Family name \qquad Given name \qquad

Signature \qquad Neptun Code \qquad

No calculators or electronic devices are allowed. One formula sheet with 15 formulas is allowed.

1. Let $X_{i}, i=1,2, \ldots$ be i.i.d. with $\mathbb{P}\left(X_{i}=1\right)=\frac{2}{3}, \mathbb{P}\left(X_{i}=-1\right)=\frac{1}{3}$. Let $S_{n}:=X_{1}+X_{2}+\cdots+X_{n}$. Thus $\left(S_{n}\right)$ is a biased random walk with an upward drift. Let $\left(\mathcal{F}_{n}\right)_{n \geq 0}$ denote the filtration generated by the process $\left(S_{n}\right)$.
(a) (3 marks) Find the discrete Doob-Meyer decomposition of the process (S_{n}), i.e., write $S_{n}=A_{n}+M_{n}$, where $\left(A_{n}\right)$ is a predictable process and $\left(M_{n}\right)$ is a martingale with zero expectation. Explicitly state the simplest possible formula for A_{n}.
(b) (2 marks) Denote by $\tau=\min \left\{n: S_{n}=100\right\}$ the first time when the walker reaches level 100 .

Use part (a) and the optional stopping theorem to calculate $\mathbb{E}[\tau]$.
Instruction: You don't have to verify that the optional stopping theorem can be applied here.
2. (5 marks) Let $\left(B_{t}\right)$ denote standard Brownian motion. Let us define $\widetilde{B}_{t}=t B\left(\frac{1}{t}\right)$ for $t>0$ and $\widetilde{B}_{0}=0$. Show that $\left(\widetilde{B}_{t}\right)$ is also a standard Brownian motion.

Hint: Use the definition that starts like this: Brownian motion is a Gaussian process with ...
3. Let $S_{n}=\xi_{1}+\cdots+\xi_{n}$, where ξ_{1}, ξ_{2}, \ldots, are i.i.d. and $\mathbb{P}\left(\xi_{k}=1\right)=\mathbb{P}\left(\xi_{k}=-1\right)=\frac{1}{2}, k \geq 1$. Let $\left(\mathcal{F}_{n}\right)_{n \geq 0}$ denote the natural filtration of $\left(S_{n}\right)$.
(a) (2 marks) How to choose $C \in \mathbb{R}_{+}$if we want $M_{n}=e^{S_{n}} / C^{n}$ to be a martingale?
(b) (3 marks) Write $M_{n}-1$ as the discrete stochastic integral $(H \cdot S)_{n}$ of a predictable process $\left(H_{n}\right)$ with respect to the martingale $\left(S_{n}\right)$. Explicitly state the formula for H_{n}.

