R+ 1)T ) ≤

(2NRT )(3NRT )2 exp(−C1N) + P(K > 2NRT ) + P(P > N(3R+ 1)T ).

K is stochastically dominated by Poisson(NRT ); that is,

P(K > x) ≤ P(X > x) ∀x ∈ R

where X is Poisson(NRT ) distributed. The stochastic dominance holds since K is the total number of
Markovian transitions and the rate of the Markovian transitions may never go above NR (and the time
horizon is T ). P counts three types of points, two of which are similarly stochastically dominated by
Poisson(NRT ) and the third is deterministic, NT . Cramér’s large deviation theorem (see e.g. Theorem
II.4.1 in [11]) guarantees that

P(K > 2NRT ) ≤ exp(−C2N), P(P > N(3R+ 1)T ) ≤ exp(−C3N),

where

C2 = (2 ln 2− 1)RT, C3 = (3 ln(3/2)− 1)RT.

(The Cramér rate function of the Poisson-distribution with parameter λ is I(x) = x ln(x/λ)− x+ λ.)
In any case, for a fixed ε,

P

(
1

N

∣∣∣∣∣
K∑
k=1

1
{
Bi,Nk (wk)

}
− exp

(
−
∫ wk+Ti

τ=wk

qi(x̄
N (τ))dτ

)∣∣∣∣∣ > ε

)

is exponentially small in N and thus

P
(∣∣x̄N (t)− yN (t)

∣∣ > ε
)
≤ exp(−C4N) (15)

for some constant C4 independent of t.
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3.1.2. Estimate of supt∈[0,T ] ‖x̄N (t)− yN (t)‖
Next we upgrade the estimate (15) from a fixed t to supt≤T (.). Let

tl :=
lT

N
, l = 0, 1, . . . N,

then

P

(
max

0≤l≤N

1

N

∣∣x̄N (tl)− yN (tl)
∣∣ > ε

)
≤ N exp(−C4N).

Let t ∈ (tl, tl+1). From (11),

|x̄Ni (t)− yNi (t)| ≤ |x̄Ni (tl)− yNi (tl)|+∑
j∈SA

∫ t−Tj

z=tl−Tj

pji

∣∣∣∣∣1
{
Bi,N∑

h∈SI
Phj(N

∫ z
0
x̄N
h (u)rhj(x̄N (u)) du)

(z)

}
−

exp

(
−
∫ z+Tj

τ=z

qj(x̄
N (τ))dτ

)∣∣∣∣∣× 1

N
d

(∑
h∈SI

Phj

(
N

∫ z

0

x̄Nh (u)rhj(x̄
N (u)) du

))

+
∑
j∈S

∫ t−Ti

z=tl−Ti

pij

∣∣∣∣∣1
{
Bi,N∑

h∈SI
Phi(N

∫ z
0
x̄N
h (u)rhi(x̄N (u)) du)

(z)

}
−

exp

(
−
∫ z+Ti

τ=z

qi(x̄
N (τ))dτ

)∣∣∣∣∣× 1

N
d

(∑
h∈SI

Phi

(
N

∫ z

0

x̄Nh (u)rhi(x̄
N (u)) du

))
.

We only deal with the second of the last two terms, the other one is similar. Since∫ t−Ti

z=tl−Ti

1

{
Bi,N∑

h∈SI
Phi(N

∫ z
0
rhi(x̄N (u)) du)

(z)

}
1

N
d

(∑
h∈SI

Phi

(
N

∫ z

0

rhi(x̄
N (u)) du

))

and ∫ t−Ti

z=tl−Ti

exp

(
−
∫ z+Ti

τ=z

qi(x̄
N (τ))dτ

)
1

N
d

(∑
h∈SI

Phi

(
N

∫ z

0

rhi(x̄
N (u)) du

))

are both increasing in t, we only need to check that neither of them increases by more than some ε′. Both
functions inside the integral are bounded from above by 1/N , so in fact both are dominated stochastically
by

1

N

(∑
h∈SI

Phi

(
N

∫ tl−Ti

0

rhi(x̄
N (u)) du

)
−
∑
h∈SI

Phi

(
N

∫ t−Ti

0

rhi(x̄
N (u)) du

))
,

and the probability that either integral is larger than ε′ is less than

2P(X > ε′N), X ∼ Poisson(RT ) .

