
Exercises to be solved in class, Stochastic Analysis, 2023 spring

1. Show that if X and Y are both simple random variables, moreover X and Y are independent, then

E(XY ) = E(X)E(Y ).

2. Let (X,Y ) denote a pair of simple random variables defined on the same probability space. Denote by
{x1, . . . , xn} the set of possible values of X and denote by {y1, . . . , ym} the set of possible values of Y .
Let pi,j = P(X = xi, Y = yj) and pi =

∑m
j=1 pi,j . Denote by

H(xi) :=

m∑
j=1

yj
pi,j
pi
, i = 1, . . . , n.

(a) Let Ai = {X = xi}, i = 1, . . . , n. Show that the sigma-algebra σ(X) generated by X consists of the
events of form AI = ∪i∈IAi, where I ⊆ {1, . . . , n}.

(b) Prove that the random variable H(X) satisfies the abstract definition of E(Y |σ(X) ).
Hint: You have to check that Z := H(X) satisfies E(|H(X)|) < +∞, H(X) is σ(X)-measurable
and that E(Y 1A) = E(H(X)1A) for any A ∈ σ(X).

3. Let (Sn) denote a 1-dimensional simple symmetric random walk. That is:

Sn = η1 + η2 + · · ·+ ηn,

where η1, η2, . . . , ηn are independent and identically distributed Rademacher random variables:

P(ηi = 1) = P(ηi = −1) =
1

2
.

Let Fn = σ(η1, . . . , ηn) = σ(S1, . . . , Sn), thus (Fn) is the filtration generated by (Sn).

(a) Show that (Sn) is a martingale. (You will have to use some of the properties listed in the lecture
notes – name them when you use them)

(b) Show that if λ ∈ R and
Mn = eλSn−n ln(cosh(λ)),

then (Mn) is a martingale. (Again, name the properties that you use)
Hint: What is the moment generating function of a Rademacher random variable?

4. Let (Sn) denote a 1-dimensional simple symmetric random walk. That is:

Sn = η1 + η2 + · · ·+ ηn,

where η1, η2, . . . , ηn are independent and identically distributed Rademacher random variables:

P(ηi = 1) = P(ηi = −1) =
1

2
.

Let Fn = σ(η1, . . . , ηn) = σ(S1, . . . , Sn), thus (Fn) is the filration generated by (Sn).

(a) Find the discrete Doob-Meyer decomposition of (S2
n), i.e., write S2

n = An + Mn, where (An) is
predictable and (Mn) is a martingale. Find the simplest possible form of An.

(b) Write Mn as the discrete stochastic integral (H · S)n of a predictable process (Hn) with respect to
the martingale (Sn). Find the simplest possible form of Hn.

5. You walk into a casino with one dollar in your pocket. The dealer tosses a fair coin in each round.

Your betting strategy: you place one dollar on „heads” in each round. You play this game until you go
bankrupt or you reach y dollars.

(a) What is your chance of winning?
(b) What is the expected number of rounds that you play until the game ends?
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6. Assume given a random variable U with N (0, σ2) distribution. We want to split U as the sum of
U (1) + U (2) = U , where U (1) and U (2) are i.i.d. with N (0, 12σ

2) distribution. How to find U (1) and U (2)

given U?
Here is the recipe: Let Y ∼ N (0, 1) be independent from U . Let a ∈ R+. Let

U (1) =
U

2
+ aY, U (2) =

U

2
− aY.

The question is how to choose the value of a is we want U (1) and U (2) to be i.i.d. with N (0, 12σ
2)

distribution?
Hint: If two random variables have multivariate normal distribution then it is easy to characterize their
independence using their covariance.

7. Equivalent definitions of Brownian motion. Show that if (Bt) is a stochastic process with an almost
surely continuous trajectory then the following characterizations are equivalent:

(a) B0 = 0 and for any 0 ≤ t1 < t2 < · · · < tn the increments Bti − Bti−1 , 1 ≤ i ≤ n are independent
with normal distribution Bti −Bti−1 ∼ N (µ, σ2) with µ = 0 and σ2 = ti − ti−1.

(b) (Bt) is a Gaussian process with E(Bt) = 0 and Cov(Bs, Bt) = s ∧ t.

Hint: You will have to show that a process that satisfies (a) also satisfies (b), and conversely, you will
have to show that a process that satisfies (b) also satisfies (a). For the proof of the latter implication,
keep in mind that a Gaussian process is uniquely determined by its mean function µt and auto-covariance
function γ(s, t).

