Exercises to be solved in class, Stochastic Analysis, 2023 spring

1. Show that if X and Y are both simple random variables, moreover X and Y are independent, then

$$\mathbb{E}(XY) = \mathbb{E}(X)\mathbb{E}(Y).$$

2. Let (X, Y) denote a pair of simple random variables defined on the same probability space. Denote by $\{x_1, \ldots, x_n\}$ the set of possible values of X and denote by $\{y_1, \ldots, y_m\}$ the set of possible values of Y. Let $p_{i,j} = \mathbb{P}(X = x_i, Y = y_j)$ and $p_i = \sum_{j=1}^m p_{i,j}$. Denote by

$$H(x_i) := \sum_{j=1}^m y_j \frac{p_{i,j}}{p_i}, \quad i = 1, \dots, n.$$

- (a) Let $A_i = \{X = x_i\}, i = 1, ..., n$. Show that the sigma-algebra $\sigma(X)$ generated by X consists of the events of form $A_I = \bigcup_{i \in I} A_i$, where $I \subseteq \{1, ..., n\}$.
- (b) Prove that the random variable H(X) satisfies the abstract definition of $\mathbb{E}(Y | \sigma(X))$. *Hint:* You have to check that Z := H(X) satisfies $\mathbb{E}(|H(X)|) < +\infty$, H(X) is $\sigma(X)$ -measurable and that $\mathbb{E}(Y\mathbb{1}_A) = \mathbb{E}(H(X)\mathbb{1}_A)$ for any $A \in \sigma(X)$.
- 3. Let (S_n) denote a 1-dimensional simple symmetric random walk. That is:

$$S_n = \eta_1 + \eta_2 + \dots + \eta_n,$$

where $\eta_1, \eta_2, \ldots, \eta_n$ are independent and identically distributed *Rademacher* random variables:

$$\mathbb{P}(\eta_i = 1) = \mathbb{P}(\eta_i = -1) = \frac{1}{2}$$

Let $\mathcal{F}_n = \sigma(\eta_1, \ldots, \eta_n) = \sigma(S_1, \ldots, S_n)$, thus (\mathcal{F}_n) is the filtration generated by (S_n) .

- (a) Show that (S_n) is a martingale. (You will have to use some of the properties listed in the lecture notes name them when you use them)
- (b) Show that if $\lambda \in \mathbb{R}$ and

$$M_n = e^{\lambda S_n - n \ln(\cosh(\lambda))},$$

then (M_n) is a martingale. (Again, name the properties that you use) *Hint:* What is the moment generating function of a Rademacher random variable?

4. Let (S_n) denote a 1-dimensional simple symmetric random walk. That is:

$$S_n = \eta_1 + \eta_2 + \dots + \eta_n,$$

where $\eta_1, \eta_2, \ldots, \eta_n$ are independent and identically distributed *Rademacher* random variables:

$$\mathbb{P}(\eta_i = 1) = \mathbb{P}(\eta_i = -1) = \frac{1}{2}.$$

Let $\mathcal{F}_n = \sigma(\eta_1, \ldots, \eta_n) = \sigma(S_1, \ldots, S_n)$, thus (\mathcal{F}_n) is the fibration generated by (S_n) .

- (a) Find the discrete Doob-Meyer decomposition of (S_n^2) , i.e., write $S_n^2 = A_n + M_n$, where (A_n) is predictable and (M_n) is a martingale. Find the simplest possible form of A_n .
- (b) Write M_n as the discrete stochastic integral $(H \cdot S)_n$ of a predictable process (H_n) with respect to the martingale (S_n) . Find the simplest possible form of H_n .
- 5. You walk into a casino with one dollar in your pocket. The dealer tosses a fair coin in each round.

Your betting strategy: you place one dollar on "heads" in each round. You play this game until you go bankrupt or you reach y dollars.

- (a) What is your chance of winning?
- (b) What is the expected number of rounds that you play until the game ends?

