
Implementation Tricks in the Hungarian Babel Module

Péter Szabó
Department of Analysis
Budapest University of Technology and Economics
Műegyetem rakpart 3–9.
Budapest H-1111
Hungary
pts+tug@math.bme.hu

Abstract

magyar.ldf, the Hungarian Babel module, was rewritten in the autumn of 2003
to obey most of the Hungarian typographical rules. This article describes some
implementation issues, TEX macro programming hacks, and LATEX typesetting
trickery used in magyar.ldf. All features of the new magyar.ldf are enumerated,
but only those having an interesting implementation are presented in detail. Most
of the tricks shown are useful for developing other language modules.

The Name of the Language

Usually a Babel language module has the English
name of that language. For example, the German
module is called germanb.ldf, and not deutsch.ldf.
The Hungarian module is an exception to this rule,
because it has the name magyar.ldf, in which “ma-
gyar” is the Hungarian adjective meaning “Hungar-
ian”. A similar exception is portuges.ldf for Portu-
guese. The letter “a” in word magyar has to be
pronounced as in blah, and the consonant “gy” is
the same as “d” in due.

The name of a language that a Babel language
module (.ldf file) defines is usually specified as an
argument of \LdfInit in the file. Thus, if czech.ldf
is renamed to foo.ldf, it will have to be loaded
with \usepackage[foo]{babel}, but to activate it,
\selectlanguage{czech} should be used. This is
not the case with magyar.ldf, because it detects its
loaded filename using the \CurrentOption macro
set by the \ProcessOptions command called from
babel.sty. So whatever magyar.ldf is renamed to,
that name is the one to pass to \selectlanguage.

The only reason why someone may want to re-
name an .ldf file is to load two different versions in
the same LATEX run. This is possible with magyar.ldf,
but the user should be aware that the control se-
quences defined by the two copies will interact with
each other in an unpredictable way. Experiments
have shown that it is possible to load two copies
of magyar.ldf with different load options (this is the
so-called dual load):

\PassOptionsToPackage{frenchspacing=yes}
{magyar.ldf}

\PassOptionsToPackage{frenchspacing=no}
{hungarian.ldf}

\usepackage[hungarian,magyar]{babel}

Despite the name hungarian.ldf above, the
file magyar.ldf gets loaded twice, because Babel
translates the language name hungarian to file
name magyar.ldf, and magyar.ldf expects options for
\CurrentOption.ldf, which depends on the lan-
guage name passed to \usepackage[...]{babel}.
Since the dual load feature of magyar.ldf is experi-
mental, most of the load options cannot be differ-
ent in the two copies. So the safest way to load
two copies is to replace the occurrences of the word
magyar in the second copy with something else.

The latest magyar.ldf (version 1.5) is not part of
standard Babel yet, but it is available as part of Mag-
yarLATEX (see section ?!?). Most of the typographical
rules it tries to obey and problems it addresses were
proposed in [1].

What an .ldf File Contains

An .ldf file is a Babel language module, which con-
tains specific macros for the given language. It is
loaded by babel.sty in the document preamble, at the
time babel.sty itself is loaded. The macros defined in
foo.ldf take effect only after changing the language
with \selectlanguage{foo}. The default language
is the one specified last in the \usepackage[...]
{babel} command.

Babel itself contains the standard versions of
the .ldf files as tex/generic/babel/*.ldf. In
Babel 3.7 there are 41 of them; most are smaller
than 10 kB. The largest files are: the old magyar.ldf
defining the Hungarian language (25 kB), frenchb.ldf

TUGboat, Volume 0 (2060), No. 0 —Proceedings of the 2060 Annual Meeting 1001

Péter Szabó

defining the French language (23 kB), spanish.ldf
(21 kB), bulgarian.ldf (13 kB), ukraineb.ldf defining
the Ukrainian language (12 kB), russianb.ldf (12 kB)
and greek.ldf (9 kB). The new version of magyar.ldf
is much larger than any of these: it is 178 kB. The
size implies much more functionality, including sev-
eral features unique to this new magyar.ldf — they
will be discussed later in this document. Let’s pro-
ceed first by dealing with features common in most
.ldf files.

Selecting the Hyphenation Pattern Set foo.ldf
must define the control sequence \l@foo to be a
number (\newcount, \chardef, etc.) representing
the hyphenation pattern set to be used for that lan-
guage. The language selection macro \selectlanguage{foo}
calls \language=\l@foo,
which activates the hyphenation patterns for the
language foo.

The patterns were (presumably) defined with
the \patterns primitive at the time iniTEX was
called to generate the format file. The exact file-
name containing the \patterns command is speci-
fied in the file language.dat. If there is a line “foot
fthypen.tex” in language.dat, then \language
=\l@foot will activate \patterns found in fthyph.
tex. In that case, foo.ldf should contain a line
\let\l@foo\l@foot. But this line is omitted in
most actual .ldf files, because the Babel language
name and the hyphenation pattern set name is the
same (language.dat would contain an entry start-
ing with foo in our example). Note that the file
fthyph.tex is read by iniTEX, not LATEX, so the for-
mat files have to be re-generated each time fthyph.
tex is changed.

Three different hyphenation pattern sets have
been proposed for the Hungarian language (namely,
huhyph3.tex, huhyphc.tex and huhyphf.tex). All
of them are maintained by Gyula Mayer [4]. The
most important difference among them is the way
they hyphenate at subword boundaries of compound
words. The document author can select any of
these three by providing the appropriate load option
to magyar.ldf (discussed later). The options work
by redefining \l@magyar to be one of \l@magyarf,
\l@magyarc, or \csname l@magyar3\endcsname.

There are two different correct ways to hyphen-
ate compound words in Hungarian. magyarf hyphen-
ates the most common foreign compound words of
Hungarian text phonetically (e.g. szink-ron, mean-
ing synchronous), while magyarc hyphenates them
on the subword boundary (e.g. szin-kron). ma-
gyar3 is the old version of the hyphenation patterns
which hyphenates most composite words phoneti-

cally (even non-foreign ones), save only a few ex-
ceptions listed explicitly. However, in all the three
cases, hyphenation of foreign words cannot be per-
fect, because all of them cannot be specified in
\patterns.

magyar.ldf redefines \l@magyar depending on
the hyphenation= load option. If a given pattern set
may be missing from the user’s system, magyar.ldf
falls back to another set with a meaningful warn-
ing message. Hyphenation is disabled not by choos-
ing \language0, as Babel does, because \language0
may contain valid patterns for a different language,
but rather \language255, which is very likely to
be unused since LATEX assigns \language numbers
from zero.

Defining Captions LATEX generates some words
and phrases automatically. For example, \tableof
contents should emit the phrase “Table of con-
tents” in the native language. The same applies
for \captions of figures and tables, and also for
\chapter titles. Thus Babel expects foo.ldf to de-
fine a macro called \captions foo containing defini-
tions like \def\abstractname {Absztrakt}. These
definitions are executed by \selectlanguage each
time the language is activated. So it is possible to
have an English and then a Hungarian chapter in a
book numbered ‘Chapter 1’ and ‘2. fejezet’, respec-
tively:
\chapter{foo} ...
\selectlanguage{magyar}\chapter{bar}

magyar.ldf has the proper definitions of Hungarian
phrases. Some words contain accented letters, which
are specified as commands (e.g. \’a for á) and not
single 8-bit characters, so their interpretation does
not depend on the active input encoding, i.e. the
load option of inputenc.sty.

Generating Dates foo.ldf should define a macro
\datefoo to define the macro \today, which emits
a date (specified by the \year, \month, \day regis-
ters) correctly for that language. The month name
should be printed as a non-abbreviated word. The
definition of \today is used by \@date invoked in
\maketitle in the standard document classes.

In addition to defining \today, magyar.ldf de-
fines the macro \ondatemagyar to further define
\ontoday, which emits the date with the Hungarian
equivalent of English on. The Hungarian language
has suffixes instead of prepositions, and each suffix
has several forms which must follow the vowel har-
mony of the word it is suffixed to. Thus “on March
15” is emitted as március 15-én, but “on March 16”
is március 16-án, showing that the -án/-én suffix
has two forms.

1002 TUGboat, Volume 0 (2060), No. 0 — Proceedings of the 2060 Annual Meeting

Implementation Tricks in the Hungarian Babel Module

Minimum Hyphenation Length TEX won’t in-
sert an implicit hyphen into the first \lefthyphenmin
characters of words, nor in the last \righthyphenmin
characters. The default TEX values for these are 2
and 3, respectively, which are suitable for the En-
glish language. foo.ldf can override the default by
defining the macro \foohyphenmins to be lr, two
digits specifying the left and the right minimum, re-
spectively.

What magyar.ldf does depends on its load op-
tions. The default is to follow Hungarian typogra-
phy: \def\magyarhyphenmins{22}.

Nine of the 41 .ldf files in Babel 3.7 do only
the customizations described to this point. 25 lan-
guages go a little beyond these, and 7 languages go
much beyond. Of those 25 + 7 languages that go
beyond, we will compare frenchb.ldf in detail to ma-
gyar.ldf, because French and Hungarian share some
typographical rules.

Defining Special Letters Many languages have
letters that are missing from the standard OT1 en-
coding, and some characters are missing even from
T1. These should be implemented in .ldf files as
control sequences. It is a common practice to mod-
ify the meaning of an existing letter, for example
czech.ldf contains \DeclareTextCompositeCommand
{\v}{OT1}{t}{...}. However, this declaration is
contained in \AtBeginDocument, so they are in ef-
fect even when not the Czech language is active.
This should have been avoided.

The correct solution is to use the extras facil-
ity provided by Babel: foo.ldf can have a macro
\extrasfoo, which is executed each time the lan-
guage foo is activated; and the macro \noextrasfoo
is executed when the active language is about to
change (because of a \selectlanguage command
or when the end-of-group is reached). It is a com-
mon practice in \extrasfoo to save the meaning of
a macro with \babel@save, or a meaning of a count,
dimen or skip register with \babel@savevariable.
The saved meanings will be restored just after
\noextrasfoo is executed. Babel provides the com-
mand \addto that can append tokens to the defini-
tion of an existing macro. The idiom \addto\extras

foo{\babel@save\bar \def\bar{foo-bar}} is typical,
which gives a new meaning to \bar while the lan-
guage foo is active.

The macro to be saved for \DeclareText
CompositeCommand{\v}{OT1} is \OT1\v (with the
second backslash being part of the control sequence),
but assigning the new meaning would be problem-
atic, since DeclareTextCompositeCommand can be
used only in the preamble. Thus the correct solution

would involve fiddling with undocumented LATEX in-
ternals; which is probably why czech.ldf contains the
problematic workaround using \AtBeginDocument.

Fortunately, the only non-English letters in the
Hungarian language are accented vowels (á, é, ı́, ó,
ö, ő, ú, ü and ű), which are all part of the T1 encod-
ing. The letters ő and ű with the special Hungarian
double-acute accent are missing from the Latin-1 en-
coding (ISO-8859-1), but are part of Latin-2. So au-
thors dealing with Hungarian are encouraged to use
\usepackage[latin2]{inputenc}.1 \usepackage
{t1enc} is also recommended, so TEX will be able
to hyphenate words containing accented letters.

The finest Hungarian books have accents low-
ered a little bit. This is accomplished for the dieresis
accent (¨) by calling the \umlautlow command (de-
fined by Babel) in \extrasmagyar. No serious at-
tempt is made to make this work for all three Hun-
garian accents, because the technology \umlautlow
is based on works only for the OT1 encoding (which
composes accented letters), but most Hungarian
texts use the T1 encoding to allow hyphenation in
words with accented letters.

The lowering of accents is possible using virtual
fonts. But TEX font families come with too many
variations and design sizes, so the virtual font gen-
eration would need to be automated. The macro
\lower@umlaut in babel.def lowers accents by forc-
ing their top to be 1.45 ex above the baseline. The
\accent primitive lowers its accent by \fontdimen5
\font-1ex, so the top of the accent can be forced
to 1.45 ex by setting \fontdimen5\font:=\ht0 -
0.45ex, where \ht0 is the height of the accent char-
acter (\char127 in the OT1 encoding).