8. Let (Bt) denote the standard Brownian motion.
Denote by Ft = σ(Bs, 0 ≤ s ≤ t) the sigma-field that contains all events that can be determined by
observing our Brownian motion up to time t. We call (Ft)t≥0 the natural filtration generated by the
process.
We call a continuous-time stochastic process (Mt)t≥0 a martingale with respect to the filtration (Ft) if
it is an adapted process which also satisfies E(Xt | Fs) = Xs for any 0 ≤ s ≤ t.

(a) Show that (Bt) is a martingale.
(b) Show that (B2

t − t) is a martingale.

(c) Let λ ∈ R and Mt = eλBt−tλ
2/2. Show that (Mt) is a martingale.

9. Use the reflection principle to show that max0≤s≤tBs has the same distribution as |Bt|.

10. Lévy distribution: Find the distribution of the hitting time Tx of level x, i.e., Tx = min{ t : Bt = x }.
What is E(Tx)?

11. Let M1 := max0≤s≤1Bs. Show that M1 has the same distribution as M1 −B1.

12. Stationary Ornstein-Uhlenbeck process:
(Bt) is standard Brownian motion. Let β ∈ R+ and define

Xt = e−βtB(e2βt), −∞ < t < +∞.

(a) Argue briefly that (Xt) is a Gaussian process.
(b) Calculate µt = E(Xt) and γs,t = Cov(Xs, Xt).
(c) Show that (Xt) is a stationary process, i.e., show that for every u ∈ R the random vector

(Xt1+u, . . . , Xtn+u)

has the same distribution as (Xt1 , . . . , Xtn). In words: the joint distributions are invariant under
time shifts.
Hint: More generally, show that a Gaussian process is stationary if and only if

µt = µt+u, γs+u,t+u = γs,t for any u ∈ R.

Note that the first condition can be rephrased like this: µt is constant.
Note that the second condition can be rephrased like this: there exists a function f : R+ → R such
that γs,t = f(|s− t|).
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13. Use polarization to show that Cov(
∫ t
0
Xs dBs,

∫ t
0
Ys dBs) = E

(∫ t
0
XsYs ds

)
.

14. Show that if Ln =
∑n
k=1B(tk−1) · (B(tk)−B(tk−1)) and I =

∫ t
0
Bs dBs then

E((I − Ln)2) =

n∑
k=1

1

2
(tk − tk−1)2.

15. What is the distribution of
∫ 1

0
sdBs?

16. Let (Bt) denote standard Brownian motion. Show that (Mt) is a martingale, where

Mt = B3
t − 3tBt

Hint: Use Bt = Bs + (Bt −Bs), and also that (a+ b)3 = a3 + 3a2b+ 3ab2 + b3.

17. Let (B(t)) denote the standard Brownian motion.

(a) Find the variance of
∫ 2

0
B2(s)dB(s).

(b) Find the covariance of
∫ 1

0
eB(s)dB(s) and

∫ 2

0
e−3B(s)dB(s).

18. Denote by (Xt) a left-continuous stochastic process adapted to (Ft) which is in L2(Ω× [0, 2]).

Denote by Yt =
∫ t
0
Xu dBu. Note that Y2 − Y1 =

∫ 2

1
Xu dBu.

Calculate Cov(Y1, Y2 − Y1).

19. Calculate E
[(∫ 2

1
Bs dBs

)2
| F1

]
.

20. Let Yt =
∫ t
0
Bu du. Calculate E(Yt|Fs), where (Ft) denotes the natural filtration of (Bt). Is (Yt) a

martingale?

21. Let λ ∈ R. Use the differential form of Itô’s formula to calculate the stochastic differentials

d cos(λBt) and d sin(λBt).

Now let us define the process (Xt) by

Xt := eiλBt = cos(λBt) + i sin(λBt).

Sow that
dXt = iλXtdBt −

1

2
λ2Xtdt

by calculating the stochastic differential of the real and imaginary part of (Xt) separately.