6. Assume given a random variable U with $\mathcal{N}(0, \sigma^2)$ distribution. We want to split U as the sum of $U^{(1)} + U^{(2)} = U$, where $U^{(1)}$ and $U^{(2)}$ are i.i.d. with $\mathcal{N}(0, \frac{1}{2}\sigma^2)$ distribution. How to find $U^{(1)}$ and $U^{(2)}$ given U?

Here is the recipe: Let $Y \sim \mathcal{N}(0, 1)$ be independent from U. Let $a \in \mathbb{R}_+$. Let

$$U^{(1)} = \frac{U}{2} + aY, \qquad U^{(2)} = \frac{U}{2} - aY.$$

The question is how to choose the value of a is we want $U^{(1)}$ and $U^{(2)}$ to be i.i.d. with $\mathcal{N}(0, \frac{1}{2}\sigma^2)$ distribution?

Hint: If two random variables have multivariate normal distribution then it is easy to characterize their independence using their covariance.

- 7. Equivalent definitions of Brownian motion. Show that if (B_t) is a stochastic process with an almost surely continuous trajectory then the following characterizations are equivalent:
 - (a) $B_0 = 0$ and for any $0 \le t_1 < t_2 < \cdots < t_n$ the increments $B_{t_i} B_{t_{i-1}}$, $1 \le i \le n$ are independent with normal distribution $B_{t_i} B_{t_{i-1}} \sim \mathcal{N}(\mu, \sigma^2)$ with $\mu = 0$ and $\sigma^2 = t_i t_{i-1}$.
 - (b) (B_t) is a Gaussian process with $\mathbb{E}(B_t) = 0$ and $\mathbf{Cov}(B_s, B_t) = s \wedge t$.

Hint: You will have to show that a process that satisfies (a) also satisfies (b), and conversely, you will have to show that a process that satisfies (b) also satisfies (a). For the proof of the latter implication, keep in mind that a Gaussian process is uniquely determined by its mean function μ_t and auto-covariance function $\gamma(s,t)$.

8. Let (B_t) denote the standard Brownian motion.

Denote by $\mathcal{F}_t = \sigma(B_s, 0 \le s \le t)$ the sigma-field that contains all events that can be determined by observing our Brownian motion up to time t. We call $(\mathcal{F}_t)_{t\ge 0}$ the natural filtration generated by the process.

We call a continuous-time stochastic process $(M_t)_{t\geq 0}$ a martingale with respect to the filtration (\mathcal{F}_t) if it is an adapted process which also satisfies $\mathbb{E}(X_t | \mathcal{F}_s) = X_s$ for any $0 \leq s \leq t$.

- (a) Show that (B_t) is a martingale.
- (b) Show that $(B_t^2 t)$ is a martingale.

(c) Let $\lambda \in \mathbb{R}$ and $M_t = e^{\lambda B_t - t\lambda^2/2}$. Show that (M_t) is a martingale.

- 9. Use the reflection principle to show that $\max_{0 \le s \le t} B_s$ has the same distribution as $|B_t|$.
- 10. Lévy distribution: Find the distribution of the hitting time T_x of level x, i.e., $T_x = \min\{t : B_t = x\}$. What is $\mathbb{E}(T_x)$?
- 11. Let $M_1 := \max_{0 \le s \le 1} B_s$. Show that M_1 has the same distribution as $M_1 B_1$.
- 12. Stationary Ornstein-Uhlenbeck process:

 (B_t) is standard Brownian motion. Let $\beta \in \mathbb{R}_+$ and define

$$X_t = e^{-\beta t} B(e^{2\beta t}), \qquad -\infty < t < +\infty.$$

- (a) Argue briefly that (X_t) is a Gaussian process.
- (b) Calculate $\mu_t = \mathbb{E}(X_t)$ and $\gamma_{s,t} = \text{Cov}(X_s, X_t)$.
- (c) Show that (X_t) is a stationary process, i.e., show that for every $u \in \mathbb{R}$ the random vector

$$(X_{t_1+u},\ldots,X_{t_n+u})$$

has the same distribution as $(X_{t_1}, \ldots, X_{t_n})$. In words: the joint distributions are invariant under time shifts.

