Family name \qquad Given name \qquad

Signature \qquad Neptun Code

No calculators or electronic devices are allowed. One formula sheet with 15 formulas is allowed.

1. Let $X_{i}, i=1,2, \ldots$ be i.i.d. with $\mathbb{P}\left(X_{i}=1\right)=1 / 2$ and $\mathbb{P}\left(X_{i}=-1\right)=1 / 2$. Let $S_{n}:=X_{1}+X_{2}+\cdots+X_{n}$. In other words, $\left(S_{n}\right)$ is a simple symmetric random walk starting from $S_{0}=0$. Denote by $\left(\mathcal{F}_{n}\right)$ the natural filtration generated by $\left(S_{n}\right)$.
(a) (3 marks) Find the discrete Doob-Meyer decomposition of $\left(S_{n}^{2}\right)$, i.e., write $S_{n}^{2}=A_{n}+M_{n}$, where $\left(A_{n}\right)$ is predictable and $\left(M_{n}\right)$ is a martingale. Find the simplest possible form of A_{n}.
(b) (2 marks) Write M_{n} as the discrete stochastic integral $(H \cdot S)_{n}$ of a predictable process $\left(H_{n}\right)$ with respect to the martingale $\left(S_{n}\right)$.
2. Recall from Paul Lévy's construction of Brownian motion that we defined $B^{(1)}(t)=t X+\frac{1}{2} f_{1}^{0}(t) Y_{1}^{0}$ for any $0 \leq t \leq 1$, where X and Y_{1}^{0} are independent standard normal random variables and $f_{1}^{0}(t)=1-2\left|x-\frac{1}{2}\right|$.
(a) (2 marks) Calculate the covariance matrix of the pair of random variables $\left(B^{(1)}(1 / 4), B^{(1)}(3 / 4)\right)$.
(b) (3 marks) Find the conditional expectation of $B^{(1)}(3 / 4)$ given the σ-field generated by $B^{(1)}(1 / 4)$.
3. Let $\left(B_{t}\right)$ denote the standard Brownian motion. We define the hitting time $\tau=\min \left\{t: B_{t}=2\right\}$.
(a) (3 marks) Given $\beta \in \mathbb{R}$, how to choose $\alpha \in \mathbb{R}$ if we want $M_{t}=e^{\beta B_{t}-\alpha t}$ to be a martingale? Name the properties of conditional expectation and Brownian motion that you used in each step of your calculation.
(b) (2 marks) Use the optional stopping theorem to calculate $\mathbb{E}\left(e^{-\lambda \tau}\right)$ for any $\lambda \in \mathbb{R}_{+}$.

Instruction: You don't have to verify that the optional stopping theorem can be applied here.

