1. Show that if X and Y are both simple random variables, moreover X and Y are independent, then

$$
\mathbb{E}(X Y)=\mathbb{E}(X) \mathbb{E}(Y)
$$

2. Let (X, Y) denote a pair of simple random variables defined on the same probability space. Denote by $\left\{x_{1}, \ldots, x_{n}\right\}$ the set of possible values of X and denote by $\left\{y_{1}, \ldots, y_{m}\right\}$ the set of possible values of Y. Let $p_{i, j}=\mathbb{P}\left(X=x_{i}, Y=y_{j}\right)$ and $p_{i}=\sum_{j=1}^{m} p_{i, j}$. Denote by

$$
H\left(x_{i}\right):=\sum_{j=1}^{m} y_{j} \frac{p_{i, j}}{p_{i}}, \quad i=1, \ldots, n
$$

(a) Let $A_{i}=\left\{X=x_{i}\right\}, i=1, \ldots, n$. Show that the sigma-algebra $\sigma(X)$ generated by X consists of the events of form $A_{I}=\cup_{i \in I} A_{i}$, where $I \subseteq\{1, \ldots, n\}$.
(b) Prove that the random variable $H(X)$ satisfies the abstract definition of $\mathbb{E}(Y \mid \sigma(X))$.

Hint: You have to check that $Z:=H(X)$ satisfies $\mathbb{E}(|H(X)|)<+\infty, H(X)$ is $\sigma(X)$-measurable and that $\mathbb{E}\left(Y \mathbb{1}_{A}\right)=\mathbb{E}\left(H(X) \mathbb{1}_{A}\right)$ for any $A \in \sigma(X)$.
3. Let $\left(S_{n}\right)$ denote a 1-dimensional simple symmetric random walk. That is:

$$
S_{n}=\eta_{1}+\eta_{2}+\cdots+\eta_{n},
$$

where $\eta_{1}, \eta_{2}, \ldots, \eta_{n}$ are independent and identically distributed Rademacher random variables:

$$
\mathbb{P}\left(\eta_{i}=1\right)=\mathbb{P}\left(\eta_{i}=-1\right)=\frac{1}{2}
$$

Let $\mathcal{F}_{n}=\sigma\left(\eta_{1}, \ldots, \eta_{n}\right)=\sigma\left(S_{1}, \ldots, S_{n}\right)$, thus $\left(\mathcal{F}_{n}\right)$ is the filtration generated by $\left(S_{n}\right)$.
(a) Show that $\left(S_{n}\right)$ is a martingale. (You will have to use some of the properties listed in the lecture notes - name them when you use them)
(b) Show that if $\lambda \in \mathbb{R}$ and

$$
M_{n}=e^{\lambda S_{n}-n \ln (\cosh (\lambda))}
$$

then $\left(M_{n}\right)$ is a martingale. (Again, name the properties that you use)
Hint: What is the moment generating function of a Rademacher random variable?
4. Let $\left(S_{n}\right)$ denote a 1-dimensional simple symmetric random walk. That is:

$$
S_{n}=\eta_{1}+\eta_{2}+\cdots+\eta_{n}
$$

where $\eta_{1}, \eta_{2}, \ldots, \eta_{n}$ are independent and identically distributed Rademacher random variables:

$$
\mathbb{P}\left(\eta_{i}=1\right)=\mathbb{P}\left(\eta_{i}=-1\right)=\frac{1}{2}
$$

Let $\mathcal{F}_{n}=\sigma\left(\eta_{1}, \ldots, \eta_{n}\right)=\sigma\left(S_{1}, \ldots, S_{n}\right)$, thus $\left(\mathcal{F}_{n}\right)$ is the filration generated by $\left(S_{n}\right)$.
(a) Find the discrete Doob-Meyer decomposition of $\left(S_{n}^{2}\right)$, i.e., write $S_{n}^{2}=A_{n}+M_{n}$, where $\left(A_{n}\right)$ is predictable and $\left(M_{n}\right)$ is a martingale. Find the simplest possible form of A_{n}.
(b) Write M_{n} as the discrete stochastic integral $(H \cdot S)_{n}$ of a predictable process $\left(H_{n}\right)$ with respect to the martingale $\left(S_{n}\right)$. Find the simplest possible form of H_{n}.
5. You walk into a casino with one dollar in your pocket. The dealer tosses a fair coin in each round.

