Basic Probability 2

Stochastics

Illés Horváth

2021/09/14
A random variable is a random number. The distribution of a random variable is the possible values and their probabilities.
For a discrete variable X, the distribution can be described by the values

$$
\mathbb{P}(X = k) = p_k, \quad k = 0, 1, \ldots
$$
Distributions

A random variable is a random number. The distribution of a random variable is the possible values and their probabilities. For a discrete variable X, the distribution can be described by the values

$$P(X = k) = p_k, \quad k = 0, 1, \ldots$$

For a continuous random variable X, its distribution is described by the cumulative distribution function (cdf)

$$F(x) = P(X < x),$$

or by the probability density function

$$f(x) = \frac{dF(x)}{dx}.$$
The same (or similar) distributions may arise from completely different random experiments. We are going to discuss several notable distributions.
Notable distributions
Two-dimensional distributions
Problems

Bernoulli distribution

The same (or similar) distributions may arise from completely different random experiments. We are going to discuss several notable distributions.

X has Bernoulli distribution with parameter p, or $X \sim \text{I}(p)$ for short, if

\[
P(X = 1) = p, \quad P(X = 0) = 1 - p.
\]

X can be interpreted as the result of a single trial where the probability of success is p.

\[
\mathbb{E}(X) = p.
\]
Discrete uniform distribution

X has *discrete uniform distribution* with parameter n, or $X \sim DU(n)$, if

$$
P(X = k) = \frac{1}{n}, \quad k = 1, \ldots, n.
$$

X can be interpreted as the result of a roll with a fair n-sided die.

$$
\mathbb{E}(X) = \frac{1 + n}{2}.
$$
X has geometric distribution with parameter p, or $X \sim \text{GEO}(p)$, if

$$P(X = k) = p(1 - p)^{k-1}, \quad k = 1, 2, \ldots$$

X can be interpreted as the number of trials needed to get the first success, if each trial is independent and successful with probability p.

$$E(X) = \frac{1}{p}.$$
Geometric distribution

X has geometric distribution with parameter p, or $X \sim \text{GEO}(p)$, if

$$P(X = k) = p(1 - p)^{k-1}, \quad k = 1, 2, \ldots$$

X can be interpreted as the number of trials needed to get the first success, if each trial is independent and successful with probability p.

$$E(X) = \frac{1}{p}.$$

Example. We keep rolling a fair 6-sided die until we roll a 6. The total number of rolls has distribution GEO(1/6).
Y has \textit{pessimistic geometric distribution} with parameter \(p \), or

\(Y \sim \text{PGEO}(p) \), if

\[P(Y = k) = p(1 - p)^k, \quad k = 0, 1, \ldots \]

\(Y \) can be interpreted as the number of trials \textit{before} the first success, if each trial is independent and successful with probability \(p \) (so not counting the actual successful trial).

\[\mathbb{E}(Y) = \frac{1}{p} - 1. \]
Pessimistic geometric distribution

Y has *pessimistic geometric distribution* with parameter p, or $Y \sim \text{PGEO}(p)$, if

$$
\Pr(Y = k) = p(1 - p)^k, \quad k = 0, 1, \ldots
$$

Y can be interpreted as the number of trials *before* the first success, if each trial is independent and successful with probability p (so not counting the actual successful trial).

$$
\mathbb{E}(Y) = \frac{1}{p} - 1.
$$

If $X \sim \text{GEO}(p)$, then $Y = X - 1 \sim \text{PGEO}(p)$ and vice versa.
Binomial distribution

X has *binomial distribution* with parameters n and p, or $X \sim \text{BIN}(n, p)$, if

$$\mathbb{P}(X = k) = \binom{n}{k} p^k (1 - p)^{n-k}, \quad k = 0, 1, \ldots, n.$$

$$\left(\binom{n}{k} = \frac{n!}{k!(n-k)!} \right)$$

X can be interpreted as the number of successful trials from n trials if each trial is independent and successful with probability p.

