Stoch. Anal. HW assignment 4. Due 2023 March 30, 11.00pm

Note: Each of the 4 questions is worth 10 marks. Write the solutions of different exercises on different pages.

- 1. Laplace transform of the distribution of hitting time of Brownian motion with upward drift. Let (B_t) denote the standard Brownian motion. Let $0 \le \mu < +\infty$. Let us define $X_t := B_t + \mu t$. We call (X_t) the Brownian motion with upward drift μ . Let $\tau = \min\{t : X_t = 1\}$ the hitting time of level 1. You may assume without proof that $\mathbb{P}(\tau < +\infty) = 1$.
 - (a) For any $\alpha \in \mathbb{R}$ find a constant $\beta \in \mathbb{R}$ such that (M_t) is a martingale, where $M_t := \exp(\alpha X_t \beta t)$. *Hint:* For martingales related to Brownian motion, see Lecture 7.
 - (b) Apply the optional stopping theorem to calculate $\mathbb{E}(e^{-\lambda\tau})$ for any $\lambda \in \mathbb{R}_+$. *Hint:* You can use the following continuous-time form of the optional stopping theorem: if (M_t) is a martingale, τ is a stopping time satisfying $\mathbb{P}(\tau < +\infty) = 1$ and if there exists a constant $C \in \mathbb{R}_+$ such that $\mathbb{P}(|M_{t\wedge\tau}| \leq C) = 1$ for any $t \geq 0$ then we have $\mathbb{E}(M_{\tau}) = \mathbb{E}(M_0)$.
- 2. Let $S_n = \xi_1 + \dots + \xi_n$, where ξ_1, ξ_2, \dots , are i.i.d. and $\mathbb{P}(\xi_k = 1) = \mathbb{P}(\xi_k = -1) = \frac{1}{2}, k \ge 1$. Let $(\mathcal{F}_n)_{n \ge 0}$ denote the natural filtration of the simple random walk (S_n) , i.e., $\mathcal{F}_n = \sigma(S_1, \dots, S_n) = \sigma(\xi_1, \dots, \xi_n)$.
 - (a) Show that any martingale (M_n) with $M_0 = 0$ adapted to $(\mathcal{F}_n)_{n\geq 0}$ is a discrete stochastic integral $(H \cdot S)_n$ of a predictable process (H_n) with respect to the martingale (S_n) . Explicitly state the formula for H_n . Hint: Since M_n is $\sigma(\xi_1, \ldots, \xi_n)$ -measurable, there exists a function $\varphi_n : \{-1, 1\}^n \to \mathbb{R}$ such that $M_n = \varphi_n(\xi_1, \ldots, \xi_n)$. Please use this notation in your proof. Also note that an earlier homework was a special case of this exercise.
 - (b) Show that if X is an \mathcal{F}_{100} -measurable random variable then $X = \mathbb{E}[X] + \sum_{k=1}^{100} Y_k \cdot (S_k S_{k-1})$ for some random variables Y_1, \ldots, Y_{100} , where Y_k is \mathcal{F}_{k-1} -measurable, $k = 1, \ldots, 100$. *Hint:* How do you create a martingale $(M_n)_{n=0}^{100}$ out of the random variable X?
- 3. Recall the def. of stopping times (Lecture 4) and the σ -field \mathcal{F}_{τ} at the stopping time τ (Lecture 10).
 - (a) Show that the collection of sets \mathcal{F}_{τ} is indeed a sigma-field. *Hint:* We defined σ -fields on Lecture 1.
 - (b) Assume that we are in "discrete time" and define

$$\mathcal{F}'_{\tau} = \{ A \in \mathcal{F} : A \cap \{ \tau = n \} \in \mathcal{F}_n, \ n \in \mathbb{N} \}.$$

Show that $\mathcal{F}'_{\tau} = \mathcal{F}_{\tau}$.

- (c) Let (X_n) be a discrete-time stochastic process, let $\mathcal{F}_n = \sigma(X_0, \ldots, X_n)$ and let τ be a stopping time. Prove that X_{τ} is \mathcal{F}_{τ} -measurable, i.e., that for any Borel set $B \in \mathcal{B}(\mathbb{R})$ we have $\{X_{\tau} \in B\} \in \mathcal{F}_{\tau}$.
- (d) Show that a discrete time Markov process (X_n) also has the strong Markov property. *Hint:* The plain Markov property is defined on Lecture 8 and the strong Markov property is defined on Lecture 10. You will have to show that E(f(X_{τ+s}) | σ(X_τ)) satisfies the implicit definition (see Lecture 2) of E(f(X_{τ+s}) | F_τ). The proof will involve an arbitrary event A ∈ F_τ, and here is a useful identity: 11[A] = ∑_{n=0}[∞] 11[A ∩ {τ = n}].
- 4. Let (B(t)) denote the standard Brownian motion. Show that for any $x \ge 0$ we have

$$\mathbb{P}\left(B(t) \ge x \mid \min_{0 \le s \le t} B(s) \ge 0\right) = \exp\left(\frac{-x^2}{2t}\right).$$

Hint: The probability of the condition is zero, so use the reflection principle (c.f. Lecture 10) to first show that

$$\mathbb{P}(B(t) \ge x - \varepsilon \mid \min_{0 \le s \le t} B(s) \ge -\varepsilon) = \frac{\Phi\left(\frac{\varepsilon - x}{\sqrt{t}}\right) - \Phi\left(\frac{-\varepsilon - x}{\sqrt{t}}\right)}{2\Phi\left(\frac{\varepsilon}{\sqrt{t}}\right) - 1}, \qquad x > 0, \ \varepsilon > 0$$

and then let ε go to 0.