Family name \qquad Given name \qquad

Signature \qquad Neptun Code \qquad
No calculators or electronic devices are allowed. One formula sheet with 15 formulas is allowed.

1. Let $X_{i}, i=1,2, \ldots$ be i.i.d. with $\mathbb{P}\left(X_{i}=1\right)=1 / 3$ and $\mathbb{P}\left(X_{i}=-1\right)=2 / 3$. Let $S_{n}:=1+X_{1}+X_{2}+\cdots+X_{n}$. In other words, $\left(S_{n}\right)$ is a biased random walk with downward drift starting from $S_{0}=1$.
(a) (3 marks) For what values of C will $M_{n}:=C^{S_{n}}$ be a martingale?
(b) (2 marks) For $a \in \mathbb{N}$ let $T_{a}=\min \left\{n: S_{n}=a\right\}$ denote the hitting time of a. Use the optional stopping theorem to calculate the probability $\mathbb{P}\left(T_{5}<T_{0}\right)$, i.e., the probability that the walker reaches level 5 before reaching level 0 .
Instruction: You don't have to check that the conditions of the optional stopping theorem hold.
2. Let $\left(B_{t}\right)$ denote standard Brownian motion. Let us define

$$
\mathcal{I}_{n}=\sum_{k=1}^{n} 2 B\left(2 \frac{k-1}{n}\right) \cdot\left(B\left(2 \frac{k}{n}\right)-B\left(2 \frac{k-1}{n}\right)\right), \quad \mathcal{Q}_{n}=\sum_{k=1}^{n}\left(B\left(2 \frac{k}{n}\right)-B\left(2 \frac{k-1}{n}\right)\right)^{2}
$$

(a) (3 marks) Show that both \mathcal{I}_{n} and \mathcal{Q}_{n} converge in probability to some random variables \mathcal{I} and \mathcal{Q} as $n \rightarrow \infty$ and find the simplest possible formula for the limits \mathcal{I} and \mathcal{Q}.
Hint: You can use without proof that the quadratic variation of Brownian motion is $[B]_{t}=t$.
Hint2: Consider $\mathcal{I}_{n}+\mathcal{Q}_{n}$.
(b) (2 marks) Use the Pyhtagorean theorem for square integrable martingales to calculate $\mathbb{E}\left[\mathcal{I}_{n}^{2}\right]$.
3. (5 marks) Let $\left(B_{t}\right)$ denote standard Brownian motion. Find the cumulative distribution function of

$$
X=\min _{0 \leq t \leq 4} B_{t},
$$

i.e., calculate $\mathbb{P}(X \leq x)$ for all $x \in \mathbb{R}$. Please express your answer using the cumulative distribution function $\Phi(\cdot)$ of the standard normal random variable. Please explain how you used the reflection principle in your calculation by drawing a picture where the relevant quantities and random variables are clearly indicated.

