Stoch. Anal. HW assignment 2. Due 2023 March 16, 23.59

Note: Each of the 4 questions is worth 10 marks. Write the solutions of different exercises on different pages. Students of the BMETE95MM42 course can ignore one of these exercises.

1. Let $S_{n}=\xi_{1}+\cdots+\xi_{n}$, where ξ_{1}, ξ_{2}, \ldots, are i.i.d. and $\mathbb{P}\left(\xi_{k}=1\right)=\mathbb{P}\left(\xi_{k}=-1\right)=\frac{1}{2}, k \geq 1$. That is: $\left(S_{n}\right)$ is a one-dimensional simple, symmetric random walk. Let $\left(\mathcal{F}_{n}\right)_{n \geq 0}$ denote the natural filtration of $\left(S_{n}\right)$.
(a) Find the discrete Doob-Meyer decomposition of the process $\left(e^{\lambda S_{n}}\right)_{n \geq 1}$ where $\lambda \in \mathbb{R}$, i.e., write $e^{\lambda S_{n}}=A_{n}+M_{n}$, where $\left(A_{n}\right)$ is a predictable process and $\left(M_{n}\right)$ is a martingale with zero expectation. Explicitly state the formula for A_{n}.
Hint: You may want to use the notation $\cosh (\lambda)=\frac{1}{2}\left(e^{\lambda}+e^{-\lambda}\right)$.
(b) Write M_{n} as the discrete stochastic integral $(H \cdot S)_{n}$ of a predictable process $\left(H_{n}\right)$ with respect to the martingale $\left(S_{n}\right)$. Explicitly state the formula for H_{n}.
Hint: Observe that $S_{k}-S_{k-1}$ can only take two possible values. Notation: $\sinh (\lambda)=\frac{1}{2}\left(e^{\lambda}-e^{-\lambda}\right)$.
2. Let $\mathbb{F}=\left(\mathcal{F}_{n}\right)_{n=0}^{\infty}$ be a filtration and assume that \mathcal{F}_{0} is the trivial sigma-field. Let $\left(N_{n}\right)_{n=1}^{\infty}$ be a square integrable martingale, i.e., assume that $\mathbb{E}\left(N_{n}^{2}\right)<\infty$ for each n.
(a) Show that $\mathbb{E}\left(\Delta N_{i-1}^{2} \mid \mathcal{F}_{i-1}\right)=\mathbb{E}\left(N_{i}^{2} \mid \mathcal{F}_{i-1}\right)-N_{i-1}^{2}=\mathbb{E}\left(\left(\Delta N_{i-1}\right)^{2} \mid \mathcal{F}_{i-1}\right)$.
(b) Find the discrete Doob-Meyer decomposition of the process $\left(N_{n}^{2}\right)$, i.e., write $N_{n}^{2}=A_{n}+M_{n}$, where $\left(A_{n}\right)$ is a predictable process and $\left(M_{n}\right)$ is a martingale with zero expectation. Write down explicitly the formula for A_{n}.
(c) Prove the Pythagorean theorem for square-integrable martingales:

$$
\mathbb{E}\left(N_{n}^{2}\right)=\mathbb{E}\left(N_{1}^{2}\right)+\sum_{j=1}^{n-1} \mathbb{E}\left(\left(\Delta N_{j}\right)^{2}\right)
$$

Hint: It is enough to take the expectation of both sides of the equation $N_{n}^{2}=A_{n}+M_{n}$.
3. Let $X_{i}, i=1,2, \ldots$ be i.i.d. with $\mathbb{P}\left(X_{i}=1\right)=1 / 3$ and $\mathbb{P}\left(X_{i}=-1\right)=2 / 3$. Let $S_{n}:=X_{1}+X_{2}+\cdots+X_{n}$. In other words, $\left(S_{n}\right)$ is a biased random walk with downward drift.
(a) For what values of $\lambda \in(0,+\infty)$ will $M_{n}:=\lambda^{S_{n}}$ be a martingale?

Hint: First calculate $\mathbb{E}\left(\lambda^{X_{n}}\right)$, then calculate $\mathbb{E}\left(M_{n} \mid \mathcal{F}_{n-1}\right)$.
(b) For $a \in \mathbb{Z}$ let $T_{a}=\min \left\{n: S_{n}=a\right\}$. Use the optional stopping theorem for the above martingale M_{n} and the stopping time $\tau=T_{-a} \wedge T_{b}$ in order to calculate the probability $\mathbb{P}\left(T_{-a}>T_{b}\right)$ (i.e., the probability of the event that the walker hits b before hitting $-a$) where $a, b \geq 0$.
(c) Calculate $\lim _{a \rightarrow \infty} \mathbb{P}\left(T_{-a}>T_{b}\right)$ for any $b=0,1,2, \ldots$
(d) What is the probability that the walker ever hits level b ? I.e., what is $\mathbb{P}\left(T_{b}<\infty\right), b=0,1,2, \ldots$?
(e) Denote by $\mathcal{M}=\max _{n \in \mathbb{N}} S_{n}$. Show that \mathcal{M} has geometric distribution and find its parameter. Hint: Observe that $\mathcal{M} \geq b$ if and only if $T_{b}<\infty, b=0,1,2, \ldots$
(f) Show that $\mathbb{P}\left(T_{-100}<\infty\right)=1$. Hint: Repeat the argument used in (c) and (d).
4. Let $X_{i}, i=1,2, \ldots$ be i.i.d. with $\mathbb{P}\left(X_{i}=1\right)=\frac{2}{3}, \mathbb{P}\left(X_{i}=-1\right)=\frac{1}{3}$. Let $S_{n}:=X_{1}+X_{2}+\cdots+X_{n}$. Thus $\left(S_{n}\right)$ is a biased random walk with an upward drift. Let $\left(\mathcal{F}_{n}\right)_{n \geq 0}$ denote the filtration generated by the process $\left(S_{n}\right)$.
(a) Find the discrete Doob-Meyer decomposition of the process $\left(S_{n}\right)$, i.e., write $S_{n}=A_{n}+M_{n}$, where $\left(A_{n}\right)$ is a predictable process and $\left(M_{n}\right)$ is a martingale with zero expectation. Explicitly state the simplest possible formula for A_{n}.
(b) Denote by $\tau=\min \left\{n: S_{n}=100\right\}$ the first time when the walker reaches level 100 .

Use part (a) and the optional stopping theorem to calculate $\mathbb{E}[\tau]$.
Instruction: You don't have to fully verify that the optional stopping theorem can be applied here. In particular, don't prove that $\lim _{n \rightarrow \infty} \mathbb{E}\left(M_{n \wedge \tau}\right)=\mathbb{E}\left(M_{\tau}\right)$. But why do we have $\mathbb{P}(\tau<+\infty)=1$?