22. We say that two stochastic processes (X(t))t≥0 and (Y (t))t≥0 have the same law if for every cho-
ice of n ≥ 1 and 0 ≤ t1 < t2 < · · · < tn the joint distributions of (X(t1), X(t2), . . . , X(tn)) and
(Y (t1), Y (t2), . . . , Y (tn)) are the same. Denote by (B(t)) the standard Brownian motion. Let

X(t) =

∫ t

0

(t− u) dB(u) Y (t) =

∫ t

0

B(u) du

Show that (X(t))t≥0 and (Y (t))t≥0 have the same law.
Hint: Both (X(t))t≥0 and (Y (t))t≥0 are Gaussian processes, so you only need to check that E[X(t)] =
E[Y (t)] for all t ≥ 0 and Cov(Xs, Xt) = Cov(Ys, Yt) for all 0 ≤ s ≤ t.
You will need some facts about Itô integrals with a deterministic integrand.
Hint 2: By Fubini’s theorem, expectations and integrals can be interchanged. Actually double integrals
and expectations can also be interchanged:

E

[∫ b

a

∫ d

c

Zu,v dudv

]
=

∫ b

a

∫ d

c

E [Zu,v] dudv

This observation will be useful when you calculate the autocovariance function of (Y (t)).
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23. Calculate Cov(Xs, Xt), where Xt =
∫ t
0
Buf

′(u) du.

24. Show that
∫ t
0
Bu du =

∫ t
0
(t− u) dBu.

25. Let Mt = B3
t − 3tBt. Calculate the stochastic differential of Mt and show that (Mt) is a martingale.

26. Let Vt =
∫ t
0

exp (β(u− t)) dBu. Is (Vt) a martingale?

27. Let f : R+ → R denote a deterministic continuous function. Let

Mt = exp

(
i

∫ t

0

f(s) dBs +
1

2

∫ t

0

f2(s) ds

)
.

Show that (Mt) is a martingale and write it as a stochastic integral w.r.t. (Bs).

28. Let X = exp
(
i
∫ t
0
f(s) dBs

)
. Find the adapted process (σ(t))Tt=0 for which X = E(X) +

∫ T
0
σ(t) dBt.

29. We have seen in class that if Yt =
∫ t
0
σs dBs, then Mt = Y 2

t − [Y ]t is a martingale.

Use Itô’s formula for Itô processes to show that Mt =
∫ t
0
σ̃s dBs for some process (σ̃s). Give an explicit

formula for σ̃s.

30. The Itô process (Xt) has stochastic differential

dXt = µ(Xt) dt+ σ(Xt) dBt

with drift coefficient µ(x) = cx (where c > 0) and diffusion coefficient σ(x) = xa (where a > 0).

Let us define
Yt = Xb

t

for some b ∈ R.

(a) Calculate the stochastic differential dYt using Itô’s formula for Itô processes.

(b) How to choose b if we want the diffusion coefficient of (Yt) to be constant?

31. We have already seen that Mt = exp(λBt − tλ
2

2 ) is a martingale.

Your goal is to prove this again using stochastic calculus.

Please use the notation Mt = XtYt, where Xt = eλBt and Yt = e−t
λ2

2 .

32. Let us fix T > 0 and denote Φ(x) =
∫ x
−∞ ϕ(y) dy, where ϕ(y) = 1√

2π
e−y

2/2.

Show that
Mt = Φ

(
Bt√
T − t

)
, 0 ≤ t < T

is a martingale.

33. Let X = 1[BT > 1]. Calculate E(X | Ft) and find the adapted process (σ(t))Tt=0 for which

X = E(X) +

∫ T

0

σ(t) dBt.

34. How to choose the differentiable function f : R → R so that Mt = f(t) cos(Bt) is a martingale with
M0 = 1? Use this martingale for something interesting.

35. If a function f : Rn → R satisfies ∆f ≡ 0, then we say that f is a harmonic function.

It is a fact from complex analysis that the real part of complex analytic function is a harmonic function.

(a) Let g : C→ C be defined by g(z) = z3 (thus g is a complex analytic function). Let us define

f(x, y) = Re(g(x+ iy)).

Write an explicit formula for f(x, y) and verify that in this case we indeed have ∆f = fxx + fyy ≡ 0.
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(b) Use (a) to show that if B1(t) and B2(t) are independent Brownian motions, then B3
1(t)−3B1(t)B2

2(t)
is a martingale.

36. Let Bt = (B1(t), . . . , Bd(t)) denote d-dimensional Brownian motion started from B0 = x0 ∈ Rd.
Let ‖x‖ =

√
x21 + · · ·+ x2d denote the Euclidean norm. Let f(x) = ‖x‖2.