Once again, this probability is exponentially small in N , and setting

ε′ = ε · |S|−2
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we obtain

P

(
sup
t∈[0,T ]

∣∣x̄N (t)− yN (t)
∣∣ > 2ε

)
≤

P

(
max

0≤l≤N

∣∣x̄N (tl)− yN (tl)
∣∣ > ε

)
+

N−1∑
l=0

∑
i∈S

P

(
sup

t∈[tl,tl+1]

|(x̄Ni (t)− x̄Ni (tl))− (yNi (t)− yNi (tl))| > ε

)
≤ exp(−C5N)

for a suitable C5 > 0. Since

∞∑
N=1

P

(
sup
t∈[0,T ]

∣∣x̄N (t)− yN (t)
∣∣ > 2ε

)
≤
∞∑
N=1

exp(−C5N) <∞,

according to the first Borel–Cantelli lemma, only finitely many of the events{
sup
t∈[0,T ]

∣∣x̄N (t)− yN (t)
∣∣ > 2ε

}

may occur almost surely, so for N large enough,

sup
t∈[0,T ]

∣∣x̄N (t)− yN (t)
∣∣ ≤ 2ε.

This holds for any ε > 0, thus

lim
N→∞

sup
t∈[0,T ]

∣∣x̄N (t)− yN (t)
∣∣ = 0

almost surely.

3.2. Proof of Lemma 3

Techniques of the proof: yN − wN is estimated via the Functional Strong Law of Large Numbers for
the Poisson-process (which itself may be viewed as a basic martingale concentration theorem) and bounded
functions.

∣∣yNi (t)− wNi (t)
∣∣ ≤∑

j∈S

∣∣∣∣ 1

N
Pij

(
N

∫ t

0

x̄Ni (u)rij(x̄
N (u))du

)
−
∫ t

0

x̄Ni (u)rij(x̄
N (u))du

∣∣∣∣
+
∑
j∈S

∣∣∣∣ 1

N
Pji

(
N

∫ t

0

x̄Nj (u)rji(x̄
N (u))du

)
−
∫ t

0

x̄Nj (u)rji(x̄
N (u))du

∣∣∣∣
+
∑
j∈SA

pji

∣∣∣∣∣
∫ t−Tj

z=0

exp

(
−
∫ z+Tj

τ=z

qj(x̄
N (τ))dτ

)
1

N
d

(∑
h∈SI

Phj

(
N

∫ z

0

x̄Nh (u)rhj(x̄
N (u)) du

))

−
∑
h∈SI

∫ t−Tj

z=0

exp

(
−
∫ z+Tj

τ=z

qj(x̄
N (τ))dτ

)
x̄Nh (z)rhj(x̄

N (z))dz

∣∣∣∣∣
+
∑
j∈S

pij

∣∣∣∣∣
∫ t−Ti

z=0

exp

(
−
∫ z+Ti

τ=z

qi(x̄
N (τ))dτ

)
1

N
d

(∑
h∈SI

Phi

(
N

∫ z

0

x̄Nh (u)rhi(x̄
N (u)) du

))

−
∑
h∈SI

∫ t−Ti

z=0

exp

(
−
∫ z+Ti

τ=z

qi(x̄
N (τ))dτ

)
x̄Nh (z)rhi(x̄

N (z))dz

∣∣∣∣∣ (16)

The first two terms go to 0 almost surely by the functional strong law of large numbers (FSLLN) for the
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Poisson process ([22], Section 3.2, [23]). That is,∣∣∣∣ 1

N
Pij

(
N

∫ t

0

x̄Ni (u)rij(x̄
N (u)) du

)
−
∫ t

0

x̄Ni (u)rij(x̄
N (u)) du

∣∣∣∣ ≤ sup
t∈[0,T ]

∣∣∣∣ 1

N
Pij (NRt)−Rt

∣∣∣∣→ 0

almost surely, and the same holds for the second term too.
The last two terms are handled in the following Lemma. The technique used is essentially the same as

in Lemma 2 in [17]. We state the lemma for fixed i and j, dropping the sums in h and j and with notation
corresponding to the last term in (16), but it applies to the third term in (16) just the same.

Lemma 6. ∣∣∣∣∣
∫ t−Ti

z=0

exp

(
−
∫ z+Ti

τ=z

qi(x̄
N (τ))dτ

)
1

N
d

(∑
h∈SI

Phi

(
N

∫ z

0

x̄Nh (u)rhi(x̄
N (u)) du

))

−
∑
h∈SI

∫ t−Ti

z=0

exp

(
−
∫ z+Ti

τ=z

qi(x̄
N (τ))dτ

)
x̄Nh (z)rhi(x̄

N (z)) dz

∣∣∣∣∣→ 0

almost surely as N →∞.