$$\mathbb{E}(X) = np.$$
Binomial distribution

X has \textit{binomial distribution} with parameters n and p, or $X \sim \text{BIN}(n, p)$, if

\[
\mathbb{P}(X = k) = \binom{n}{k} p^k (1 - p)^{n-k}, \quad k = 0, 1, \ldots, n.
\]

X can be interpreted as the number of successful trials from n trials if each trial is independent and successful with probability p.

\[
\mathbb{E}(X) = np.
\]

Example. If we flip a fair coin 10 times, the number of heads has distribution $\text{BIN}(10, 1/2)$.
X has *Poisson distribution* with parameter λ, or $X \sim \text{POI}(\lambda)$, if

$$
P(X = k) = \frac{\lambda^k}{k!} e^{-\lambda}, \quad k = 0, 1, \ldots
$$

X can be used to model the number of *rare events*, where the average number of events is λ. We assume that the events are coming from many different independent sources, and the contribution of each source is small.

$$
\mathbb{E}(X) = \lambda.
$$
Example. We know that on a low traffic road, on average 2 cars pass per minute. Then the number of cars passing in a given 1 minute interval has distribution POI(2).

Consider the following. The number of potential cars that can pass on the road in a given time interval is large, but the probability that a given car will pass there is very small; still, overall, the average number of cars is 2.
Example. We know that on a low traffic road, on average 2 cars pass per minute. Then the number of cars passing in a given 1 minute interval has distribution $\text{POI}(2)$. Consider the following. The number of potential cars that can pass on the road in a given time interval is large, but the probability that a given car will pass there is very small; still, overall, the average number of cars is 2.
Example. We know that on a low traffic road, on average 2 cars pass per minute. Then the number of cars passing in a given 1 minute interval has distribution $POI(2)$. Consider the following. The number of potential cars that can pass on the road in a given time interval is large, but the probability that a given car will pass there is very small; still, overall, the average number of cars is 2.

Example. The number of fires in a city in a given year has Poisson distribution.
Example. We know that on a low traffic road, on average 2 cars pass per minute. Then the number of cars passing in a given 1 minute interval has distribution $\text{POI}(2)$.

Consider the following. The number of potential cars that can pass on the road in a given time interval is large, but the probability that a given car will pass there is very small; still, overall, the average number of cars is 2.

Example. The number of fires in a city in a given year has Poisson distribution.

Example. The number of packages arriving to an internet server in a given time interval has Poisson distribution.

Example. The number of errors in a book has Poisson distribution.
X has *uniform distribution* over the interval $[a, b]$, or $X \sim \text{U}(a, b)$, if its pdf is

$$f(x) = \frac{1}{b-a}, \quad x \in [a, b].$$

This is a continuous distribution that can be used to model a random point within an interval.

$$\mathbb{E}(X) = \frac{a+b}{2}.$$
Exponential distribution

\(X \) has *exponential distribution* with parameter \(\lambda \), or \(X \sim \text{EXP}(\lambda) \), if its pdf is

\[
f(x) = \lambda e^{-\lambda x}, \quad x \in [0, \infty).
\]

This is a continuous distribution that can be used to model the time of the first occurrence of a random event.

\[
\mathbb{E}(X) = \frac{1}{\lambda}.
\]

\(\lambda \) is the *rate* or density, so if \(\lambda \) is larger, \(X \) is typically smaller.
Exponential distribution

X has *exponential distribution* with parameter λ, or $X \sim \text{EXP}(\lambda)$, if its pdf is

$$f(x) = \lambda e^{-\lambda x}, \quad x \in [0, \infty).$$

This is a continuous distribution that can be used to model the time of the first occurrence of a random event.

$$\mathbb{E}(X) = \frac{1}{\lambda}.$$

λ is the *rate* or density, so if λ is larger, X is typically smaller.

Examples. The time we have to wait for the first car to pass / first fire in a city / first request arriving to an internet server etc. has exponential distribution.
Normal distribution

X has normal distribution with parameters μ and σ, or $X \sim N(\mu, \sigma)$, if its pdf is

$$f(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}, \quad x \in \mathbb{R}.$$

This is a continuous distribution that can be used to model a random number that is typically close to its mean, but can also be further away with smaller probability.

$$\mathbb{E}(X) = \mu, \quad \mathbb{D}(X) = \sigma.$$
Normal distribution

Example. The height (or other physical attributes) of a random person in a population can be modeled by normal distribution.