Let R ≥ ‖x0‖ and denote by
τ = min{ t : ‖Bt‖ = R }

the exit time from a ball of radius R.

(a) Calculate the stochastic differential df(Bt) .

(b) Show that ‖Bt‖2 − d · t is a martingale.

(c) Use the optional stopping theorem to calculate E(τ).
Instruction: You don’t have to check that the optional stopping theorem can be applied here.

37. Solve the Langevin equation, i.e., find an Ito process (Xt) such that dXt = −αXt dt+σdBt and X0 = x0
(where α, σ ∈ R+ and x0 ∈ R).

38. Stochastic exponential: given an Ito process (Xt), find the Ito process (Ut) for which Ut = 1 +
∫ t
0
Us dXs

holds for all t ≥ 0.

39. Geometric Brownian motion: solve the SDE dSt = rStdt+ σStdBt with initial condition S0 = s0, where
r, σ, s0 ∈ R+

40. Solve the SDE dXt = b−Xt
T−t dt+ dBt with X0 = a on the interval t ∈ [0, T ), where a, b ∈ R and T ∈ R+.

41. Let (Xt) solve the SDE dXt = 1
2Xt dt + dBt with X0 = x0 ∈ R. Let Tx = inf{ t : Xt = x}. Let

a < x0 < b. Find P(Ta < Tb). Calculate P(T+∞ < T−∞) using the strong solution of the SDE.

42. Let Bt = (B1(t), B2(t), B3(t)) denote 3-dimensional Brownian motion started from B0 = x0 ∈ Rd, x0 6= 0.

Let ‖x‖ =
√
x21 + x22 + x23 denote the Euclidean norm. Let f(x) = 1/‖x‖. Calculate the stochastic

differential df(Bt) and show that the drift term vanishes.

43. Let Bt = (B1(t), B2(t), B3(t)) denote 3-dimensional Brownian motion started from B0 = x0 ∈ Rd, x0 6= 0.
Let Tr = inf{ t : ‖Bt‖ = r}. Let 0 < a < ‖x0‖ < b.

(a) Find P(Ta < Tb).

(b) Show that (Bt) never hits the origin.

44. Stochastic harmonic oscillator: let us consider the following system of SDE’s:

dXt = −Yt dBt, dYt = Xt dBt, X0 = 1, Y0 = 0.

Let Zt = X2
t + Y 2

t . Find Zt.

45. Bessel process: Let (Bt) denote d-dimensional Brownian motion. Show that if Yt = ‖Bt‖, then (Yt) is a
weak solution of the SDE

dYt =
d− 1

2

1

Yt
+ dB̃t.

46. Stochastic logarithm: given an Ito process (Ut) and X0, find the Ito process (Xt) for which

Ut = 1 +

∫ t

0

Us dXs, t ≥ 0.

47. Argue that geometric Brownian motion is a time-homogeneous Markov process and find its transition
probability density function.

48. Solve dXt = X3
t dt+X2

t dBt with X0 = 1 and argue why existence of solutions for all t ∈ R+ fails.

Hint : The solution is of form Xt = f(Bt) for some deterministic function f .
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49. Solve dXt = 3X
1/3
t dt3 +X

2/3
t dBt with X0 = 0 and argue why uniqueness of solutions fails.

Hint : The solution is of form Xt = f(Bt) for some deterministic function f .

50. General linear SDE: Given the Ito processes (Xt), (Yt), find the Ito process (Vt) for which dVt = VtdXt+
dYt and V0 = v0.

51. Squared Bessel process: given an Ito process that solves dYt = n−1
2

1
Yt

+ dBt, let Xt = Y 2
t . Show that

dXt = ndt+ 2
√
XtdBt.

52. Hitting probabilities for Bessel process: Let 0 < d 6= 2, let dYt = d−1
2

1
Yt

+ dBt, Y0 = y0. Let 0 < a < y0 <
b. Let Ty = inf{ t : Yt = y}. Find P(Ta < Tb).

53. Find a 2-dimensional SDE such that the corresponding infinitesimal generator is

Af = fxx + 3fxy +
5

2
fyy + fx − fy

54. If X ∼ N (0, 1) under P and u ∈ R, find dQ
dP = m(X) such that u+X ∼ N (0, 1) under Q

55. Find the joint probability density function of max0≤t≤1 B̃t and B̃1, where (B̃t) is BM with constant drift.
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