1. Let $X_{i}, i=1,2, \ldots$ be i.i.d. with $\mathbb{P}\left(X_{i}=1\right)=\frac{2}{3}, \mathbb{P}\left(X_{i}=-1\right)=\frac{1}{3}$. Let $S_{n}:=X_{1}+X_{2}+\cdots+X_{n}$.

Thus $\left(S_{n}\right)$ is a biased random walk with an upward drift. Let $\left(\mathcal{F}_{n}\right)_{n \geq 0}$ denote the filtration generated by the process $\left(S_{n}\right)$.
(a) (3 marks) Find the discrete Doob-Meyer decomposition of the process (S_{n}), i.e., write $S_{n}=A_{n}+M_{n}$, where $\left(A_{n}\right)$ is a predictable process and $\left(M_{n}\right)$ is a martingale with zero expectation. Explicitly state the simplest possible formula for A_{n}.
(b) (2 marks) Denote by $\tau=\min \left\{n: S_{n}=100\right\}$ the first time when the walker reaches level 100 .

Use part (a) and the optional stopping theorem to calculate $\mathbb{E}[\tau]$.
Instruction: You don't have to verify that the optional stopping theorem can be applied here.
2. (5 marks) Let $\left(B_{t}\right)$ denote standard Brownian motion. Let us define $\widetilde{B}_{t}=t B\left(\frac{1}{t}\right)$ for $t>0$ and $\widetilde{B}_{0}=0$. Show that $\left(\widetilde{B}_{t}\right)$ is also a standard Brownian motion.
Hint: Use the definition that starts like this: Brownian motion is a Gaussian process with ...
3. Let $S_{n}=\xi_{1}+\cdots+\xi_{n}$, where ξ_{1}, ξ_{2}, \ldots, are i.i.d. and $\mathbb{P}\left(\xi_{k}=1\right)=\mathbb{P}\left(\xi_{k}=-1\right)=\frac{1}{2}, k \geq 1$. Let $\left(\mathcal{F}_{n}\right)_{n \geq 0}$ denote the natural filtration of $\left(S_{n}\right)$.
(a) (2 marks) How to choose $C \in \mathbb{R}_{+}$if we want $M_{n}=e^{S_{n}} / C^{n}$ to be a martingale?
(b) (3 marks) Write $M_{n}-1$ as the discrete stochastic integral $(H \cdot S)_{n}$ of a predictable process $\left(H_{n}\right)$ with respect to the martingale $\left(S_{n}\right)$. Explicitly state the formula for H_{n}.

Soltutions.

1. (a) $\Delta S_{n}=S_{n+1}-S_{n}=X_{n+1} . \Delta A_{n}=\mathbb{E}\left[\Delta S_{n} \mid \mathcal{F}_{n}\right]=\mathbb{E}\left[X_{n+1} \mid \mathcal{F}_{n}\right]=\mathbb{E}\left[X_{n+1}\right]=\frac{2}{3}-\frac{1}{3}=\frac{1}{3}$. $S_{0}=0$, thus $A_{n}=\sum_{i=0}^{n-1} \Delta A_{i}=\frac{n}{3}$ and $M_{n}=S_{n}-\frac{n}{3}$ is a martingale with $M_{0}=0$.
(b) (Note that $\lim _{n \rightarrow \infty} S_{n}=+\infty$ by the law of large numbers, thus indeed $\mathbb{P}[\tau<\infty]=1$.) $0=M_{0}=\mathbb{E}\left[M_{0}\right]=\mathbb{E}\left[M_{\tau}\right]=\mathbb{E}\left[S_{\tau}-\frac{\tau}{3}\right]=100-\mathbb{E}[\tau] / 3$, thus $\mathbb{E}[\tau]=300$.
2. $\left(\widetilde{B}_{t}\right)$ is a Gaussian process, because it arises as a deterministic function multiplied with a time-changed Brownian motion, where the time-change is also deterministic.
We have $\mathbb{E}\left[\widetilde{B}_{t}\right]=t \mathbb{E}\left[B\left(\frac{1}{t}\right)\right]=t \cdot 0=0$ and if $s<t$ then

$$
\operatorname{Cov}\left[\widetilde{B}_{s}, \widetilde{B}_{t}\right]=\operatorname{Cov}\left[s B\left(\frac{1}{s}\right), t B\left(\frac{1}{t}\right)\right]=s t \operatorname{Cov}\left[B\left(\frac{1}{s}\right), B\left(\frac{1}{t}\right)\right]=s t \cdot\left(\frac{1}{s} \wedge \frac{1}{t}\right)=s t \frac{1}{t}=s,
$$

therefore $\left(\widetilde{B}_{t}\right)$ is a Brownian motion.
3. (a) $\mathbb{E}\left[M_{n} \mid \mathcal{F}_{n-1}\right]=M_{n-1} \mathbb{E}\left[e^{\xi_{n}} \mid \mathcal{F}_{n-1}\right] / C=M_{n-1} \frac{e+e^{-1}}{2} \frac{1}{C}$, thus $C=\frac{e+e^{-1}}{2}=\operatorname{ch}(1)$.
(b) $M_{n}-1=M_{n}-M_{0}=\sum_{i=0}^{n-1} \Delta M_{i}$. We want to write $\Delta M_{i}=H_{i+1} \xi_{i+1}$, where H_{i+1} in \mathcal{F}_{i}-measurable.

$$
\begin{aligned}
& \Delta M_{n}=M_{n+1}-M_{n}=M_{n} \cdot\left(e^{\xi_{n+1}} / \operatorname{ch}(1)-1\right)=\frac{M_{n}}{\operatorname{ch}(1)}\left(e^{\xi_{n+1}}-\frac{e+e^{-1}}{2}\right) \stackrel{(*)}{=} \\
& \frac{M_{n}}{\operatorname{ch}(1)} \frac{e-e^{-1}}{2} \xi_{n+1}=\frac{M_{n}}{\operatorname{ch}(1)} \operatorname{sh}(1) \xi_{n+1}=\operatorname{th}(1) M_{n} \xi_{n+1}
\end{aligned}
$$

where $(*)$ holds since ξ_{n+1} can only take two different values: ± 1. Thus $\Delta M_{n}=H_{n+1} \xi_{n+1}$, where $H_{n+1}=\operatorname{th}(1) M_{n}$. Thus $H_{n}=\operatorname{th}(1) M_{n-1}=\frac{e-e^{-1}}{e+e^{-1}} M_{n-1}$, indeed \mathcal{F}_{n-1}-measurable.

