Midterm Exam - October 13, 2016, Stochastic Analysis

Family name	Given name	
Signature	Neptun Code	

No calculators or electronic devices are allowed. One formula sheet with 15 formulas is allowed.

- 1. Let $S_n = \xi_1 + \dots + \xi_n$, where ξ_1, ξ_2, \dots , are i.i.d. and $\mathbb{P}(\xi_k = 1) = \mathbb{P}(\xi_k = -1) = \frac{1}{2}, k \geq 1$. Let $(\mathcal{F}_n)_{n \geq 0}$ denote the natural filtration of the simple random walk (S_n) , i.e., $\mathcal{F}_n = \sigma(S_1, \dots, S_n) = \sigma(\xi_1, \dots, \xi_n)$. Denote by $T_a = \min\{n : S_n = a\}$ the hitting time of level $a \in \mathbb{Z}$.
 - (a) (2 marks) Calculate $\mathbb{P}[T_{10} < T_{-20}]$, i.e., the probability that the walker reaches level 10 before reaching level -20 using the optional stopping theorem.
 - (b) (3 marks) Calculate $\mathbb{E}[T_{10} \wedge T_{-20}]$, i.e., the expected time spent until the walker reaches level 10 or level -20 using the optional stopping theorem.

 Instructions: You can use that (S_n) and $(S_n^2 n)$ are martingales without proof. You don't have to check that the conditions of the optional stopping theorem apply here.
- 2. Let (B_t) denote standard Brownian motion.
 - (a) (1 mark) Find the covariance matrix of (B_2, B_5) .
 - (b) (1 mark) Calculate the conditional expectation of B_5 given the sigma-field generated by B_2 .
 - (c) (3 marks) Calculate the conditional expectation of B_2 given the sigma-field generated by B_5 .
- 3. We use the notation of the first exercise of this midterm.
 - (a) (2 marks) Let $N_n = S_n^2 n$. Write N_n as the discrete stochastic integral $(H \cdot S)_n$ of a predictable process (H_n) with respect to (S_n) , i.e., find the value of H_n and show

$$N_n = \sum_{k=1}^{n} H_k \cdot (S_k - S_{k-1}).$$

(b) (3 marks) Calculate $\mathbb{E}(N_n^2)$ using part (a). Find the simplest possible form of $\mathbb{E}(N_n^2)$.

Solutions.

- 1. Let $\tau = T_{10} \wedge T_{-20}$
 - (a) $0 = S_0 = \mathbb{E}(S_\tau) = 10 \cdot \mathbb{P}(T_{10} < T_{-20}) 20 \cdot (1 \mathbb{P}(T_{10} < T_{-20})), \text{ thus } \mathbb{P}(T_{10} < T_{-20}) = \frac{2}{3}.$
 - (b) $0 = S_0^2 0 = \mathbb{E}(S_\tau^2 \tau) = 100 \cdot \mathbb{P}(T_{10} < T_{-20}) + 400 \cdot \mathbb{P}(T_{10} > T_{-20}) \mathbb{E}(\tau) = \frac{2}{3} \cdot 100 + \frac{1}{3}400 \mathbb{E}(\tau),$ thus $\mathbb{E}(\tau) = 200$.
- 2. (a) $\underline{\underline{C}} = \begin{pmatrix} 2 & 2 \\ 2 & 5 \end{pmatrix}$
 - (b) $\mathbb{E}[B_5 \mid \sigma(B_2)] = \mathbb{E}[B_2 \mid \sigma(B_2)] + \mathbb{E}[(B_5 B_2) \mid \sigma(B_2)] = B_2 + \mathbb{E}[B_5 B_2] = B_2.$
 - (c) Let $Z = B_2 \lambda B_5$. Want: $Cov(Z, B_5) = 0$. $Cov(Z, B_5) = Cov(B_2, B_5) \lambda Cov(B_5, B_5) = 2 5\lambda$. Thus $\lambda = \frac{2}{5}$. Now (Z, B_5) have multivariate normal distribution, so they are independent, thus $0 = \mathbb{E}[Z] = \mathbb{E}[Z \mid \sigma(B_5)] = \mathbb{E}[B_2 \mid \sigma(B_5)] \frac{2}{5}B_5$, thus $\mathbb{E}[B_2 \mid \sigma(B_5)] = \frac{2}{5}B_5$.
- 3. (a) $\Delta N_k = (S_k^2 k) (S_{k-1}^2 (k-1)) = (S_{k-1} + \xi_k)^2 S_{k-1}^2 1 = 2S_{k-1}\xi_k$. Thus $H_k = 2S_{k-1}$ and $N_n = \sum_{k=1}^n \Delta N_k = \sum_{k=1}^n 2S_{k-1}\xi_k = \sum_{k=1}^n 2S_{k-1} \cdot (S_k - S_{k-1})$.
 - (b) By the Pythagorean theorem for square-integrable martingales, we have

$$\mathbb{E}[N_n^2] = \sum_{k=1}^n \mathbb{E}[(\Delta N_k)^2] = \sum_{k=1}^n \mathbb{E}[4S_{k-1}^2 \xi_k^2] = 4\sum_{k=1}^n \mathbb{E}[S_{k-1}^2] = 4\sum_{k=1}^n (k-1) = 2(n-1)n$$