Hint: More generally, show that a Gaussian process is stationary if and only if

$$\mu_t = \mu_{t+u}, \quad \gamma_{s+u,t+u} = \gamma_{s,t} \quad \text{for any} \quad u \in \mathbb{R}.$$

Note that the first condition can be rephrased like this: μ_t is constant.

Note that the second condition can be rephrased like this: there exists a function $f : \mathbb{R}_+ \to \mathbb{R}$ such that $\gamma_{s,t} = f(|s-t|)$.

13. Use polarization to show that $\operatorname{Cov}(\int_0^t X_s \, \mathrm{d}B_s, \int_0^t Y_s \, \mathrm{d}B_s) = \mathbb{E}\left(\int_0^t X_s Y_s \, \mathrm{d}s\right).$

14. Show that if $L_n = \sum_{k=1}^n B(t_{k-1}) \cdot (B(t_k) - B(t_{k-1}))$ and $\mathcal{I} = \int_0^t B_s \, \mathrm{d}B_s$ then

$$\mathbb{E}((\mathcal{I} - L_n)^2) = \sum_{k=1}^{n} \frac{1}{2} (t_k - t_{k-1})^2.$$

- 15. What is the distribution of $\int_0^1 s \, \mathrm{d}B_s$?
- 16. Let (B_t) denote standard Brownian motion. Show that (M_t) is a martingale, where

$$M_t = B_t^3 - 3tB_t$$

Hint: Use $B_t = B_s + (B_t - B_s)$, and also that $(a + b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$.

- 17. Let (B(t)) denote the standard Brownian motion.
 - (a) Find the variance of $\int_0^2 B^2(s) dB(s)$.
 - (b) Find the covariance of $\int_0^1 e^{B(s)} dB(s)$ and $\int_0^2 e^{-3B(s)} dB(s)$.
- 18. Denote by (X_t) a left-continuous stochastic process adapted to (\mathcal{F}_t) which is in $L_2(\Omega \times [0,2])$. Denote by $Y_t = \int_0^t X_u \, \mathrm{d}B_u$. Note that $Y_2 - Y_1 = \int_1^2 X_u \, \mathrm{d}B_u$. Calculate $\operatorname{Cov}(Y_1, Y_2 - Y_1)$.
- 19. Calculate $\mathbb{E}\left[\left(\int_{1}^{2} B_{s} \,\mathrm{d}B_{s}\right)^{2} \mid \mathcal{F}_{1}\right].$
- 20. Let $Y_t = \int_0^t B_u \, du$. Calculate $\mathbb{E}(Y_t | \mathcal{F}_s)$, where (\mathcal{F}_t) denotes the natural filtration of (B_t) . Is (Y_t) a martingale?
- 21. Let $\lambda \in \mathbb{R}$. Use the differential form of Itô's formula to calculate the stochastic differentials

$$d\cos(\lambda B_t)$$
 and $d\sin(\lambda B_t)$.

Now let us define the process (X_t) by

$$X_t := e^{i\lambda B_t} = \cos(\lambda B_t) + i\sin(\lambda B_t).$$

Sow that

$$\mathrm{d}X_t = i\lambda X_t \mathrm{d}B_t - \frac{1}{2}\lambda^2 X_t \mathrm{d}t$$

by calculating the stochastic differential of the real and imaginary part of (X_t) separately.

22. We say that two stochastic processes $(X(t))_{t\geq 0}$ and $(Y(t))_{t\geq 0}$ have the same law if for every choice of $n \geq 1$ and $0 \leq t_1 < t_2 < \cdots < t_n$ the joint distributions of $(X(t_1), X(t_2), \ldots, X(t_n))$ and $(Y(t_1), Y(t_2), \ldots, Y(t_n))$ are the same. Denote by (B(t)) the standard Brownian motion. Let

$$X(t) = \int_0^t (t - u) \, \mathrm{d}B(u) \qquad Y(t) = \int_0^t B(u) \, \mathrm{d}u$$

Show that $(X(t))_{t\geq 0}$ and $(Y(t))_{t\geq 0}$ have the same law.

