Stoch. Anal. HW assignment 1. Due 2023 March 9 midnight

Note: Each of the 4 questions is worth 10 marks. Write the solutions of different exercises on different pages. Students of the BMETE95MM42 course can ignore one of these exercises.

1. Let (X, Y) denote a pair of continuous random variables with joint density function $f(x, y)$.

Assume that $\mathbb{E}(|Y|)<+\infty$. Let $f_{X}(x)=\int_{-\infty}^{\infty} f(x, y) \mathrm{d} y$ and define

$$
H(x)=\int_{-\infty}^{\infty} \frac{f(x, y)}{f_{X}(x)} y \mathrm{~d} y
$$

Prove that the random variable $H(X)$ satisfies the abstract definition of $\mathbb{E}(Y \mid \sigma(X))$.
Hint: You have to check that $Z:=H(X)$ satisfies the following properties: $\mathbb{E}(|H(X)|)<+\infty, H(X)$ is $\sigma(X)$-measurable and that $\mathbb{E}\left(Y \mathbb{1}_{A}\right)=\mathbb{E}\left(H(X) \mathbb{1}_{A}\right)$ for any $A \in \sigma(X)$. You can use that $A \in \sigma(X)$ if and only if $A=X^{-1}(B)$ for some Borel set $B \in \mathcal{B}(\mathbb{R})$. Use the „law of the unconscious statistician" which states that if the probability density function (p.d.f.) of Z is $g(z)$, then $\mathbb{E}(\varphi(Z))=\int_{-\infty}^{\infty} \varphi(z) g(z) \mathrm{d} z$ for any function $\varphi: \mathbb{R} \rightarrow \mathbb{R}$ for which the integral makes sense.
2. Let X and Y denote the outcomes of two i.i.d. die rolls. Let $Z:=X+Y$. Find $\mathbb{E}(Z \mid X)$ and $\mathbb{E}(X \mid Z)$.
3. The moment generating function $M: \mathbb{R} \rightarrow(0, \infty]$ of a random variable X is defined by

$$
M(\lambda)=M_{X}(\lambda)=\mathbb{E}\left(e^{\lambda X}\right) .
$$

If we assume that there exists $\lambda_{0}>0$ such that $M\left(\lambda_{0}\right)<\infty$ and $M\left(-\lambda_{0}\right)<\infty$ then it is known that

$$
\frac{\mathrm{d}^{n}}{\mathrm{~d} \lambda^{n}} M(\lambda)=\frac{\mathrm{d}^{n}}{\mathrm{~d} \lambda^{n}} \mathbb{E}\left(e^{\lambda X}\right) \stackrel{(*)}{=} \mathbb{E}\left(\frac{\mathrm{d}^{n}}{\mathrm{~d} \lambda^{n}} e^{\lambda X}\right)=\mathbb{E}\left(X^{n} e^{\lambda X}\right) \quad \text { for any } \quad \lambda \in\left(-\lambda_{0}, \lambda_{0}\right) .
$$

(The only non-trivial equation is marked by $(*)$: if you want to see a proof of the fact that expectation and differentiation can be interchanged in this case, write an e-mail to me.)
Note that this implies $\left.\frac{\mathrm{d}^{n}}{\mathrm{~d} \lambda^{n}} M(\lambda)\right|_{\lambda=0}=\mathbb{E}\left(X^{n}\right)$, hence the name ,,moment generating function".
(a) Let $X \sim \mathcal{N}(0,1)$ (standard normal). Calculate $M_{X}(\lambda)$.

Hint: Use the „law of the unconscious statistician". You should also use that any integral of form $\int_{-\infty}^{\infty} \exp \left(-a x^{2}+b x+c\right) \mathrm{d} x$ can be calculated by manipulating the identity $\int_{-\infty}^{\infty} g(x) \mathrm{d} x=1$, where $g(x)$ is the p.d.f. of some random variable $\mathcal{N}\left(\mu, \sigma^{2}\right)$.
(b) Let $Y \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$ (normal random variable with expectation μ and variance σ^{2}). Calculate $M_{Y}(\lambda)$. Hint: You can do this without calculating any further integrals: you just have to use part (a) of this exercise and the fact that Y has the same distribution as $\sigma X+\mu$.
(c) Let $Z \sim \mathcal{N}\left(0, \sigma^{2}\right)$. Use the Taylor expansion of $M_{Z}(\lambda)$ about $\lambda=0$ to calculate $\mathbb{E}\left(Z^{n}\right), n \geq 0$. Hint: You will only have to use the Taylor expansion of the exponential function in a clever way.
(d) Let $Z \sim \mathcal{N}\left(0, \sigma^{2}\right)$. Let $X=Z^{2}$. Calculate the variance of X using the results of part (c).
4. Let (X, Y) denote a pair of continuous random variables with joint density function

$$
f(x, y)=c \exp \left(-\frac{5}{2} x^{2}-3 x y-y^{2}\right) .
$$

(a) Find c.

Hint: We must have $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) \mathrm{d} x \mathrm{~d} y=1$. You should also use the fact that any integral of form $\int_{-\infty}^{\infty} \exp \left(-a x^{2}+b x+c\right) \mathrm{d} x$ can be calculated by manipulating the identity $\int_{-\infty}^{\infty} g(x) \mathrm{d} x=1$, where $g(x)$ is the p.d.f. of some random variable $\mathcal{N}\left(\mu, \sigma^{2}\right)$.
(b) Find the density function $f_{X}(x)$ of X. Hint: $f_{X}(x)=\int_{-\infty}^{\infty} f(x, y) \mathrm{d} y$.
(c) Find the covariance $\operatorname{Cov}(X, Y)=\mathbb{E}(X Y)-\mathbb{E}(X) \mathbb{E}(Y)$. Hint: Bivariate version of the „law of the unconscious statistician": $\mathbb{E}(\varphi(X, Y))=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \varphi(x, y) f(x, y) \mathrm{d} x \mathrm{~d} y$ for any $\varphi: \mathbb{R}^{2} \rightarrow \mathbb{R}$.
(d) Find $\mathbb{E}(Y \mid \sigma(X))$. Hint: You can use that $\mathbb{E}(Y \mid \sigma(X))=H(X)$, where $H(x)$ is given above.

