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Abstract

The theory of the regular and semi-regular polyhedra is a classical topic of geometry. However, in many cases (e.qg.
the regular and semi-regular star polyhedra), it seams to be a difficult problem to generate their numerical model
by a CAD system. In this paper we shall present a method for constructing the data structure of these polyhedra
on the basis of their symmetry group. Also a collection of regular and semi-regular solids will be visualized by
computer.

1. Introduction denote the regular star pentagon the so-called pentagram. A
solid is said to be regular if its faces are congruent regular
polygons surrounding the vertices alike. Then the vertex fig-
ures are also regular polygons. A regular solid is denoted
by a pair of numbers in braceép,q} means that the faces
are regulamp-gons and the vertex figures are regujagons.
Transposing the role of the faces and vertices we can get
the dual pair{q, p} of {p,q}. There are five convex regu-
lar solids (the well-known Platonic solids): the tetrahedron
{3,3}, the octahedrof 3,4}, the cube (hexahedrog¥, 3},

the icosahedrof3, 5}, and the dodecahedrd, 3}. More-

The regular and semi-regular solids may be interesting in over, there are four regular star solids, g} (Figure 1),
the education of geometry, of course, but some of them take {%73} (Figure 2),{5, %}, {%75}; the first one is a star icosa-
an important role in architecture and fine arts, too. It is @ hedron, and the others are star dodecahedra. The tetrahedron
very instructive (but in many cases very exhausting) prob- s self-dual, while the other solids form four dual pairs.
lem to plot and model them in descriptive and computational
geometry. Stereoscopic figures, which show also the inner Dispensing with the requirement of the congruence or
structure of these solids, were made by Imre* Rabreover regularity of faces we can get two possible way to define
we can find the photos of some gypsum and paper models semj-regular solids. In the first case we obtain 18evell-
in 1.3, Almost everyone, who works with CAD systems, has known Archimedian solids(3,6,6), (3,8,8), (3,10,10),
already created the computer model of some solids of this (4,6,6), (4,6,8), (4,6,10), (5,6,6), (3,4,3,4) (cuboctahe-
family with more or less trouble. dron),(3,4,4,4), (3,4,5,4), (3,5,3,5) (icosidodecahedron),

In this paper we shall see a simple method for creating (3:3,3,3,4), (Figure 3)(3,3,3,3,5). In the parentheses the
the data structure of a polyhedron on the basis of their sym- type of faces around a vertex are enumerated. The Archime-
metries. In this way, actually, our method can be general- dian solids are convex, however there are also non-convex
ized easily, because we could choose other finite symmetry Polyhedra in this family, for examplé3, 3,3, 3) (Figure 4)
groups, not only the symmetry group of the regular solids. ~ and(5,3,5,3). In the second case, when the faces are not
regular, essentially, we obtain the dual pairs of the previous
polyhedra. For example the rhombic dodecahedron and the
rhombic triacontahedron are the dual pairs of cuboctahedron
Conventionally, le{3}, {4}, {5}, ... denote the regular tri-  and the icosidodecahedron, respectively. The faces of these
angle, square, pentagan,, respectively, moreover Ie{tg} solids are congruent rhombi.

The theory of regular and semi-regular polyhedra is a classi-
cal topic of geometry 2 3. The five Platonic and the thirteen
Archimedian solids are the most famous representatives of
this type of polyhedra, but the four regular star solids and
numerous other convex and non-convex semi-regular solids
also belong to this family. More generally, in this paper we
shall consider those polyhedra whose symmetries form the
symmetry group of a Platonic solid (or its orientation pre-
serving subgroup).

