First make-up midterm - December 13, 2016, 9.15-10.00, Stochastic Analysis

Family name	Given name
Signature	Neptun Code

No calculators or electronic devices are allowed. One formula sheet with 15 formulas is allowed.

- 1. Let $S_n = \xi_1 + \cdots + \xi_n$, where ξ_1, ξ_2, \ldots , are i.i.d. and $\mathbb{P}(\xi_k = 1) = \mathbb{P}(\xi_k = -1) = \frac{1}{2}, k \ge 1$. Let $(\mathcal{F}_n)_{n \ge 0}$ denote the natural filtration of (S_n) .
 - (a) (3 marks) Find the discrete Doob-Meyer decomposition of the process $((3S_n 2)^2)_{n>1}$, i.e., write

$$(3S_n - 2)^2 = A_n + M_n,$$

where (A_n) is a predictable process and (M_n) is a martingale with zero expectation. Give a simple and explicit formula for A_n .

(b) (2 marks) Write M_n as the discrete stochastic integral $(H \cdot S)_n$ of a predictable process (H_n) with respect to the martingale (S_n) . Explicitly state the formula for H_n .

2. Let (B_t) denote the standard Brownian motion. Let $\sigma \in \mathbb{R}_+$ and define $\widetilde{B}_t = \sigma B_t$. Define $\tau = \min\{t : \widetilde{B}_t = 1\}$, the hitting time of 1 by (\widetilde{B}_t) .

- (a) (3 marks) Given $a \in \mathbb{R}$, how to choose $b \in \mathbb{R}$ if we want $M_t = e^{a\tilde{B}_t bt}$ to be a martingale?
- (b) (2 marks) Use the optional stopping theorem to calculate $\mathbb{E}(e^{-\lambda \tau})$ for any $\lambda \in \mathbb{R}_+$. Instruction: You don't have to verify that the optional stopping theorem can be applied here.
- 3. (5 marks) Recall the definition of the stationary O.-U. process $X_t = e^{-\beta t} B(e^{2\beta t})$, where $\beta \in \mathbb{R}_+$. Calculate the conditional expectation of X_{-1} given the σ -algebra generated by X_1 .