Family name \qquad Given name \qquad

Signature \qquad Neptun Code

No calculators or electronic devices are allowed. One formula sheet with $\mathbf{1 5}$ formulas is allowed.

1. Let $S_{n}=\xi_{1}+\cdots+\xi_{n}$, where ξ_{1}, ξ_{2}, \ldots, are i.i.d. and $\mathbb{P}\left(\xi_{k}=1\right)=\mathbb{P}\left(\xi_{k}=-1\right)=\frac{1}{2}, k \geq 1$. Let $\left(\mathcal{F}_{n}\right)_{n \geq 0}$ denote the natural filtration of the simple random walk $\left(S_{n}\right)$, i.e., $\mathcal{F}_{n}=\sigma\left(S_{1}, \ldots, S_{n}\right)=\sigma\left(\xi_{1}, \ldots, \xi_{n}\right)$.
Denote by $T_{a}=\min \left\{n: S_{n}=a\right\}$ the hitting time of level $a \in \mathbb{Z}$.
(a) (2 marks) Calculate $\mathbb{P}\left[T_{10}<T_{-20}\right]$, i.e., the probability that the walker reaches level 10 before reaching level -20 using the optional stopping theorem.
(b) (3 marks) Calculate $\mathbb{E}\left[T_{10} \wedge T_{-20}\right]$, i.e., the expected time spent until the walker reaches level 10 or level - 20 using the optional stopping theorem.
Instructions: You can use that $\left(S_{n}\right)$ and $\left(S_{n}^{2}-n\right)$ are martingales without proof. You don't have to check that the conditions of the optional stopping theorem apply here.
2. Let $\left(B_{t}\right)$ denote standard Brownian motion.
(a) (1 mark) Find the covariance matrix of $\left(B_{2}, B_{5}\right)$.
(b) (1 mark) Calculate the conditional expectation of B_{5} given the sigma-field generated by B_{2}.
(c) (3 marks) Calculate the conditional expectation of B_{2} given the sigma-field generated by B_{5}.
3. We use the notation of the first exercise of this midterm.
(a) (2 marks) Let $N_{n}=S_{n}^{2}-n$. Write N_{n} as the discrete stochastic integral $(H \cdot S)_{n}$ of a predictable process $\left(H_{n}\right)$ with respect to $\left(S_{n}\right)$, i.e., find the value of H_{n} and show

$$
N_{n}=\sum_{k=1}^{n} H_{k} \cdot\left(S_{k}-S_{k-1}\right) .
$$

(b) (3 marks) Calculate $\mathbb{E}\left(N_{n}^{2}\right)$ using part (a). Find the simplest possible form of $\mathbb{E}\left(N_{n}^{2}\right)$.

