Midterm Exam - October 13, 2016, Stochastic Analysis

Family name	Given name
,	
Simotuno	Nontun Cada
Signature	Neptun Code

No calculators or electronic devices are allowed. One formula sheet with 15 formulas is allowed.

- 1. Let $S_n = \xi_1 + \dots + \xi_n$, where ξ_1, ξ_2, \dots , are i.i.d. and $\mathbb{P}(\xi_k = 1) = \mathbb{P}(\xi_k = -1) = \frac{1}{2}, k \ge 1$. Let $(\mathcal{F}_n)_{n\ge 0}$ denote the natural filtration of the simple random walk (S_n) , i.e., $\mathcal{F}_n = \sigma(S_1, \dots, S_n) = \sigma(\xi_1, \dots, \xi_n)$. Denote by $T_a = \min\{n : S_n = a\}$ the hitting time of level $a \in \mathbb{Z}$.
 - (a) (2 marks) Calculate $\mathbb{P}[T_{10} < T_{-20}]$, i.e., the probability that the walker reaches level 10 before reaching level -20 using the optional stopping theorem.
 - (b) (3 marks) Calculate E[T₁₀ ∧ T₋₂₀], i.e., the expected time spent until the walker reaches level 10 or level -20 using the optional stopping theorem.
 Instructions: You can use that (S_n) and (S²_n n) are martingales without proof. You don't have to check that the conditions of the optional stopping theorem apply here.
- 2. Let (B_t) denote standard Brownian motion.
 - (a) (1 mark) Find the covariance matrix of (B_2, B_5) .
 - (b) (1 mark) Calculate the conditional expectation of B_5 given the sigma-field generated by B_2 .
 - (c) (3 marks) Calculate the conditional expectation of B_2 given the sigma-field generated by B_5 .
- 3. We use the notation of the first exercise of this midterm.
 - (a) (2 marks) Let $N_n = S_n^2 n$. Write N_n as the discrete stochastic integral $(H \cdot S)_n$ of a predictable process (H_n) with respect to (S_n) , i.e., find the value of H_n and show

$$N_n = \sum_{k=1}^n H_k \cdot (S_k - S_{k-1}).$$

(b) (3 marks) Calculate $\mathbb{E}(N_n^2)$ using part (a). Find the simplest possible form of $\mathbb{E}(N_n^2)$.