Stoch. Anal. HW assignment 7. Due 2023 May 4, 11pm

Note: Each of the 5 questions is worth 10 marks. Write the solutions of different exercises on different pages.

1. Hermite polynomials. We have already shown that the processes defined by

$$
M_{1}(t)=B_{t}, \quad M_{2}(t)=B_{t}^{2}-t, \quad M_{3}(t)=B_{t}^{3}-3 t B_{t}, \quad M_{4}(t)=B_{t}^{4}-6 t B_{t}^{2}+3 t^{2}
$$

are martingales.
(a) Let us define $p_{n}(t, x):=\left.\frac{\mathrm{d}^{n}}{\mathrm{~d} \lambda^{n}} \exp \left(\lambda x-\frac{\lambda^{2}}{2} t\right)\right|_{\lambda=0}$. Calculate $p_{n}(t, x)$ for $n=1,2,3,4$.
(b) We say that the function $u(t, x)$ is a solution of the reverse heat equation if $\frac{\partial}{\partial t} u(t, x) \equiv-\frac{1}{2} \frac{\partial^{2}}{\partial x^{2}} u(t, x)$. Show that for any value of the parameter $\lambda \in \mathbb{R}$, the function $\exp \left(\lambda x-\frac{\lambda^{2}}{2} t\right)$ solves the reverse heat equation and that the polynomials $p_{n}(t, x), n \in \mathbb{N}$ inherit this property.
(c) Show that for any $n \geq 0$ the process defined by $M_{n}(t):=p_{n}\left(t, B_{t}\right)$ is a martingale.
2. (a) Show that $\widehat{M}_{t}=t^{2} B_{t}-2 \int_{0}^{t} s B_{s} \mathrm{~d} s$ is a martingale by writing it as an Itō integral w.r.t. $\left(B_{t}\right)$.
(b) Show that if $p(t, x)$ is a polynomial and

$$
r(t, x)=\left(\frac{\partial}{\partial t}+\frac{1}{2} \frac{\partial^{2}}{\partial x^{2}}\right) p(t, x)
$$

then \widetilde{M}_{t} is a martingale, where $\widetilde{M}_{t}=p\left(t, B_{t}\right)-\int_{0}^{t} r\left(s, B_{s}\right) \mathrm{d} s$.
(c) Find the Doob-Meyer decomposition $X_{t}=A_{t}+M_{t}$ of $X_{t}=\left(B_{t}^{2}-t\right)^{2}$, where A_{t} is an adapted process with finite total variation and M_{t} is a martingale. Write M_{t} as an Itō integral w.r.t. Brownian motion.
3. Given two independent Brownian motions $\left(B_{1}(t)\right)$ and $\left(B_{2}(t)\right)$ construct a third Brownian motion $\left(B_{3}(t)\right)$ such that the mutual variation of $B_{1}(\cdot)$ and $B_{3}(\cdot)$ satisfies $\left[B_{1}, B_{3}\right]_{t} \equiv f(t)$, where $f: \mathbb{R}_{+} \rightarrow \mathbb{R}$ is a given continuously differentiable function. What other conditions do we need about f for the exercise to be solvable?
Hint: Construct $\left(B_{3}(t)\right)$ as $B_{3}(t)=\int_{0}^{t} g_{1}(u) \mathrm{d} B_{1}(u)+\int_{0}^{t} g_{2}(u) \mathrm{d} B_{2}(u)=Y_{1}(t)+Y_{2}(t)$ for some appropriately chosen $g_{1}, g_{2}: \mathbb{R}_{+} \rightarrow \mathbb{R}$. Use what we have learnt about the quadratic/mutual variation of Itô processes driven by d-dimensional Brownian motion (lecture 21). Show that $\left(B_{3}(t)\right)$ is a Brownian motion using one of the equivalent characterizations of Brownian motion that we have learnt in class.
4. Log-optimal portfolio. You are trading shares at the stock market. The value of one stock at time t is

$$
S_{t}=\sigma B_{t}+\mu t
$$

where $\left(B_{t}\right)$ is standard Brownian motion and $\mu>0$ (this is a toy example so let's not worry about the fact that S_{t} can become negative). At time t you hold C_{t} shares. Denote by $Y_{0}>0$ your initial wealth and by Y_{t} your total wealth at time t. It is OK to go in debt (i.e., it is OK if $C_{t}>Y_{t}$). Let us assume that you can't predict the future, so that $\left(C_{t}\right)$ is left-continuous and adapted to $\left(\mathcal{F}_{t}\right)$, where $\mathcal{F}_{t}=\sigma\left(S_{u}, 0 \leq u \leq t\right)$. We have learnt in class (lecture 17) your net gain from trading shares at time t is

$$
Y_{t}-Y_{0}=\int_{0}^{t} C_{u} \mathrm{~d} S_{u}
$$

You trade in stocks until time T. Your goal is to maximize your expected rate of return $\mathbb{E}\left[\log \left(\frac{Y_{T}}{Y_{0}}\right)\right]$. What is the maximal expected rate of return achievable and the trading strategy that achieves it?
Hint: Follow the solution strategy of HW3.C of the current Markov Chains and Martinagles course of Bálint Vető. First calculate d $\log \left(Y_{t}\right)$.
5. Let $h: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be harmonic (i.e., $\Delta h \equiv 0$). Use Itō calculus, the optional stopping theorem and the rotation invariance of 2-dimensional Brownian motion (proved in Homework 6.1) to show

$$
h\left(x_{0}, y_{0}\right)=\frac{1}{2 \pi} \int_{0}^{2 \pi} h\left(x_{0}+r \cos (\varphi), y_{0}+r \sin (\varphi)\right) \mathrm{d} \varphi
$$

