## Stoch. Anal. HW assignment 6. Due 2023 April 27, 11pm

Note: Each of the 5 questions is worth 10 marks. Write the solutions of different exercises on different pages.

1. Multidimensional Brownian motion. We say that $(\underline{B}(t))$ is a $d$-dimensional Brownian motion if

$$
\underline{B}(t)=\left(B_{1}(t), \ldots, B_{d}(t)\right)^{T}
$$

where $\left(B_{1}(t)\right), \ldots,\left(B_{d}(t)\right)$ are independent one-dimensional standard Brownian motions. Thus $(\underline{B}(t))$ is an $\mathbb{R}^{d}$-valued stochastic process, i.e., a random column vector that evolves in time.
Also, $\underline{B}: \mathbb{R}_{+} \rightarrow \mathbb{R}^{d}$ can be viewed as a random vector-valued continuous function.
We say that the $d$-dimensional matrix $\underline{\underline{U}}=\left(U_{i, j}\right)_{i, j=1}^{d}$ is orthogonal if $\underline{\underline{U}}^{T} \underline{\underline{U}}=\underline{\underline{U U^{T}}}=I$, where $I$ is the $d$-dimensional identity matrix. That is, the rows of $\underline{\underline{U}}$ form an orthonormal basis of $\mathbb{R}^{d}$. Also, the columns of $\underline{\underline{U}}$ form an orthonormal basis of $\mathbb{R}^{d}$. The linear transformation $\underline{x} \mapsto \underline{\underline{U}} \underline{x}$ is an isometry, i.e., the length of $\underline{\underline{U}} \underline{x}$ is equal to the length of $\underline{x}$. Typical examples of such transformations include reflections and rotations.
Show that if $\underline{\underline{U}}$ is a d-dimensional orthogonal matrix and if we define

$$
\underline{\widetilde{B}}(t)=\underline{\underline{U}} \underline{B}(t), \quad t \in \mathbb{R}_{+},
$$

then $(\underline{\widetilde{B}}(t))$ is also a $d$-dimensional Brownian motion.
Hint: You only need to check that $\left(\widetilde{B}_{1}(t)\right), \ldots,\left(\widetilde{B}_{d}(t)\right)$ are independent one-dimensional standard Brownian motions. You might want to use the equivalent definition of Brownian motion as a Gaussian process.
2. (a) Use Itō calculus to show that

$$
M_{2}(t)=B_{t}^{2}-t, \quad M_{4}(t)=B_{t}^{4}-6 t B_{t}^{2}+3 t^{2}
$$

are martingales. Hint: First calculate the stochastic differential of $\left(M_{2}(t)\right)$ and $\left(M_{4}(t)\right)$.
(b) Given $a \in \mathbb{R}_{+}$let us define the stopping time

$$
\tau=\min \left\{t:\left|B_{t}\right|=a\right\} .
$$

Use the optional stopping theorem to calculate $\mathbb{E}(\tau)$ and $\mathbb{E}\left(\tau^{2}\right)$.
Instruction: You don't have to check that the optional stopping thm can be applied here - we will do that in class.
3. Find a simple explicit formula for a non-negative process $\left(X_{t}\right)$ satisfying

$$
\mathrm{d} X_{t}=4 X_{t} \mathrm{~d} B_{t}+2 X_{t} \mathrm{~d} t, \quad X_{0}=5
$$

Hint: First calculate the stochastic differential of $Y_{t}:=\log \left(X_{t}\right)$ using Itô's formula for Itô processes and find a simple explicit formula expressing $Y_{t}$ in terms of $B_{t}$ and $t$.
4. Recall the definition of the Ornstein-Uhlenbeck process from lecture 13:

$$
Y_{t}=e^{-\beta t} Y_{0}+\sqrt{2 \beta} \int_{0}^{t} e^{\beta \cdot(u-t)} \mathrm{d} B_{u}
$$

(a) Calculate the stochastic differential of $Y_{t}$ and show that $\left(Y_{t}\right)$ is an Itô process by explicitly writing down the formula of the processes $\left(\mu_{t}\right)$ and $\left(\sigma_{t}\right)$ for which

$$
Y_{t}=Y_{0}+\int_{0}^{t} \mu_{s} \mathrm{~d} s+\int_{0}^{t} \sigma_{s} \mathrm{~d} B_{s}
$$

Note: The formulas for $\mu_{s}$ and $\sigma_{s}$ turn out to be rather simple. E.g., express $\mu_{s}$ in terms of $Y_{s}$.
(b) Calculate the quadratic variation $[Y]_{t}$ of the O.-U. process on the interval $[0, t]$.
5. Discrete Tanaka's formula.
(a) Let $x_{0} \in \mathbb{Z}$. Write down the special case of the discrete Itô formula (see the solution of HW 5.2) when the function $f$ is chosen as $f(x)=\left|x-x_{0}\right|$. Hint: What is $f^{*}(x)$ and $f^{* *}(x)$ in this case?
(b) Denote by $\left(S_{n}\right)$ the one dimensional simple symmetric random walk starting from $S_{0}=0$. Use (a) and the optional stopping theorem to calculate the expected number of steps that the walker spends at location $x_{0}=5$ before it reaches either level -5 or level 20 .