Your betting strategy: you place one dollar on „heads" in each round. You play this game until you go bankrupt or you reach y dollars.
(a) What is your chance of winning?
(b) What is the expected number of rounds that you play until the game ends?
6. Assume given a random variable U with $\mathcal{N}\left(0, \sigma^{2}\right)$ distribution. We want to split U as the sum of $U^{(1)}+U^{(2)}=U$, where $U^{(1)}$ and $U^{(2)}$ are i.i.d. with $\mathcal{N}\left(0, \frac{1}{2} \sigma^{2}\right)$ distribution. How to find $U^{(1)}$ and $U^{(2)}$ given U ?
Here is the recipe: Let $Y \sim \mathcal{N}(0,1)$ be independent from U. Let $a \in \mathbb{R}_{+}$. Let

$$
U^{(1)}=\frac{U}{2}+a Y, \quad U^{(2)}=\frac{U}{2}-a Y
$$

The question is how to choose the value of a is we want $U^{(1)}$ and $U^{(2)}$ to be i.i.d. with $\mathcal{N}\left(0, \frac{1}{2} \sigma^{2}\right)$ distribution?
Hint: If two random variables have multivariate normal distribution then it is easy to characterize their independence using their covariance.
7. Equivalent definitions of Brownian motion. Show that if $\left(B_{t}\right)$ is a stochastic process with an almost surely continuous trajectory then the following characterizations are equivalent:
(a) $B_{0}=0$ and for any $0 \leq t_{1}<t_{2}<\cdots<t_{n}$ the increments $B_{t_{i}}-B_{t_{i-1}}, 1 \leq i \leq n$ are independent with normal distribution $B_{t_{i}}-B_{t_{i-1}} \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$ with $\mu=0$ and $\sigma^{2}=t_{i}-t_{i-1}$.
(b) $\left(B_{t}\right)$ is a Gaussian process with $\mathbb{E}\left(B_{t}\right)=0$ and $\operatorname{Cov}\left(B_{s}, B_{t}\right)=s \wedge t$.

Hint: You will have to show that a process that satisfies (a) also satisfies (b), and conversely, you will have to show that a process that satisfies (b) also satisfies (a). For the proof of the latter implication, keep in mind that a Gaussian process is uniquely determined by its mean function μ_{t} and auto-covariance function $\gamma(s, t)$.
8. Let $\left(B_{t}\right)$ denote the standard Brownian motion.

Denote by $\mathcal{F}_{t}=\sigma\left(B_{s}, 0 \leq s \leq t\right)$ the sigma-field that contains all events that can be determined by observing our Brownian motion up to time t. We call $\left(\mathcal{F}_{t}\right)_{t \geq 0}$ the natural filtration generated by the process.
We call a continuous-time stochastic process $\left(M_{t}\right)_{t \geq 0}$ a martingale with respect to the filtration $\left(\mathcal{F}_{t}\right)$ if it is an adapted process which also satisfies $\mathbb{E}\left(X_{t} \mid \mathcal{F}_{s}\right)=X_{s}$ for any $0 \leq s \leq t$.
(a) Show that $\left(B_{t}\right)$ is a martingale.
(b) Show that $\left(B_{t}^{2}-t\right)$ is a martingale.
(c) Let $\lambda \in \mathbb{R}$ and $M_{t}=e^{\lambda B_{t}-t \lambda^{2} / 2}$. Show that $\left(M_{t}\right)$ is a martingale.
9. Use the reflection principle to show that $\max _{0 \leq s \leq t} B_{s}$ has the same distribution as $\left|B_{t}\right|$.
10. Lévy distribution: Find the distribution of the hitting time T_{x} of level x, i.e., $T_{x}=\min \left\{t: B_{t}=x\right\}$. What is $\mathbb{E}\left(T_{x}\right)$?
11. Let $M_{1}:=\max _{0 \leq s \leq 1} B_{s}$. Show that M_{1} has the same distribution as $M_{1}-B_{1}$.
12. Stationary Ornstein-Uhlenbeck process:
$\left(B_{t}\right)$ is standard Brownian motion. Let $\beta \in \mathbb{R}_{+}$and define