The proof of Lemma 6 is in Appendix C. Lemma 6 finishes Lemma 3.

3.3. Proof of Lemma 4

For wNi (t)− vi(t) we have

wNi (t)− vi(t) = x̄Ni (0)− vi(0)

−
∑
j∈S

∫ t

0

x̄Ni (u)rij(x̄
N (u))− vi(u)rij(v(u))du

+
∑
j∈S

∫ t

0

x̄Nj (u)rji(x̄
N (u))− vj(u)rji(v(u))du

+
∑
h∈SI

∑
j∈SA

pji

∫ t−Tj

z=0

[
exp

(
−
∫ z+Tj

τ=z

qj(x̄
N (τ))dτ

)
x̄Nh (z)rhj(x̄

N (z))−

exp

(
−
∫ z+Tj

τ=z

qj(v(τ))dτ

)
x̄Nh (z)rhj(v(z))

]
dz

−
∑
h∈SI

∑
j∈S

pij

∫ t−Ti

z=0

[
exp

(
−
∫ z+Ti

τ=z

qi(x̄
N (τ))dτ

)
x̄Nh (z)rhi(x̄

N (z))−

exp

(
−
∫ z+Ti

τ=z

qi(v(τ))dτ

)
x̄Nh (z)rhi(v(z))

]
dz . (17)

The first term (the initial conditions) is left unchanged. To estimate the second and third terms in (17),
we use the straightforward bound

|xr(x)− vr(v)| ≤ |x(r(x)− r(v))|+ |(x− v)r(v)| ≤ R · |x| · |x− v|+ |x− v| ·R ≤ 2R|x− v|,

which yields ∣∣∣∣∣∣
∑
j∈S

∫ t

0

x̄Ni (u)rij(x̄
N (u))− vi(u)rij(v(u))du

∣∣∣∣∣∣ ≤ 2R|S|
∫ t

u=0

‖x̄N (u)− v(u)‖ du.

The third term is the same.
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For the second of the last two terms in (17), we have∣∣∣∣∣exp

(
−
∫ z+Ti

τ=z

qi(x̄
N (τ))dτ

)
x̄Ni (z)rij(x̄

N (z))− exp

(
−
∫ z+Ti

τ=z

qi(v(τ))dτ

)
x̄Ni (z)rij(v(z))

∣∣∣∣∣ ≤∣∣∣∣∣exp

(
−
∫ z+Ti

τ=z

qi(x̄
N (τ))dτ

)
·
(
x̄Ni (z)rij(x̄

N (z))− x̄Ni (z)rij(v(z))
)∣∣∣∣∣+∣∣∣∣∣

(
exp

(
−
∫ z+Ti

τ=z

qi(x̄
N (τ))dτ

)
− exp

(
−
∫ z+Ti

τ=z

qi(v(τ))dτ

))
· x̄Ni (z)rij(v(z))

∣∣∣∣∣ ≤
1 ·
∣∣rij(x̄N (z))− rij(v(z))

∣∣+R

∣∣∣∣∣
∫ z+Ti

τ=z

qi(x̄
N (τ))dτ −

∫ z+Ti

τ=z

qi(v(τ))dτ

∣∣∣∣∣ ≤
R
∣∣x̄N (z)− v(z)

∣∣+RQ

∫ z+Ti

τ=z

‖x̄N (τ)− v(τ)‖dτ ,

and thus ∣∣∣∣∣ ∑
h∈SI

∑
j∈S

pij

∫ t−Ti

z=0

[
exp

(
−
∫ z+Ti

τ=z

qi(x̄
N (τ))dτ

)
x̄Nh (z)rhi(x̄

N (z))−

exp

(
−
∫ z+Ti

τ=z

qi(v(τ))dτ

)
x̄Nh (z)rhi(v(z))

]
dz

∣∣∣∣∣ ≤∑
h∈SI

∑
j∈S

pij

∫ t−Ti

z=0

RQ

∫ z+Ti

τ=z

‖x̄N (τ)− v(τ)‖dτdz ≤

∑
h∈SI

∑
j∈S

pijRQ

∫ t

z=0

∫ t

τ=0

‖x̄N (τ)− v(τ)‖dτdz =

∑
h∈SI

∑
j∈S

pijRQT

∫ t

τ=0

‖x̄N (τ)− v(τ)‖dτ.

