Stoch. Anal. HW assignment 3. Due 2023 March 23 midnight

Note: Each of the 4 questions is worth 10 marks. Write the solutions of different exercises on different pages.

- 1. Let (B_t) and (B_t^*) denote independent standard Brownian motions.
 - (a) Time inversion: Let $\widetilde{B}_t := t \cdot B_{1/t}$ if t > 0, $\widetilde{B}_0 := 0$. Show that (\widetilde{B}_t) is a standard Brownian motion.
 - (b) Time reversal: Let $X_t := B(1) B(1-t)$ for any $0 \le t \le 1$. Show that $(X_t)_{0 \le t \le 1}$ is also a standard Brownian motion on the time interval [0, 1].
 - (c) Superposition: Let $\widehat{B}_t = \frac{1}{\sqrt{2}} (B_t + B_t^*)$. Show that (\widehat{B}_t) is also a standard Brownian motion.

Hint: We have already learnt two equivalent definitions of standard Brownian motion: in each of the sub-exercises (a), (b) and (c), use the definition that is most convenient.

- 2. Let (B_t) denote standard Brownian motion. Let $0 \le t_1 < t_2 < t_3$.
 - (a) Write down the covariance matrix $\underline{\underline{C}}$ of the random vector $(B_{t_1}, B_{t_2}, B_{t_3})^T$.
 - (b) Let Y be a standard normal r.v. independent from (B_t) . Let $Z := \frac{t_3 t_2}{t_3 t_1} B_{t_1} + \frac{t_2 t_1}{t_3 t_1} B_{t_3} + aY$. In words: we obtain Z by linearly interpolating between B_{t_1} and B_{t_3} and then adding some independent noise aY. How to choose the constant a > 0 if we want $(B_{t_1}, Z, B_{t_3})^T$ to have the same joint distribution as $(B_{t_1}, B_{t_2}, B_{t_3})^T$?
 - (c) What is the conditional density function of B_{t_2} given $B_{t_1} = x$ and $B_{t_3} = y$ for some $x, y \in \mathbb{R}$?
- 3. Quadratic variation of Brownian motion. Let (B_t) denote a standard Brownian motion. Given the partition $\Delta_n = \{t_0, t_1, \dots, t_n\}, t_0 < t_1 < \dots < t_n, t_0 = 0, t_n = t$, let $Q_n := \sum_{k=1}^n (B(t_k) B(t_{k-1}))^2$.
 - (a) Calculate $\mathbb{E}(Q_n)$ and $\operatorname{Var}(Q_n)$. Hint: You can find an important ingredient of this calculation in HW1.2(d)!
 - (b) Calculate the quadratic variation of (B_t) . More precisely, show that $[B]_t = t$. *Hint:* You have to show that $Q_n \xrightarrow{\mathbb{P}} t$ as $|\Delta_n| \to 0$. using part (a) and Chebyshev's inequality.
- 4. The problem with stochastic integrals. Recall the definition of the Stieltjes integral. The goal of this exercise is to "naively" try to calculate the integral

$$\int_0^t B(s) \, \mathrm{d}B(s),$$

where (B_t) is standard Brownian motion. We will then soon realize that we get into trouble with our naive approach and that stochastic integrals behave differently from Stieltjes integrals.

We consider a sequence of partitions (Δ_n) of [0, t] satisfying $|\Delta_n| \to 0$. Let us define

$$L_n = \sum_{k=1}^n B(t_{k-1}) \cdot (B(t_k) - B(t_{k-1})), \qquad R_n = \sum_{k=1}^n B(t_k) \cdot (B(t_k) - B(t_{k-1})).$$

In the case of L_n we chose the sample point t_k^* to be the left endpoint of the interval $[t_{k-1}, t_k]$, in the case of R_n we chose t_k^* to be the right endpoint. If this was a proper Stieltjes integral then we would have

$$\int_0^t B(s) \, \mathrm{d}B(s) = \lim_{|\Delta_n| \to 0} L_n = \lim_{|\Delta_n| \to 0} R_n.$$

However, the truth turns out to be different:

- (a) Show that $R_n L_n$ converges in probability as $|\Delta_n| \to 0$, but the limit is non-zero.
- (b) Find the limit of L_n (in probability) as $|\Delta_n| \to 0$. *Hint:* First calculate the limit of $L_n + R_n$ as $n \to \infty$.
- (c) For comparison, let us assume that $b : \mathbb{R}_+ \to \mathbb{R}$ is a continuously differentiable function satisfying b(0) = 0. Find the value of the Stieltjes integral $\int_0^t b(s) db(s)$.