Example. Measurement error is often modeled by normal distribution.
Example. The height (or other physical attributes) of a random person in a population can be modeled by normal distribution. Example. Measurement error is often modeled by normal distribution.
Pareto distribution

X has *Pareto distribution* with parameters $A > 0$ (scale) and $\alpha > 0$ (shape), or $X \sim \text{Pareto}(A, \alpha)$, if its cdf is

$$F(x) = 1 - \left(\frac{A}{x} \right)^\alpha, \quad x \geq A.$$

This is a continuous distribution that can be used to model random numbers where extremely large values may also occur.

$$\mathbb{E}(X) = \begin{cases} \frac{\alpha A}{\alpha - 1} & \alpha > 1 \\ \infty & 0 < \alpha \leq 1 \end{cases}$$

Example. The size of cities can be modeled by Pareto distribution.
Example. The distribution of wealth within a society can be modeled by Pareto distribution.
Notable distributions
Two-dimensional distributions
Problems

Pareto distribution

X has *Pareto distribution* with parameters $A > 0$ (scale) and $\alpha > 0$ (shape), or $X \sim \text{Pareto}(A, \alpha)$, if its cdf is

$$F(x) = 1 - \left(\frac{A}{x} \right)^\alpha, \quad x \geq A.$$

This is a continuous distribution that can be used to model random numbers where extremely large values may also occur.

$$\mathbb{E}(X) = \begin{cases} \frac{\alpha A}{\alpha - 1} & \alpha > 1 \\ \infty & 0 < \alpha \leq 1 \end{cases}$$

Example. The size of cities can be modeled by Pareto distribution. Example. The distribution of wealth within a society can be modeled by Pareto distribution.
The pdf of the normal distribution decays very rapidly, the exponential distribution is still fast, Pareto is slower.
Assume two discrete random variables X and Y are given on the same probability space. Then their \textit{joint 2-dimensional distribution} can be described by

$$p_{k,l} = \mathbb{P}(X = k, Y = l), \quad k = 0, 1, \ldots, l = 0, 1, \ldots,$$

where the $p_{k,l}$’s are nonnegative and add up to 1.
Two-dimensional distributions

Assume two discrete random variables X and Y are given on the same probability space. Then their \textit{joint 2-dimensional distribution} can be described by

$$p_{k,l} = \mathbb{P}(X = k, Y = l), \quad k = 0, 1, \ldots, l = 0, 1, \ldots,$$

where the $p_{k,l}$'s are nonnegative and add up to 1.

The \textit{marginal distributions} of X and Y can be computed as

$$\mathbb{P}(X = k) = \sum_{l=0}^{\infty} \mathbb{P}(X = k, Y = l),$$

$$\mathbb{P}(Y = l) = \sum_{k=0}^{\infty} \mathbb{P}(X = k, Y = l).$$
Two-dimensional distributions

If X and Y are both continuous, then their joint cumulative distribution function is

$$F(x, y) = \mathbb{P}(X < x, Y < y),$$

and their joint probability density function is

$$f(x, y) = \frac{\partial^2 \mathbb{P}(X < x, Y < y)}{\partial x \partial y}.$$
Two-dimensional distributions

If X and Y are both continuous, then their \textit{joint cumulative distribution function} is

$$F(x, y) = \mathbb{P}(X < x, Y < y),$$

and their \textit{joint probability density function} is

$$f(x, y) = \frac{\partial^2 \mathbb{P}(X < x, Y < y)}{\partial x \partial y}.$$

The \textit{marginal distributions} of X and Y have pdf’s

$$f_X(x) = \int_{\mathbb{R}} f(x, y) dy, \quad f_Y(y) = \int_{\mathbb{R}} f(x, y) dx.$$
Conditional distributions

If X and Y are discrete, then the *conditional distribution* of X assuming $Y = l$ is

$$
P(X = k | Y = l) = \frac{P(X = k, Y = l)}{P(Y = l)}.
$$
Conditional distributions