The remaining term in (17) is similar.
Summing all of these terms up we obtain

|wNi (t)− vi(t)| ≤ |x̄Ni (0)− vi(0)|+ C

∫ t

u=0

‖x̄N (u)− v(u)‖du

for C = 4R|S|+ 2QT |S|2, proving Lemma 4.

4. Conclusion and outlook

We have presented a model of PGSMPs, where individuals can enable both Markovian and deterministic
transitions that compete with each other (as opposed to delay-only PGSMPs), and we have given a rigorous
proof for the transient mean-field convergence.

4.1. Comparison with previous work

The extra level of randomness originating from the interrupts (and represented by the variablesBij,Nk (z, Tij))
is not present when the clocks are delay-only (non-interruptible); this is the main technical novelty compared
to [15], and is also the reason why the proof in the current paper involves more concentration results.

We remark that the concentration tools used for the proof are somewhat reminiscent to the tools used in
[17]. However, in [17], the “source of extra randomness” is different: in [17], the non-Markovian clocks are
generally-distributed (hence the extra randomness), but they may not be interrupted. In the present paper,
the extra randomness is due to the possibility of interruption. Accordingly, we consider the calculations in
Lemma 5 to be at the heart of this result.

As far as we know, this is the first rigorous result concerning the race case.
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4.2. Outlook

That said, there are a number of questions left open. In [17], the non-racing case was examined, albeit with
the non-Markovian clocks having a general cumulative distribution function Fi instead of being deterministic.
In fact, it is natural to ask the mean-field limit for the common generalization of the two cases: generally
distributed clocks with interrupts. We will not go into too much detail, but, since most of the notation is
already in place, we give the Poisson representation for xN :

x̄Ni (t) = x̄Ni (0)−
∑
j∈S

1

N
Pij

(
N

∫ t

0

x̄Ni (u)rij(x̄
N (u))du

)

+
∑
j∈S

1

N
Pji

(
N

∫ t

0

x̄Nj (u)rji(x̄
N (u))du

)

+
∑
h∈SI

∑
j∈SA

∫ t

z=0

pji

∫ t−z

x=0

Bhj,N
Phj(N

∫ z
0
x̄N
h (u)rhj(x̄N (u)) du)

(z, x)×

d1

{
Thj
Phj(N

∫ z
0
x̄N
h (u)rhj(x̄N (u)) du)

≤ x
}

1

N
dPhj

(
N

∫ z

0

x̄Nh (u)rhj(x̄
N (u)) du

)
−
∑
h∈SI

∑
j∈S

∫ t−Ti

z=0

pij

∫ t−z

x=0

Bhi,N
Phi(N

∫ z
0
x̄N
h (u)rhi(x̄N (u)) du)

(z, x)×

d1

{
T ij
Phi(N

∫ z
0
x̄N
h (u)rhi(x̄N (u)) du)

≤ x
}

1

N
dPhi

(
N

∫ z

0

x̄Nh (u)rhi(x̄
N (u)) du

)
,

where (T ik), k = 1, 2, . . . are independent random variables distributed according to Fi (notably the clock
times). There are a few changes in the notation: the active clocks are now grouped according to both the

type of the clock (i) and the state activating the clock (h). Accordingly, the variables Bhj,nk (z, x) now include
h as well in the notation. It also includes x, the random clock time to which the clock is initialized (so the
clock activates at time z and, unless interrupted, goes off at time x+ z).

The corresponding DDE is

vi(t) =vi(0)−
∑
j∈S

∫ t

0

vi(u)rij(v(u))du+
∑
j∈S

∫ t

0

vj(u)rji(v(u))du

+
∑
h∈SI

∑
j∈SA

pji

∫ t

z=0

∫ t−z

x=0

exp

(
−
∫ z+x

τ=z

qj(v(τ))dτ

)
dFj(x)x̄Nh (z)rhj(v(z))dz

−
∑
h∈SI

∑
j∈S

pij

∫ t

z=0

∫ t−z

x=0

exp

(
−
∫ z+x

τ=z

qi(v(τ))dτ

)
dFi(x)x̄Nh (z)rhi(v(z))dz,

where

qi(v) =
∑
j∈S

rij(v).

These formulas are the general versions of (1) and (3).

Conjecture 1. Under the assumptions of Section 2, we have, for any T > 0:

lim
N→∞

sup
t∈[0,T ]

‖x̄N (t)− v(t)‖ = 0

in probability.