2. Regular, semi-regular and composite solids
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Figure 3: Archimedian solid3,3,3,3,4)

Figure 1: Regular star icosahedrofi3, %}

* £

Figure 2: Regular star dodecahedrofs, 3} Figure 4: Semi-regular star solid3, 3.3, 3)

We can obtain newer star polyhedra uniting dual ones. In décanhedron with common centre and common vertices. Ro-
order to emphasize the main point of duality, we transform tating this cube successivel2 degrees about a face normal
the two solids so that their edges intersect each other perpen-_ of the dodecahedron, we can obtain the other four cubes hav-
dicularly (Figure 5, 7). In this way, theoretically, we obtain ing common vertices with the dodecahedron. The union of
five solids as compositions of the dual pairs (including the these five cubes may be an additional star polyhedron (Fig-

pair of tetrahedra), however, in this canonic posit{cgl 5} ure 11). Replacing the starting cube with its dual octahedron,
includes its dual paif5 %} <o that their union isf% 5} it- and rotating this as before, the union of the five octahedra

self. In similar manner we can construct the union of each ?r;se;‘, ) (;:lnally'/qwe ca:jn start th;‘:'] p;oced dqre W'thl onfeﬂ? r twc:)

Archimedian solid and its dual pair. elranedra, whose edges are Ihe lace diagonais of Ihe cLibe.
After rotating we can construct the union of five (Figure 13)

In Figure 6 we can see how a cube can be placed in a do- or ten tetrahedra, respectively.
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Figure 5: Dodecahedron and icosahedron Figure 7: Star dodecahedron and star icosahedron
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Figure 8: Data structure of a cube.
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Figure 6: Cube in dodecahedron

group of each polyhedron enumerated in Section 2 is iso-

Of course there are several other possibilities for creating o
morphic with one of these groups.

polyhedra with many symmetries. Our enumeration contains
only some well-known procedures. In order to obtain these symmetry groups as matrix
groups, first, let us create the data structure of the cor-
responding solids. The vertices of the tetrahedron can be
common with the cube(1,1,1); (1,—1,-1); (-1,1,-1);

In order to describe a solid, first, we enumerate its vertices (—1,—1,1). The vertices of the dodecahedron (Figure 6)
giving their coordinates. Then we also enumerate the faces are (+1,+1,4+1) (these are the vertices of the cube, t00);
as vertex cycles (polygons), in which we refer to the vertices (0,+1,+t~1); (£17%,0,+1); (£1,£171,0), wheret =

by their index (Figure 8). This simple well-known descrip- %(\TS— 1) the ratio of Golden Section (see als8). The

tion can be converted easily to the data structure of other vertex cycles of faces can be found easily on the basis of
CAD systems. Figure 6. The centre of these polyhedra is the origin of our
Cartesian coordinate system. After creating the data struc-
ture we compute the midpoint of edges and the centre of
faces.

3. Data structure and symmetries

Basically, we have to consider the grodpsC andD con-
taining the24, 48 and 120 symmetries of the tetrahedron,
the cube and the dodecahedron, respectively. Moreover in
the case of some polyhedra we shell need the orientation Now, let us consider one of the regular polyhedf®n
preserving subgroupg ™", C* andD™, too. The symmetry above. We choose a vertey, an edgesg and a facefg of P,
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Figure 9: Searching for the symmetries.

which are incident together (in other worgsis a side offo,
andyg is an endpoint o&p). We create the tripl¢vo, ep, fo)

of vectors pointing toy, the midpoint ofeyg and the cen-
tre of fp, respectively, as we can see in Figure 9. From the
coordinates of these vectors we form the matrix

Vox €ox fox
M 0= Voy eoy foy
Voz €z fox

and compute its inversd 5 2, too.

Then we enumerate each triple;, s, fj) of vertices,
edges and faces &fwhich are incident together, and create
the corresponding vector tripleyi, e, fi) as above forming
the matrix

Vix ex fix
Mi=|vy ey fy
Viz &z fi

from the coordinates of the vectors. Then the maS8ix=
Mngl (acting from the left) will describe the transfor-
mation that maps the triplévp, ep,fo) onto (vj, &, f;). This
transformation mapB onto itself, scS; is a symmetry oP.