The lowering, in the case of ü, is as small as
0.43558 pt. Even this tiny displacement can make
a visible difference: “ü < ü”. The lowering method
could be made adaptive by rendering the glyphs in-
volved at high resolution, measuring the number of
pixels between the accent and the letter vertically,
and then lowering the accent so the distance will be
a prescribed constant value.

Neither home users nor professionals use low-
ered accents in Hungary today, not even with books
created with LATEX —the original fonts with the T1

encoding are acceptable enough not to bother chang-
ing. TypoTEX Ltd., one of the biggest Hungar-
ian publishing houses using TEX, developed the OM

1 The most common incorrect letters found in Hungar-
ian texts are õ and û: their presence is caused by software
incapable of using Unicode or the Latin-2 encoding. These
letters can be seen even on some huge advertisement banners
on streets in Hungary. These texts were not typeset by TEX,
of course!

TUGboat, Volume 0 (2060), No. 0 —Proceedings of the 2060 Annual Meeting 1003

Péter Szabó

fonts in the early 1990s for use with plain TEX. The
OM fonts are a variation of CM fonts with Hungar-
ian accented glyphs added (with lowered accents).
However, it is not worth creating .fd files for the
OM fonts for use with LATEX, because with the same
amount of work new virtual fonts could be created
from the EC fonts, which would take advantage of
the full T1 character set, and existing, hinted fonts
in Type 1 formats (such as the CM-Super fonts).

Hyphenation of Long Double Consonants Hy-
phenating long double consonants in Hungarian is
a difficult typographical problem. For example, the
correct way to hyphenate the double consonant tty =
ty + ty in the word hattyú (“swan”) is haty-tyú.
(There is a similar problem in German with words
containing ck ; [5] documents more languages with
more exceptions.) The long double consonants in-
volved are: ccs, ddz, ddzs, ggy, nny, ssz, tty and zzs.
TEX’s automatic hyphenation algorithm cannot deal
with such exceptions, but adding ligatures dealing
with the dash inserted by the implicit hyphenation
can solve the problem. The simple trick of having
\patterns{t1ty} and t + - → ty-2 seems to solve
the problem, because it hyphenates tty as ty-ty, but
it also inserts an extra y before the hyphen in fut-
szalad. Normal patterns will also insert an implicit
hyphen into botcsinálta, yielding bot-csinálta. The
ligature program above would then incorrectly alter
that to boty-csinálta.

So a more elaborate set of ligatures would have
to be constructed, to detect the context of the hy-
phen and insert the y only into t-ty, yielding ty-
ty. Or, equivalently, using \patterns{tt1y gg1y}
with context-sensitive ligatures changing tt-y to ty-
ty and gg-y to gy-gy, etc. This solution uses up
many character positions from the font, and many
many extra ligatures are involved. Also, the user
must know that to produce an actual t-ty (which
almost never appears in Hungarian), t{}-ty must
be used.

All of this can be accomplished using virtual
fonts. The author has tested to see that the con-
cept works by decompiling aer10.vf to aer10.vpl and
modifying the (LIGTABLE). However, automation of
the virtual font generation is work remaining for the
future.

Hyphenation of the double two-character con-
sonants ggy and ssz is similar to tty. However,
compound words such as leggyakoribb (“most fre-
quent”) and vasszekér (“iron chariot”) should be
hyphenated at the subword boundary without the
addition of extra letters, i.e. as leg-gyakoribb and

2 (LABEL C t) (LIG C - C y) in the .pl file.

vas-szekér. Extra \patterns may be added, for
example \patterns{gg1y .leg1g4yakoribb.}, to
disable insertion of y for each important compound
word. This is quite straightforward, because it does
not require more ligatures (apart from the context
sensitive ligature program changing gg-y to gy-gy).

One might suggest context-sensitive ligatures
could be avoided if ty is introduced as a new sin-
gle letter. But this won’t work because, step (1):
‘t t y’ has to be converted to ‘ty ty’ using more than
one ligature, and then step (2): further conversion
to ‘t ty’ if there is no line break, but TEX won’t run
its hyphenation algorithm in the middle of ligature
processing, between steps (1) and (2).

The current approach of magyar.ldf for handling
long double consonants is a compromise. By de-
fault, the patterns do not hyphenate those conso-
nants, and the character ‘ is made active (with the
standard Babel command \declare@shorthand), so
that, for example ‘tty emits t\nobreak
\discretionary{y-}{}{}ty \nobreak \hskip
\z@skip. The first \nobreak is used to enable au-
tomatic hyphenation before the ‘tty construct, and
the last \nobreak plus the \hskip enable hyphen-
ation after the construct. Thus the word typed as
megho‘sszabbı́t will be hyphenated as meg-hosz-
szab-bı́t. Similar shorthands are added for the
other long consonants. The compromise is that the
user has to be aware that he has to insert ‘s man-
ually. A Perl script named ccs extract.pl was devel-
oped to collect all occurrences of double consonants
in a document so the user can review them and de-
cide about the insertion of ‘ for each.

Table and Figure Captions The document class
defines \@makecaption, which is responsible for type-
setting a caption for tables and figures. Some .ldf
files, including frenchb.ldf and magyar.ldf override
the default behaviour. magyar.ldf changes the colon
separating the caption heading (e.g. “1. táblázat”,
or “Table 1”) from the caption text to a full stop, in
keeping with Hungarian typography. Furthermore,
the longcaption= load option controls what should
happen when the caption doesn’t fit in a single line:
whether it should be centered, and whether there
should be a line break after the caption heading.

The tablecaptions= and figurecaptions=
load options control the appearance of the caption
heading by redefining both \fnum@table and \fnum
@figure. The default in both cases is to follow Hun-
garian typography, which requires the number to
precede the table name.

Between the Section Title and the Section
Number The default definitions of \@ssect and

1004 TUGboat, Volume 0 (2060), No. 0 — Proceedings of the 2060 Annual Meeting

Implementation Tricks in the Hungarian Babel Module

\@sect separate the section number from the sec-
tion title with a \quad. In Hungarian typopgra-
phy, only an \enskip is needed, and a dot has
to be inserted after the number. The old version
of magyar.ldf changed \@sect etc., but this caused
conflicts with the AMS document classes and other
packages, so that strategy has been given up in
the new version of magyar.ldf. Instead, dots were
moved into the \numberline, which adds the dot to
\tableofcontents lines (being careful not to ap-
pend the dot twice, see dot stripping code in sec-
tion ?!?), and to \@seccntformat, which adds the
dot and \enskip to the titles. The AMS document
classes do not use \@seccntformat, so the AMS-
specific \tocsection and \tocappendix commands
had to be modified.

\@numberline also adds a dot after table and
figure numbers in the \listoftables and \listof
figures, but the dot is needed there, too, anyway.

All three TOCs share a common problem re-
lated to language changes. Each time the language
is changed, Babel emits changing commands to the
three TOC files, so when they are re-read, each line
comes in its appropriate language. The implementa-
tion has a flaw, however, because the \write to the
TOC files gets executed when the page is shipped
out, and the order of \writes on the same page fol-
lows the document structure: \writes in top inser-
tions precede and bottom insertions follow those in
the main text. So when a table or figure is moved to
the top of the page, the writing of its TOC entry, to-
gether with the \selectlanguage command emit-
ted by Babel is moved away, so \selectlanguage
commands in the TOC files are reordered, which is
wrong. The solution is to emit a \selectlanguage
command for each TOC entry, so the TOC entries
can be freely reordered. magyar.ldf implements this
solution as a local fix, but it should be fixed gener-
ally in a new version of Babel.

Spacing Around Punctuation It is quite easy to
add extra space after punctuation characters with
\sfcode (see “space factor” in chapter 13 of [3]).
The LATEX \nonfrenchspacing command (which is
activated by default) assigns a space factor of 3000
to ., ? and !, 2000 to :, 1500 to ;, and 1250 to ,.

However, adding extra space before punctua-
tion needs a different approach. Both frenchb.ldf
and magyar.ldf make the characters :, ;, ! and
? active with the Babel \initiate@active@char
interface, and insert unbreakable space in horizon-
tal mode (\ifhmode) just before the punctuation
character. This feature of magyar.ldf can be turned
off using the activespace= load option, partly be-

cause making these four common characters active
may lead to incompatibility with other packages,
and partly because the extra space before punctu-
ation is very rare in current Hungarian documents.
In French typography, about one-third of a normal
space is required before punctuation, and if it is not
possible to add that amount with the typesetting
technology, one full space should be added. How-
ever, in Hungarian, the fallback strategy is to omit
the extra space.

The last action the active punctuation charac-
ter should do is insert itself, but typing it verbatim
into the definition will lead to an infinite loop. For
example, \catcode‘?=13 \def?{\kern.1em ?} will
loop infinitely. The solution is to use \string? in
place of the last ?, so its catcode will be changed
to 12 (other). Using \edef with this approach will
make the macro a little bit faster, because \string
will be executed only once, at load time.

Quoted Material In English, text can be quoted
using ‘single’ or “double” quotation marks. These
can be nested into each other both ways. Hun-
garian provides three nesting levels: ”outer »middle
’inner’« ”. Although the guillemet symbols are miss-
ing from the CM fonts with OT1 encoding, this is not
a serious problem, since Babel provides them (using
the \ll relation: � and �), and Hungarian text
should be typeset with the T1 font encoding any-
way, to allow hyphenation of words with accented
characters.

frenchb.ldf provides \LasyGuillemets and
\CyrillicGuillemets so the user can select the ori-
gin of the replacement guillemets. magyar.ldf relies
on the defaults provided by Babel in the hope that
the T1 encoding is used, so replacements are not
needed. magyar.ldf doesn’t adjust spacing around
the quotation symbols, but provides a \textqq com-
mand which emits quotations with proper nest-
ing and spacing. For example, \textqq{outer
\textqq{middle \textqq{inner}\,}\,} gives the
above three-level sample. \textqq does English
quotations (with two alternating levels) when the
Hungarian language is not active.

List Environments The default spacing, indenta-
tion and label item generation of list environments
(such as itemize and description) are incorrect
for Hungarian. The labelenums= and labelitems=
load options control whether labels are modified to
match Hungarian traditions. Five levels of depth
are provided for both itemize and enumerate. The
maximum depth is hardwired to the LATEX defini-
tions of these environments, so the \ifnum\@enumdepth>3
test had to be changed to
\expandafter \ifx\csname \labelenum

TUGboat, Volume 0 (2060), No. 0 —Proceedings of the 2060 Annual Meeting 1005

Péter Szabó

\romannumeral\the\@enumdepth\endcsname\relax

(and similarly for \@itemdepth).
Although the vertical space that the standard

document classes leave around lists is too large,
and the indentation is also incorrect, these problems
have not yet been solved in magyar.ldf. (frenchb.ldf
modifies \itemsep and other spacing dimensions to
match French typographical rules.)

Modularity Using Load Options The user can
customize .ldfs using Babel’s language attribute fa-
cility. For example, greek.ldf has \bbl@declare@ttribute
{greek} {polutoniko} {..},
and so if the user loads greek.ldf with
\usepackage[greek]{babel}

\languageattribute{greek}{polutoniko}

the code in the .. is run when \languageattribute

is called. If present, \languageattribute must be
part of the document preamble, and the .ldf file
must be already loaded.

The fundamental problem with language attri-
butes is that the user can pass only declared key-
words, and not arbitrary data to the .ldf file, and—
since attributes are processed too late — they can-
not be used to control which parts of the .ldf files
should be loaded.

Thus, magyar.ldf follows a different approach.
Options are 〈key〉=〈value〉 pairs, which can be de-
clared any time before magyar.ldf is loaded. The set
of keys is fixed, but values can be arbitrary. It is the
responsibility of the macro belonging to the key to
verify that the syntax of the value is correct. None
of the other .ldf files provide load option support
this flexible. This option-passing scheme is similar
to keyval.sty, but magyar.ldf doesn’t actually use key-
val.sty, because of a general design policy to avoid
dependencies.