If X and Y are discrete, then the *conditional distribution* of X assuming $Y = l$ is

$$
P(X = k | Y = l) = \frac{P(X = k, Y = l)}{P(Y = l)}.
$$

If X and Y are continuous, then the conditional distribution of X assuming $Y = y$ has pdf

$$
f_{X|Y}(x|y) = \frac{f(x, y)}{f_Y(y)}.
$$
Independence

\(X \) and \(Y \) are *independent random variables* if the events \(\{ X \in A \} \) and \(\{ Y \in B \} \) are independent for any \(A, B \subseteq \mathbb{R} \).
Independence

X and Y are *independent random variables* if the events $\{X \in A\}$ and $\{Y \in B\}$ are independent for any $A, B \subseteq \mathbb{R}$.

Theorem

X and Y are independent if and only if

$$
P(X = k, Y = l) = P(X = k)P(Y = l) \quad \forall k, l = 0, 1, \ldots$$

for X, Y discrete and

$$f(x, y) = f_X(x)f_Y(y) \quad \forall x, y \in \mathbb{R}$$

for X, Y continuous.
Independence

X and Y are independent random variables if the events $\{X \in A\}$ and $\{Y \in B\}$ are independent for any $A, B \subseteq \mathbb{R}$.

Theorem

X and Y are independent if and only if

$$
\mathbb{P}(X = k, Y = l) = \mathbb{P}(X = k)\mathbb{P}(Y = l) \quad \forall k, l = 0, 1, \ldots
$$

for X, Y discrete and

$$
f(x, y) = f_X(x)f_Y(y) \quad \forall x, y \in \mathbb{R}
$$

for X, Y continuous.

If X and Y are independent, then $\mathbb{D}^2(X + Y) = \mathbb{D}^2(X) + \mathbb{D}^2(Y)$.
Expectation of functions

For a function \(g(x, y) \),

\[
\mathbb{E}(g(X, Y)) = \begin{cases}
\sum_{k=0}^{\infty} \sum_{l=0}^{\infty} g(k, l) \mathbb{P}(X = k, Y = l) & \text{for } X, Y \text{ discrete,} \\
\int \int g(x, y) f(x, y) \, dx \, dy & \text{for } X, Y \text{ continuous.}
\end{cases}
\]
Covariance

The covariance of X and Y is

$$
\text{Cov}(X, Y) = \mathbb{E}(XY) - \mathbb{E}(X)\mathbb{E}(Y).
$$

Covariance measures linear dependence between X and Y.
Covariance

The covariance of X and Y is

$$\text{Cov}(X, Y) = \mathbb{E}(XY) - \mathbb{E}(X)\mathbb{E}(Y).$$

Covariance measures linear dependence between X and Y.

If $\text{Cov}(X, Y) > 0$, then if X is large, then Y will also be typically large, and if X is small, then Y is typically also small.
The covariance of X and Y is

$$\text{Cov}(X, Y) = \mathbb{E}(XY) - \mathbb{E}(X)\mathbb{E}(Y).$$

Covariance measures linear dependence between X and Y.

If $\text{Cov}(X, Y) > 0$, then if X is large, then Y will also be typically large, and if X is small, then Y is typically also small.

If $\text{Cov}(X, Y) < 0$, then if X is large, then Y will be typically small and vice versa.
Covariance

The covariance of X and Y is

$$\text{Cov}(X, Y) = \mathbb{E}(XY) - \mathbb{E}(X)\mathbb{E}(Y).$$

Covariance measures linear dependence between X and Y.

If $\text{Cov}(X, Y) > 0$, then if X is large, then Y will also be typically large, and if X is small, then Y is typically also small.

If $\text{Cov}(X, Y) < 0$, then if X is large, then Y will be typically small and vice versa.