Hint: Both $(X(t))_{t\geq 0}$ and $(Y(t))_{t\geq 0}$ are Gaussian processes, so you only need to check that $\mathbb{E}[X(t)] = \mathbb{E}[Y(t)]$ for all $t \geq 0$ and $\operatorname{Cov}(X_s, X_t) = \operatorname{Cov}(Y_s, Y_t)$ for all $0 \leq s \leq t$.

You will need some facts about Itô integrals with a deterministic integrand.

Hint 2: By Fubini's theorem, expectations and integrals can be interchanged. Actually double integrals and expectations can also be interchanged:

$$\mathbb{E}\left[\int_{a}^{b}\int_{c}^{d}Z_{u,v}\,\mathrm{d}u\,\mathrm{d}v\right] = \int_{a}^{b}\int_{c}^{d}\mathbb{E}\left[Z_{u,v}\right]\,\mathrm{d}u\,\mathrm{d}v$$

This observation will be useful when you calculate the autocovariance function of (Y(t)).

- 23. Calculate $\operatorname{Cov}(X_s, X_t)$, where $X_t = \int_0^t B_u f'(u) \, \mathrm{d}u$.
- 24. Show that $\int_0^t B_u \, \mathrm{d}u = \int_0^t (t-u) \, \mathrm{d}B_u$.
- 25. Let $M_t = B_t^3 3tB_t$. Calculate the stochastic differential of M_t and show that (M_t) is a martingale.
- 26. Let $V_t = \int_0^t \exp\left(\beta(u-t)\right) dB_u$. Is (V_t) a martingale?
- 27. Let $f: \mathbb{R}_+ \to \mathbb{R}$ denote a deterministic continuous function. Let

$$M_t = \exp\left(i\int_0^t f(s)\,\mathrm{d}B_s + \frac{1}{2}\int_0^t f^2(s)\,\mathrm{d}s\right)$$

Show that (M_t) is a martingale and write it as a stochastic integral w.r.t. (B_s) .

- 28. Let $X = \exp\left(i\int_0^t f(s) \,\mathrm{d}B_s\right)$. Find the adapted process $(\sigma(t))_{t=0}^T$ for which $X = \mathbb{E}(X) + \int_0^T \sigma(t) \,\mathrm{d}B_t$.
- 29. We have seen in class that if $Y_t = \int_0^t \sigma_s \, dB_s$, then $M_t = Y_t^2 [Y]_t$ is a martingale. Use Itô's formula for Itô processes to show that $M_t = \int_0^t \tilde{\sigma}_s \, dB_s$ for some process $(\tilde{\sigma}_s)$. Give an explicit formula for $\tilde{\sigma}_s$.
- 30. The Itô process (X_t) has stochastic differential

$$\mathrm{d}X_t = \mu(X_t)\,\mathrm{d}t + \sigma(X_t)\,\mathrm{d}B_t$$

with drift coefficient $\mu(x) = cx$ (where c > 0) and diffusion coefficient $\sigma(x) = x^a$ (where a > 0). Let us define

 $Y_t = X_t^b$

for some $b \in \mathbb{R}$.

- (a) Calculate the stochastic differential dY_t using Itô's formula for Itô processes.
- (b) How to choose b if we want the diffusion coefficient of (Y_t) to be constant?
- 31. We have already seen that $M_t = \exp(\lambda B_t t\frac{\lambda^2}{2})$ is a martingale. Your goal is to prove this again using stochastic calculus. Please use the notation $M_t = X_t Y_t$, where $X_t = e^{\lambda B_t}$ and $Y_t = e^{-t\frac{\lambda^2}{2}}$.

32. Let us fix T > 0 and denote $\Phi(x) = \int_{-\infty}^{x} \varphi(y) \, dy$, where $\varphi(y) = \frac{1}{\sqrt{2\pi}} e^{-y^2/2}$. Show that

$$M_t = \Phi\left(\frac{B_t}{\sqrt{T-t}}\right), \qquad 0 \le t < T$$

is a martingale.