We believe a framework similar to the present paper should work; the auxiliary processes involved are
more complicated and we have not been able to check the martingale property yet (most specifically, we
have difficulty with the corresponding version of Lemma 5 in the more general setting). Nevertheless, we
have no doubt about the validity of the conjecture.

A question in a different direction is second order approximation, that is, fluctuations around the mean-
field limit. For the original Markov population model, the fluctuations are Gaussian, with the covariance
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satisfying a system of ordinary differential equations [19] [12]. For PGSMP’s, it is reasonable to expect
Gaussian fluctuations, with the covariance satisfying a system of delayed differential equations instead, but
no results are available yet. This is also related to the speed of convergence, which was not examined in the
present paper.
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[5] Michel Benäım and Jean-Yves Le Boudec. A class of mean field interaction models for computer and
communication systems. Performance Evaluation, 65(11-12):823–838, November 2008.

[6] Luca Bortolussi and Jane Hillston. Fluid approximation of CTMC with deterministic delays. Int. Conf.
on Quantitative Evaluation of Systems, pages 53–62, 2012.

[7] Giulio Caravagna and Jane Hillston. Bio-PEPAd: A non-Markovian extension of Bio-PEPA. Theoretical
Computer Science, 419:26–49, 2012.

[8] Hoon Choi, Vidyadhar Kulkarni, Kishor Trivedi, and Marco Ajmone Marsan. Transient analysis of
deterministic and stochastic Petri nets. In Application and Theory of Petri Nets, volume 691, pages
166–185. Springer Berlin / Heidelberg, 1993.

[9] Fan Chung and Linyuan Lu. Concentration inequalities and martingale inequalities: A survey. Internet
Mathematics, 3(1):79–127, 2006.

[10] David R. Cox. The analysis of non-Markovian stochastic processes by the inclusion of supplementary
variables. Mathematical Proceedings of the Cambridge Philosophical Society, 51(03):433–441, July 1955.

[11] R. Ellis. Entropy, Large Deviations, and Statistical Mechanics. Classics in Mathematics. Springer, 2005.

[12] Stewart N. Ethier and Thomas G. Kurtz. Markov Processes: Characterization and Convergence. Wiley,
2005.

[13] Nicolas Gast and Gaujal Bruno. A mean field model of work stealing in large-scale systems. SIGMET-
RICS Perform. Eval. Rev., 38(1):13–24, 2010.

[14] Jack K. Hale, Sjoerd M. Verduyn Lunel. Introduction to Functional Differential Equations. Applied
Mathematical Sciences, vol. 99. Springer, 1993.

[15] R.A. Hayden. Mean field for performance models with deterministically-timed transitions. In Quan-
titative Evaluation of Systems (QEST), 2012 Ninth International Conference on, pages 63–73, Sept
2012.

[16] Richard A. Hayden and Jeremy T. Bradley. A fluid analysis framework for a Markovian process algebra.
Theoretical Computer Science, 411:2260–2297, 2010.
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Appendix A. Step-by-step numerical simulation

In order to demonstrate how the Poisson representation turns into a simulation, we play out the first few
steps of an actual realization of the peer-to-peer software update model.

Let N = 5 and x̄(0) = (0.2, 0, 0, 0, 0.8) (or, equivalently, x(0) = (1, 0, 0, 0, 4)). The parameter values are
set to ρ = γ = 1, β = 2 and D = 1. We start by listing the first few jumps of the Poisson processes involved
in (4):

Pab : 0.3, 1.7, . . . , Pba : 0.2, 2.4, . . . , Pca : 1.4, 4.2, . . . , Pde : 0.5, 2.3, . . . , Pec : 0.4, 0.7, 2.5, . . .

Initially, only two exponential transitions are possible: e→ c and a→ b. For the Poisson representation
(4), this means that all the Poisson terms except the Pec(.) and Pab(.) ones have 0 rate inside initially. A
transition e→ c would occur at the solution of∫ t

0

Nγx̄e(u)du =

∫ t

0

1 · 4du = 0.4

which gives t = 0.1, while a transition a→ b would occur at the solution of∫ t

0

Nρx̄a(u)du =

∫ t

0

1 · 1du = 0.3

which gives t = 0.3. The solution is smaller for e → c, so the first transition in the system is of type e → c
at time t = 0.1.