$$
X_{t}=e^{-\beta t} B\left(e^{2 \beta t}\right), \quad-\infty<t<+\infty .
$$

(a) Argue briefly that $\left(X_{t}\right)$ is a Gaussian process.
(b) Calculate $\mu_{t}=\mathbb{E}\left(X_{t}\right)$ and $\gamma_{s, t}=\operatorname{Cov}\left(X_{s}, X_{t}\right)$.
(c) Show that $\left(X_{t}\right)$ is a stationary process, i.e., show that for every $u \in \mathbb{R}$ the random vector

$$
\left(X_{t_{1}+u}, \ldots, X_{t_{n}+u}\right)
$$

has the same distribution as $\left(X_{t_{1}}, \ldots, X_{t_{n}}\right)$. In words: the joint distributions are invariant under time shifts.
Hint: More generally, show that a Gaussian process is stationary if and only if

$$
\mu_{t}=\mu_{t+u}, \quad \gamma_{s+u, t+u}=\gamma_{s, t} \quad \text { for any } \quad u \in \mathbb{R}
$$

Note that the first condition can be rephrased like this: μ_{t} is constant.
Note that the second condition can be rephrased like this: there exists a function $f: \mathbb{R}_{+} \rightarrow \mathbb{R}$ such that $\gamma_{s, t}=f(|s-t|)$.
13. Use polarization to show that $\operatorname{Cov}\left(\int_{0}^{t} X_{s} \mathrm{~d} B_{s}, \int_{0}^{t} Y_{s} \mathrm{~d} B_{s}\right)=\mathbb{E}\left(\int_{0}^{t} X_{s} Y_{s} \mathrm{~d} s\right)$.
14. Show that if $L_{n}=\sum_{k=1}^{n} B\left(t_{k-1}\right) \cdot\left(B\left(t_{k}\right)-B\left(t_{k-1}\right)\right)$ and $\mathcal{I}=\int_{0}^{t} B_{s} \mathrm{~d} B_{s}$ then

$$
\mathbb{E}\left(\left(\mathcal{I}-L_{n}\right)^{2}\right)=\sum_{k=1}^{n} \frac{1}{2}\left(t_{k}-t_{k-1}\right)^{2}
$$

15. What is the distribution of $\int_{0}^{1} s \mathrm{~d} B_{s}$?
16. Let $\left(B_{t}\right)$ denote standard Brownian motion. Show that $\left(M_{t}\right)$ is a martingale, where

$$
M_{t}=B_{t}^{3}-3 t B_{t}
$$

Hint: Use $B_{t}=B_{s}+\left(B_{t}-B_{s}\right)$, and also that $(a+b)^{3}=a^{3}+3 a^{2} b+3 a b^{2}+b^{3}$.
17. Let $(B(t))$ denote the standard Brownian motion.
(a) Find the variance of $\int_{0}^{2} B^{2}(s) \mathrm{d} B(s)$.
(b) Find the covariance of $\int_{0}^{1} e^{B(s)} \mathrm{d} B(s)$ and $\int_{0}^{2} e^{-3 B(s)} \mathrm{d} B(s)$.
18. Denote by $\left(X_{t}\right)$ a left-continuous stochastic process adapted to $\left(\mathcal{F}_{t}\right)$ which is in $L_{2}(\Omega \times[0,2])$.