Since .ldf file names are the LATEX options to
babel.sty in the \usepackage[· · ·]{babel} line, it is
not possible to pass options to the individual .ldf
files directly. However, LATEX provides the com-
mand \PassOptionsToPackage, which declares op-
tions for a package before the package is loaded. So
for example, \PassOptionsToPackage{a=b,c=d}
{foo.bar} appends a=b,c=d to the macro \opt@
foo.bar. magyar.ldf examines \opt@magyar.ldf,
so for example passing options with \PassOptions
ToPackage{titles=\enskip}{magyar.ldf} forces
the space in section headings between the section
number and the section title to be \enskip. (For
compatibility reasons, magyar.ldf also processes the
contents of \magyarOptions as options. This is use-
ful to make magyar.ldf work with plain TEX.)

TEX macro wizards may enjoy studying the op-
tion parsing code in magyar.ldf. The entry point of

the routine is \processOptions, whose argument
is a comma-separated option list of 〈key〉=〈value〉
pairs. The routine calls \processOption{〈key〉}
{〈value〉} for each pair found. This code is shown in
figure 1.

Default Option Sets Since there are 51 load op-
tions in the current magyar.ldf, the user should not
be forced to know all of them. Reasonable defaults
are provided (namely, defaults=over-1.4), so novice
users can simply proceed. Intermediate users can se-
lect one of the five defaults, and possibly change a
few options they don’t like in their preferred default,
and only expert users will change many options in-
dividually.

The number of bytes loaded were measured in a
recent version of magyar.ldf, totalling 177 353 bytes.
Out of that 177 kB, 32 417 bytes were used for ini-
tialization and providing the load option support
framework, and declaring the options for the five
defaults. After that, 138 872 bytes were used for im-
plementing features selected by the load options. In
the descriptions below, the number of feature bytes
skipped is listed. (The larger the number, the less
of magyar.ldf is processed at load time.)

The default sets are:
1. =over-1.4 (10 720 bytes not loaded) This is the

default among the defaults. Its main goal is to
make all documents with the previous version
of magyar.ldf (1.4) compile with the new ver-
sion and to provide emergency bugfixes to in-
compatibility problems caused by the old ver-
sion. It introduces a few essential typograph-
ical changes which have little impact on line
and page breaks; it disables big, eye-catching
changes. It makes most new commands avail-
able, but doesn’t turn new features on.

2. =compat-1.4 (82 890 bytes not loaded) Imple-
ments a strict compatibility mode with version
1.4 of magyar.ldf. Documents look about the
same (exact match not guaranteed), even when
the output is typographically incorrect. It does
not define new commands such as \told or
\emitdate.

3. =safest (124 679 bytes not loaded) Turns off all
features, reverts to LATEX and Babel defaults in
every respect. It is useful only for debugging
purposes: if a document doesn’t compile, but it
compiles with defaults=safest, individual op-
tions can be turned on one-by-one to see which
is causing the compatibility problem.

4. =prettiest (1 221 bytes not loaded) Turns on
all new features, and tries to follow Hungar-
ian typography in the prettiest, most advanced

1006 TUGboat, Volume 0 (2060), No. 0 — Proceedings of the 2060 Annual Meeting

Implementation Tricks in the Hungarian Babel Module

\def\processOptions#1{\processOptions@a#1,\hfuzz,}

\def\processOptions@a#1,{%

\if,\noexpand#1,% (1)

\expandafter\processOptions@a

\else

\csname fi\endcsname% (2)

\processOptions@b#1,=,%

\fi}

\@gobble\iftrue

\def\processOptions@b#1#2=#3,#4\fi{% (3) (4)

\ifx\relax#4\relax

\ifx#1\hfuzz% Terminator

\expandafter\expandafter\expandafter

\@gobble% (5)

\else

\if,\noexpand#1% OnlySpace

\else% MissingArg; #2 ends by comma

\if=\noexpand#1\missingKey#2%

\else \missingVal#1#2\fi

\fi

\fi

\else% Normal

\processOption{#1#2}{#3}%

\fi

\processOptions@a}

\def\missingKey#1,{\errmessage{Key missing

for value: #1}}

\def\missingVal#1,{\errmessage{Value (=) missing

for option: #1}}

\def\processOption#1#2{\typeout{Got option

key=(#1) val=(#2)}}

Figure 1: Option parsing code. Comments: (1)
ignores extra commas, detects them by testing
whether #1 is empty; (2) this is a \fi when
expanded, but doesn’t count as a \fi when being
skipped over because its surrounding condition is
false. The real \fi won’t be expanded, because
it is parsed as the parameter terminator of
\processOptions@b. (3) needs #1#2 instead of
just #1, so TEX will ignore space tokens in front
of #1. As a side effect, when the option begins
with =, the = will be put into #1, so \missingKey
can be reported. (4) There are four different cases
in which \processOptions@b can be invoked.
The exact case is determined by how the macro
parameter text separates parameters. The cases
are: Normal case: #1#2 is the key, #3 is the value,
#4 is =,; MissingArg case (=〈value〉 is missing, or
〈key〉 is missing, but =〈value〉 is present): #1#2
is 〈key〉, or =〈value〉,, #3 and #4 are empty;
Terminator case: #1#2 is \hfuzz, #3 and #4
are empty; OnlySpace case: #1 is ,, #2, #3 and
#4 are empty. (5) \@gobble removes the call of
\processOptions@a at the end of the macro, so
the iteration is finished.

way. It is possible that compatibility problems
will arise with other packages, although the au-
thor is not currently aware of any.

5. =hu-min (1 317 bytes not loaded) Follows Hun-
garian typographical rules as closely as possible.
Compliance is not complete, of course, because
some aspects are not implemented; thus they
are not covered by load options, and they can-
not be controlled using defaults. If typograph-
ical rules allow choice (e.g. the first paragraph
of a section may or may not be indented), the
easiest and most compatible solution is chosen
(e.g. accept the indentation defined by the doc-
ument class).

Skipping Parts of the Input File Since some
parts of magyar.ldf can be disabled using load op-
tions, as we have seen, it is desirable to skip them
completely. The easiest way of skipping part of
TEX code is wrapping it into \ifnum\MyFeature<1
. . . \fi. But this kind of skipping will consume hash
memory for new control sequences skipped over, and
it also requires that the skipped part is properly
nested with respect to \if. . . s. magyar.ldf defines
the following macro to do skipping without these
flaws.
\@gobble\iftrue

\def\skiplong#1{\fi

\bgroup% so ^} would close it

\catcode\string‘^13

\lccode\string‘~=\string‘^

\lowercase{\let~\fi}%

\catcode\string‘\\14

% comment, save hash memory

\catcode\string‘$14

\iffalse}

\@gobble\fi

Now, code can be skipped with the construct
\ifnum\MyFeature<1 \skiplong\fi

...

\@gobble

{^}

\lowercase is needed in the implementation
because \let^\fi does not work, since the catcode
of ^ is already assigned to be superscript when the
definition of \skiplong is read.

Detecting Digits for Definite Articles \ref,
\pageref and \cite generate numbers, which are
often prefixed by the definite article in Hungarian.
The construct ‘the \ref{foo}; works fine in En-
glish, but the Hungarian definite article has two
forms: a and az. Az must be used if the follow-
ing words (as pronounced) starts with a vowel, and
a must be used for consonants. So we need a macro

TUGboat, Volume 0 (2060), No. 0 —Proceedings of the 2060 Annual Meeting 1007

Péter Szabó

that generates the definite article for numbers auto-
matically. magyar.ldf contains the macro \az, which
prefixes its argument by either a~ or az~. This kind
of macro is at present unique to magyar.ldf; other
.ldf files apparently do not implement solutions for
similar problems in other langages.

Unfortunately, \az is not expandable, because
it redefines the meaning of several commands be-
fore processing its argument. \az works by half-
expanding its argument (fully expanding, of course,
\ref, \pageref and \cite), ignoring braces and
most control sequences, non-digit and non-letter
characters, changing \romannumeral to \number (so
that x will become az x, but \az{\romannumeral
10} yields a x), looking for a number, a word or
a single letter in the beginning (in fact, az has to
be emitted if the starting digit is 5, and a has to
be emitted if the starting digit is not 1 or 5). For
words, single letters and positive numbers not be-
ginning with 1, the proper definite article depends
on the first letter only.

For numbers starting with 1, the definite arti-
cle must be az if and only if the number of digits
is 3k + 1 for an integer k. For example, the Hun-
garian words for 1, 12, 123, 1000 are egy, tizenkettő,
százhuszonhárom, ezer, respectively, and the definite
forms are az 1, a 12, a 123, and az 1000, respec-
tively. So we have to count the number of digits of
a number.

It is not necessary to have 10 \if commands to
test whether macro argument #1 is a digit: it almost
always works fine to use \ifnum1<1\string#1 .
The space at the end is important, because it will
terminate the second number of the \ifnum if #1 is
a digit. The condition (1 < 1) is false if #1 is a
non-digit, and true (1 < 10, 1 < 11 etc.) otherwise.
\string cancels the special catcode #1 might have.
#1 shouldn’t be longer than a single token, because
the test makes TEX process the extra tokens when
#1 contains a digit followed by extra tokens. If #1
is \if or similar, the test isn’t skippable. The test
works even if #1 is empty.

The macro \Az is also defined to insert a capti-
talized definite article at the beginning of a sentence.
The macros \aref, \Aref, \apageref, \Apageref,
\acite and \Acite are combinations of \az and ref-
erencing commands, so for example \aref{foo} is
equivalent to \az{\ref{foo}}.

Counting Digits with Multiple Sentinels A
“sentinel” is something placed at the end of a list
so that a conditional iteration over the list stops at
the sentinel. For example, section ?!? uses \hfuzz
as a sentinel for the option processing of the macro

\processOptions@b. A sentinel is usually a single
token, but sometimes multiple sentinels have to be
used in a row, when a macro processing them takes
multiple parameters.

As mentioned in section ?!?, the Hungarian def-
inite article (a/az) for a number depends on its pro-
nounciation. The rule is: az has to be emitted for
numbers starting with 5, and for numbers starting
with 1 and having the number of digits following
1 divisible by 3. All other numbers are preceded
by a. magyar.ldf thus contains a macro that counts
number of digits following it:
\def\digitthree#1{\digitthree@#1///\hbox$}

\def\digitthree@#1#2#3{%

\csname digitthree@%

\ifnum9<1\string#1 \ifnum9<1\string#2

\ifnum9<1\string#3 %

\else b\fi\else b\fi\else z\fi\endcsname}

\def\digitthree@z#1\hbox${z}

\def\digitthree@b#1\hbox${}

\message{1:\digitthree{} 100:\digitthree{23+}

1000:\digitthree{456}}

In this example the macro \digitthree ex-
pands to z if its argument starts with digits of the
multiple of 3. \hbox$ is used as a sentinel to skip
everything after the last digit has been found. The
sentinel must not be present in the parameter itself.
\hbox$ makes no sense in TEX, so it is quite reason-
able to assume that the parameter doesn’t contain
this. magyar.ldf uses \hfuzz and \vfuzz when only
a single token is allowed, because these two unex-
pandable tokens are quite rare. The three consec-
utive slashes in the example are three sentinels, so
\digitthree@ has always enough arguments.

However, the test doesn’t work if the param-
eter of \digitthree contains braces. For example
\digitthree{1{2x}} would look for the undefined
control sequence \digitthree@x.

In the example the \csname trick was used to
avoid \expandafter in the nested \ifs. See the def-
inition of \@@magyar@az@set in magyar.ldf for using
three multi-character sentinels in the same macro.