If X and Y are independent, then $\text{Cov}(X, Y) = 0$ (but the reverse is not true in general).
Correlation

The correlation of X and Y is

$$\text{Corr}(X, Y) = \frac{\text{Cov}(X, Y)}{\mathbb{D}(X)\mathbb{D}(Y)}.$$

Theorem (Cauchy-Schwarz inequality)

$$-1 \leq \text{Corr}(X, Y) \leq 1.$$

The correlation is basically a normalized version of the covariance.
Correlation

The correlation of \(X \) and \(Y \) is

\[
\text{Corr}(X, Y) = \frac{\text{Cov}(X, Y)}{\mathbb{D}(X) \mathbb{D}(Y)}.
\]

Theorem (Cauchy-Schwarz inequality)

\[-1 \leq \text{Corr}(X, Y) \leq 1.\]

The correlation is basically a normalized version of the covariance. \(\text{Corr}(X, Y) = 1 \) corresponds to full linear dependence between \(X \) and \(Y \).
Problem 1

We throw a fair coin 5 times. What is the probability of getting two heads?
Problem 1

We throw a fair coin 5 times. What is the probability of getting two heads?

Solution. Let X denote the number of heads; the question is $P(X = 2)$.
Problem 1

We throw a fair coin 5 times. What is the probability of getting two heads?

Solution. Let X denote the number of heads; the question is $\mathbb{P}(X = 2)$.

The distribution of X is $\text{Bin}(5, 1/2)$, and so

$$
\mathbb{P}(X = 2) = \binom{5}{2} \left(\frac{1}{2} \right)^2 \left(1 - \frac{1}{2} \right)^{5-2} = \frac{10}{32}.
$$
Problem 5

There is an average of 2.3 shark attacks registered at the beaches of Florida each year. What is the probability that in a given year, at most 1 attack occurs?

Solution. Let X denote the number of shark attacks in the given year. Then the question is $P(X \leq 1)$. The distribution of X is $X \sim \text{POI}(2.3)$, so $P(X \leq 1) = P(X = 0) + P(X = 1) = 2.3 \cdot 0! + 2.3 \cdot 1! \cdot e^{-2.3} \approx 0.331$.
Problem 5

There is an average of 2.3 shark attacks registered at the beaches of Florida each year. What is the probability that in a given year, at most 1 attack occurs?

Solution. Let X denote the number of shark attacks in the given year. Then the question is $\mathbb{P}(X \leq 1)$.
Problem 5

There is an average of 2.3 shark attacks registered at the beaches of Florida each year. What is the probability that in a given year, at most 1 attack occurs?

Solution. Let X denote the number of shark attacks in the given year. Then the question is $P(X \leq 1)$.

The distribution of X is $X \sim \text{POI}(2.3)$, so

$$P(X \leq 1) = P(X = 0) + P(X = 1) = \frac{2.3^0}{0!} e^{-2.3} + \frac{2.3^1}{1!} e^{-2.3} \approx 0.331.$$
Problem 6

A book with 500 pages contains 1000 typos (errors). What is the probability that on a random page there are at least 2 typos? (We assume that each typo appears on every page with the same probability, and independently from other typos.)
Problem 6

A book with 500 pages contains 1000 typos (errors). What is the probability that on a random page there are at least 2 typos? (We assume that each typo appears on every page with the same probability, and independently from other typos.)

Solution. Let X denote the number of errors on the selected page. Since there are 1000 errors total in the book, and each error has a probability of $1/500$ to appear on that page,
Problem 6

A book with 500 pages contains 1000 typos (errors). What is the probability that on a random page there are at least 2 typos? (We assume that each typo appears on every page with the same probability, and independently from other typos.)

Solution. Let X denote the number of errors on the selected page. Since there are 1000 errors total in the book, and each error has a probability of $1/500$ to appear on that page, the distribution of X is $X \sim \text{BIN}(1000, 1/500)$, and

$$P(X \geq 2) = 1 - P(X = 0) - P(X = 1) =$$

$$1 - \binom{1000}{0} \left(\frac{1}{500}\right)^0 \left(\frac{499}{500}\right)^{1000} - \binom{1000}{1} \left(\frac{1}{500}\right)^1 \left(\frac{499}{500}\right)^{999}.$$
Problem 6

