Stoch. Anal. HW assignment 6. Due 2023 April 2, 10.15pm

Note: Each of the 5 questions is worth 10 marks. Write the solutions of different exercises on different pages.

1. Multidimensional Brownian motion. We say that $(\underline{B}(t))$ is a d-dimensional Brownian motion if

$$\underline{B}(t) = \left(B_1(t), \dots, B_d(t)\right)^T$$

where $(B_1(t)), \ldots, (B_d(t))$ are independent one-dimensional standard Brownian motions. Thus $(\underline{B}(t))$ is an \mathbb{R}^d -valued stochastic process, i.e., a random column vector that evolves in time.

Also, $\underline{B}: \mathbb{R}_+ \to \mathbb{R}^d$ can be viewed as a random vector-valued continuous function.

We say that the *d*-dimensional matrix $\underline{\underline{U}} = (U_{i,j})_{i,j=1}^d$ is orthogonal if $\underline{\underline{U}}^T \underline{\underline{U}} = \underline{\underline{UU}}^T = I$, where *I* is the *d*-dimensional identity matrix. That is, the rows of $\underline{\underline{U}}$ form an orthonormal basis of \mathbb{R}^d . Also, the columns of $\underline{\underline{U}}$ form an orthonormal basis of \mathbb{R}^d . The linear transformation $\underline{x} \mapsto \underline{\underline{U}} \underline{x}$ is an isometry, i.e., the length of $\underline{\underline{U}} \underline{x}$ is equal to the length of \underline{x} . Typical examples of such transformations include reflections and rotations.

Show that if \underline{U} is a *d*-dimensional *orthogonal matrix* and if we define

$$\underline{B}(t) = \underline{U} \underline{B}(t), \quad t \in \mathbb{R}_+,$$

then $\left(\underline{\widetilde{B}}(t)\right)$ is also a *d*-dimensional Brownian motion.

Hint: You only need to check that $(\tilde{B}_1(t)), \ldots, (\tilde{B}_d(t))$ are independent one-dimensional standard Brownian motions. You might want to use the equivalent definition of Brownian motion as a Gaussian process.

2. (a) Use It \bar{o} calculus to show that

$$M_2(t) = B_t^2 - t, \qquad M_4(t) = B_t^4 - 6tB_t^2 + 3t^2$$

are martingales. *Hint:* First calculate the stochastic differential of $(M_2(t))$ and $(M_4(t))$.

(b) Given $a \in \mathbb{R}_+$ let us define the stopping time

$$\tau = \min\{t : |B_t| = a\}$$

Use the optional stopping theorem to calculate $\mathbb{E}(\tau)$ and $\mathbb{E}(\tau^2)$. Instruction: You don't have to check that the optional stopping thm can be applied here – we will do that in class.

3. Find a simple explicit formula for a non-negative process (X_t) satisfying

$$\mathrm{d}X_t = 4X_t \mathrm{d}B_t + 2X_t \mathrm{d}t, \qquad X_0 = 5.$$

Hint: First calculate the stochastic differential of $Y_t := \log(X_t)$ using Itô's formula for Itô processes and find a simple explicit formula expressing Y_t in terms of B_t and t.

4. Recall the definition of the Ornstein-Uhlenbeck process from lecture 13:

$$Y_t = e^{-\beta t} Y_0 + \sqrt{2\beta} \int_0^t e^{\beta \cdot (u-t)} \, \mathrm{d}B_u$$

(a) Calculate the stochastic differential of Y_t and show that (Y_t) is an Itô process by explicitly writing down the formula of the processes (μ_t) and (σ_t) for which

$$Y_t = Y_0 + \int_0^t \mu_s \,\mathrm{d}s + \int_0^t \sigma_s \,\mathrm{d}B_s.$$

Note: The formulas for μ_s and σ_s turn out to be rather simple. E.g., express μ_s in terms of Y_s .

- (b) Calculate the quadratic variation $[Y]_t$ of the O.-U. process on the interval [0, t].
- 5. Discrete Tanaka's formula.
 - (a) Let $x_0 \in \mathbb{Z}$. Write down the special case of the discrete Itô formula (see the solution of HW 5.2) when the function f is chosen as $f(x) = |x x_0|$. *Hint:* What is $f^*(x)$ and $f^{**}(x)$ in this case?
 - (b) Denote by (S_n) the one dimensional simple symmetric random walk starting from $S_0 = 0$. Use (a) and the optional stopping theorem to calculate the expected number of steps that the walker spends at location $x_0 = 5$ before it reaches either level -5 or level 20.