Definite Articles Before Roman Numerals
\az in magyar.ldf works differently for \az{x} and
\az{\romannumeral 10} (see section ?!?), but
how should it distinguish when \romannumeral
has already been expanded by the time \az
is called? Although there is no general solu-
tion to the problem, magyar.ldf addresses the
case when \az{\ref{my- part}} is called, hav-
ing the label my-part point to a \part, when
\def\thepart{\@Roman\c@part} is active. (This is
so with the standard book.cls.) \ref gets the part
number from the \newlabel{my-part} {{x}{42}}

1008 TUGboat, Volume 0 (2060), No. 0 — Proceedings of the 2060 Annual Meeting

Implementation Tricks in the Hungarian Babel Module

command written to the .aux in the previous
run of LATEX. \label, which has emitted this
\newlabel has already expanded \romannumeral
in the previous run, long before our \ref is called.

To make the definite article work in this spe-
cial case, magyar.ldf redefines \label so it writes
\hunnewlabel in addition to \newlabel to the .aux
file. The arguments of \hunnewlabel are pre-expan-
ded when \let\romannumeral\number is in effect.
This solution also works when \pageref refers to a
roman numeral page number.

Expanding the page number at the right time
is rather tricky. The LATEX \protected@write says
\let\thepage\relax, which prevents expansion in
the following \edef, so \thepage is expanded only
when the page is shipped out, and \c@page contains
the right page number. What we want is to half-
expand \thepage, so it gets expanded to \@roman
\c@page, and \@roman is expanded to \number (!),
but the expansion of \number\c@page is postponed
until the page is shipped out. This can be done by
defining \def\romannumeral {\noexpand\number}
before calling \protected@write. In practice, ma-
gyar.ldf itself expands the page number, so three
\noexpands are needed in front of \number.

Redefining \label (so it emits \hunnewlabel)
also raises a problem. Some packages loaded later
might also override \label, for example hyperref.sty
loads nameref.sty \AtBeginDocument, which over-
rides \label. magyar.ldf recognises the new defi-
nition when the Hungarian language is activated—
which is done after the \AtBeginDocument hooks
are run (see section ?!?). So \hunnewlabel works
fine with hyperref.sty.

Removing All Braces Removing all braces from
a token list is required by the \az command (that
inserts the a/az definite article). \az can find the
first letter of its argument more easily if the argu-
ment doesn’t contain braces.

The \removebraces macro defined in figure 2
removes all braces and spaces (recursively) from the
tokens following it, until the first \hfuzz. The to-
kens may not contain a \hfuzz inside braces, but
they may contain expandable material, even with
unbalanced conditionals, because those are left un-
expanded in \removebraces@nobone by \noexpand.
The most important trick here is the construct
\ifcat{\noexpand#1, which is true if #1 starts with
a brace, and yields #1 with its first brace stripped.
\iffalse}\fi is needed so that the macro defini-
tion is nested with respect to braces. The usage of
\@firstoftwo is also worth mentioning: it is used to

change the \removebraces@nobone token following
the \if to \removebraces.

Changing \catcodes Safely \makeatletter is
equivalent to \catcode 64 11 on ASCII systems;
this changes the category code of characters having
code 64 to 11 (letter). It is possible to specify the
character @ without knowing its character code:
\catcode‘@12. Wherever TEX looks for a number
(after \catcode, \ifnum, \number, etc.), it accepts
a decimal number, an octal number prefixed by ’, a
hexadecimal number with digits 0-9A-F prefixed by
", an internal counter (such as \linepenalty), a
\count register (such as \count42 or \@listdepth)
or a character prefixed by ‘. The character can
be specified as a character token, or as a single-
character control sequence. It is wise to specify {,
}, % and space as \{, \}, \% and \ , respectively, so
the whole construct is properly nested with respect
to braces, and since % and space tokens would be
ignored.

However, many Babel language modules (.ldf
files) make the character ‘ active (i.e. \catcode
13), so the definition of ‘ in \catcode‘@12 gets
expanded. The expansion can be prevented by us-
ing \noexpand, but \noexpand‘ yields ‘13, which is
wrong, because ‘12 is needed, and moreover, will be
expanded in the second run, because TEX is look-
ing for a number. Fortunately, \string‘ solves the
problem, because \string changes the \catcode of
the following character token to 12 (other) or 10
(space); and, if a control sequence follows, \string
converts it to a series of character tokens with \cat
code other or space.

Thus, the ideal definition of \makeatletter is
\catcode\string‘\@11 , which doesn’t rely on the
previous \catcode of ‘ or of @. The space at the
end of the definition is needed so TEX knows that
the number 11 won’t be followed by subsequent dig-
its. Of course, the definition works only when the
characters catcodestring have \catcode letter, \
is an escape character (\cat code 0), and space is a
space (\catcode 10). These are reasonable assump-
tions, because none of the standard LATEX packages
change them.

The LATEX kernel’s definition of \makeatletter
is \catcode‘\@11\relax, having \relax instead of
space, which is equally good to mark the end of a
number. This definition doesn’t need \string, be-
cause at the time it is read, the \catcode of ‘ is
guaranteed to be 12 (other).

magyar.ldf saves the \catcode of ‘ ! & + -
= | ; : ’ " ? / in the beginning, changes them
to other, and restores them just before \endinput.

TUGboat, Volume 0 (2060), No. 0 —Proceedings of the 2060 Annual Meeting 1009

Péter Szabó

\@gobble\iftrue
\def\removebraces@stop#1#2\fi{#1}%
\def\removebraces#1{\ifx\hfuzz#1\removebraces@stop\fi
\expandafter\removebraces\expandafter{\ifcat{\noexpand#1\hfuzz\iffalse}\fi
\expandafter\removebraces\else\hfuzz}\removebraces@nob{#1}\fi}

\def\removebraces@nob#1#2{#2\ifx\hfuzz#1\hfuzz\expandafter\@firstoftwo% #2 is \fi
\expandafter\removebraces\fi\removebraces@nobone#1}

\def\removebraces@nobone#1{\noexpand#1\removebraces}
\message{R:\removebraces {{foo}{{}{b}{{{{a\fi}}}}r}}\hfuzz;}

Figure 2: \removebraces: A macro to remove all braces.

This is needed in case other .ldfs have been loaded
(e.g. \usepackage[french,magyar]{babel}) that
have redefined \catcodes. For example, french.ldf
activates ! ? ; :.

It is also good not to change \catcodes until
\begin{document} (not even \AtBeginDocument),
because other packages not yet loaded may depend
on the old, unchanged \catcodes. Babel, unfortu-
nately, activates a character immediately when a
shorthand is defined in an .ldf file, so this can
raise strange compatibility issues —which can be
partly resolved by loading most other packages be-
fore Babel. magyar.ldf solves this by not touch-
ing the \catcode of its own shorthands at the
time of definition, but instead calls \bbl@activate
in \extrasmagyar, and \bbl@deactivate in \no
extrasmagyar. This is a local and temporary solu-
tion only. Future versions of Babel are expected to
postpone character activation as far as \@preamble
cmds (see also section ?!?).

Shorthands A shorthand is an active character de-
fined by an .ldf file with the \declare@shorthand
command provided by Babel. In this sense, all active
punctuation characters (see section ?!?) are short-
hands.

The most important shorthand in magyar.ldf is
‘13. (Most .ldf files choose that character to be
the main shorthand, but some, such as germanb.ldf,
choose "13.) The use of Hungarian shorthands can
be disabled by the active= load option, and the
shorthand character can be changed from ‘ with the
activeprefix= load option. magyar.ldf also pro-
vides the \shu‘ command, which is a longer form of
‘13, but without the possibly hazardous \catcode
change.

Each shorthand is an active character, which
raises compatibility problems (see section ?!?). ma-
gyar.ldf tries as hard as possible to avoid problems,
but all efforts are in vain if another .ldf file is loaded
which activates the same shorthand in the default
(and unsafe) way.

For the user a shorthand is a control sequence
without a backslash, so a shorthand is a command
that can be typed and read quickly. germanb.sty pro-
vides "a to be equivalent to \"a, saving a keystroke
for every accented German letter. magyar.ldf doesn’t
provide this saving, because the letters o and u have
3 accented forms, and introducing different letters
for them would lead to confusion. Hungarian LATEX
authors are encouranged to use the latin2 encoding
to type accented letters as a single character.

But the shorthand does an important job con-
cerning (unaccented) long double consonants; for ex-
ample, ‘tty is an abbreviation for t\nobreak\dis
cretionary{y-}{ }{ }ty\nobreak\hskip\z@skip.
(Section ?!? explains why this is needed.) It should
be noted that shorthands are implemented as TEX
macros, so ‘ {t}ty and ‘tty are equivalent.

The shorthand functionality of magyar.ldf for
non-letters is inspired by ukraineb.ldf. ‘= and ‘-
stand for a hyphen that separates words, so both
words are automatically hyphenated by TEX (imple-
mented as \leavevmode\nobreak-\hskip\z@skip);
‘- in math mode stands for a space character follow-
ing a delimiter (\mskip2.4mu plus3.6mu minus1.8
mu) that will magically be exactly as wide as if a
space was inserted outside math mode, because the
implicit \mskip0.6mu after the delimiter is already
subtracted; ‘-- emits \,--\,, to be used between
author names in Hungarian bibliographies; ‘| emits
a hyphen that is repeated at the beginning of the
next line if the line is broken there (implementation:
\leavevmode\nobreak-\discretionary {}{-}{-}
\nobreak\hskip\z@skip), to be used with long
words (e.g. nátrium--klorid) having important hy-
phens; ‘_ inserts a discretionary hyphen with au-
tomatic hyphenation enabled at both sides; ‘< in-
serts a French opening guillemet even if the liga-
ture << is missing from the current font; ‘> inserts
its paired closing; ‘" is equivalent to \allowbreak
with hyphenation enabled on both sides (implemen-
tation: \hskip\z@skip); ‘~ inserts a hyphen that

1010 TUGboat, Volume 0 (2060), No. 0 — Proceedings of the 2060 Annual Meeting

Implementation Tricks in the Hungarian Babel Module

doesn’t form ligatures when repeated (implementa-
tion: \textormath{\leavevmode\hbox{-}}{-}).

Inserting Code at \@preamblecmds Babel calls
\selectlanguage to set the default language \AtBeginDocument,
which is (in general) too early. Suppose that the de-
fault language redefines \catcodes to be used with
active characters. All packages that are loaded after
the default language is activated will contain char-
acters with unexpected and invalid catcodes. For
example, if hyperref.sty is loaded after magyar.ldf,
the \AtBeginDocument entries of hyperref.sty con-
tain \RequirePackage{name ref}, which is executed
after the entry \select
language{magyar} of babel.sty, so nameref.sty will
be loaded with wrong catcodes, and it will fail.

The solution is to postpone activation of the
default language until after the \AtBeginDocument
hooks. To accomplish this, magyar.ldf appends to
\@preamblecmds, which is executed by the LATEX
kernel in \document, after \AtBeginDocument.

But what about the call to \selectlanguage
inserted \AtBeginDocument by babel.def? For-
tunately, it becomes a no-op, because ma-
gyar.ldf modifies \selectlanguage to do nothing
if \languagename hasn’t changed —and this is ex-
actly the case when activating the default language.
On the other hand, \@preamblecmds has to force
the change even when \languagename is unchanged,
so it calls \select@language (notice the at-sign).
So magyar.ldf adds a call to \select@language to
\@preamblecmds.

It also runs \pagestyle{headings} for the rel-
evant document classes, so \ps@headings is exe-
cuted once more, and the Hungarian version of the
headings as defined by magyar.ldf will have a chance
to be installed.

Displaying Theorem Titles In English, theorem
titles are displayed as “Theorem 1”, but Hungarian
requires “1. tétel.”. To implement this, the \@begintheorem
and \@opargbegintheorem macros are redefined each
time the Hungarian language is activated. However,
if theorem.sty or ntheorem.sty is loaded, the changes
have to be embedded into a theorem style. The cho-
sen name for the style is magyar-plain. It is acti-
vated by default when magyar.ldf is loaded, so the-
orem titles will come out right unless the user calls
\theoremstyle. When amsthm.sty is loaded, ma-
gyar.ldf redefines the macros \thmhead and \swappedhead
so both will emit the title properly.

