Stoch. Anal. HW assignment 2. Due 2023 March 16, 23.59

Note: Each of the 4 questions is worth 10 marks. Write the solutions of different exercises on different pages. Students of the BMETE95MM42 course can ignore one of these exercises.

- 1. Let $S_n = \xi_1 + \dots + \xi_n$, where ξ_1, ξ_2, \dots , are i.i.d. and $\mathbb{P}(\xi_k = 1) = \mathbb{P}(\xi_k = -1) = \frac{1}{2}, k \ge 1$. That is: (S_n) is a one-dimensional simple, symmetric random walk. Let $(\mathcal{F}_n)_{n\ge 0}$ denote the natural filtration of (S_n) .
 - (a) Find the discrete Doob-Meyer decomposition of the process $(e^{\lambda S_n})_{n\geq 1}$ where $\lambda \in \mathbb{R}$, i.e., write $e^{\lambda S_n} = A_n + M_n$, where (A_n) is a predictable process and (M_n) is a martingale with zero expectation. Explicitly state the formula for A_n .

Hint: You may want to use the notation $\cosh(\lambda) = \frac{1}{2} (e^{\lambda} + e^{-\lambda}).$

- (b) Write M_n as the discrete stochastic integral (H · S)_n of a predictable process (H_n) with respect to the martingale (S_n). Explicitly state the formula for H_n. Hint: Observe that S_k − S_{k-1} can only take two possible values. Notation: sinh(λ) = ½ (e^λ − e^{-λ}).
- 2. Let $\mathbb{F} = (\mathcal{F}_n)_{n=0}^{\infty}$ be a filtration and assume that \mathcal{F}_0 is the trivial sigma-field. Let $(N_n)_{n=1}^{\infty}$ be a square integrable martingale, i.e., assume that $\mathbb{E}(N_n^2) < \infty$ for each n.
 - (a) Show that $\mathbb{E}(\Delta N_{i-1}^2 | \mathcal{F}_{i-1}) = \mathbb{E}(N_i^2 | \mathcal{F}_{i-1}) N_{i-1}^2 = \mathbb{E}((\Delta N_{i-1})^2 | \mathcal{F}_{i-1}).$
 - (b) Find the discrete Doob-Meyer decomposition of the process (N_n^2) , i.e., write $N_n^2 = A_n + M_n$, where (A_n) is a predictable process and (M_n) is a martingale with zero expectation. Write down explicitly the formula for A_n .
 - (c) Prove the Pythagorean theorem for square-integrable martingales:

$$\mathbb{E}(N_n^2) = \mathbb{E}(N_1^2) + \sum_{j=1}^{n-1} \mathbb{E}((\Delta N_j)^2)$$

Hint: It is enough to take the expectation of both sides of the equation $N_n^2 = A_n + M_n$.

- 3. Let X_i , i = 1, 2, ... be i.i.d. with $\mathbb{P}(X_i = 1) = 1/3$ and $\mathbb{P}(X_i = -1) = 2/3$. Let $S_n := X_1 + X_2 + \dots + X_n$. In other words, (S_n) is a biased random walk with downward drift.
 - (a) For what values of $\lambda \in (0, +\infty)$ will $M_n := \lambda^{S_n}$ be a martingale? *Hint:* First calculate $\mathbb{E}(\lambda^{X_n})$, then calculate $\mathbb{E}(M_n | \mathcal{F}_{n-1})$.
 - (b) For $a \in \mathbb{Z}$ let $T_a = \min\{n : S_n = a\}$. Use the optional stopping theorem for the above martingale M_n and the stopping time $\tau = T_{-a} \wedge T_b$ in order to calculate the probability $\mathbb{P}(T_{-a} > T_b)$ (i.e., the probability of the event that the walker hits b before hitting -a) where $a, b \ge 0$.
 - (c) Calculate $\lim_{a\to\infty} \mathbb{P}(T_{-a} > T_b)$ for any $b = 0, 1, 2, \dots$
 - (d) What is the probability that the walker ever hits level b? I.e., what is $\mathbb{P}(T_b < \infty)$, b = 0, 1, 2, ...?
 - (e) Denote by $\mathcal{M} = \max_{n \in \mathbb{N}} S_n$. Show that \mathcal{M} has geometric distribution and find its parameter. *Hint:* Observe that $\mathcal{M} \ge b$ if and only if $T_b < \infty$, b = 0, 1, 2, ...
 - (f) Show that $\mathbb{P}(T_{-100} < \infty) = 1$. *Hint:* Repeat the argument used in (c) and (d).
- 4. Let X_i , i = 1, 2, ... be i.i.d. with $\mathbb{P}(X_i = 1) = \frac{2}{3}$, $\mathbb{P}(X_i = -1) = \frac{1}{3}$. Let $S_n := X_1 + X_2 + \dots + X_n$.

Thus (S_n) is a biased random walk with an upward drift. Let $(\mathcal{F}_n)_{n\geq 0}$ denote the filtration generated by the process (S_n) .

- (a) Find the discrete Doob-Meyer decomposition of the process (S_n) , i.e., write $S_n = A_n + M_n$, where (A_n) is a predictable process and (M_n) is a martingale with zero expectation. Explicitly state the simplest possible formula for A_n .
- (b) Denote by τ = min{n : S_n = 100} the first time when the walker reaches level 100. Use part (a) and the optional stopping theorem to calculate E[τ]. *Instruction:* You don't have to fully verify that the optional stopping theorem can be applied here. In particular, don't prove that lim_{n→∞} E(M_{n∧τ}) = E(M_τ). But why do we have P(τ < +∞) = 1?