Denote by $Y_{t}=\int_{0}^{t} X_{u} \mathrm{~d} B_{u}$. Note that $Y_{2}-Y_{1}=\int_{1}^{2} X_{u} \mathrm{~d} B_{u}$.
Calculate $\operatorname{Cov}\left(Y_{1}, Y_{2}-Y_{1}\right)$.
19. Calculate $\mathbb{E}\left[\left(\int_{1}^{2} B_{s} \mathrm{~d} B_{s}\right)^{2} \mid \mathcal{F}_{1}\right]$.
20. Let $Y_{t}=\int_{0}^{t} B_{u} \mathrm{~d} u$. Calculate $\mathbb{E}\left(Y_{t} \mid \mathcal{F}_{s}\right)$, where $\left(\mathcal{F}_{t}\right)$ denotes the natural filtration of $\left(B_{t}\right)$. Is $\left(Y_{t}\right)$ a martingale?
21. Let $\lambda \in \mathbb{R}$. Use the differential form of Itô's formula to calculate the stochastic differentials

$$
\mathrm{d} \cos \left(\lambda B_{t}\right) \quad \text { and } \quad \mathrm{d} \sin \left(\lambda B_{t}\right)
$$

Now let us define the process $\left(X_{t}\right)$ by

$$
X_{t}:=e^{i \lambda B_{t}}=\cos \left(\lambda B_{t}\right)+i \sin \left(\lambda B_{t}\right) .
$$

Sow that

$$
\mathrm{d} X_{t}=i \lambda X_{t} \mathrm{~d} B_{t}-\frac{1}{2} \lambda^{2} X_{t} \mathrm{~d} t
$$

by calculating the stochastic differential of the real and imaginary part of $\left(X_{t}\right)$ separately.
22. We say that two stochastic processes $(X(t))_{t \geq 0}$ and $(Y(t))_{t \geq 0}$ have the same law if for every choice of $n \geq 1$ and $0 \leq t_{1}<t_{2}<\cdots<t_{n}$ the joint distributions of $\left(X\left(t_{1}\right), X\left(t_{2}\right), \ldots, X\left(t_{n}\right)\right)$ and $\left(Y\left(t_{1}\right), Y\left(t_{2}\right), \ldots, Y\left(t_{n}\right)\right)$ are the same. Denote by $(B(t))$ the standard Brownian motion. Let

$$
X(t)=\int_{0}^{t}(t-u) \mathrm{d} B(u) \quad Y(t)=\int_{0}^{t} B(u) \mathrm{d} u
$$

Show that $(X(t))_{t \geq 0}$ and $(Y(t))_{t \geq 0}$ have the same law.
Hint: Both $(X(t))_{t \geq 0}$ and $(Y(t))_{t \geq 0}$ are Gaussian processes, so you only need to check that $\mathbb{E}[X(t)]=$ $\mathbb{E}[Y(t)]$ for all $t \geq 0$ and $\operatorname{Cov}\left(X_{s}, \bar{X}_{t}\right)=\operatorname{Cov}\left(Y_{s}, Y_{t}\right)$ for all $0 \leq s \leq t$.
You will need some facts about Itô integrals with a deterministic integrand.
Hint 2: By Fubini's theorem, expectations and integrals can be interchanged. Actually double integrals and expectations can also be interchanged:

$$
\mathbb{E}\left[\int_{a}^{b} \int_{c}^{d} Z_{u, v} \mathrm{~d} u \mathrm{~d} v\right]=\int_{a}^{b} \int_{c}^{d} \mathbb{E}\left[Z_{u, v}\right] \mathrm{d} u \mathrm{~d} v
$$

This observation will be useful when you calculate the autocovariance function of $(Y(t))$.
23. Calculate $\operatorname{Cov}\left(X_{s}, X_{t}\right)$, where $X_{t}=\int_{0}^{t} B_{u} f^{\prime}(u) \mathrm{d} u$.
24. Show that $\int_{0}^{t} B_{u} \mathrm{~d} u=\int_{0}^{t}(t-u) \mathrm{d} B_{u}$.
25. Let $M_{t}=B_{t}^{3}-3 t B_{t}$. Calculate the stochastic differential of M_{t} and show that $\left(M_{t}\right)$ is a martingale.
26. Let $V_{t}=\int_{0}^{t} \exp (\beta(u-t)) \mathrm{d} B_{u}$. Is $\left(V_{t}\right)$ a martingale?
27. Let $f: \mathbb{R}_{+} \rightarrow \mathbb{R}$ denote a deterministic continuous function. Let

$$
M_{t}=\exp \left(i \int_{0}^{t} f(s) \mathrm{d} B_{s}+\frac{1}{2} \int_{0}^{t} f^{2}(s) \mathrm{d} s\right) .
$$