On the other hand, 1000 errors on 500 pages means there are on average 2 errors per page.
On the other hand, 1000 errors on 500 pages means there are on average 2 errors per page. If there are on average 2 errors per page, then the number of errors on a random page has distribution $Y \sim \text{POI}(2)$, and

$$\mathbb{P}(Y \geq 2) = 1 - \mathbb{P}(Y = 0) - \mathbb{P}(Y = 1) =$$

$$1 - \frac{2^0}{0!}e^{-2} - \frac{2^1}{1!}e^{-2}.$$

So which one is correct?
Problem 6

On the other hand, 1000 errors on 500 pages means there are on average 2 errors per page. If there are on average 2 errors per page, then the number of errors on a random page has distribution $Y \sim \text{POI}(2)$, and

$$\mathbb{P}(Y \geq 2) = 1 - \mathbb{P}(Y = 0) - \mathbb{P}(Y = 1) = 1 - \frac{2^0}{0!} e^{-2} - \frac{2^1}{1!} e^{-2}.$$

So which one is correct?

Computing them numerically:

$$\mathbb{P}(X \geq 2) \approx 0.594265,$$
$$\mathbb{P}(Y \geq 2) \approx 0.593994.$$
In fact, this can be stated as a theorem.

Theorem

Let $n \to \infty$ and $p_n \to 0$ such that $np_n \to \lambda > 0$, and let $X_n \sim BIN(n, p_n)$ and $Y \sim POI(\lambda)$. Then

$$\lim_{n \to \infty} \mathbb{P}(X_n = k) = \mathbb{P}(Y = k), \quad \forall k \geq 0$$

(We also say that X_n converges in distribution to Y, or $X_n \xrightarrow{d} Y$.)
Problem 8

Assume that the age of a light bulb X (measured in 100 hours) has an exponential distribution such that $\mathbb{P}(X > 10) = 0.8$. Calculate the parameter of the exponential distribution and the mean of X.

Solution. Let λ denote the parameter of the exponential distribution. Then its cdf is $F(x) = 1 - e^{-\lambda x}$, and $\mathbb{P}(X > 10) = 1 - \mathbb{P}(X < 10) = 1 - F(10) = e^{-10\lambda} = 0.8$, from which $\lambda = -\log(0.8)/10 \approx 0.0223$, and $\mathbb{E}(X) = 1/\lambda \approx 44.8$ (in 100 hours).
Problem 8

Assume that the age of a light bulb X (measured in 100 hours) has an exponential distribution such that $P(X > 10) = 0.8$. Calculate the parameter of the exponential distribution and the mean of X.

Solution. Let λ denote the parameter of the exponential distribution. Then its cdf is

$$F(x) = 1 - e^{-\lambda x},$$

and

$$P(X > 10) = 1 - P(X < 10) = 1 - F(10) = e^{-10\lambda} = 0.8,$$

from which $\lambda = -\log(0.8)/10 \approx 0.0223$, and

$$E(X) = \frac{1}{\lambda} \approx 44.8 \text{ (in 100 hours)}.$$
Problem 10

In a class of 120 students, Stochastics and Calculus marks are as follows:

<table>
<thead>
<tr>
<th>C \ S</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>8</td>
<td>8</td>
<td>12</td>
<td>8</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>4</td>
<td>6</td>
<td>9</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>6</td>
<td>4</td>
<td>6</td>
<td>4</td>
</tr>
</tbody>
</table>

We pick a student at random; let \(X \) denote his Stochastics mark and \(Y \) his Calculus mark.

(a) \(\mathbb{P}(\text{the student failed at least one of the courses}) = ? \)
(b) \(\mathbb{E}(X) = ? \)
(c) \(\mathbb{E}(X|Y \geq 4) = ? \)
(d) Are \(X \) and \(Y \) independent?
(e) \(\text{Cov}(X, Y) = ? \)
Problem 10

Solution.

A total of 22 students failed at least one of the courses (marked with red in the table), so

\[P(\text{the student failed at least one of the courses}) = \frac{21}{120}. \]

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>8</td>
<td>8</td>
<td>12</td>
<td>8</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>4</td>
<td>6</td>
<td>9</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>6</td>
<td>4</td>
<td>6</td>
<td>4</td>
</tr>
</tbody>
</table>
Problem 10

(b) We need to compute the marginal distribution of X.

