Stoch. Anal. HW assignment 5. Due 2023 April 13, 11pm

Note: Each of the 5 questions is worth 10 marks. Write the solutions of different exercises on different pages.

1. We approximate the stochastic integral $\mathcal{Z}=\int_{0}^{1}(2 B(t)+1) \mathrm{d} B(t)$ with the sum

$$
\mathcal{Z}_{n}=\sum_{k=1}^{n}\left(2 B\left(\frac{k-1}{n}\right)+1\right) \cdot\left(B\left(\frac{k}{n}\right)-B\left(\frac{k-1}{n}\right)\right) .
$$

(a) Write down the simple predictable function $\left(X_{n}(t)\right), 0 \leq t \leq 1$ for which $\mathcal{Z}_{n}=\int_{0}^{1} X_{n}(t) \mathrm{d} B(t)$.
(b) What is the smallest value of n for which $\mathbb{E}\left[\left(\mathcal{Z}-\mathcal{Z}_{n}\right)^{2}\right] \leq 10^{-3}$ holds?
2. Discrete Itô formula. We have learnt Itô's formula is class:

$$
f\left(B_{t}\right)-f\left(B_{0}\right)=\int_{0}^{t} f^{\prime}\left(B_{s}\right) \mathrm{d} B_{s}+\frac{1}{2} \int_{0}^{t} f^{\prime \prime}\left(B_{s}\right) \mathrm{d} s
$$

The goal of this exercise is to find the discrete analogue of this formula.
Let $S_{n}=\xi_{1}+\cdots+\xi_{n}$, where ξ_{1}, ξ_{2}, \ldots, are i.i.d. and $\mathbb{P}\left(\xi_{k}=1\right)=\mathbb{P}\left(\xi_{k}=-1\right)=\frac{1}{2}, k \geq 1$. Let $\left(\mathcal{F}_{n}\right)_{n \geq 0}$ denote the natural filtration of the simple random walk $\left(S_{n}\right)$, i.e., $\mathcal{F}_{n}=\sigma\left(S_{1}, \ldots, S_{n}\right)=\sigma\left(\xi_{1}, \ldots, \xi_{n}\right)$. Given some $f: \mathbb{Z} \rightarrow \mathbb{R}$ let us define

$$
f^{*}(x):=\frac{f(x+1)-f(x-1)}{2}, \quad f^{* *}(x):=f(x+1)-2 f(x)+f(x-1)
$$

Note that $f^{*}(x)$ can be viewed as a discrete analogue of $f^{\prime}(x)$, because the slope of the line that passes through the points $(x-1, f(x-1))$ and $(x+1, f(x+1))$ is $f^{*}(x)$.
Note that $f^{* *}(x)$ can be viewed as a discrete analogue of $f^{\prime \prime}(x)$ because the second derivative of the parabola that passes through the points $(x-1, f(x-1)),(x, f(x))$ and $(x+1, f(x+1))$ is $f^{* *}(x)$.
(a) Let us define $X_{n}=f\left(S_{n}\right)$. Find the discrete Doob-Meyer decomposition of the process $\left(X_{n}\right)$, i.e., write $X_{n}=A_{n}+M_{n}$, where $\left(A_{n}\right)$ is a predictable process and $\left(M_{n}\right)$ is a martingale with zero expectation. Explicitly state the formula for A_{n} using the function $f^{* *}(\cdot)$.
(b) Write M_{n} as the discrete stochastic integral $(H \cdot S)_{n}$ of a predictable process $\left(H_{n}\right)$ with respect to the martingale $\left(S_{n}\right)$. Explicitly state the formula for H_{n} using the function $f^{*}(\cdot)$.
(c) Put the results of (a) and (b) together to obtain a formula for $f\left(S_{n}\right)-f\left(S_{0}\right)$ that looks like the discrete version of the right-hand side of Itô's formula.
3. We say that two stochastic processes $(X(t))_{t \geq 0}$ and $(Y(t))_{t \geq 0}$ have the same law if for every choice of $n \geq 1$ and $0 \leq t_{1}<t_{2}<\cdots<t_{n}$ the joint distributions of $\left(X\left(t_{1}\right), X\left(t_{2}\right), \ldots, X\left(t_{n}\right)\right)$ and $\left(Y\left(t_{1}\right), Y\left(t_{2}\right), \ldots, Y\left(t_{n}\right)\right)$ are the same. Denote by $(B(t))$ the standard Brownian motion.
Given $\beta \in\left(-\frac{1}{2},+\infty\right)$, find $\alpha \in \mathbb{R}_{+}$and $c>0$ so that $(X(t))_{t \geq 0}$ and $(Y(t))_{t \geq 0}$ have the same law, where

$$
X(t)=B\left(c \cdot t^{\alpha}\right), \quad Y(t)=\int_{0}^{t} s^{\beta} \mathrm{d} B(s)
$$

Briefly explain why $(X(t))_{t \geq 0}$ and $(Y(t))_{t \geq 0}$ have the same law using results seen in class.
Hint: Gaussian processes.
4. Equivalent definitions of the Brownian bridge. Denote by $(B(t))$ the standard Brownian motion. Briefly argue that the three processes below (each one is defined for $0 \leq t \leq 1$) are Gaussian and that the three processes have the same law.
(a) $B(t)-t B(1)$.
(b) $(1-t) B(t /(1-t))$.
(c) $(1-t) \int_{0}^{t} \frac{1}{1-s} \mathrm{~d} B_{s}$
5. Give an explicit formula for the cumulative distribution function $F(x)=\mathbb{P}(X \leq x), x \in \mathbb{R}$ of the random variable X, where

$$
X=\int_{0}^{1} \frac{e^{B_{u}} \mathrm{~d} u}{2\left(e^{B_{u}}+1\right)^{2}}+\int_{0}^{1} \frac{\mathrm{~d} B_{u}}{1+e^{-B_{u}}}
$$

Hint: You may use $\Phi(\cdot)$, the c.d.f. of the standard normal distribution in your solution.