Show that $\left(M_{t}\right)$ is a martingale and write it as a stochastic integral w.r.t. $\left(B_{s}\right)$.
28. Let $X=\exp \left(i \int_{0}^{t} f(s) \mathrm{d} B_{s}\right)$. Find the adapted process $(\sigma(t))_{t=0}^{T}$ for which $X=\mathbb{E}(X)+\int_{0}^{T} \sigma(t) \mathrm{d} B_{t}$.
29. We have seen in class that if $Y_{t}=\int_{0}^{t} \sigma_{s} \mathrm{~d} B_{s}$, then $M_{t}=Y_{t}^{2}-[Y]_{t}$ is a martingale.

Use Itô's formula for Itô processes to show that $M_{t}=\int_{0}^{t} \widetilde{\sigma}_{s} \mathrm{~d} B_{s}$ for some process ($\widetilde{\sigma}_{s}$). Give an explicit formula for $\tilde{\sigma}_{s}$.
30. The Itô process $\left(X_{t}\right)$ has stochastic differential

$$
\mathrm{d} X_{t}=\mu\left(X_{t}\right) \mathrm{d} t+\sigma\left(X_{t}\right) \mathrm{d} B_{t}
$$

with drift coefficient $\mu(x)=c x$ (where $c>0$) and diffusion coefficient $\sigma(x)=x^{a}$ (where $a>0$).
Let us define

$$
Y_{t}=X_{t}^{b}
$$

for some $b \in \mathbb{R}$.
(a) Calculate the stochastic differential $\mathrm{d} Y_{t}$ using Itô's formula for Itô processes.
(b) How to choose b if we want the diffusion coefficient of $\left(Y_{t}\right)$ to be constant?
31. We have already seen that $M_{t}=\exp \left(\lambda B_{t}-t \frac{\lambda^{2}}{2}\right)$ is a martingale.

Your goal is to prove this again using stochastic calculus.
Please use the notation $M_{t}=X_{t} Y_{t}$, where $X_{t}=e^{\lambda B_{t}}$ and $Y_{t}=e^{-t \frac{\lambda^{2}}{2}}$.
32. Let us fix $T>0$ and denote $\Phi(x)=\int_{-\infty}^{x} \varphi(y) \mathrm{d} y$, where $\varphi(y)=\frac{1}{\sqrt{2 \pi}} e^{-y^{2} / 2}$.

Show that

$$
M_{t}=\Phi\left(\frac{B_{t}}{\sqrt{T-t}}\right), \quad 0 \leq t<T
$$

is a martingale.
33. Let $X=\mathbb{1}\left[B_{T}>1\right]$. Calculate $\mathbb{E}\left(X \mid \mathcal{F}_{t}\right)$ and find the adapted process $(\sigma(t))_{t=0}^{T}$ for which

$$
X=\mathbb{E}(X)+\int_{0}^{T} \sigma(t) \mathrm{d} B_{t}
$$

34. How to choose the differentiable function $f: \mathbb{R} \rightarrow \mathbb{R}$ so that $M_{t}=f(t) \cos \left(B_{t}\right)$ is a martingale with $M_{0}=1$? Use this martingale for something interesting.
35. If a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ satisfies $\Delta f \equiv 0$, then we say that f is a harmonic function.

It is a fact from complex analysis that the real part of complex analytic function is a harmonic function.
(a) Let $g: \mathbb{C} \rightarrow \mathbb{C}$ be defined by $g(z)=z^{3}$ (thus g is a complex analytic function). Let us define

$$
f(x, y)=\operatorname{Re}(g(x+i y))
$$

Write an explicit formula for $f(x, y)$ and verify that in this case we indeed have $\Delta f=f_{x x}+f_{y y} \equiv 0$.
(b) Use (a) to show that if $B_{1}(t)$ and $B_{2}(t)$ are independent Brownian motions, then $B_{1}^{3}(t)-3 B_{1}(t) B_{2}^{2}(t)$ is a martingale.
36. Let $\underline{B}_{t}=\left(B_{1}(t), \ldots, B_{d}(t)\right)$ denote d-dimensional Brownian motion started from $\underline{B}_{0}=\underline{x}_{0} \in \mathbb{R}^{d}$.