33. Let $X = \mathbb{1}[B_T > 1]$. Calculate $\mathbb{E}(X \mid \mathcal{F}_t)$ and find the adapted process $(\sigma(t))_{t=0}^T$ for which

$$X = \mathbb{E}(X) + \int_0^T \sigma(t) \, \mathrm{d}B_t.$$

34. How to choose the differentiable function $f : \mathbb{R} \to \mathbb{R}$ so that $M_t = f(t)\cos(B_t)$ is a martingale with $M_0 = 1$? Use this martingale for something interesting.

35. If a function $f : \mathbb{R}^n \to \mathbb{R}$ satisfies $\Delta f \equiv 0$, then we say that f is a harmonic function. It is a fact from complex analysis that the real part of complex analytic function is a harmonic function.

(a) Let $g: \mathbb{C} \to \mathbb{C}$ be defined by $g(z) = z^3$ (thus g is a complex analytic function). Let us define

$$f(x, y) = \operatorname{Re}(g(x + iy)).$$

Write an explicit formula for f(x, y) and verify that in this case we indeed have $\Delta f = f_{xx} + f_{yy} \equiv 0$.

- (b) Use (a) to show that if $B_1(t)$ and $B_2(t)$ are independent Brownian motions, then $B_1^3(t) 3B_1(t)B_2^2(t)$ is a martingale.
- 36. Let $\underline{B}_t = (B_1(t), \dots, B_d(t))$ denote *d*-dimensional Brownian motion started from $\underline{B}_0 = \underline{x}_0 \in \mathbb{R}^d$. Let $\|\underline{x}\| = \sqrt{x_1^2 + \dots + x_d^2}$ denote the Euclidean norm. Let $f(\underline{x}) = \|\underline{x}\|^2$. Let $R \ge \|\underline{x}_0\|$ and denote by

$$\tau = \min\{t : \|\underline{B}_t\| = R\}$$

the exit time from a ball of radius R.

- (a) Calculate the stochastic differential $df(\underline{B}_t)$.
- (b) Show that $\|\underline{B}_t\|^2 d \cdot t$ is a martingale.
- (c) Use the optional stopping theorem to calculate $\mathbb{E}(\tau)$. Instruction: You don't have to check that the optional stopping theorem can be applied here.
- 37. Solve the Langevin equation, i.e., find an Ito process (X_t) such that $dX_t = -\alpha X_t dt + \sigma dB_t$ and $X_0 = x_0$ (where $\alpha, \sigma \in \mathbb{R}_+$ and $x_0 \in \mathbb{R}$).
- 38. Stochastic exponential: given an Ito process (X_t) , find the Ito process (U_t) for which $U_t = 1 + \int_0^t U_s \, dX_s$ holds for all $t \ge 0$.
- 39. Geometric Brownian motion: solve the SDE $dS_t = rS_t dt + \sigma S_t dB_t$ with initial condition $S_0 = s_0$, where $r, \sigma, s_0 \in \mathbb{R}_+$
- 40. Solve the SDE $dX_t = \frac{b-X_t}{T-t} dt + dB_t$ with $X_0 = a$ on the interval $t \in [0,T)$, where $a, b \in \mathbb{R}$ and $T \in \mathbb{R}_+$.
- 41. Let (X_t) solve the SDE $dX_t = \frac{1}{2}X_t dt + dB_t$ with $X_0 = x_0 \in \mathbb{R}$. Let $T_x = \inf\{t : X_t = x\}$. Let $a < x_0 < b$. Find $\mathbb{P}(T_a < T_b)$. Calculate $\mathbb{P}(T_{+\infty} < T_{-\infty})$ using the strong solution of the SDE.
- 42. Let $\underline{B}_t = (B_1(t), B_2(t), B_3(t))$ denote 3-dimensional Brownian motion started from $\underline{B}_0 = \underline{x}_0 \in \mathbb{R}^d$, $\underline{x}_0 \neq \underline{0}$. Let $\|\underline{x}\| = \sqrt{x_1^2 + x_2^2 + x_3^2}$ denote the Euclidean norm. Let $f(\underline{x}) = 1/\|\underline{x}\|$. Calculate the stochastic differential $df(\underline{B}_t)$ and show that the drift term vanishes.
- 43. Let $\underline{B}_t = (B_1(t), B_2(t), B_3(t))$ denote 3-dimensional Brownian motion started from $\underline{B}_0 = \underline{x}_0 \in \mathbb{R}^d, \underline{x}_0 \neq \underline{0}$. Let $T_r = \inf\{t : ||\underline{B}_t|| = r\}$. Let $0 < a < ||\underline{x}_0|| < b$.
 - (a) Find $\mathbb{P}(T_a < T_b)$.
 - (b) Show that (\underline{B}_t) never hits the origin.
- 44. Stochastic harmonic oscillator: let us consider the following system of SDE's:

