Stoch. Anal. HW assignment 3. Due 2023 March 23 midnight

Note: Each of the 4 questions is worth 10 marks. Write the solutions of different exercises on different pages.

1. Let $\left(B_{t}\right)$ and $\left(B_{t}^{*}\right)$ denote independent standard Brownian motions.
(a) Time inversion: Let $\widetilde{B}_{t}:=t \cdot B_{1 / t}$ if $t>0, \widetilde{B}_{0}:=0$. Show that $\left(\widetilde{B}_{t}\right)$ is a standard Brownian motion.
(b) Time reversal: Let $X_{t}:=B(1)-B(1-t)$ for any $0 \leq t \leq 1$. Show that $\left(X_{t}\right)_{0 \leq t \leq 1}$ is also a standard Brownian motion on the time interval $[0,1]$.
(c) Superposition: Let $\widehat{B}_{t}=\frac{1}{\sqrt{2}}\left(B_{t}+B_{t}^{*}\right)$. Show that $\left(\widehat{B}_{t}\right)$ is also a standard Brownian motion.

Hint: We have already learnt two equivalent definitions of standard Brownian motion: in each of the sub-exercises (a), (b) and (c), use the definition that is most convenient.
2. Let $\left(B_{t}\right)$ denote standard Brownian motion. Let $0 \leq t_{1}<t_{2}<t_{3}$.
(a) Write down the covariance matrix $\underline{\underline{C}}$ of the random vector $\left(B_{t_{1}}, B_{t_{2}}, B_{t_{3}}\right)^{T}$.
(b) Let Y be a standard normal r.v. independent from $\left(B_{t}\right)$. Let $Z:=\frac{t_{3}-t_{2}}{t_{3}-t_{1}} B_{t_{1}}+\frac{t_{2}-t_{1}}{t_{3}-t_{1}} B_{t_{3}}+a Y$.

In words: we obtain Z by linearly interpolating between $B_{t_{1}}$ and $B_{t_{3}}$ and then adding some independent noise $a Y$. How to choose the constant $a>0$ if we want $\left(B_{t_{1}}, Z, B_{t_{3}}\right)^{T}$ to have the same joint distribution as $\left(B_{t_{1}}, B_{t_{2}}, B_{t_{3}}\right)^{T}$?
(c) What is the conditional density function of $B_{t_{2}}$ given $B_{t_{1}}=x$ and $B_{t_{3}}=y$ for some $x, y \in \mathbb{R}$?
3. Quadratic variation of Brownian motion. Let $\left(B_{t}\right)$ denote a standard Brownian motion. Given the partition $\Delta_{n}=\left\{t_{0}, t_{1}, \ldots, t_{n}\right\}, t_{0}<t_{1}<\cdots<t_{n}, t_{0}=0, t_{n}=t$, let $Q_{n}:=\sum_{k=1}^{n}\left(B\left(t_{k}\right)-B\left(t_{k-1}\right)\right)^{2}$.
(a) Calculate $\mathbb{E}\left(Q_{n}\right)$ and $\operatorname{Var}\left(Q_{n}\right)$.

Hint: You can find an important ingredient of this calculation in HW1.2(d)!
(b) Calculate the quadratic variation of $\left(B_{t}\right)$. More precisely, show that $[B]_{t}=t$.

Hint: You have to show that $Q_{n} \xrightarrow{\mathbb{P}} t$ as $\left|\Delta_{n}\right| \rightarrow 0$. using part (a) and Chebyshev's inequality.
4. The problem with stochastic integrals. Recall the definition of the Stieltjes integral. The goal of this exercise is to „naively" try to calculate the integral

$$
\int_{0}^{t} B(s) \mathrm{d} B(s)
$$

where $\left(B_{t}\right)$ is standard Brownian motion. We will then soon realize that we get into trouble with our naive approach and that stochastic integrals behave differently from Stieltjes integrals.
We consider a sequence of partitions $\left(\Delta_{n}\right)$ of $[0, t]$ satisfying $\left|\Delta_{n}\right| \rightarrow 0$. Let us define

$$
L_{n}=\sum_{k=1}^{n} B\left(t_{k-1}\right) \cdot\left(B\left(t_{k}\right)-B\left(t_{k-1}\right)\right), \quad R_{n}=\sum_{k=1}^{n} B\left(t_{k}\right) \cdot\left(B\left(t_{k}\right)-B\left(t_{k-1}\right)\right) .
$$

In the case of L_{n} we chose the sample point t_{k}^{*} to be the left endpoint of the interval $\left[t_{k-1}, t_{k}\right]$, in the case of R_{n} we chose t_{k}^{*} to be the right endpoint. If this was a proper Stieltjes integral then we would have

$$
\int_{0}^{t} B(s) \mathrm{d} B(s)=\lim _{\left|\Delta_{n}\right| \rightarrow 0} L_{n}=\lim _{\left|\Delta_{n}\right| \rightarrow 0} R_{n}
$$

However, the truth turns out to be different:
(a) Show that $R_{n}-L_{n}$ converges in probability as $\left|\Delta_{n}\right| \rightarrow 0$, but the limit is non-zero.
(b) Find the limit of L_{n} (in probability) as $\left|\Delta_{n}\right| \rightarrow 0$.

Hint: First calculate the limit of $L_{n}+R_{n}$ as $n \rightarrow \infty$.
(c) For comparison, let us assume that $b: \mathbb{R}_{+} \rightarrow \mathbb{R}$ is a continuously differentiable function satisfying $b(0)=0$. Find the value of the Stieltjes integral $\int_{0}^{t} b(s) \mathrm{d} b(s)$.