<table>
<thead>
<tr>
<th>C \ S</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>8</td>
<td>8</td>
<td>12</td>
<td>8</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>4</td>
<td>6</td>
<td>9</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>6</td>
<td>4</td>
<td>6</td>
<td>4</td>
</tr>
</tbody>
</table>

So the marginal distribution of X is

$$P(X = k) = \begin{array}{cccccc}
1 & 2 & 3 & 4 & 5 \\
12 & 24 & 24 & 36 & 24 & 24
\end{array}$$

and $E(X) = \frac{12}{120} \cdot 1 + \frac{24}{120} \cdot 2 + \frac{36}{120} \cdot 3 + \frac{24}{120} \cdot 4 + \frac{24}{120} \cdot 5 = 3.2.$
(c) We need to compute the conditional distribution of X assuming $Y \geq 4$. First note that $\mathbb{P}(Y \geq 4) = \frac{50}{120}$.

\[\begin{array}{c|ccccc}
C \backslash S & 1 & 2 & 3 & 4 & 5 \\
\hline
4 & 5 & 4 & 6 & 9 & 6 \\
5 & 0 & 6 & 4 & 6 & 4 \\
\hline
& 5 & 10 & 10 & 15 & 10 \\
\end{array} \]
(c) We need to compute the conditional distribution of X assuming $Y \geq 4$. First note that $\mathbb{P}(Y \geq 4) = \frac{50}{120}$.

\[
\begin{array}{c|ccccc}
C \setminus S & 1 & 2 & 3 & 4 & 5 \\
\hline
4 & 5 & 4 & 6 & 9 & 6 \\
5 & 0 & 6 & 4 & 6 & 4 \\
\hline
5 & 0 & 6 & 4 & 6 & 4 \\
\end{array}
\]

So the conditional distribution of X assuming $Y \geq 4$ is

\[
\begin{array}{c|ccccc}
k & 1 & 2 & 3 & 4 & 5 \\
\hline
\mathbb{P}(X = k | Y \geq 4) & \frac{5}{50} & \frac{10}{50} & \frac{10}{50} & \frac{15}{50} & \frac{10}{50} \\
\end{array}
\]

and $\mathbb{E}(X | Y \geq 4) = \frac{5}{50} \cdot 1 + \frac{10}{50} \cdot 2 + \frac{10}{50} \cdot 3 + \frac{15}{50} \cdot 4 + \frac{10}{50} \cdot 5 = 3.2$.
(d) No, for example

\[P(X = 1, Y = 5) = 0 \neq P(X = 1)P(Y = 5) = \frac{12}{120} \cdot \frac{20}{120}. \]
Problem 10

(d) No, for example

\[P(X = 1, Y = 5) = 0 \neq P(X = 1)P(Y = 5) = \frac{12}{120} \cdot \frac{20}{120}. \]

(e)

\[E(X) = 3.2, \]
\[E(Y) = 3.25, \]
\[E(XY) = \frac{1}{120} \cdot 1 \cdot 1 + \frac{2}{120} \cdot 1 \cdot 2 + \cdots + \frac{4}{120} \cdot 5 \cdot 5 = 10.4, \]
so
\[\text{Cov}(X, Y) = E(XY) - E(X)E(Y) = 0, \]
even though \(X \) and \(Y \) are not independent.
Problem 10

(d) No, for example

\[P(X = 1, Y = 5) = 0 \neq P(X = 1)P(Y = 5) = \frac{12}{120} \cdot \frac{20}{120}. \]

(e)

\[E(X) = 3.2, \]
\[E(Y) = 3.25, \]
\[E(XY) = \frac{1}{120} \cdot 1 \cdot 1 + \frac{2}{120} \cdot 1 \cdot 2 + \cdots + \frac{4}{120} \cdot 5 \cdot 5 = 10.4, \]

so

\[\text{Cov}(X, Y) = E(XY) - E(X)E(Y) = 0, \]

even though \(X \) and \(Y \) are not independent.

Bonus question: how was the table designed?