Extra Symbols, \paragraph Titles, and De-
scription Items Hungarian typography requires
a separator character other than a dot after the
\paragraph title. Thus, a paragraph in English

starting with “title text” should be something like
“title � text”. magyar.ldf provides several pre-defined
title separation symbols, selected by the load op-
tion postpara=; similarly, postsubpara= controls
\subparagraphs and postdescription= controls \items
in the description environment.

magyar.ldf redefines \paragraph in a truly ugly
fashion when postpara= is active, so that no extra
horizontal space is inserted after the title, but the
title ends at the separation symbol. The default def-
inition of \paragraph is based on \@startsection,
whose argument #5 is a negative skip, which means
a positive horizontal skip after the title. This is
changed to -1sp by magyar.ldf to avoid the skip,
and an optional argument is always passed to the
original \paragraph so the title will be typeset with
the separator.

Indentation after Section Titles Hungarian ty-
pography allows the first paragraph after a section
title to be either indented or unindented, so ma-
gyar.ldf provides afterindent= as the load option to
control this. LATEX calculates the value of a boolean
variable \if@afterindent from the signedness of a
parameter of \@startsection, and later uses that
boolean to insert or omit the indentation. The value
is forced to true by magyar.ldf by the simple defini-
tion \let\@afterindentfalse\@afterindenttrue.

The Decimal Comma The dot character is de-
fined as ordinary in mathematical text by default,
so decimal real numbers can be typed simply as
-12.34. Hungarian denotes the decimal point by
a comma instead of a do, but typing $-12,34$ yields
‘−12, 34’ with too much space after the comma, be-
cause the comma is defined as punctuation rather
ordinary in math text. $-12{,}34$ yields ‘−12,34’,
which is correct, but magyar.ldf provides two mecha-
nisms to save the two keystrokes of the curly braces
around the comma.

First, the \HuComma macro below inserts an or-
dinary comma if it is followed by a digit, and an
operator comma otherwise:
\edef\hucomma@lowa#1#2 #3#4 #5#6\hfuzz{%

\noexpand\ifnum9<1#5 \noexpand\if#1t%

\noexpand\if#3c% (1)

\noexpand\mathord\noexpand\fi\noexpand\fi%

\noexpand\fi\mathchar%

\ifnum\mathcode‘,="8000 "613B \else\the%

\mathcode‘, \space\fi}%

\def\hucomma@lowb{\expandafter\hucomma@lowa

\meaning\reserved@a/ / /\hfuzz}%

\DeclareRobustCommand\HuComma

{\futurelet\reserved@a\hucomma@lowb}

The solution Donald Arseneau proposed to the com-
ma problem inspired these macros. In line (1)

TUGboat, Volume 0 (2060), No. 0 —Proceedings of the 2060 Annual Meeting 1011

Péter Szabó

\expandafter\addto\csname

\expandafter\ifx\csname mathoptions@on

\endcsname\relax check@mathfonts

\else mathoptions@on\fi

\endcsname{\catcode‘,12 \mathcode‘,"8000

\begingroup\lccode‘~‘,\lowercase

{\endgroup\def~}{\HuComma}}

Figure 3: \HuComma: Smart commas in math.

\hucomma@lowa tests whether the \meaning of the
following character is ‘the character 〈digit〉’. A
\meaning is always at least three words, but it may
be more (e.g. ‘math shift character $’). Only the
character starts with letters t and c. An \edef is
needed above so the \mathchar emitted doesn’t de-
pend on \mathcode changes after the definition of
\HuComma. Then the comma character can be rede-
fined as \HuComma, as given in figure 3.

With these definitions, the formula ‘Fi(x, y) =
yi + 1,3x, x, y ∈ A, i = 1, 2, 3, . . .’ can be typed
simply as $F_{i}(x,y)=y^i+1,3x,\ x,y \in A,
\ i=1,\ 2,\ 3,\ldots$, if \ is breakable (such
as in nath.sty).

When nath.sty is loaded, the definitions are ap-
pended to \mathoptions@on, and if nath.sty is mis-
sing, to \check@mathfonts. The appropriate macro
is run just before \everymath by LATEX. Redefining
the \catcode and \mathcode this way ensures that
the proper comma is used inside math mode — un-
less the whole math formula is a macro argument
with already assigned \catcodes. Also, it is not
a good use of \begingroup, \lccode, \lowercase
and \endgroup to modify the active meaning of a
character without actually activating it. Calling
\catcode‘,13 before \def wouldn’t help here any-
way if the whole construct is embedded into a macro
definition, because \catcode wouldn’t be able to
change an already assigned catcode.

frenchb.ldf provides \DecimalMathComma and
\StandardMathComma to change the \mathcode of
the comma. However, the smart comma based on
\HuComma acts correctly without the user needing to
be aware of curly braces or redefinitions.

The solution above can be activated with the
loading option mathhucomma=fix. An alternative
approach doesn’t alter \mathcodes, but introduces
a special math mode in which the dot appears as a
comma only when the Hungarian language is active.
Thus the printout of \MathReal{-12.34} depends
on the current Babel language. The definition of
\MathReal in magyar.ldf is similar to:
\def\mathreal@lowa#1{\ensuremath{%

\mathreal@lowb#1\@gobble.}}

\def\mathreal@lowb#1.{%

#1\@secondoftwo\@gobble% (1)

{\mathchar"013B \mathreal@lowb}}% comma

\DeclareRobustCommand\MathReal{\ensuremath}%

{\catcode‘\ 11\relax\addto\extrasmagyar{%

\babel@save\MathReal %

\let\MathReal \mathreal@lowa}}

The argument of \MathReal must contain the
dot to be changed literally, outside braces. There is
a little macro wizardry in the implementation that
stops calling \mathreal@lowb infinitely. The call
\mathreal@lowa terminates its argument by a sen-
tinel \@gobble., so #1 of \mathreal@lowb will end
by \@gobble, which will gobble \@secondoftwo, so
the \@gobble in line (1) will take effect, which stops
the recursion.

\MathReal is going to be extended in the future
so it will handle physical units following the num-
ber properly, and it will also insert thin spaces after
each three digits. This feature has already been im-
plemented in frenchb.ldf.

Parsing Dates There are many correct ways to
write dates in Hungarian, and magyar.ldf provides
an \emitdate command that can generate any of
these formats. Doing the reverse is a little more
interesting.

Let’s suppose we have a Gregorian date consist-
ing of a year (4 or 2 digits), a month (a number or
a name) and a day-of-month in some standard for-
mat. We want a command \parsedate to detect the
format, split the date into fields, and call \fixdate:
\def\fixdate#1#2#3{%

\@tempcnta#1 \ifnum#1<50

\advance\@tempcnta2000 \fi

\ifnum\@tempcnta<100

\advance\@tempcnta1900 \fi

\typeout{found year=(\@tempcnta)

month=(#2) day=(#3)}}

Many dates have an optional dot at the end.
Since that dot doesn’t carry useful information, we
should remove it first. The \stripdot command de-
fined below expands to its argument with the trail-
ing dot removed. \stripdot works only if the argu-
ment doesn’t contain the token \relax. \relax is
not special; any other token would have worked.
\def\stripdot#1{\expandafter%

\stripdot@lowb\stripdot@lowa

#1\relax.\relax}%

\def\stripdot@lowa#1.\relax{#1\relax}%

\def\stripdot@lowb#1\relax#2\relax{#1}%

The definition of \parsedate is shown in fig-
ure 4. \parsedate first does some generic cleanup,
and puts the resulting date into \re@b. \endgroup
cancels the redefinition of \today etc., but \re@b
is expanded first, which defines itself, so the value

1012 TUGboat, Volume 0 (2060), No. 0 — Proceedings of the 2060 Annual Meeting

Implementation Tricks in the Hungarian Babel Module

\def\parsedate#1{%

\begingroup

\def\today{\the\year-\the\month-\the\day}%ISO

\let\protect\string

% remove accents from Hungarian month names:

\let\’\@firstofone

\let~\space%change ‘2003.~okt’ to ‘2003. okt’

\edef\re@b{\def\noexpand\re@b{#1}}%

\expandafter\endgroup\re@b

\edef\re@b{\expandafter\stripdot\expandafter

{\re@b}}%

\let\re@a\@empty \expandafter\parsedate@a\re@b

!--!\hfuzz

\ifx\re@a\@empty \expandafter\parsedate@f\re@b

!//:!\hfuzz \fi

\ifx\re@a\@empty \expandafter\parsedate@b\re@b

!//!\hfuzz \fi

\ifx\re@a\@empty \expandafter\parsedate@c\re@b

!..!\hfuzz \fi

\ifx\re@a\@empty \expandafter\parsedate@d\re@b

!. xyz !\hfuzz \fi

\ifx\re@a\@empty \expandafter\parsedate@e\re@b

!xyz , !\hfuzz \fi

\ifx\re@a\@empty \errmessage{Unrecognised date:

\re@b}%

\else \re@a% call \fixdate

\fi}

Figure 4: \parsedate: Parse date formats.

of \re@b will be retained after \endgroup. After
that, the trailing dot is stripped, and then vari-
ous \parsedate@· · · commands are run. If a com-
mand recognises the date format, it puts a call to
\fixdate into \re@a, which will be called at the end
of \parsedate. Strange strings like !//:!\hfuzz
are sentinels.

The idiom \expandafter\endgroup\re@b is an
important trick for expanding a macro before the
current group completes (and changes are undone).
It usually contains definitions of other control se-
quences whose meanings are about to be retained
after the end of the group. An alternative would be
to inject such a definition using \aftergroup, but
that only accepts a single token, so it would be very
painful to make a macro definition with spaces and
braces survive this way.

The individual \parsedate@· · · commands are
given in figure 5. This implementation of date pars-
ing isn’t error-proof. If something weird is passed
to \parsedate, it may produce surprising TEX er-
rors. However, \parsedate can distinguish between
different formats of correct input.

Setting Up French Spacing Hungarian typog-
raphy requires \frenchspacing to be turned on,

but most LATEX users fail to follow this requirement.
Babel provides the command \bbl@frenchspacing,
which turns French spacing on if it was off.
The frenchspacing= load option of magyar.ldf
controls how Hungarian text should behave.
For the sake of symmetry, magyar.ldf provides
\@@magyar@antifrenchspacing, which— contrary
to the typographical requirement —turns french
spacing off:

\def\@@magyar@antifrenchspacing{%

\ifnum\the\sfcode‘\.=\@m

\nonfrenchspacing

\let\@@magyar@nonfrenchspacing%

\frenchspacing

\else \let\@@magyar@nonfrenchspacing\relax

\fi}

\let\@@magyar@@nonantifrenchspacing%

\frenchspacing

\addto\extrasmagyar{\@@magyar%

@antifrenchspacing}

\addto\noextrasmagyar{\@@magyar%

@nonantifrenchspacing}

varioref.sty Fixes The magyar load option of vari-
oref.sty (2001/09/04 v1.3c) is buggy, because it uses
the never-defined \aza command for adding defi-
nite articles, and it also calls \AtBeginDocument too
late, producing a LATEX error each time the Hungar-
ian language is activated. magyar.ldf contains the
correct definitions for the language-specific text ref-
erence macros, such as \reftextlabelrange, and
also contains ugly fix-up code to remove the wrong
macros inserted by varioref.sty. A patch has been
sent recently to the author of varioref.sty.

Some of these text reference macros use the \az
and the \told commands defined by magyar.ldf.

Removing Full Stops After Section Titles in
AMS Classes AMS document classes always ap-
pend a full stop after section titles, which is strictly
forbidden in Hungarian typography. The solution
is to remove the tokens \@addpunct. from the def-
inition of \@sect (and also from \NR@sect in case
nameref.sty has also been loaded). But this simple
idea is quite complicated to program, and the result
is ugly, as seen in figure 6. This detects AMS classes
by the presence of \global\@nobreaktrue\@xsect
in the definition of \@sect, and adds code just before
\@xsect. The code added prepends \let\@addpunct\@gobble
to the definition of \@svsechd. \@svsechd is later
called by \@xsect, which calls \@addpunct, but by
that time \@addpunct is a no-op. The application
of this fix is controlled by the amspostsectiondot=
load option.