At time t = 0.1, the system looks like the following: the global state is (1, 0, 1, 0, 3), and a deterministic
clock (of type c, the only type) is set to go off at time 1.1. For the next transition, we need to consider three
exponential transitions and one deterministic transition. The potential exponential transitions are e → c,
a→ b and c→ a; their corresponding jump times are the solutions of∫ t

0

Nγx̄e(u)du = 0.4 +

∫ t

0.1

1 · 3du = 0.7 =⇒ t = 0.2∫ t

0

Nρx̄a(u)du =

∫ t

0

1 · 1du = 0.3, and =⇒ t = 0.3∫ t

0

Nβx̄a(u)x̄c(u)du =

∫ t

0.1

2 · 1 · 1du = 1.4 =⇒ t = 0.65

.

so the next transition is e→ c again, at t = 0.2.
The global state x(t) of the system and the list of the active clocks changes according to the following:

• (1, 0, 0, 0, 4) at time 0, no active clock
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• (1, 0, 1, 0, 3) at time 0.1, one active clock of type c set to go off at time 1.1

• (1, 0, 2, 0, 2) at time 0.2, two active clocks of type c set to go off at times 1.1 and 1.2

• (0, 1, 2, 0, 2) at time 0.3, two active clocks of type c set to go off at times 1.1 and 1.2

• (1, 0, 2, 0, 2) at time 0.5, two active clocks of type c set to go off at times 1.1 and 1.2

At time 0.7, a transition c → a occurs. At this point, there are two active clocks of type c. Either one will
be interrupted with probability 1/2; we need to choose at random. Assume that the result of the random
choice is to interrupt the clock set to go off at time 1.2. Then Bc,52 (1.2) = 0. Note that at this point, we are
not yet sure if Bc,51 (1.1) = 1 as the first active clock may still be interrupted. However, if we continue the
simulation, it turns out that the next transition that occurs is the c → d deterministic transition at time
1.1. Accordingly, the next two transitions of the global state are:

• (2, 0, 1, 0, 2) at time 0.7, one active clock of type c set to go off at time 1.1

• (2, 0, 0, 1, 2) at time 1.1, no active clock.

At this point we know that Bc,51 (1.1) = 1. We stop with the step-by-step simulation here.

Appendix B. Proof of Lemma 5

k and i are fixed throughout the proof. Let

ul := wk + l
Ti
n
, l = 0, 1, . . . , n ,

and

ql := qi(x̄
N (ul)), l = 0, 1, . . . , n .

Then

E
(
Bi,Nk (wk)

∣∣∣Fwk

)
= E

(
Bi,Nk (wk)

∣∣∣Fu0

)
=

E

(
n∏
l=1

1 {clock k is not interrupted during the interval (ul−1, ul]}

∣∣∣∣∣Fu0

)
. (B.1)

Note that

E (1 {clock k is not interrupted during (ul, ul+1)}| Ful
) = 1− Ti

n
ql + o

(
1

n

)
, (B.2)

since ql is the exact rate of interruption at time ul. To see the first order term, note that the number of
components at time ul in state i is xNi (ul), while the total rate of Markovian transitions that interrupt one
of the components in state i is xNi (ul)

∑
j r

N
ij (xN (ul)) = xNi (ul)

∑
j rij(x̄

N (ul)), thus the rate of risk for a
single component is ∑

j

rij(x̄
N (ul)) = qi(x̄

N (ul)) = ql.

The error term in (B.2) requires some care since x̄N (u) and thus qi(x̄
N (u)) are not continuous in u. First

note that the total number of transitions over a time period of length Ti

n is stochastically dominated by a
Poisson-variable of parameter 2NRTi/n; the total rate of Markovian transitions is bounded by NR at all
times, and the factor 2 is due to the deterministic transitions, which were enabled by Markovian transitions
earlier. Thus the contribution of the change to x̄N is no more than 2RTi/n and the contribution to the
change in the rate ql(x̄

N ) is no more than 2QRTi/n, which, over a time interval of length Ti/n remains
O
(

1
n2

)
= o

(
1
n

)
.
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Using the towe property repeatedly, this yields

E

(
E

(
n∏
i=1

1 {clock k is not interrupted during (ui−1, ui)}

∣∣∣∣∣Fu1

)∣∣∣∣∣Fu0

)
=

= E

(
1 {clock k is not interrupted during (u0, u1)}×

E

(
n∏
l=2

1 {clock k is not interrupted during (ul−1, ul)}

∣∣∣∣∣Fu1

)∣∣∣∣∣Fu0

)
= · · · = (B.3)

