Family name

\qquad Given name \qquad

Signature \qquad Neptun Code \qquad

No calculators or electronic devices are allowed. One formula sheet with 15 formulas is allowed.

1. Let $S_{n}=\xi_{1}+\cdots+\xi_{n}$, where ξ_{1}, ξ_{2}, \ldots, are i.i.d. and $\mathbb{P}\left(\xi_{k}=1\right)=\mathbb{P}\left(\xi_{k}=-1\right)=\frac{1}{2}, k \geq 1$. Let $\left(\mathcal{F}_{n}\right)_{n \geq 0}$ denote the natural filtration of $\left(S_{n}\right)$.
(a) (3 marks) Find the discrete Doob-Meyer decomposition of the process $\left(\left(3 S_{n}-2\right)^{2}\right)_{n \geq 1}$, i.e., write

$$
\left(3 S_{n}-2\right)^{2}=A_{n}+M_{n}
$$

where $\left(A_{n}\right)$ is a predictable process and $\left(M_{n}\right)$ is a martingale with zero expectation. Give a simple and explicit formula for A_{n}.
(b) (2 marks) Write M_{n} as the discrete stochastic integral $(H \cdot S)_{n}$ of a predictable process $\left(H_{n}\right)$ with respect to the martingale $\left(S_{n}\right)$. Explicitly state the formula for H_{n}.
2. Let $\left(B_{t}\right)$ denote the standard Brownian motion. Let $\sigma \in \mathbb{R}_{+}$and define $\widetilde{B}_{t}=\sigma B_{t}$.

Define $\tau=\min \left\{t: \widetilde{B}_{t}=1\right\}$, the hitting time of 1 by $\left(\widetilde{B}_{t}\right)$.
(a) (3 marks) Given $a \in \mathbb{R}$, how to choose $b \in \mathbb{R}$ if we want $M_{t}=e^{a \widetilde{B}_{t}-b t}$ to be a martingale?
(b) (2 marks) Use the optional stopping theorem to calculate $\mathbb{E}\left(e^{-\lambda \tau}\right)$ for any $\lambda \in \mathbb{R}_{+}$.

Instruction: You don't have to verify that the optional stopping theorem can be applied here.
3. (5 marks) Recall the definition of the stationary O.-U. process $X_{t}=e^{-\beta t} B\left(e^{2 \beta t}\right)$, where $\beta \in \mathbb{R}_{+}$. Calculate the conditional expectation of X_{-1} given the σ-algebra generated by X_{1}.

