First make-up midterm - December 7, 2016, 16.15-17.00, Stochastic Analysis

- 1. Let X_i , i = 1, 2, ... be i.i.d. with $\mathbb{P}(X_i = 1) = \frac{2}{3}$, $\mathbb{P}(X_i = -1) = \frac{1}{3}$. Let $S_n := X_1 + X_2 + \cdots + X_n$. Thus (S_n) is a biased random walk with an upward drift. Let $(\mathcal{F}_n)_{n \geq 0}$ denote the filtration generated by the process (S_n) .
 - (a) (3 marks) Find the discrete Doob-Meyer decomposition of the process (S_n) , i.e., write $S_n = A_n + M_n$, where (A_n) is a predictable process and (M_n) is a martingale with zero expectation. Explicitly state the simplest possible formula for A_n .
 - (b) (2 marks) Denote by τ = min{n : S_n = 100} the first time when the walker reaches level 100. Use part (a) and the optional stopping theorem to calculate E[τ]. *Instruction:* You don't have to verify that the optional stopping theorem can be applied here.
- 2. (5 marks) Let (B_t) denote standard Brownian motion. Let us define $\tilde{B}_t = tB\left(\frac{1}{t}\right)$ for t > 0 and $\tilde{B}_0 = 0$. Show that (\tilde{B}_t) is also a standard Brownian motion.

Hint: Use the definition that starts like this: Brownian motion is a Gaussian process with ...

- 3. Let $S_n = \xi_1 + \cdots + \xi_n$, where ξ_1, ξ_2, \ldots , are i.i.d. and $\mathbb{P}(\xi_k = 1) = \mathbb{P}(\xi_k = -1) = \frac{1}{2}, k \ge 1$. Let $(\mathcal{F}_n)_{n \ge 0}$ denote the natural filtration of (S_n) .
 - (a) (2 marks) How to choose $C \in \mathbb{R}_+$ if we want $M_n = e^{S_n}/C^n$ to be a martingale?
 - (b) (3 marks) Write $M_n 1$ as the discrete stochastic integral $(H \cdot S)_n$ of a predictable process (H_n) with respect to the martingale (S_n) . Explicitly state the formula for H_n .

Soltutions.

- 1. (a) $\Delta S_n = S_{n+1} S_n = X_{n+1}$. $\Delta A_n = \mathbb{E}[\Delta S_n | \mathcal{F}_n] = \mathbb{E}[X_{n+1} | \mathcal{F}_n] = \mathbb{E}[X_{n+1}] = \frac{2}{3} \frac{1}{3} = \frac{1}{3}$. $S_0 = 0$, thus $A_n = \sum_{i=0}^{n-1} \Delta A_i = \frac{n}{3}$ and $M_n = S_n - \frac{n}{3}$ is a martingale with $M_0 = 0$.
 - (b) (Note that $\lim_{n\to\infty} S_n = +\infty$ by the law of large numbers, thus indeed $\mathbb{P}[\tau < \infty] = 1$.) $0 = M_0 = \mathbb{E}[M_0] = \mathbb{E}[M_{\tau}] = \mathbb{E}[S_{\tau} - \frac{\tau}{3}] = 100 - \mathbb{E}[\tau]/3$, thus $\mathbb{E}[\tau] = 300$.
- 2. (B_t) is a Gaussian process, because it arises as a deterministic function multiplied with a time-changed Brownian motion, where the time-change is also deterministic.
 We have P(D) = tP(D) = t = 0 and if a < t then

We have $\mathbb{E}[\widetilde{B}_t] = t\mathbb{E}[B(\frac{1}{t})] = t \cdot 0 = 0$ and if s < t then

$$\operatorname{Cov}[\widetilde{B}_s, \widetilde{B}_t] = \operatorname{Cov}[sB(\frac{1}{s}), tB(\frac{1}{t})] = st\operatorname{Cov}[B(\frac{1}{s}), B(\frac{1}{t})] = st \cdot (\frac{1}{s} \wedge \frac{1}{t}) = st\frac{1}{t} = s,$$

therefore (\widetilde{B}_t) is a Brownian motion.

- 3. (a) $\mathbb{E}[M_n | \mathcal{F}_{n-1}] = M_{n-1} \mathbb{E}[e^{\xi_n} | \mathcal{F}_{n-1}]/C = M_{n-1} \frac{e+e^{-1}}{2} \frac{1}{C}$, thus $C = \frac{e+e^{-1}}{2} = ch(1)$.
 - (b) $M_n 1 = M_n M_0 = \sum_{i=0}^{n-1} \Delta M_i$. We want to write $\Delta M_i = H_{i+1}\xi_{i+1}$, where H_{i+1} in \mathcal{F}_i -measurable.

$$\Delta M_n = M_{n+1} - M_n = M_n \cdot \left(e^{\xi_{n+1}}/\operatorname{ch}(1) - 1\right) = \frac{M_n}{\operatorname{ch}(1)} \left(e^{\xi_{n+1}} - \frac{e + e^{-1}}{2}\right) \stackrel{(*)}{=} \frac{M_n}{\operatorname{ch}(1)} \frac{e - e^{-1}}{2} \xi_{n+1} = \frac{M_n}{\operatorname{ch}(1)} \operatorname{sh}(1) \xi_{n+1} = \operatorname{th}(1) M_n \xi_{n+1},$$

where (*) holds since ξ_{n+1} can only take two different values: ± 1 . Thus $\Delta M_n = H_{n+1}\xi_{n+1}$, where $H_{n+1} = \operatorname{th}(1)M_n$. Thus $H_n = \operatorname{th}(1)M_{n-1} = \frac{e-e^{-1}}{e+e^{-1}}M_{n-1}$, indeed \mathcal{F}_{n-1} -measurable.