TUGboat, Volume 0 (2060), No. 0 —Proceedings of the 2060 Annual Meeting 1013

Péter Szabó

\def\parsedate@a#1-#2-#3!#4\hfuzz{% ISO date: YYYY-MM-DD
\ifx\hfuzz#4\hfuzz\else \ifnum1<1\string#1\relax
\ifnum1<1\string#2\relax \ifnum1<1\string#3\relax
\def\re@a{\fixdate{#1}{#2}{#3}}%
\fi\fi\fi\fi}

\def\parsedate@b#1/#2/#3!#4\hfuzz{% LaTeX date: YYYY/MM/DD
\ifx\hfuzz#4\hfuzz\else \ifnum1<1\string#1\relax
\ifnum1<1\string#2\relax \ifnum1<1\string#3\relax
\def\re@a{\fixdate{#1}{#2}{#3}}%
\fi\fi\fi\fi}

\def\parsedate@c#1.#2.#3!#4\hfuzz{% English date: YYYY.DD.MM
\ifx\hfuzz#4\hfuzz\else \ifnum1<1\string#1\relax
\ifnum1<1\string#2\relax \ifnum1<1\string#3\relax
\def\re@a{\fixdate{#1}{#3}{#2}}%
\fi\fi\fi\fi}

% vvv English and Hungarian month names
\def\mon@jan{1} \def\mon@feb{2} \def\mon@mar{3} \def\mon@apr{4}
\def\mon@maj{5} \def\mon@may{5} \def\mon@jun{6} \def\mon@jul{7}
\def\mon@aug{8} \def\mon@sze{9} \def\mon@sep{9} \def\mon@okt{10}
\def\mon@oct{10} \def\mon@nov{11} \def\mon@dec{12}
\def\parsedate@d#1. #2#3#4#5 #6!#7\hfuzz{% {2003. oktober 25}
\ifx\hfuzz#7\hfuzz\else
% now: {#1}=={2003}, {#2#3#4#5}=={oktober}, {#6}=={25}
\ifnum1<1\string#1\relax \ifnum1<1\string#6\relax
\lowercase{%
\expandafter\ifx\csname mon@#2#3#4\endcsname\relax\else
\edef\re@a{\noexpand\fixdate{\number#1}{%
\csname mon@#2#3#4\endcsname}{\number#6}}\fi}%

\fi\fi\fi}
\def\parsedate@e#1#2#3#4 #5, #6!#7\hfuzz{% {October 25, 2003}
\ifx\hfuzz#7\hfuzz\else
\ifnum1<1\string#5\relax \ifnum1<1\string#6\relax
\lowercase{%
\expandafter\ifx\csname mon@#1#2#3\endcsname\relax\else
\edef\re@a{\noexpand\fixdate{\number#6}{%
\csname mon@#1#2#3\endcsname}{\number#5}}\fi}%

\fi\fi\fi}
\def\parsedate@f#1/#2/#3:#4!#5\hfuzz{% LaTeX default \today
% YYYY/MM/DD:XX:YY
\ifx\hfuzz#5\hfuzz\else \ifnum1<1\string#1\relax
\ifnum1<1\string#2\relax \ifnum1<1\string#3\relax
\def\re@a{\fixdate{#1}{#2}{#3}}%
\fi\fi\fi\fi}

Figure 5: Individual \parsedate· · · commands.

1014 TUGboat, Volume 0 (2060), No. 0 — Proceedings of the 2060 Annual Meeting

Implementation Tricks in the Hungarian Babel Module

\expandafter\amssect@fixa\@sect[][][][][][][][]%
\global\@nobreaktrue\@xsect\hfuzz\@sect

\expandafter\amssect@fixa\@sect[][][][][][][][]%
\global\@nobreaktrue\@xsect\hfuzz\NR@sect% with nameref.sty

\long\def\amssect@fixa#1\global\@nobreaktrue\@xsect#2\hfuzz#3{%
\ifx\hfuzz#2\hfuzz\else\amssect@fixb#3\fi}% fix if found

\def\amssect@fixb#1{% #1 is \@sect or \NR@sect
\expandafter\let\csname amssect@saved\string#1\endcsname#1%
\edef#1{\noexpand\expandafter\noexpand\amssect@low\expandafter
\noexpand\csname amssect@saved\string#1\endcsname}%

\let\@svsechd\@empty% prevent Undefined \cs
\long\def\amssect@low##1\global\@nobreaktrue{##1%
\expandafter\def\expandafter\@svsechd\expandafter{%
\expandafter\let\expandafter\@addpunct\expandafter\@gobble
\@svsechd}%

\global\@nobreaktrue}}

Figure 6: Removing full stops after AMS section titles.

Reduced Math Skips Investigations in [1] have
shown that the following settings produce the de-
sired space for Hungarian math mode:

\thickmuskip 4mu plus 2mu minus4mu
% LaTeX: 5mu plus5mu

\medmuskip 2mu plus1.5mu minus2mu
% LaTeX: 4mu plus2mu minus4mu

\thinmuskip 3mu % LaTeX: ditto

Notice that \medmuskip < \thinmuskip. These set-
tings can be selected in magyar.ldf with the load
option mathmuskips=. The difference between the
original and the reduced spacing:

a + b− c/d ∗ y ◦ x = z a+b−c/d∗y◦x = z

Breaking a Long Inline Math Formula Hun-
garian typography requires that a binary relation or
operator (e.g. in 1 + 2 = 3 + 4) must be repeated
in the next line if an inline math formula is broken
there. This can be accomplished for the equation
sign by substituting =\nobreak\discre
tionary{}{\hbox{\(=\)}}{} for = in math formu-
las. The long inline formula delimiters \(and \) are
used because the catcode of the $ would be wrong
if nath.sty was loaded after magyar.ldf. \nobreak is
necessary, so TEX itself won’t break the line after
the =.

The mathbrk= load option of magyar.ldf con-
trols whether the operators and relations should be
redefined. If so, the operators +, −, ∗ (as well as
37 operators available as control sequences) and the
relations <, >, =, : (as well as 43 relations avail-
able as control sequences) are modified so they get
repeated at the beginning of the line. The \cdot
and the \slash operators are also modified, because

Hungarian typography disallows breaking the line
around them.

Restarting Footnote Numbering on Each Page
Although \usepackage[perpage]{footmisc} and
footnpag.sty provide these features, magyar.ldf al-
lows normal arabic footnote and page-restarting
asterisk-footnotes to be intermixed. It is common
in Hungarian article collections to have the notes
of the author numbered in arabic (by \footnote),
and the footnotes of the editor added with asterisks
(by \editorfootnote). The first four editorial foot-
notes on a page are marked with *, **, ***, and †.
magyar.ldf also inserts proper additional space be-
tween the footnote mark and the footnote text, and
the footnote facility is fully customizable with the
\footnotestyle command.

The basic idea behind the implementation of
pagewise numbering is creating a \label for each
footnote, and whenever the \pageref for that label
shows a different page, resetting the counter to zero.
This clobbering can be automated by abusing the
\cl@footnote hook. Each time \stepcounter ad-
vances a counter, the corresponding \cl@... hook
is called, which usually resets other counters (for ex-
ample, advancing the chapter counter resets the sec-
tion counter). But arbitrary code can be executed
after the automatic \stepcounter{footnote} by
appending that code to the macro \cl@footnote.

The famous problem of creating a macro that
will expand to n asterisks is proposed in appendix
D of The TEXbook [3]. David Kastrup has provided
a brilliant solution to the problem in [2], namely
\expandafter\mtostar\romannumeral\numbern00
0A, where \mtostar transforms ms to asterisks: \def

TUGboat, Volume 0 (2060), No. 0 —Proceedings of the 2060 Annual Meeting 1015

Péter Szabó

\mtostar#1{\if#1m*\expandafter\mtostar\fi}.
This solution is used in magyar.ldf.

magyar.ldf also provides the following command
to insert footnotes into section titles such that nei-
ther the table of contents nor the page headings are
affected:
\def\headingfootnote{%

\ifx\protect\@typeset@protect%

\expandafter\footnote

\else\expandafter\@gobble\fi

Class-specific Modifications magyar.ldf does some
modifications based on the current document class
(using the \@ifclassloaded LATEX command). Only
the standard classes article.cls, report.cls, book.cls
and letter.cls are supported at present. The visual
appearance of the \part and \chapter output is
changed, and the page headers are also modified.
For book.cls, part numbering is spelled out, so “Part
1” becomes “Első rész” (“Part One”) if the load op-
tion partnumber= is set to Huordinal.

The command \ps@headings has to be exe-
cuted again to install its changed heading macros.
This is called from \@preamblecmds, after the de-
fault language has been activated (see section ?!?).

The typographically correct customization of
letter.cls is under development.

Spelling Out Numerals and Ordinals The
\@hunumeral and \@huordinal macros defined
in magyar.ldf can spell out integers between
−9999 and 9999. \@Hunumeral and \@Huordinal
are the capitalized versions of these macros.
For example, \@huordinal{2004} produces kéte-
zer-negyedik (“two thousand and fourth”) and
\@Hunumeral{2004} produces Kétezer-négy (“Two
thousand and four”). All of these macros are fully
expandable, so they can be used for \part num-
bering: \def\thepart{\@Huordinal\c@part}, or
more simply: \def\thepart {\Huordinal{part}}.

The most important implementation issue is the
method to retrieve the last digit of a number in an
expandable construct. If the number is between 0
and 9999, the following macro solves the problem:
\def\LastDigitOf#1{\expandafter%

\lastdigit@a\number#1;}%

\def\lastdigit@a#1;{% #1 in 0..9999

\ifnum#1<10 #1\else\ifnum#1<100

\lastdigit@b00#1%

\else\ifnum#1<1000 \lastdigit@b0#1%

\else\lastdigit@b#1\fi

\def\lastdigit@b#1#2#3#4{#4}

Suffix Generation As mentioned earlier, the Hun-
garian language has suffixes to represent relations
in space and time, instead of prepositions. For ex-
ample, an English math text might contain “It fol-

lows from (1)”, in which “from (1)” can be typed as
from (\ref{eq1}). The LATEX referencing scheme
guarantees that the text above will come out right,
even if the order of equations is changed in the doc-
ument.

But in Hungarian, the suffix standing in place
of “from” has two forms: -ból/-ből, depending on the
vowel harmony of the pronounciation of \ref{eq1}.
So there is a need for automatic suffix generation.

magyar.ldf provides the command \told, with
which the Hungarian version of “from (1)” can be
typed as \told(\ref{eq1})+bol{}, which will gen-
erate “(1)-ből”, “(2)-ből”, but “(3)-ból”.

\told can handle 20 different suffixes, and 4 ·20
suffix combinations (such as \told3+adik+ra{},
meaning “to the third”). Only the last num-
ber is considered in references containing multiple
numbers. Roman numerals are recognised prop-
erly in references with the help of \hunnewlabel
(see section ?!?— this is implemented similar to
\az). Suffix generation is supported only for inte-
gers and Hungarian document structure names (see
section ?!?), because writing a generic suffix gener-
ator without a database is quite a difficult task, and
definitely won’t give Hungarian LATEX users much
more comfort beyond the current \told implemen-
tation.

Although most Hungarian suffixes have 1, 2 or
3 forms,3 numbers can be classified into 23 paradigm
classes, so that the paradigm class uniquely deter-
mines the correct form of all known suffixes. The
reason that there are so many classes is because the
letter v of the -val/-vel suffix must be also changed
to the last letter of the number if that letter is a con-
sonant. Essentially each final digit has a class, and
there are classes for the powers of 10, and some of
the numbers 20, 30, . . . 90 also have their own classes.
To sum up, the suffix of a number depends on the
last nonzero digit, and the number of trailing zeroes.

The implementation of \told is suprisingly long
and ugly, full of recursive macros that parse the in-
put, and it doesn’t contain any bright ideas that are
not also found elsewhere in magyar.ldf. The curious
TEX hacker should study \az instead, because it is
shorter and its trick density is much higher.