= E

(
n∏
l=1

E
(
1 {clock k is not interrupted during (ul−1, ul)}| Ful−1

)∣∣∣∣∣Fu0

)
=

= E

(
n∏
l=1

(
1− Ti

n
ql−1 + o

(
1

n

))∣∣∣∣∣Fu0

)
=

= E

(
n∏
l=1

exp

(
−Ti
n
ql−1 + o

(
1

n

))∣∣∣∣∣Fu0

)
=

= E

(
(1 + o(1)) exp

(
−Ti
n

n∑
l=1

ql−1

)∣∣∣∣∣Fu0

)
.

On the other hand,

E

(
exp

(
−
∫ wk+Ti

τ=wk

qi(x̄
N (τ))dτ

)∣∣∣∣∣Fu0

)
=

= E

(
exp

(
−

n∑
l=1

∫ tl

τ=tl−1

qi(x̄
N (τ))dτ

)∣∣∣∣∣Fu0

)
=

= E

(
exp

(
−

n∑
i=1

Ti
n
ql−1 + o

(
1

n

))∣∣∣∣∣Fu0

)
=

= E

(
(1 + o(1)) exp

(
−Ti
n

n∑
l=1

ql−1

)∣∣∣∣∣Fu0

)
.

Letting n→∞ shows

E
(
Bi,Nk (wk)

∣∣∣Fu0

)
= E

(
exp

(
−
∫ wk+Ti

τ=wk

qi(x̄
N (τ))dτ

)∣∣∣∣∣Fu0

)

and finishes the proof of Lemma 5.

Appendix C. Proof of Lemma 6

We first assert that the function

f(z) = fi,N (z) := exp

(
−
∫ z+Ti

τ=z

qi(x̄
N (τ))dτ

)
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as a function of z has bounded total variation over the interval [0, T − Ti]; moreover, its total variation has
a bound independent from N . Consider

|f(z + δ(z))− f(z)| =∣∣∣∣∣exp

(
−
∫ z+δ(z)+Ti

τ=z+δ(z)

qi(x̄
N (τ))dτ

)
− exp

(
−
∫ z+Ti

τ=z

qi(x̄
N (τ))dτ

)∣∣∣∣∣ ≤∣∣∣∣∣
∫ z+δ(z)+Ti

τ=z+δ(z)

qi(x̄
N (τ))dτ −

∫ z+Ti

τ=z

qi(x̄
N (τ))dτ

∣∣∣∣∣ ≤∣∣∣∣∣
∫ z+δ(z)

τ=z

qi(x̄
N (τ))dτ

∣∣∣∣∣+

∣∣∣∣∣
∫ z+Ti+δ(z)

τ=z+Ti

qi(x̄
N (τ))dτ

∣∣∣∣∣ ≤ 2δ(z)Q,

meaning that the total variation over the interval [0, T − Ti] is certainly no more than 2QT . (Lipschitz-
continuity of the function exp(−x) for x ≥ 0 was used.)

For a fixed ε > 0, we intend to write f(z) in the form

f(z) = gε(z) + hε(z) z ∈ [0, T − Ti],

where g = gi,N,ε is a piecewise constant function with 0 ≤ g(z) ≤ 1 and ‖h‖∞ ≤ ε. Their exact definition is
as follows. Take the ε–quantiles of the variance function of f(z); that is, let z0 = 0 and

zl = inf {z : z > zl−1, |f(z)− f(zl−1)| ≥ ε} .

Let K denote the number of quantiles up to T (zK = T ); due to the bounded total variation, K is certainly
no more than d2QT/εe, independent of N .

Let g be the piecewise constant function

g(z) = f(zl) if z ∈ (zl−1, zl];

the choice of zl’s guarantees that for h(z) = f(z)− g(z), |h(z)| ≤ ε. Also, 0 ≤ g(z) ≤ 1.

