Stoch. Anal. HW assignment 8. Due 2023 may 11., 11pm

Note: Each of the 4 questions is worth 10 marks. Write the solutions of different exercises on different pages.

- 1. If $\underline{x} = (x, y) \in \mathbb{R}^2$, denote by $||\underline{x}|| = \sqrt{x^2 + y^2}$ the Euclidean norm of \underline{x} . Let $\underline{B}_t = (B_1(t), B_2(t))$ denote a 2-dimensional Brownian motion starting from $\underline{x}_0 \neq \underline{0}$. Define $T_x = \inf\{t : ||\underline{B}_t|| = x\}$. The goal of this exercise is to show that
 - (\underline{B}_t) always visits the ball of radius a > 0 around the origin but
 - (\underline{B}_t) never hits the origin.
 - (a) Calculate the stochastic differential dM_t of $M_t = \ln(||\underline{B}_t||)$.
 - (b) Use the optional stopping theorem to calculate $\mathbb{P}[T_a < T_b]$ for any $0 < a < ||\underline{x}_0|| < b < +\infty$.
 - (c) Show that $\mathbb{P}(T_a < +\infty) = 1$ for any a > 0. *Hint:* $b \to \infty$.
 - (d) Show that $\mathbb{P}(T_0 < +\infty) = 0$. *Hint:* First $a \to 0$, then $b \to \infty$.
- 2. Let (X_t) be a Brownian motion with constant upward drift, i.e., the solution of the SDE

$$dX_t = \mu dt + \sigma dB_t, \qquad X_0 = x_0 \in \mathbb{R}, \qquad \mu > 0, \ \sigma > 0.$$

- (a) Find a non-constant function $f : \mathbb{R} \to \mathbb{R}$ such that $f(X_t)$ is a martingale.
- (b) Use the above martingale and the optional stopping theorem to calculate $\mathbb{P}(T_a < T_b)$ where

$$a \le x_0 \le b$$
, $T_a = \min\{t : X_t = a\}$, $T_b = \min\{t : X_t = b\}$

(c) Find a function $g: \mathbb{R} \to \mathbb{R}$ such that $g(X_t) - t$ is a martingale and calculate $\mathbb{E}(\tau)$, where $\tau = T_a \wedge T_b$.

3. Solve the following stochastic differential equations:

- (a) Find (Z_t) such that $dZ_t = B_t Z_t dt + B_t Z_t dB_t$ with initial condition $Z_0 = 1$.
- (b) Find (Y_t) such that $dY_t = Y_t dt + B_t dB_t$ with initial condition $Y_0 = 1$.
- 4. The O.-U. process is defined by the formula

$$X_t = X_0 e^{-\alpha t} + \sigma e^{-\alpha t} \int_0^t e^{\alpha s} \mathrm{d}B_s.$$

(a) Manipulate the above formula to show that for any $s, t \in \mathbb{R}_+$ we have

$$X_{s+t} = X_s e^{-\alpha t} + \sigma e^{-\alpha t} \int_0^t e^{\alpha v} \mathrm{d}\widetilde{B}_v,$$

where $\widetilde{B}(v) = B(s+v) - B(s)$ for any $v \ge 0$, thus (\widetilde{B}_v) is also a standard Brownian motion which is independent from \mathcal{F}_s .

(b) Show that (X_t) is a time-homogeneous Markov process (see lecture 10) and identify the corresponding transition density function p_t(x, y). *Hint1*: It suffices to show P(X_{s+t} ∈ [y, y + dy] | F_s) = p_t(X_s, y)dy in order to solve (b). *Hint2*: The O.-U. process is a Gaussian process, so if we fix t and x then f(y) = p_t(x, y) will be the probability density function of a certain normal distribution.