Warning Messages magyar.ldf has the unique fea-
ture that it displays warning messages (called ‘sug-
gestions’) at load time to notify the user that they
are using magyar.ldf in a possibly incorrect way. If

3 Of course, suffixes with only one form are not supported
by \told.

1016 TUGboat, Volume 0 (2060), No. 0 — Proceedings of the 2060 Annual Meeting

Implementation Tricks in the Hungarian Babel Module

they are not disabled by the suggestions= load op-
tion, the following suggestions are displayed to stan-
dard output during the \AtBeginDocument hook:
• the user forgot to load \usepackage{t1enc}—

so words with accented letters won’t hyphenate
automatically;

• the user forgot to load \usepackage[latin2]
{inputenc}, or the input encoding chosen is
not latin2, cp1250 or utf8— so there is a
good chance that accented characters will dis-
appear or come out wrong;

• the Hungarian hyphenation patterns requested
were not found— magyar.ldf tries to use the
other two possible Hungarian patterns, if they
are available;

• \def\magyarOptions or \PassOptionsToPac
kage{...}{magyar.ldf} was specified too late
— late options can be detected, but they have
no effect, since options do their work while ma-
gyar.ldf is being loaded;

• the buggy varioref.sty has been loaded as \use
package[magyar]{varioref}— this will hap-
pen until the patch is integrated to varioref.sty;
the current version is so buggy that it displays
an untraceable LATEX error each time the Hun-
garian language is activated (see section ?!?).

Miscellaneous Tricks

First we show some common expansion tool macros
defined by LATEX:
\def\@empty{}
\long\def\@gobble#1{}
\long\def\@gobbletwo#1#2{}
\long\def\@firstofone#1{#1}
\long\def\@firstoftwo#1#2{#1}
\long\def\@secondoftwo#1#2{#2}

\@firstofone differs from \@empty, because it
may not be followed by }, it ignores spaces in front
of its argument, and it removes at most one pair
of braces around its argument. All of these proper-
ties are consequences of the macro expansion rules
described in chapter 20 of The TEXbook [3].

This remainder of this section describes TEX
macro and typesetting tricks not tightly related to
the Hungarian language.

The Factorial Sign in Math Mode nath.sty con-
tains a smart definition of the factorial operator, so
(a + b)!/a! b! + c! · d!, with proper spacing can be
typed as $(a+b){!}/a!b!+c!\cdot d!$. The only
place where braces are needed is before the slash.
magyar.ldf adapts the definition:
\def\factorial{\mathchar"5021\mathopen{}%

\mathinner{}}
\expandafter\addto\csname \expandafter\ifx
\csname mathoptions@on\endcsname\relax
% detect nath.sty
check@mathfonts\else mathoptions@on\fi
\endcsname{\catcode‘!12
\mathcode‘!"8000

\begingroup\lccode‘~‘!\lowercase{%
\endgroup\def~}{\factorial}}

Including the Structure Name in References
Text like “in subsection 5.6” is usually typed as
in subsection~\ref{that}. But it would be nice
if LATEX were able to guess that \ref{that} actu-
ally points to a subsection. The structure depth can
be deduced by counting the dots in the reference: a
subsection has one dot (in an article), and a subsub-
section has two dots.

magyar.ldf provides the \refstruc command
which has a smarter detection scheme: it changes
all roman and arabic numbers to one (1, i or I) in
the reference, and compares the result with the to-
kens generated by \thechapter, \thesection etc.,
with \c@chapter etc. set to 1 temporarily. This
should work in most cases, although it cannot refer
to equations, tables or figures. In Hungarian text,
the Hungarian structure names are emitted, and
other texts the original, English control sequence
names are printed. \refstruc includes the definite
article and suffixes support; for example,
\Az{\refstruc{that+tol}}

may emit az 1. fejezettől (“from chapter 1”).
The full implementation is quite long, and is

not included here, but the macro that changes all
roman and arabic numbers to one is presented in
figure 7.

Enabling Long Page Numbers If the width
of a page number in the table of contents is
greater than \@pnumwidth, LATEX emits an “Over-
full \hbox” warning. This can be eliminated by
changing \@dottedtocline in the LATEX kernel.
The line \hb@xt@\@pnumwidth{\hfil \normalfont
\normalcolor #5} should be changed to:

\setbox\@tempboxa\hbox{\normalfont
R \normalcolor #5}%
\ifdim\wd\@tempboxa<\@pnumwidth\setbox%
\@tempboxa\hb@xt@\@pnumwidth{\hfil\unhbox
\@tempboxa}\fi \box\@tempboxa

Although this change isn’t related to the Hun-
garian language, magyar.ldf will do it given the
dottedtocline= load option.

Removing AMS Warnings from \listoftables
Some AMS document classes (such as amsart.cls)

TUGboat, Volume 0 (2060), No. 0 —Proceedings of the 2060 Annual Meeting 1017

Péter Szabó

\def\NumbersToOne#1{\nonumbers@a#1\hfuzz}

\def\nonumbers@skipa#1\nonumbers@s{#1\nonumbers@a}

\def\nonumbers@a#1{% change first digit

\ifx#1\hfuzz \expandafter\@gobble

\else\if1<1\string#11\else\if\noexpand#1mi%

\else\if\noexpand#1di\else\if\noexpand#1ci%

\else\if\noexpand#1li\else\if\noexpand#1xi%

\else\if\noexpand#1vi\else\if\noexpand#1ii%

\else\if\noexpand#1MI\else\if\noexpand#1DI%

\else\if\noexpand#1CI\else\if\noexpand#1LI%

\else\if\noexpand#1XI\else\if\noexpand#1VI%

\else\if\noexpand#1II%

\else\noexpand#1\nonumbers@skipa

\fi\fi\fi\fi\fi\fi\fi \fi\fi\fi\fi

\fi\fi\fi\fi\fi \nonumbers@s}

\def\nonumbers@s#1{% gobble next digits

\ifx#1\hfuzz \expandafter\@gobble

\else\if1<1\string#1\else\if\noexpand#1m%

\else\if\noexpand#1d\else\if\noexpand#1c%

\else\if\noexpand#1l\else\if\noexpand#1x%

\else\if\noexpand#1v\else\if\noexpand#1i%

\else\if\noexpand#1M\else\if\noexpand#1D%

\else\if\noexpand#1C\else\if\noexpand#1L%

\else\if\noexpand#1X\else\if\noexpand#1V%

\else\if\noexpand#1I%

\else\noexpand#1\nonumbers@skipa

\fi\fi\fi\fi\fi\fi\fi \fi\fi\fi\fi

\fi\fi\fi\fi\fi \nonumbers@s}

Figure 7: \nonumbers: Change all roman and
arabic numbers to 1.

produce an “Overfull \hbox” warning for each line
in the \listoftables and \listoffigure. This
can be fixed by changing this line in the \l@table
and \l@figure macros in the AMS classes:
\@tocline{0}{3pt plus2pt}{0pt}{}{}{}

to:
\@tocline{0}{3pt plus2pt} {0pt}{}{\parindent}{}.

The code shown in figure 8 makes this change.
The control sequences \allowttyhyphens and

\setTrue are defined by each of the AMS document
classes, so their presence indicates that one of those
classes are loaded. The logical or operation using
\ifxs nested to the \ifnum test is also worth noting.

Discarding to End of File The näıve solution
\ifskiprest\endinput¶\fi results in the TEX er-
ror message “\end occurred when \iftrue in line
n was incomplete” if there is a line break at the
¶ sign. Without the line break, the näıve solution
works perfectly, because \endinput stops reading
the current file after the current line, so the \fi
also gets evaluated.

It is possible to do something before \endinput:

\expandafter\ifx\csname

ver@foo.sty\endcsname\relax

\endinput \errmessage{I am incompatible

with foo.sty}\fi

\ifnum 0<%

\expandafter\ifx\csname setTrue\endcsname

\relax\else1\fi

\expandafter\ifx\csname allowttyhyphens\endcsname

\relax\else1\fi

\space

\def\amsfix#1#2#3#4#5#6#7\vfuzz{%

\def\reserved@a{#6}%

\ifx\@tocline#2\ifx\reserved@a\@empty%

\def#1{\@tocline{#3}{#4}{#5}{\parindent}{}}%

\fi\fi}

\expandafter\amsfix\expandafter\l@table \l@table

,,,,,,,\vfuzz

\expandafter\amsfix\expandafter\l@figure\l@figure

,,,,,,,\vfuzz

\fi

Figure 8: Fixing overfull \hboxes in AMS classes.

All of the above must be put after \endinput
without a line break. The \csname fi\endcsname
construct closes the \ifx when the condition is true,
but is invisible when the condition is false, and TEX
is skipping tokens.

The LATEX kernel macro \@ifpackageloaded
implements the conditional end by a different trick.
The following two constructs are equivalent:
\@ifpackageloaded{foo}{\endinput\errmessage{I

am incompatible with foo.sty}}{}

and
\expandafter\ifx\csname ver@foo.sty\endcsname

\relax\expandafter\@gobble

\else \expandafter\@firstoftwo \fi

{\endinput

\errmessage{I am incompatible with foo.sty}}

In the trick above, \errmessage isn’t on the same
line as \endinput. This isn’t a problem, because
by the time \endinput is evaluated by TEX’s stom-
ach, \errmessage has been read from the file, and
it is already on the input stack. \endinput doesn’t
discard the input stack, it just prevents more lines
from being read from the current file.

Typesetting Text Verbatim \catcodes are assigned
when TEX’s eyes read the next character from the
current line, so a \catcode command affects all sub-
sequent characters of the current line, as well as
the following lines. But once a category code has
been assigned, it won’t be affected by subsequent
\catcode commands. For example, \@firstofone{\cat
code‘A 14 AAA} makes A into a comment start char-
acter, but it emits three As, because the category
code of the three As is already set by the time \catcode
is executed.

The reason why the \verb command of the
LATEX kernel cannot be part of a macro argument
is the same: \verb changes the \catcode of most

1018 TUGboat, Volume 0 (2060), No. 0 — Proceedings of the 2060 Annual Meeting

Implementation Tricks in the Hungarian Babel Module

characters to other, but these changes have no effect
inside a macro argument, because the argument has
been read from the input file by the time \catcode
can take effect.

Instead of altering \catcodes, a verbatim mac-
ro can be based on the \meaning primitive, so that
it can be passed as an argument. However, TEX’s
eyes will have destroyed some information such as
comments and the exact number of successive spaces
by the time \meaning is expanded. For example,
these definitions are from binhex.dtx:

\def\verbatize#1{\begingroup
\toks0{#1}\edef\next{\the\toks0}%
\dimen0\the\fontdimen2\font

\fontdimen2\font=0pt
\expandafter\stripit \meaning\next
\fontdimen2\font=\dimen0 \endgroup}

\def\stripit#1>{}

Stopping the Iteration Let’s suppose we need a
macro that capitalizes all as and bs until the first
“.”:

\def\ucab#1{%
\if\noexpand#1.\expandafter\@gobble
\else\if\noexpand#1aA%
\else\if\noexpand#1bB%
\else\noexpand#1%
\fi\fi\fi\ucab}

\message{\ucab abc.abc} % -> ABcabc

\noexpand prevents expansion of #1 in case it
is an expandable control sequence such as \the or a
macro. If \if is changed to \ifx, then not only the
character codes, but also the category codes would
be compared.

The trick that stops the iteration here is that
\expandafter expands the first \else that will re-
move everything up to the last \ucab. Then comes
\@gobble, which removes \ucab, and the iteration
is stopped.

The construct doesn’t work when #1 has braces
around it, or it is \if..., \else or \fi. Also, spaces
will be ignored because of macro expansion.