∣∣∣∣∣
∫ t−Ti

z=0

exp

(
−
∫ z+Ti

τ=z

qi(x̄
N (τ))dτ

)
1

N
d

(∑
h∈SI

Phi

(
N

∫ z

0

x̄Nh (u)rhi(x̄
N (u)) du

))

−
∑
h∈SI

∫ t−Ti

z=0

exp

(
−
∫ z+Ti

τ=z

qi(x̄
N (τ))dτ

)
x̄Nh (z)rhi(x̄

N (z)) dz

∣∣∣∣∣ =∣∣∣∣∣
∫ t−Ti

z=0

(g(z) + h(z))
1

N
d

(∑
h∈SI

Phi

(
N

∫ z

0

x̄Nh (u)rhi(x̄
N (u)) du

))

−
∑
h∈SI

∫ t−Ti

z=0

(g(z) + h(z))x̄Nh (z)rhi(x̄
N (z)) dz

∣∣∣∣∣ .
The g(z) and h(z) parts are estimated slightly differently.
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∣∣∣∣∣
∫ t−Ti

z=0

g(z)
1

N
d

(∑
h∈SI

Phi

(
N

∫ z

0

x̄Nh (u)rhi(x̄
N (u)) du

))
−
∑
h∈SI

∫ t−Ti

z=0

g(z)x̄Nh (z)rhi(x̄
N (z)) dz

∣∣∣∣∣ ≤
K∑
l=1

g(zl)

∣∣∣∣∣
∫ zl

z=zl−1

1

N
d

(∑
h∈SI

Phi

(
N

∫ z

0

x̄Nh (u)rhi(x̄
N (u)) du

))
−
∑
h∈SI

∫ zl

z=zl−1

x̄Nh (z)rhi(x̄
N (z)) dz

∣∣∣∣∣ ≤
K∑
l=1

1 ·

∣∣∣∣∣
∫ zl

z=zl−1

1

N
d

(∑
h∈SI

Phi

(
N

∫ z

0

x̄Nh (u)rhi(x̄
N (u)) du

))
−
∑
h∈SI

∫ zl

z=zl−1

x̄Nh (z)rhi(x̄
N (z)) dz

∣∣∣∣∣ ≤
K · sup

s,t∈[0,T ]

∣∣∣∣∣ 1

N

∑
h∈SI

Phi

(
N

∫ t

s

x̄Nh (u)rhi(x̄
N (u)) du

)
−
∑
h∈SI

∫ t

s

x̄Nh (u)rhi(x̄
N (u)) du

∣∣∣∣∣ ≤
d2QT/εe ·

∑
h

sup
s,t∈[0,RT ]

∣∣∣∣ 1

N
(Phi(Nt)− Phi(Ns))− (t− s)

∣∣∣∣ . (C.1)

The last expression is very similar to the functional strong law of large numbers for the Poisson process,
and it is indeed a straightforward consequence:

sup
s,t∈[0,T ]

∣∣∣∣ 1

N
Phi

(
N

∫ t

s

rhi(x̄
N (u))du

)
−
∫ t

s

rhi(x̄
N (u))du

∣∣∣∣→ 0

almost surely since

sup
s,t∈[0,T ]

∣∣∣∣∫ t

s

·
∣∣∣∣ = sup

s,t∈[0,T ]

∣∣∣∣∫ t

0

· −
∫ s

0

·
∣∣∣∣ ≤ 2 sup

t∈[0,T ]

∣∣∣∣∫ t

0

·
∣∣∣∣ .

For the h(z) part,∣∣∣∣∣
∫ t−Ti

z=0

h(z)
1

N
d

(∑
h
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(
N
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−
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h
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N
d
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h
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(
N
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+
∑
h
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ε
1

N
d

(∑
h
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N

∫ z

0
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))
+
∑
h

∫ t−Ti
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ε
∑
h

sup
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(∣∣∣∣ 1

N
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(∫ s

0

x̄Nh (u)rhi(x̄
N (u))du

)∣∣∣∣+

∣∣∣∣∫ s
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x̄Nh (u)rhi(x̄
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∣∣∣∣) ≤
ε
∑
h

(
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N
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∣∣∣∣
)
. (C.2)

Given that d2QT/εe is independent of N in (C.1), we get that∣∣∣∣∣
∫ t−Ti

z=0

exp

(
−
∫ z+Ti

τ=z

qi(x̄
N (τ))dτ

)
1

N
d

(∑
h

Phi

(
N

∫ z

0

x̄Nh (u)rhi(x̄
N (u)) du

))

−
∑
h

∫ t−Ti

z=0

exp

(
−
∫ z+Ti

τ=z

qi(x̄
N (τ))dτ

)
x̄Nh (z)rhi(x̄

N (z)) dz

∣∣∣∣∣ ≤
≤ 2εRT |S|+ JN ,

where JN → 0 almost surely as N →∞ for any fixed ε. Letting ε→ 0 finishes the proof of Lemma 6.
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