$$\mathrm{d}X_t = -Y_t \,\mathrm{d}B_t, \qquad \mathrm{d}Y_t = X_t \,\mathrm{d}B_t, \qquad X_0 = 1, \qquad Y_0 = 0.$$

Let $Z_t = X_t^2 + Y_t^2$. Find Z_t .

45. Bessel process: Let (\underline{B}_t) denote d-dimensional Brownian motion. Show that if $Y_t = ||\underline{B}_t||$, then (Y_t) is a weak solution of the SDE

$$\mathrm{d}Y_t = \frac{d-1}{2}\frac{1}{Y_t} + \mathrm{d}\widetilde{B}_t.$$

46. Stochastic logarithm: given an Ito process (U_t) and X_0 , find the Ito process (X_t) for which

$$U_t = 1 + \int_0^t U_s \, \mathrm{d}X_s, \qquad t \ge 0.$$

- 47. Argue that geometric Brownian motion is a time-homogeneous Markov process and find its transition probability density function.
- 48. Solve $dX_t = X_t^3 dt + X_t^2 dB_t$ with $X_0 = 1$ and argue why existence of solutions for all $t \in \mathbb{R}_+$ fails. *Hint*: The solution is of form $X_t = f(B_t)$ for some deterministic function f.

- 49. Solve $dX_t = 3X_t^{1/3}dt + X_t^{2/3}dB_t$ with $X_0 = 0$ and argue why uniqueness of solutions fails. *Hint*: The solution is of form $X_t = f(B_t)$ for some deterministic function f.
- 50. General linear SDE: Given the Ito processes (X_t) , (Y_t) , find the Ito process (V_t) for which $dV_t = V_t dX_t + dY_t$ and $V_0 = v_0$.
- 51. Squared Bessel process: given an Ito process that solves $dY_t = \frac{n-1}{2}\frac{1}{Y_t} + dB_t$, let $X_t = Y_t^2$. Show that $dX_t = ndt + 2\sqrt{X_t}dB_t$.
- 52. Hitting probabilities for Bessel process: Let $0 < d \neq 2$, let $dY_t = \frac{d-1}{2}\frac{1}{Y_t} + dB_t$, $Y_0 = y_0$. Let $0 < a < y_0 < b$. Let $T_y = \inf\{t : Y_t = y\}$. Find $\mathbb{P}(T_a < T_b)$.
- 53. Find a 2-dimensional SDE such that the corresponding infinitesimal generator is

$$Af = f_{xx} + 3f_{xy} + \frac{5}{2}f_{yy} + f_x - f_y$$

- 54. If $X \sim \mathcal{N}(0,1)$ under \mathbb{P} and $u \in \mathbb{R}$, find $\frac{d\mathbb{Q}}{d\mathbb{P}} = m(X)$ such that $u + X \sim \mathcal{N}(0,1)$ under \mathbb{Q}
- 55. Find the joint probability density function of $\max_{0 \le t \le 1} \widetilde{B}_t$ and \widetilde{B}_1 , where (\widetilde{B}_t) is BM with constant drift.