At the and of this procedure, we obtain all the symmetries of
P. Checking the positive sign of the determinant of matrices
we can choose the orientation preserving transformations,
which will be necessary to some polyhedra. Finally, we get
the symmetry group§’, C and D, moreoverZ ¥, C* and
Dt.

The complete symmetry grougds, C andD are discrete

(©

Figure 10: Fundamental domain of symmetry graCip

on the group. While the images of the fundamental trihedron
tile the space under the symmetry group, the images of this
triangle tile the surface of the polyhedron (Figure 10.c).

We remark that the orientation preserving groaps, C*
andD™ are also discrete transformation groups. Their fun-
damental domain may be the union of two trihedron having
common faces. The edges of the domain are rotation axes,
so they must be fixed straight lines, however the faces can be
bent because these groups do not contain plane reflections.

4. Constructing the surface of polyhedra on the basis of
symmetries

In order to illustrate our method, for example, we create the
Archimedean solid® = (3,8,8) (Figure 12.b). First of all,

we can recognize that the solid has the same symmetries as
the cube. Then we can place itinto the cube so that their sym-
metries will be common metrically, too. We consider the in-
tersection of the fundamental trihedron and the solid surface.
So we get a small deltoid (of two right angles) and a rectan-
gular triangle, which adjacent along an edge (Figure 12.a).
We form the data structure of an “opened polyhedréy”
containing only these two small faces.

The following steps already can be executed algorithmi-
cally by a computer program. We apply the transformations
of the symmetry groug for Py and enlarge the data struc-

reflection groups (each can be generated by three plane re-ture with its images. Then we obtain a new (closed) polyhe-

flection) fixing the origin? 3. The fundamental domain is a
trihedron (an “infinite pyramid”) spanned by a vector triple
(v,ef) (Figure 10.a). The dihedral angles of the trihedron
depend on the group. The images of this trihedral domain un-
der the transformations of the symmetry group tile the whole
space without gaps and overlaps.

The intersection of the fundamental trihedron and the sur-
face of the corresponding regular solid is a rectangular trian-

dronP; whose data structure contai®8 faces which aréd8
deltoids and48 triangles (Figure 12.c). Finally we simplify
the structure uniting the adjacent faces in common planes. In
our case the result will be the data structurdafescribing

6 octagons an@ triangles.

In this manner, the individual part of our method is to rec-
ognize the symmetry group of the polyhedron and compute
the common part of its surface and the fundamental trihe-

gle (Figure 10.b), whose acute angles, of course, also dependdron of the group. Usually this problem can also be solved
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Figure 11: Five cubes
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Figure 12: Creating the Archimedian soliB, 8, 8)

easily even for a number of complicated polyhedra. Then the
complete surface can be formed by the computer program on
the basis of symmetries.

Of course, independently from our algorithm, it is also
possible to develop other methods for constructing addi-
tional symmetric polyhedra starting with an existing collec-
tion of them. For example it seems to be not very difficult to
form the dual pair of an Archimedian solid in general. The
following step could be to form the union and intersection of
dual polyhedra, and so on.

However, our method can be applied not only for creating
regular and semi-regular polyhedra. In fact, if we choose a
symmetry group and design some adjacent faces freely di-
viding the fundamental trihedron into a finite and an infinite
part, the result of our procedure will be a new symmetric
polyhedron. We mention that although, C andD (more-
over their orientation preserving subgroups) are the most in-
teresting symmetry groups in our point of view, there are
(infinitely) many other discrete transformation groups fixing

Figure 13: Five tetrahedra

the origin. Basically, these are the symmetry groups of regu-
lar bipyramids (for more details sé6). All of them can be
applied in a similar manner for creating symmetric polyhe-
dra.

An implementation of this program (as JAVA applet)
can be found in the home page of our department:
http://www.math.bme.hu/geom. This program generates
the polyhedra in runnung time applying the method above,
and the modells can be inspected interactively. The figures
of polyhedra in this paper were created also by this program.
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