But what if we’d like to capitalize only the first
a or b? Then we would need \expandafter\expand
after\expandafter\@gobble after A, and seven
\expandafters after B. But \expandafter can be
completely avoided using a different approach, based
on macro arguments:
\def\helpif#1#2{#1\@firstoftwo}

\def\ucabs#1{%

\if\noexpand#1.\helpif\fi\@secondoftwo{}

{\if\noexpand#1a\helpif\fi\@secondoftwo{A}

{\if\noexpand#1b\helpif\fi\@secondoftwo{B}

{\noexpand#1\ucabs}}}%

}\message{\ucabs cbbas} % -> cBbas

It is not possible to move \fi into the defini-
tion of \helpif, because then TEX won’t see that
particular \fi when it is skipping the whole \if . . .
\helpif construction. With a small rearrangement
we can get rid of \@secondoftwo:
\@gobble{\iftrue\iftrue}

% \def\helpjf... contains 2*\fi

\def\helpjf#1\fi{#1\expandafter\@firstoftwo

\else\expandafter\@secondoftwo\fi}

\def\ucabj#1{%

\helpjf\if\noexpand#1.\fi{}

{\helpjf\if\noexpand#1a\fi{A}

{\helpjf\if\noexpand#1b\fi{B}

{\noexpand#1\ucabs}}}%

}\message{\ucabj cdabs} % -> cdAbs

The line containing \@gobble above is needed
so that \def\helpjf can be put inside \iffalse . . .
\fi, and TEX’s \fi count won’t decrease when see-
ing the two \fi tokens in the definition of \helpjf.

Appending Tokens to a Macro TEX doesn’t
provide primitives for modifying the expansion text
of a macro, but it is possible to define a new macro
with the contents of the old one and some additional
tokens. For example,\expandafter\def \expandafter\foo\expandafter{\foo\iffalse$}
appends the two tokens \iffalse$ to the macro
\foo. Three \expandafters were used to make the
old \foo only expanded once. None of the above to-
kens were expanded, fortunately. Any tokens can be
appended this way, as long as they are nested with
respect to braces. But care has to be taken when
doubling #s:
\def\AppendTo#1#2{\expandafter\def\expandafter

#1\expandafter{#1#2}}

\def\foo{} \AppendTo\foo{#}

yields the TEX error “Illegal parameter number in
definition of \foo”. This can be solved by using
token list registers, which double their hashmarks
when expanded in an \edef:
\def\AppendTo#1#2{\begingroup

\expandafter\toks\expandafter0%

\expandafter{\foo#2}%

\global\edef#1{\the\toks0}\endgroup}

\def\foo{} \AppendTo\foo{#x}

\show\foo % \foo=macro:-> ##x

Note that when a macro is defined, #s have to
be properly formulated, and it is \def which eats
half of #s (and converts #1 etc. to special, inaccessi-
ble tokens), but \edef doesn’t convert #6 to special
tokens if it comes from a token list register. The
disadvantage of the second definition of \AppendTo
is that it must be \global. (There is a much longer
solution that manually doubles the #s.) The \addto

TUGboat, Volume 0 (2060), No. 0 —Proceedings of the 2060 Annual Meeting 1019

Péter Szabó

command of Babel and the \vref@addto command
of varioref.sty are \global, similar to this solution.

Processing Arbitrary Package Options
LATEX packages can use the standard com-
mands \DeclareOption, \ExecuteOption and
\ProcessOptions to access package options passed
to them, and these commands work fine with a fixed
set of options. The \DeclareOption* command
can be used to declare arbitrary options:
%\DeclareOption{10pt}{\typeout{got ten-pt}}%(1)

\DeclareOption*{\typeout{got=(\CurrentOption)}}

\ProcessOptions % in file foo.sty

Two lines will be printed when foo.sty is loaded
as \usepackage[,foo=bar,,no,]{foo}. These are
got=(foo=bar) and got=no. The optional argu-
ment of \usepackage may contain spaces and/or
a single newline around commas and at the ends.
Class options are passed to \DeclareOption*, so
when \documentclass[10pt]{article} is active,
got=(10pt) will not appear, but when line (1) is
uncommented, got ten-pt will appear.

There is an alternative, low-level way for ac-
cessing all the options at once:

\AtEndOfPackage{\let\@unprocessedoptions
\relax}% prevent warning

\typeout{\csname opt@\@currname.\@currext
\endcsname}

This prints the full option list with extra spaces and
newlines removed, but commas, including superflu-
ous ones, are kept intact.

Beyond the Current magyar.ldf

Other Hungarian Typesetting Software Al-
though magyar.ldf contains most of the functionality
needed for following Hungarian typographic tradi-
tions, other utilities and packages can help in type-
setting Hungarian texts. Most of this software, in-
cluding magyar.ldf, is going to be available under the
name MagyarLATEX from http://www.math.bme.hu/
latex/.

magyar.ldf The new Hungarian module for Babel.
Version 1.5 was written by Péter Szabó begin-
ning in the autumn of 2003.

huhyph.tex or huhyph3.tex The old (version 3) Hun-
garian hyphenation \patterns for the T1 en-
coding, written by Gyula Mayer in 1998. Part
of most TEX distributions. See section ?!?.

huhyphc.tex The new version of the Hungarian hy-
phenation \patterns for the T1 encoding, writ-
ten by Gyula Mayer in 2002 [4]. Part of most

TEX distributions. Hyphenates foreign com-
pound words on the subword boundary, e.g.
szin-kron. See section ?!?.

huhyphf.tex The new version of the Hungarian hy-
phenation \patterns for the T1 encoding, writ-
ten by Gyula Mayer in 2002 r[4]. Part of most
TEX distributions. Hyphenates foreign com-
pound words phonetically, e.g. szink-ron. See
section ?!?.

ccs extract.pl A Perl script that helps with hyphen-
ation of words containing long double Hungar-
ian consonants. It finds all occurrences of such
words in the document and lets the user decide
whether to insert, for each unique word, the ma-
gyar.ldf shorthands for \discretionary breaks
for long double consonants. The program was
written by Péter Szabó in 2003.

lafmtgen.pl An easy-to-use Perl script that can gen-
erate format files (.fmt) containing all hyphen-
ation patterns required by the specified LATEX
document. It has some other features related
to generating and installing format files, and is
to be used with the Unix teTEX distribution. It
was written by Péter Szabó in 2003.

huplain.bst BibTEX style file for Hungarian biblio-
graphies, based on plain.bst. It encourages shar-
ing the same .bib database between Hungarian
and English documents. It follows the (simple)
convention that the style of a bibliography de-
pends on the language of the document con-
taining the entry, not the language of the entry
itself. It was written by Péter Szabó in 2003.

husort.pl A drop-in replacement of makeindex that
follows the Hungarian standards of index sort-
ing and typesetting. It is implemented as a Perl
script. It was written by Péter Szabó in 2003.

magyar.xdy Hungarian style file for the X̊ındy index
processing program. Implements the Hungar-
ian sorting order and a Hungarian typesetting
style. The implemented sorting order does not
follow Hungarian rules as strictly and elegantly
as husort.pl. It was written by Péter Szabó in
2003.

CM-Super The EC fonts in Type 1 format in T1 and
various other encodings. It is not part of Mag-
yarLATEX, but is available from CTAN. It is use-
ful for converting Hungarian text to PDF, so the
generated PDF file will contain the EC fonts in
Type 1 format, and will be rendered quickly and
nicely by Acrobat Reader.

MagyarISpell The Hungarian language database of
the Ispell spell checker for Unix. On Debian

1020 TUGboat, Volume 0 (2060), No. 0 — Proceedings of the 2060 Annual Meeting

Implementation Tricks in the Hungarian Babel Module

systems, it can be installed with the command
apt-get install ihungarian.

Ispell has a TEX mode, which skips con-
trol sequences and comments when checking
TEX source. (Unfortunately, the arguments of
\begin{tabular} and many other non-textual
elements of LATEX documents are not skipped.)
Ispell can be used interactively, but this method
is not comfortable, and incremental checking is
not possible.

Ispell also has an interprocess communication
protocol, through which it can be integrated
into text editors. For example, Emacs has built-
in Ispell support to mark incorrect words vi-
sually. OpenOffice, LyX, editors in KDE and
newer versions of Vim can do the same. Ma-
gyarISpell works fine in these editors. It is not
part of MagyarLATEX, but it is freely available.

Note, however, that both the database and
the stemmer of MagyarISpell is far from perfect,
but among the Hungarian spell checkers only
this one works inside Ispell, so only this can be
easily integrated into editors.

MSpell A commercial Hungarian spell checker with
a no-cost Linux download, developed by Mor-
phologic (a company in Hungary that produces
linguistic software). Doesn’t have an interac-
tive mode, but can replace Ispell in inter-process
communication mode. A shell script is provided
that replaces the ispell command, so MSpell
can be integrated into text editors more easily.
It is not part of MagyarLATEX.

HunSpell The successor of MagyarISpell, but based
on a different spell checking architecture. It
understands Hungarian much better than Ma-
gyarISpell, but since it is not based on Ispell, it
is harder to integrate into text editors. For ex-
ample, it is not available from the Emacs spell
checking menu, even if it is installed. It is not
part of MagyarLATEX, but it is freely available.

Future Work Some features are still missing from
magyar.ldf:

• letter.cls is not customized properly, the left in-
dentation of the nested list environments is also
not customized;

• a macro to emit numbers with groups of three
digits separated is missing;

• layout.sty and many other packages don’t have
Hungarian captions yet;

• the shorthand ‘ is not disabled in math mode
to give nath.sty a chance to typeset Hsymm with
$H_{‘symm}$;

• \hunnewlabel should store table, figure or
equation, so \refstruc can insert it;

• new fonts and/or methods should be developed
in place of ‘tty;

• Hungarian typography needs a baseline grid,
which is almost impossible to enforce in LATEX;

• some of the separation symbols proposed for af-
ter \paragraph are not available yet;

• section titles should not be larger than normal
text;

• bold fonts should be substituted for bold ex-
tended fonts, whenever available — and never
with an error or warning message; page num-
bers should be removed from blank pages;

• the width of \parindent should be computed
based on \textwidth;

• the length of the last line of a paragraph should
not be too near to the right margin, especially
if \parindent = 0;

• \vskips above and below sections should be re-
duced;

• providing the commands \H and \. for OT1-
encoded typewriter fonts;

• \MathReal should be extended with physical
units;

• virtual fonts to support \umlautlow in T1 en-
coding;

• bold in \begin{description} should be \emph;
• allow specifying some compile-time options at

run-time;
• \textqq should also work as an environment;
• \told should generate suffixes for month names.

TUGboat, Volume 0 (2060), No. 0 —Proceedings of the 2060 Annual Meeting 1021

Péter Szabó

Other features should be implemented outside
magyar.ldf, as external programs. All programs in
section ?!? need improvement in one way or another.

Conclusion An updated magyar.ldf which closely
follows Hungarian typographical rules and works to-
gether with the most popular LATEX packages with-
out problems, has been awaited for many years. This
new version is ready, as a single file longer than any-
thing before, and it is filled with many advanced
features.

Most of the features adapt LATEX to Hungarian
typographical rules, but some of them are bug fixes
to various external packages, including design flaws
and compatibility issues in Babel itself.

The implementation of some features clearly
shows that TEX macro programming is an obscure
and ineffective way of solving some of the language-
related problems. It is hoped that new versions
of Ω, together with the new version of Babel, will
provide a framework in which such problems can
be addressed compactly and elegantly, without con-
stant awareness of actual and possible compatibility
glitches.

References

[1] Gyöngyi Bujdosó and Ferenc Wettl. On the
localization of TEX in Hungary. TUGBoat,
23(1):21–26, 2002.

[2] David Kastrup. De ore leonis. Macro expansion
for virtuosi. In EuroBachoTEX, May 2002.

[3] Donald E. Knuth. The TEXbook. Addison-
Wesley, 1984.

[4] Gyula Mayer. The Hungarian hyphenation mod-
ule of TEX and LATEX. Unpublished article in
Hungarian, 10 July 2002.

[5] Petr Sojka. Notes on compound word hyphen-
ation in TEX. TUGboat, 16(3):290–296, 1995.

1022 TUGboat, Volume 0 (2060), No. 0 — Proceedings of the 2060 Annual Meeting