Let $\|\underline{x}\|=\sqrt{x_{1}^{2}+\cdots+x_{d}^{2}}$ denote the Euclidean norm. Let $f(\underline{x})=\|\underline{x}\|^{2}$.
Let $R \geq\left\|\underline{x}_{0}\right\|$ and denote by

$$
\tau=\min \left\{t:\left\|\underline{B}_{t}\right\|=R\right\}
$$

the exit time from a ball of radius R.
(a) Calculate the stochastic differential $\mathrm{d} f\left(\underline{B}_{t}\right)$.
(b) Show that $\left\|\underline{B}_{t}\right\|^{2}-d \cdot t$ is a martingale.
(c) Use the optional stopping theorem to calculate $\mathbb{E}(\tau)$.

Instruction: You don't have to check that the optional stopping theorem can be applied here.
37. Solve the Langevin equation, i.e., find an Ito process $\left(X_{t}\right)$ such that $\mathrm{d} X_{t}=-\alpha X_{t} \mathrm{~d} t+\sigma \mathrm{d} B_{t}$ and $X_{0}=x_{0}$ (where $\alpha, \sigma \in \mathbb{R}_{+}$and $x_{0} \in \mathbb{R}$).
38. Stochastic exponential: given an Ito process $\left(X_{t}\right)$, find the Ito process $\left(U_{t}\right)$ for which $U_{t}=1+\int_{0}^{t} U_{s} \mathrm{~d} X_{s}$ holds for all $t \geq 0$.
39. Geometric Brownian motion: solve the $\mathrm{SDE} \mathrm{d} S_{t}=r S_{t} \mathrm{~d} t+\sigma S_{t} \mathrm{~d} B_{t}$ with initial condition $S_{0}=s_{0}$, where $r, \sigma, s_{0} \in \mathbb{R}_{+}$
40. Solve the $\operatorname{SDE~} \mathrm{d} X_{t}=\frac{b-X_{t}}{T-t} \mathrm{~d} t+\mathrm{d} B_{t}$ with $X_{0}=a$ on the interval $t \in[0, T)$, where $a, b \in \mathbb{R}$ and $T \in \mathbb{R}_{+}$.
41. Let $\left(X_{t}\right)$ solve the $\operatorname{SDE~} \mathrm{d} X_{t}=\frac{1}{2} X_{t} \mathrm{~d} t+\mathrm{d} B_{t}$ with $X_{0}=x_{0} \in \mathbb{R}$. Let $T_{x}=\inf \left\{t: X_{t}=x\right\}$. Let $a<x_{0}<b$. Find $\mathbb{P}\left(T_{a}<T_{b}\right)$. Calculate $\mathbb{P}\left(T_{+\infty}<T_{-\infty}\right)$ using the strong solution of the SDE.
42. Let $\underline{B}_{t}=\left(B_{1}(t), B_{2}(t), B_{3}(t)\right)$ denote 3-dimensional Brownian motion started from $\underline{B}_{0}=\underline{x}_{0} \in \mathbb{R}^{d}, \underline{x}_{0} \neq \underline{0}$. Let $\|\underline{x}\|=\sqrt{x_{1}^{2}+x_{2}^{2}+x_{3}^{2}}$ denote the Euclidean norm. Let $f(\underline{x})=1 /\|\underline{x}\|$. Calculate the stochastic differential $\mathrm{d} f\left(\underline{B}_{t}\right)$ and show that the drift term vanishes.
43. Let $\underline{B}_{t}=\left(B_{1}(t), B_{2}(t), B_{3}(t)\right)$ denote 3-dimensional Brownian motion started from $\underline{B}_{0}=\underline{x}_{0} \in \mathbb{R}^{d}, \underline{x}_{0} \neq \underline{0}$. Let $T_{r}=\inf \left\{t:\left\|\underline{B}_{t}\right\|=r\right\}$. Let $0<a<\left\|\underline{x}_{0}\right\|<b$.
(a) Find $\mathbb{P}\left(T_{a}<T_{b}\right)$.
(b) Show that $\left(\underline{B}_{t}\right)$ never hits the origin.
44. Stochastic harmonic oscillator: let us consider the following system of SDE's:

$$
\mathrm{d} X_{t}=-Y_{t} \mathrm{~d} B_{t}, \quad \mathrm{~d} Y_{t}=X_{t} \mathrm{~d} B_{t}, \quad X_{0}=1, \quad Y_{0}=0
$$

Let $Z_{t}=X_{t}^{2}+Y_{t}^{2}$. Find Z_{t}.
45. Bessel process: Let $\left(\underline{B}_{t}\right)$ denote d-dimensional Brownian motion. Show that if $Y_{t}=\left\|\underline{B}_{t}\right\|$, then $\left(Y_{t}\right)$ is a weak solution of the SDE

$$
\mathrm{d} Y_{t}=\frac{d-1}{2} \frac{1}{Y_{t}}+\mathrm{d} \widetilde{B}_{t}
$$

46. Stochastic logarithm: given an Ito process $\left(U_{t}\right)$ and X_{0}, find the Ito process $\left(X_{t}\right)$ for which

$$
U_{t}=1+\int_{0}^{t} U_{s} \mathrm{~d} X_{s}, \quad t \geq 0
$$

47. Argue that geometric Brownian motion is a time-homogeneous Markov process and find its transition probability density function.
48. Solve $\mathrm{d} X_{t}=X_{t}^{3} \mathrm{~d} t+X_{t}^{2} \mathrm{~d} B_{t}$ with $X_{0}=1$ and argue why existence of solutions for all $t \in \mathbb{R}_{+}$fails. Hint: The solution is of form $X_{t}=f\left(B_{t}\right)$ for some deterministic function f.
49. Solve $\mathrm{d} X_{t}=3 X_{t}^{1 / 3} \mathrm{~d} t 3+X_{t}^{2 / 3} \mathrm{~d} B_{t}$ with $X_{0}=0$ and argue why uniqueness of solutions fails.

Hint: The solution is of form $X_{t}=f\left(B_{t}\right)$ for some deterministic function f.
50. General linear SDE: Given the Ito processes $\left(X_{t}\right),\left(Y_{t}\right)$, find the Ito process $\left(V_{t}\right)$ for which $\mathrm{d} V_{t}=V_{t} \mathrm{~d} X_{t}+$ $\mathrm{d} Y_{t}$ and $V_{0}=v_{0}$.
51. Squared Bessel process: given an Ito process that solves $\mathrm{d} Y_{t}=\frac{n-1}{2} \frac{1}{Y_{t}}+\mathrm{d} B_{t}$, let $X_{t}=Y_{t}^{2}$. Show that $\mathrm{d} X_{t}=n \mathrm{~d} t+2 \sqrt{X_{t}} \mathrm{~d} B_{t}$.
52. Hitting probabilities for Bessel process: Let $0<d \neq 2$, let $\mathrm{d} Y_{t}=\frac{d-1}{2} \frac{1}{Y_{t}}+\mathrm{d} B_{t}, Y_{0}=y_{0}$. Let $0<a<y_{0}<$ b. Let $T_{y}=\inf \left\{t: Y_{t}=y\right\}$. Find $\mathbb{P}\left(T_{a}<T_{b}\right)$.
53. Find a 2-dimensional SDE such that the corresponding infinitesimal generator is

$$
A f=f_{x x}+3 f_{x y}+\frac{5}{2} f_{y y}+f_{x}-f_{y}
$$

54. If $X \sim \mathcal{N}(0,1)$ under \mathbb{P} and $u \in \mathbb{R}$, find $\frac{\mathrm{d} \mathbb{Q}}{\mathrm{dP}}=m(X)$ such that $u+X \sim \mathcal{N}(0,1)$ under \mathbb{Q}
55. Find the joint probability density function of $\max _{0 \leq t \leq 1} \widetilde{B}_{t}$ and \widetilde{B}_{1}, where $\left(\widetilde{B}_{t}\right)$ is BM with constant drift.
